]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm: rename vmap_page_range to map_kernel_range
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 9 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
10 */
11
db64fe02 12#include <linux/vmalloc.h>
1da177e4
LT
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
c3edc401 16#include <linux/sched/signal.h>
1da177e4
LT
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
5f6a6a9c 20#include <linux/proc_fs.h>
a10aa579 21#include <linux/seq_file.h>
868b104d 22#include <linux/set_memory.h>
3ac7fe5a 23#include <linux/debugobjects.h>
23016969 24#include <linux/kallsyms.h>
db64fe02 25#include <linux/list.h>
4da56b99 26#include <linux/notifier.h>
db64fe02
NP
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
32fcfd40 34#include <linux/llist.h>
0f616be1 35#include <linux/bitops.h>
68ad4a33 36#include <linux/rbtree_augmented.h>
bdebd6a2 37#include <linux/overflow.h>
3b32123d 38
7c0f6ba6 39#include <linux/uaccess.h>
1da177e4 40#include <asm/tlbflush.h>
2dca6999 41#include <asm/shmparam.h>
1da177e4 42
dd56b046
MG
43#include "internal.h"
44
186525bd
IM
45bool is_vmalloc_addr(const void *x)
46{
47 unsigned long addr = (unsigned long)x;
48
49 return addr >= VMALLOC_START && addr < VMALLOC_END;
50}
51EXPORT_SYMBOL(is_vmalloc_addr);
52
32fcfd40
AV
53struct vfree_deferred {
54 struct llist_head list;
55 struct work_struct wq;
56};
57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58
59static void __vunmap(const void *, int);
60
61static void free_work(struct work_struct *w)
62{
63 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
64 struct llist_node *t, *llnode;
65
66 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 __vunmap((void *)llnode, 1);
32fcfd40
AV
68}
69
db64fe02 70/*** Page table manipulation functions ***/
b221385b 71
1da177e4
LT
72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
73{
74 pte_t *pte;
75
76 pte = pte_offset_kernel(pmd, addr);
77 do {
78 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
79 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
80 } while (pte++, addr += PAGE_SIZE, addr != end);
81}
82
db64fe02 83static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
84{
85 pmd_t *pmd;
86 unsigned long next;
87
88 pmd = pmd_offset(pud, addr);
89 do {
90 next = pmd_addr_end(addr, end);
b9820d8f
TK
91 if (pmd_clear_huge(pmd))
92 continue;
1da177e4
LT
93 if (pmd_none_or_clear_bad(pmd))
94 continue;
95 vunmap_pte_range(pmd, addr, next);
96 } while (pmd++, addr = next, addr != end);
97}
98
c2febafc 99static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
1da177e4
LT
100{
101 pud_t *pud;
102 unsigned long next;
103
c2febafc 104 pud = pud_offset(p4d, addr);
1da177e4
LT
105 do {
106 next = pud_addr_end(addr, end);
b9820d8f
TK
107 if (pud_clear_huge(pud))
108 continue;
1da177e4
LT
109 if (pud_none_or_clear_bad(pud))
110 continue;
111 vunmap_pmd_range(pud, addr, next);
112 } while (pud++, addr = next, addr != end);
113}
114
c2febafc
KS
115static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
116{
117 p4d_t *p4d;
118 unsigned long next;
119
120 p4d = p4d_offset(pgd, addr);
121 do {
122 next = p4d_addr_end(addr, end);
123 if (p4d_clear_huge(p4d))
124 continue;
125 if (p4d_none_or_clear_bad(p4d))
126 continue;
127 vunmap_pud_range(p4d, addr, next);
128 } while (p4d++, addr = next, addr != end);
129}
130
b521c43f
CH
131/**
132 * unmap_kernel_range_noflush - unmap kernel VM area
133 * @addr: start of the VM area to unmap
134 * @size: size of the VM area to unmap
135 *
136 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify
137 * should have been allocated using get_vm_area() and its friends.
138 *
139 * NOTE:
140 * This function does NOT do any cache flushing. The caller is responsible
141 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
142 * function and flush_tlb_kernel_range() after.
143 */
144void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1da177e4 145{
b521c43f 146 unsigned long end = addr + size;
1da177e4 147 unsigned long next;
b521c43f 148 pgd_t *pgd;
1da177e4
LT
149
150 BUG_ON(addr >= end);
151 pgd = pgd_offset_k(addr);
1da177e4
LT
152 do {
153 next = pgd_addr_end(addr, end);
154 if (pgd_none_or_clear_bad(pgd))
155 continue;
c2febafc 156 vunmap_p4d_range(pgd, addr, next);
1da177e4 157 } while (pgd++, addr = next, addr != end);
1da177e4
LT
158}
159
160static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
162{
163 pte_t *pte;
164
db64fe02
NP
165 /*
166 * nr is a running index into the array which helps higher level
167 * callers keep track of where we're up to.
168 */
169
872fec16 170 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
171 if (!pte)
172 return -ENOMEM;
173 do {
db64fe02
NP
174 struct page *page = pages[*nr];
175
176 if (WARN_ON(!pte_none(*pte)))
177 return -EBUSY;
178 if (WARN_ON(!page))
1da177e4
LT
179 return -ENOMEM;
180 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 181 (*nr)++;
1da177e4
LT
182 } while (pte++, addr += PAGE_SIZE, addr != end);
183 return 0;
184}
185
db64fe02
NP
186static int vmap_pmd_range(pud_t *pud, unsigned long addr,
187 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
188{
189 pmd_t *pmd;
190 unsigned long next;
191
192 pmd = pmd_alloc(&init_mm, pud, addr);
193 if (!pmd)
194 return -ENOMEM;
195 do {
196 next = pmd_addr_end(addr, end);
db64fe02 197 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
198 return -ENOMEM;
199 } while (pmd++, addr = next, addr != end);
200 return 0;
201}
202
c2febafc 203static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
db64fe02 204 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
205{
206 pud_t *pud;
207 unsigned long next;
208
c2febafc 209 pud = pud_alloc(&init_mm, p4d, addr);
1da177e4
LT
210 if (!pud)
211 return -ENOMEM;
212 do {
213 next = pud_addr_end(addr, end);
db64fe02 214 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
215 return -ENOMEM;
216 } while (pud++, addr = next, addr != end);
217 return 0;
218}
219
c2febafc
KS
220static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
221 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
222{
223 p4d_t *p4d;
224 unsigned long next;
225
226 p4d = p4d_alloc(&init_mm, pgd, addr);
227 if (!p4d)
228 return -ENOMEM;
229 do {
230 next = p4d_addr_end(addr, end);
231 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
232 return -ENOMEM;
233 } while (p4d++, addr = next, addr != end);
234 return 0;
235}
236
b521c43f
CH
237/**
238 * map_kernel_range_noflush - map kernel VM area with the specified pages
239 * @addr: start of the VM area to map
240 * @size: size of the VM area to map
241 * @prot: page protection flags to use
242 * @pages: pages to map
db64fe02 243 *
b521c43f
CH
244 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should
245 * have been allocated using get_vm_area() and its friends.
246 *
247 * NOTE:
248 * This function does NOT do any cache flushing. The caller is responsible for
249 * calling flush_cache_vmap() on to-be-mapped areas before calling this
250 * function.
251 *
252 * RETURNS:
253 * The number of pages mapped on success, -errno on failure.
db64fe02 254 */
b521c43f
CH
255int map_kernel_range_noflush(unsigned long addr, unsigned long size,
256 pgprot_t prot, struct page **pages)
1da177e4 257{
b521c43f 258 unsigned long end = addr + size;
1da177e4 259 unsigned long next;
b521c43f 260 pgd_t *pgd;
db64fe02
NP
261 int err = 0;
262 int nr = 0;
1da177e4
LT
263
264 BUG_ON(addr >= end);
265 pgd = pgd_offset_k(addr);
1da177e4
LT
266 do {
267 next = pgd_addr_end(addr, end);
c2febafc 268 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
1da177e4 269 if (err)
bf88c8c8 270 return err;
1da177e4 271 } while (pgd++, addr = next, addr != end);
db64fe02 272
db64fe02 273 return nr;
1da177e4
LT
274}
275
a29adb62 276static int map_kernel_range(unsigned long start, unsigned long size,
8fc48985
TH
277 pgprot_t prot, struct page **pages)
278{
279 int ret;
280
a29adb62
CH
281 ret = map_kernel_range_noflush(start, size, prot, pages);
282 flush_cache_vmap(start, start + size);
8fc48985
TH
283 return ret;
284}
285
81ac3ad9 286int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
287{
288 /*
ab4f2ee1 289 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
290 * and fall back on vmalloc() if that fails. Others
291 * just put it in the vmalloc space.
292 */
293#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
294 unsigned long addr = (unsigned long)x;
295 if (addr >= MODULES_VADDR && addr < MODULES_END)
296 return 1;
297#endif
298 return is_vmalloc_addr(x);
299}
300
48667e7a 301/*
add688fb 302 * Walk a vmap address to the struct page it maps.
48667e7a 303 */
add688fb 304struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
305{
306 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 307 struct page *page = NULL;
48667e7a 308 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
309 p4d_t *p4d;
310 pud_t *pud;
311 pmd_t *pmd;
312 pte_t *ptep, pte;
48667e7a 313
7aa413de
IM
314 /*
315 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
316 * architectures that do not vmalloc module space
317 */
73bdf0a6 318 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 319
c2febafc
KS
320 if (pgd_none(*pgd))
321 return NULL;
322 p4d = p4d_offset(pgd, addr);
323 if (p4d_none(*p4d))
324 return NULL;
325 pud = pud_offset(p4d, addr);
029c54b0
AB
326
327 /*
328 * Don't dereference bad PUD or PMD (below) entries. This will also
329 * identify huge mappings, which we may encounter on architectures
330 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
331 * identified as vmalloc addresses by is_vmalloc_addr(), but are
332 * not [unambiguously] associated with a struct page, so there is
333 * no correct value to return for them.
334 */
335 WARN_ON_ONCE(pud_bad(*pud));
336 if (pud_none(*pud) || pud_bad(*pud))
c2febafc
KS
337 return NULL;
338 pmd = pmd_offset(pud, addr);
029c54b0
AB
339 WARN_ON_ONCE(pmd_bad(*pmd));
340 if (pmd_none(*pmd) || pmd_bad(*pmd))
c2febafc
KS
341 return NULL;
342
343 ptep = pte_offset_map(pmd, addr);
344 pte = *ptep;
345 if (pte_present(pte))
346 page = pte_page(pte);
347 pte_unmap(ptep);
add688fb 348 return page;
48667e7a 349}
add688fb 350EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
351
352/*
add688fb 353 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 354 */
add688fb 355unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 356{
add688fb 357 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 358}
add688fb 359EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 360
db64fe02
NP
361
362/*** Global kva allocator ***/
363
bb850f4d 364#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 365#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 366
db64fe02 367
db64fe02 368static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 369static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
370/* Export for kexec only */
371LIST_HEAD(vmap_area_list);
80c4bd7a 372static LLIST_HEAD(vmap_purge_list);
89699605 373static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 374static bool vmap_initialized __read_mostly;
89699605 375
68ad4a33
URS
376/*
377 * This kmem_cache is used for vmap_area objects. Instead of
378 * allocating from slab we reuse an object from this cache to
379 * make things faster. Especially in "no edge" splitting of
380 * free block.
381 */
382static struct kmem_cache *vmap_area_cachep;
383
384/*
385 * This linked list is used in pair with free_vmap_area_root.
386 * It gives O(1) access to prev/next to perform fast coalescing.
387 */
388static LIST_HEAD(free_vmap_area_list);
389
390/*
391 * This augment red-black tree represents the free vmap space.
392 * All vmap_area objects in this tree are sorted by va->va_start
393 * address. It is used for allocation and merging when a vmap
394 * object is released.
395 *
396 * Each vmap_area node contains a maximum available free block
397 * of its sub-tree, right or left. Therefore it is possible to
398 * find a lowest match of free area.
399 */
400static struct rb_root free_vmap_area_root = RB_ROOT;
401
82dd23e8
URS
402/*
403 * Preload a CPU with one object for "no edge" split case. The
404 * aim is to get rid of allocations from the atomic context, thus
405 * to use more permissive allocation masks.
406 */
407static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
408
68ad4a33
URS
409static __always_inline unsigned long
410va_size(struct vmap_area *va)
411{
412 return (va->va_end - va->va_start);
413}
414
415static __always_inline unsigned long
416get_subtree_max_size(struct rb_node *node)
417{
418 struct vmap_area *va;
419
420 va = rb_entry_safe(node, struct vmap_area, rb_node);
421 return va ? va->subtree_max_size : 0;
422}
89699605 423
68ad4a33
URS
424/*
425 * Gets called when remove the node and rotate.
426 */
427static __always_inline unsigned long
428compute_subtree_max_size(struct vmap_area *va)
429{
430 return max3(va_size(va),
431 get_subtree_max_size(va->rb_node.rb_left),
432 get_subtree_max_size(va->rb_node.rb_right));
433}
434
315cc066
ML
435RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
436 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
437
438static void purge_vmap_area_lazy(void);
439static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
440static unsigned long lazy_max_pages(void);
db64fe02 441
97105f0a
RG
442static atomic_long_t nr_vmalloc_pages;
443
444unsigned long vmalloc_nr_pages(void)
445{
446 return atomic_long_read(&nr_vmalloc_pages);
447}
448
db64fe02 449static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 450{
db64fe02
NP
451 struct rb_node *n = vmap_area_root.rb_node;
452
453 while (n) {
454 struct vmap_area *va;
455
456 va = rb_entry(n, struct vmap_area, rb_node);
457 if (addr < va->va_start)
458 n = n->rb_left;
cef2ac3f 459 else if (addr >= va->va_end)
db64fe02
NP
460 n = n->rb_right;
461 else
462 return va;
463 }
464
465 return NULL;
466}
467
68ad4a33
URS
468/*
469 * This function returns back addresses of parent node
470 * and its left or right link for further processing.
471 */
472static __always_inline struct rb_node **
473find_va_links(struct vmap_area *va,
474 struct rb_root *root, struct rb_node *from,
475 struct rb_node **parent)
476{
477 struct vmap_area *tmp_va;
478 struct rb_node **link;
479
480 if (root) {
481 link = &root->rb_node;
482 if (unlikely(!*link)) {
483 *parent = NULL;
484 return link;
485 }
486 } else {
487 link = &from;
488 }
db64fe02 489
68ad4a33
URS
490 /*
491 * Go to the bottom of the tree. When we hit the last point
492 * we end up with parent rb_node and correct direction, i name
493 * it link, where the new va->rb_node will be attached to.
494 */
495 do {
496 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 497
68ad4a33
URS
498 /*
499 * During the traversal we also do some sanity check.
500 * Trigger the BUG() if there are sides(left/right)
501 * or full overlaps.
502 */
503 if (va->va_start < tmp_va->va_end &&
504 va->va_end <= tmp_va->va_start)
505 link = &(*link)->rb_left;
506 else if (va->va_end > tmp_va->va_start &&
507 va->va_start >= tmp_va->va_end)
508 link = &(*link)->rb_right;
db64fe02
NP
509 else
510 BUG();
68ad4a33
URS
511 } while (*link);
512
513 *parent = &tmp_va->rb_node;
514 return link;
515}
516
517static __always_inline struct list_head *
518get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
519{
520 struct list_head *list;
521
522 if (unlikely(!parent))
523 /*
524 * The red-black tree where we try to find VA neighbors
525 * before merging or inserting is empty, i.e. it means
526 * there is no free vmap space. Normally it does not
527 * happen but we handle this case anyway.
528 */
529 return NULL;
530
531 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
532 return (&parent->rb_right == link ? list->next : list);
533}
534
535static __always_inline void
536link_va(struct vmap_area *va, struct rb_root *root,
537 struct rb_node *parent, struct rb_node **link, struct list_head *head)
538{
539 /*
540 * VA is still not in the list, but we can
541 * identify its future previous list_head node.
542 */
543 if (likely(parent)) {
544 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
545 if (&parent->rb_right != link)
546 head = head->prev;
db64fe02
NP
547 }
548
68ad4a33
URS
549 /* Insert to the rb-tree */
550 rb_link_node(&va->rb_node, parent, link);
551 if (root == &free_vmap_area_root) {
552 /*
553 * Some explanation here. Just perform simple insertion
554 * to the tree. We do not set va->subtree_max_size to
555 * its current size before calling rb_insert_augmented().
556 * It is because of we populate the tree from the bottom
557 * to parent levels when the node _is_ in the tree.
558 *
559 * Therefore we set subtree_max_size to zero after insertion,
560 * to let __augment_tree_propagate_from() puts everything to
561 * the correct order later on.
562 */
563 rb_insert_augmented(&va->rb_node,
564 root, &free_vmap_area_rb_augment_cb);
565 va->subtree_max_size = 0;
566 } else {
567 rb_insert_color(&va->rb_node, root);
568 }
db64fe02 569
68ad4a33
URS
570 /* Address-sort this list */
571 list_add(&va->list, head);
db64fe02
NP
572}
573
68ad4a33
URS
574static __always_inline void
575unlink_va(struct vmap_area *va, struct rb_root *root)
576{
460e42d1
URS
577 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
578 return;
db64fe02 579
460e42d1
URS
580 if (root == &free_vmap_area_root)
581 rb_erase_augmented(&va->rb_node,
582 root, &free_vmap_area_rb_augment_cb);
583 else
584 rb_erase(&va->rb_node, root);
585
586 list_del(&va->list);
587 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
588}
589
bb850f4d
URS
590#if DEBUG_AUGMENT_PROPAGATE_CHECK
591static void
592augment_tree_propagate_check(struct rb_node *n)
593{
594 struct vmap_area *va;
595 struct rb_node *node;
596 unsigned long size;
597 bool found = false;
598
599 if (n == NULL)
600 return;
601
602 va = rb_entry(n, struct vmap_area, rb_node);
603 size = va->subtree_max_size;
604 node = n;
605
606 while (node) {
607 va = rb_entry(node, struct vmap_area, rb_node);
608
609 if (get_subtree_max_size(node->rb_left) == size) {
610 node = node->rb_left;
611 } else {
612 if (va_size(va) == size) {
613 found = true;
614 break;
615 }
616
617 node = node->rb_right;
618 }
619 }
620
621 if (!found) {
622 va = rb_entry(n, struct vmap_area, rb_node);
623 pr_emerg("tree is corrupted: %lu, %lu\n",
624 va_size(va), va->subtree_max_size);
625 }
626
627 augment_tree_propagate_check(n->rb_left);
628 augment_tree_propagate_check(n->rb_right);
629}
630#endif
631
68ad4a33
URS
632/*
633 * This function populates subtree_max_size from bottom to upper
634 * levels starting from VA point. The propagation must be done
635 * when VA size is modified by changing its va_start/va_end. Or
636 * in case of newly inserting of VA to the tree.
637 *
638 * It means that __augment_tree_propagate_from() must be called:
639 * - After VA has been inserted to the tree(free path);
640 * - After VA has been shrunk(allocation path);
641 * - After VA has been increased(merging path).
642 *
643 * Please note that, it does not mean that upper parent nodes
644 * and their subtree_max_size are recalculated all the time up
645 * to the root node.
646 *
647 * 4--8
648 * /\
649 * / \
650 * / \
651 * 2--2 8--8
652 *
653 * For example if we modify the node 4, shrinking it to 2, then
654 * no any modification is required. If we shrink the node 2 to 1
655 * its subtree_max_size is updated only, and set to 1. If we shrink
656 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
657 * node becomes 4--6.
658 */
659static __always_inline void
660augment_tree_propagate_from(struct vmap_area *va)
661{
662 struct rb_node *node = &va->rb_node;
663 unsigned long new_va_sub_max_size;
664
665 while (node) {
666 va = rb_entry(node, struct vmap_area, rb_node);
667 new_va_sub_max_size = compute_subtree_max_size(va);
668
669 /*
670 * If the newly calculated maximum available size of the
671 * subtree is equal to the current one, then it means that
672 * the tree is propagated correctly. So we have to stop at
673 * this point to save cycles.
674 */
675 if (va->subtree_max_size == new_va_sub_max_size)
676 break;
677
678 va->subtree_max_size = new_va_sub_max_size;
679 node = rb_parent(&va->rb_node);
680 }
bb850f4d
URS
681
682#if DEBUG_AUGMENT_PROPAGATE_CHECK
683 augment_tree_propagate_check(free_vmap_area_root.rb_node);
684#endif
68ad4a33
URS
685}
686
687static void
688insert_vmap_area(struct vmap_area *va,
689 struct rb_root *root, struct list_head *head)
690{
691 struct rb_node **link;
692 struct rb_node *parent;
693
694 link = find_va_links(va, root, NULL, &parent);
695 link_va(va, root, parent, link, head);
696}
697
698static void
699insert_vmap_area_augment(struct vmap_area *va,
700 struct rb_node *from, struct rb_root *root,
701 struct list_head *head)
702{
703 struct rb_node **link;
704 struct rb_node *parent;
705
706 if (from)
707 link = find_va_links(va, NULL, from, &parent);
708 else
709 link = find_va_links(va, root, NULL, &parent);
710
711 link_va(va, root, parent, link, head);
712 augment_tree_propagate_from(va);
713}
714
715/*
716 * Merge de-allocated chunk of VA memory with previous
717 * and next free blocks. If coalesce is not done a new
718 * free area is inserted. If VA has been merged, it is
719 * freed.
720 */
3c5c3cfb 721static __always_inline struct vmap_area *
68ad4a33
URS
722merge_or_add_vmap_area(struct vmap_area *va,
723 struct rb_root *root, struct list_head *head)
724{
725 struct vmap_area *sibling;
726 struct list_head *next;
727 struct rb_node **link;
728 struct rb_node *parent;
729 bool merged = false;
730
731 /*
732 * Find a place in the tree where VA potentially will be
733 * inserted, unless it is merged with its sibling/siblings.
734 */
735 link = find_va_links(va, root, NULL, &parent);
736
737 /*
738 * Get next node of VA to check if merging can be done.
739 */
740 next = get_va_next_sibling(parent, link);
741 if (unlikely(next == NULL))
742 goto insert;
743
744 /*
745 * start end
746 * | |
747 * |<------VA------>|<-----Next----->|
748 * | |
749 * start end
750 */
751 if (next != head) {
752 sibling = list_entry(next, struct vmap_area, list);
753 if (sibling->va_start == va->va_end) {
754 sibling->va_start = va->va_start;
755
756 /* Check and update the tree if needed. */
757 augment_tree_propagate_from(sibling);
758
68ad4a33
URS
759 /* Free vmap_area object. */
760 kmem_cache_free(vmap_area_cachep, va);
761
762 /* Point to the new merged area. */
763 va = sibling;
764 merged = true;
765 }
766 }
767
768 /*
769 * start end
770 * | |
771 * |<-----Prev----->|<------VA------>|
772 * | |
773 * start end
774 */
775 if (next->prev != head) {
776 sibling = list_entry(next->prev, struct vmap_area, list);
777 if (sibling->va_end == va->va_start) {
778 sibling->va_end = va->va_end;
779
780 /* Check and update the tree if needed. */
781 augment_tree_propagate_from(sibling);
782
54f63d9d
URS
783 if (merged)
784 unlink_va(va, root);
68ad4a33
URS
785
786 /* Free vmap_area object. */
787 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
788
789 /* Point to the new merged area. */
790 va = sibling;
791 merged = true;
68ad4a33
URS
792 }
793 }
794
795insert:
796 if (!merged) {
797 link_va(va, root, parent, link, head);
798 augment_tree_propagate_from(va);
799 }
3c5c3cfb
DA
800
801 return va;
68ad4a33
URS
802}
803
804static __always_inline bool
805is_within_this_va(struct vmap_area *va, unsigned long size,
806 unsigned long align, unsigned long vstart)
807{
808 unsigned long nva_start_addr;
809
810 if (va->va_start > vstart)
811 nva_start_addr = ALIGN(va->va_start, align);
812 else
813 nva_start_addr = ALIGN(vstart, align);
814
815 /* Can be overflowed due to big size or alignment. */
816 if (nva_start_addr + size < nva_start_addr ||
817 nva_start_addr < vstart)
818 return false;
819
820 return (nva_start_addr + size <= va->va_end);
821}
822
823/*
824 * Find the first free block(lowest start address) in the tree,
825 * that will accomplish the request corresponding to passing
826 * parameters.
827 */
828static __always_inline struct vmap_area *
829find_vmap_lowest_match(unsigned long size,
830 unsigned long align, unsigned long vstart)
831{
832 struct vmap_area *va;
833 struct rb_node *node;
834 unsigned long length;
835
836 /* Start from the root. */
837 node = free_vmap_area_root.rb_node;
838
839 /* Adjust the search size for alignment overhead. */
840 length = size + align - 1;
841
842 while (node) {
843 va = rb_entry(node, struct vmap_area, rb_node);
844
845 if (get_subtree_max_size(node->rb_left) >= length &&
846 vstart < va->va_start) {
847 node = node->rb_left;
848 } else {
849 if (is_within_this_va(va, size, align, vstart))
850 return va;
851
852 /*
853 * Does not make sense to go deeper towards the right
854 * sub-tree if it does not have a free block that is
855 * equal or bigger to the requested search length.
856 */
857 if (get_subtree_max_size(node->rb_right) >= length) {
858 node = node->rb_right;
859 continue;
860 }
861
862 /*
3806b041 863 * OK. We roll back and find the first right sub-tree,
68ad4a33
URS
864 * that will satisfy the search criteria. It can happen
865 * only once due to "vstart" restriction.
866 */
867 while ((node = rb_parent(node))) {
868 va = rb_entry(node, struct vmap_area, rb_node);
869 if (is_within_this_va(va, size, align, vstart))
870 return va;
871
872 if (get_subtree_max_size(node->rb_right) >= length &&
873 vstart <= va->va_start) {
874 node = node->rb_right;
875 break;
876 }
877 }
878 }
879 }
880
881 return NULL;
882}
883
a6cf4e0f
URS
884#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
885#include <linux/random.h>
886
887static struct vmap_area *
888find_vmap_lowest_linear_match(unsigned long size,
889 unsigned long align, unsigned long vstart)
890{
891 struct vmap_area *va;
892
893 list_for_each_entry(va, &free_vmap_area_list, list) {
894 if (!is_within_this_va(va, size, align, vstart))
895 continue;
896
897 return va;
898 }
899
900 return NULL;
901}
902
903static void
904find_vmap_lowest_match_check(unsigned long size)
905{
906 struct vmap_area *va_1, *va_2;
907 unsigned long vstart;
908 unsigned int rnd;
909
910 get_random_bytes(&rnd, sizeof(rnd));
911 vstart = VMALLOC_START + rnd;
912
913 va_1 = find_vmap_lowest_match(size, 1, vstart);
914 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
915
916 if (va_1 != va_2)
917 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
918 va_1, va_2, vstart);
919}
920#endif
921
68ad4a33
URS
922enum fit_type {
923 NOTHING_FIT = 0,
924 FL_FIT_TYPE = 1, /* full fit */
925 LE_FIT_TYPE = 2, /* left edge fit */
926 RE_FIT_TYPE = 3, /* right edge fit */
927 NE_FIT_TYPE = 4 /* no edge fit */
928};
929
930static __always_inline enum fit_type
931classify_va_fit_type(struct vmap_area *va,
932 unsigned long nva_start_addr, unsigned long size)
933{
934 enum fit_type type;
935
936 /* Check if it is within VA. */
937 if (nva_start_addr < va->va_start ||
938 nva_start_addr + size > va->va_end)
939 return NOTHING_FIT;
940
941 /* Now classify. */
942 if (va->va_start == nva_start_addr) {
943 if (va->va_end == nva_start_addr + size)
944 type = FL_FIT_TYPE;
945 else
946 type = LE_FIT_TYPE;
947 } else if (va->va_end == nva_start_addr + size) {
948 type = RE_FIT_TYPE;
949 } else {
950 type = NE_FIT_TYPE;
951 }
952
953 return type;
954}
955
956static __always_inline int
957adjust_va_to_fit_type(struct vmap_area *va,
958 unsigned long nva_start_addr, unsigned long size,
959 enum fit_type type)
960{
2c929233 961 struct vmap_area *lva = NULL;
68ad4a33
URS
962
963 if (type == FL_FIT_TYPE) {
964 /*
965 * No need to split VA, it fully fits.
966 *
967 * | |
968 * V NVA V
969 * |---------------|
970 */
971 unlink_va(va, &free_vmap_area_root);
972 kmem_cache_free(vmap_area_cachep, va);
973 } else if (type == LE_FIT_TYPE) {
974 /*
975 * Split left edge of fit VA.
976 *
977 * | |
978 * V NVA V R
979 * |-------|-------|
980 */
981 va->va_start += size;
982 } else if (type == RE_FIT_TYPE) {
983 /*
984 * Split right edge of fit VA.
985 *
986 * | |
987 * L V NVA V
988 * |-------|-------|
989 */
990 va->va_end = nva_start_addr;
991 } else if (type == NE_FIT_TYPE) {
992 /*
993 * Split no edge of fit VA.
994 *
995 * | |
996 * L V NVA V R
997 * |---|-------|---|
998 */
82dd23e8
URS
999 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1000 if (unlikely(!lva)) {
1001 /*
1002 * For percpu allocator we do not do any pre-allocation
1003 * and leave it as it is. The reason is it most likely
1004 * never ends up with NE_FIT_TYPE splitting. In case of
1005 * percpu allocations offsets and sizes are aligned to
1006 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1007 * are its main fitting cases.
1008 *
1009 * There are a few exceptions though, as an example it is
1010 * a first allocation (early boot up) when we have "one"
1011 * big free space that has to be split.
060650a2
URS
1012 *
1013 * Also we can hit this path in case of regular "vmap"
1014 * allocations, if "this" current CPU was not preloaded.
1015 * See the comment in alloc_vmap_area() why. If so, then
1016 * GFP_NOWAIT is used instead to get an extra object for
1017 * split purpose. That is rare and most time does not
1018 * occur.
1019 *
1020 * What happens if an allocation gets failed. Basically,
1021 * an "overflow" path is triggered to purge lazily freed
1022 * areas to free some memory, then, the "retry" path is
1023 * triggered to repeat one more time. See more details
1024 * in alloc_vmap_area() function.
82dd23e8
URS
1025 */
1026 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1027 if (!lva)
1028 return -1;
1029 }
68ad4a33
URS
1030
1031 /*
1032 * Build the remainder.
1033 */
1034 lva->va_start = va->va_start;
1035 lva->va_end = nva_start_addr;
1036
1037 /*
1038 * Shrink this VA to remaining size.
1039 */
1040 va->va_start = nva_start_addr + size;
1041 } else {
1042 return -1;
1043 }
1044
1045 if (type != FL_FIT_TYPE) {
1046 augment_tree_propagate_from(va);
1047
2c929233 1048 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1049 insert_vmap_area_augment(lva, &va->rb_node,
1050 &free_vmap_area_root, &free_vmap_area_list);
1051 }
1052
1053 return 0;
1054}
1055
1056/*
1057 * Returns a start address of the newly allocated area, if success.
1058 * Otherwise a vend is returned that indicates failure.
1059 */
1060static __always_inline unsigned long
1061__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1062 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1063{
1064 unsigned long nva_start_addr;
1065 struct vmap_area *va;
1066 enum fit_type type;
1067 int ret;
1068
1069 va = find_vmap_lowest_match(size, align, vstart);
1070 if (unlikely(!va))
1071 return vend;
1072
1073 if (va->va_start > vstart)
1074 nva_start_addr = ALIGN(va->va_start, align);
1075 else
1076 nva_start_addr = ALIGN(vstart, align);
1077
1078 /* Check the "vend" restriction. */
1079 if (nva_start_addr + size > vend)
1080 return vend;
1081
1082 /* Classify what we have found. */
1083 type = classify_va_fit_type(va, nva_start_addr, size);
1084 if (WARN_ON_ONCE(type == NOTHING_FIT))
1085 return vend;
1086
1087 /* Update the free vmap_area. */
1088 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1089 if (ret)
1090 return vend;
1091
a6cf4e0f
URS
1092#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1093 find_vmap_lowest_match_check(size);
1094#endif
1095
68ad4a33
URS
1096 return nva_start_addr;
1097}
4da56b99 1098
d98c9e83
AR
1099/*
1100 * Free a region of KVA allocated by alloc_vmap_area
1101 */
1102static void free_vmap_area(struct vmap_area *va)
1103{
1104 /*
1105 * Remove from the busy tree/list.
1106 */
1107 spin_lock(&vmap_area_lock);
1108 unlink_va(va, &vmap_area_root);
1109 spin_unlock(&vmap_area_lock);
1110
1111 /*
1112 * Insert/Merge it back to the free tree/list.
1113 */
1114 spin_lock(&free_vmap_area_lock);
1115 merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1116 spin_unlock(&free_vmap_area_lock);
1117}
1118
db64fe02
NP
1119/*
1120 * Allocate a region of KVA of the specified size and alignment, within the
1121 * vstart and vend.
1122 */
1123static struct vmap_area *alloc_vmap_area(unsigned long size,
1124 unsigned long align,
1125 unsigned long vstart, unsigned long vend,
1126 int node, gfp_t gfp_mask)
1127{
82dd23e8 1128 struct vmap_area *va, *pva;
1da177e4 1129 unsigned long addr;
db64fe02 1130 int purged = 0;
d98c9e83 1131 int ret;
db64fe02 1132
7766970c 1133 BUG_ON(!size);
891c49ab 1134 BUG_ON(offset_in_page(size));
89699605 1135 BUG_ON(!is_power_of_2(align));
db64fe02 1136
68ad4a33
URS
1137 if (unlikely(!vmap_initialized))
1138 return ERR_PTR(-EBUSY);
1139
5803ed29 1140 might_sleep();
f07116d7 1141 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1142
f07116d7 1143 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1144 if (unlikely(!va))
1145 return ERR_PTR(-ENOMEM);
1146
7f88f88f
CM
1147 /*
1148 * Only scan the relevant parts containing pointers to other objects
1149 * to avoid false negatives.
1150 */
f07116d7 1151 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1152
db64fe02 1153retry:
82dd23e8 1154 /*
81f1ba58
URS
1155 * Preload this CPU with one extra vmap_area object. It is used
1156 * when fit type of free area is NE_FIT_TYPE. Please note, it
1157 * does not guarantee that an allocation occurs on a CPU that
1158 * is preloaded, instead we minimize the case when it is not.
1159 * It can happen because of cpu migration, because there is a
1160 * race until the below spinlock is taken.
82dd23e8
URS
1161 *
1162 * The preload is done in non-atomic context, thus it allows us
1163 * to use more permissive allocation masks to be more stable under
81f1ba58
URS
1164 * low memory condition and high memory pressure. In rare case,
1165 * if not preloaded, GFP_NOWAIT is used.
82dd23e8 1166 *
81f1ba58 1167 * Set "pva" to NULL here, because of "retry" path.
82dd23e8 1168 */
81f1ba58 1169 pva = NULL;
82dd23e8 1170
81f1ba58
URS
1171 if (!this_cpu_read(ne_fit_preload_node))
1172 /*
1173 * Even if it fails we do not really care about that.
1174 * Just proceed as it is. If needed "overflow" path
1175 * will refill the cache we allocate from.
1176 */
f07116d7 1177 pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
82dd23e8 1178
e36176be 1179 spin_lock(&free_vmap_area_lock);
81f1ba58
URS
1180
1181 if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1182 kmem_cache_free(vmap_area_cachep, pva);
89699605 1183
afd07389 1184 /*
68ad4a33
URS
1185 * If an allocation fails, the "vend" address is
1186 * returned. Therefore trigger the overflow path.
afd07389 1187 */
cacca6ba 1188 addr = __alloc_vmap_area(size, align, vstart, vend);
e36176be
URS
1189 spin_unlock(&free_vmap_area_lock);
1190
68ad4a33 1191 if (unlikely(addr == vend))
89699605 1192 goto overflow;
db64fe02
NP
1193
1194 va->va_start = addr;
1195 va->va_end = addr + size;
688fcbfc 1196 va->vm = NULL;
68ad4a33 1197
d98c9e83 1198
e36176be
URS
1199 spin_lock(&vmap_area_lock);
1200 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1201 spin_unlock(&vmap_area_lock);
1202
61e16557 1203 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1204 BUG_ON(va->va_start < vstart);
1205 BUG_ON(va->va_end > vend);
1206
d98c9e83
AR
1207 ret = kasan_populate_vmalloc(addr, size);
1208 if (ret) {
1209 free_vmap_area(va);
1210 return ERR_PTR(ret);
1211 }
1212
db64fe02 1213 return va;
89699605
NP
1214
1215overflow:
89699605
NP
1216 if (!purged) {
1217 purge_vmap_area_lazy();
1218 purged = 1;
1219 goto retry;
1220 }
4da56b99
CW
1221
1222 if (gfpflags_allow_blocking(gfp_mask)) {
1223 unsigned long freed = 0;
1224 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1225 if (freed > 0) {
1226 purged = 0;
1227 goto retry;
1228 }
1229 }
1230
03497d76 1231 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1232 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1233 size);
68ad4a33
URS
1234
1235 kmem_cache_free(vmap_area_cachep, va);
89699605 1236 return ERR_PTR(-EBUSY);
db64fe02
NP
1237}
1238
4da56b99
CW
1239int register_vmap_purge_notifier(struct notifier_block *nb)
1240{
1241 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1242}
1243EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1244
1245int unregister_vmap_purge_notifier(struct notifier_block *nb)
1246{
1247 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1248}
1249EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1250
db64fe02
NP
1251/*
1252 * Clear the pagetable entries of a given vmap_area
1253 */
1254static void unmap_vmap_area(struct vmap_area *va)
1255{
b521c43f 1256 unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
db64fe02
NP
1257}
1258
1259/*
1260 * lazy_max_pages is the maximum amount of virtual address space we gather up
1261 * before attempting to purge with a TLB flush.
1262 *
1263 * There is a tradeoff here: a larger number will cover more kernel page tables
1264 * and take slightly longer to purge, but it will linearly reduce the number of
1265 * global TLB flushes that must be performed. It would seem natural to scale
1266 * this number up linearly with the number of CPUs (because vmapping activity
1267 * could also scale linearly with the number of CPUs), however it is likely
1268 * that in practice, workloads might be constrained in other ways that mean
1269 * vmap activity will not scale linearly with CPUs. Also, I want to be
1270 * conservative and not introduce a big latency on huge systems, so go with
1271 * a less aggressive log scale. It will still be an improvement over the old
1272 * code, and it will be simple to change the scale factor if we find that it
1273 * becomes a problem on bigger systems.
1274 */
1275static unsigned long lazy_max_pages(void)
1276{
1277 unsigned int log;
1278
1279 log = fls(num_online_cpus());
1280
1281 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1282}
1283
4d36e6f8 1284static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1285
0574ecd1
CH
1286/*
1287 * Serialize vmap purging. There is no actual criticial section protected
1288 * by this look, but we want to avoid concurrent calls for performance
1289 * reasons and to make the pcpu_get_vm_areas more deterministic.
1290 */
f9e09977 1291static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1292
02b709df
NP
1293/* for per-CPU blocks */
1294static void purge_fragmented_blocks_allcpus(void);
1295
3ee48b6a
CW
1296/*
1297 * called before a call to iounmap() if the caller wants vm_area_struct's
1298 * immediately freed.
1299 */
1300void set_iounmap_nonlazy(void)
1301{
4d36e6f8 1302 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a
CW
1303}
1304
db64fe02
NP
1305/*
1306 * Purges all lazily-freed vmap areas.
db64fe02 1307 */
0574ecd1 1308static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1309{
4d36e6f8 1310 unsigned long resched_threshold;
80c4bd7a 1311 struct llist_node *valist;
db64fe02 1312 struct vmap_area *va;
cbb76676 1313 struct vmap_area *n_va;
db64fe02 1314
0574ecd1 1315 lockdep_assert_held(&vmap_purge_lock);
02b709df 1316
80c4bd7a 1317 valist = llist_del_all(&vmap_purge_list);
68571be9
URS
1318 if (unlikely(valist == NULL))
1319 return false;
1320
3f8fd02b
JR
1321 /*
1322 * First make sure the mappings are removed from all page-tables
1323 * before they are freed.
1324 */
763802b5 1325 vmalloc_sync_unmappings();
3f8fd02b 1326
68571be9
URS
1327 /*
1328 * TODO: to calculate a flush range without looping.
1329 * The list can be up to lazy_max_pages() elements.
1330 */
80c4bd7a 1331 llist_for_each_entry(va, valist, purge_list) {
0574ecd1
CH
1332 if (va->va_start < start)
1333 start = va->va_start;
1334 if (va->va_end > end)
1335 end = va->va_end;
db64fe02 1336 }
db64fe02 1337
0574ecd1 1338 flush_tlb_kernel_range(start, end);
4d36e6f8 1339 resched_threshold = lazy_max_pages() << 1;
db64fe02 1340
e36176be 1341 spin_lock(&free_vmap_area_lock);
763b218d 1342 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
4d36e6f8 1343 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1344 unsigned long orig_start = va->va_start;
1345 unsigned long orig_end = va->va_end;
763b218d 1346
dd3b8353
URS
1347 /*
1348 * Finally insert or merge lazily-freed area. It is
1349 * detached and there is no need to "unlink" it from
1350 * anything.
1351 */
3c5c3cfb
DA
1352 va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1353 &free_vmap_area_list);
1354
1355 if (is_vmalloc_or_module_addr((void *)orig_start))
1356 kasan_release_vmalloc(orig_start, orig_end,
1357 va->va_start, va->va_end);
dd3b8353 1358
4d36e6f8 1359 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1360
4d36e6f8 1361 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1362 cond_resched_lock(&free_vmap_area_lock);
763b218d 1363 }
e36176be 1364 spin_unlock(&free_vmap_area_lock);
0574ecd1 1365 return true;
db64fe02
NP
1366}
1367
496850e5
NP
1368/*
1369 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1370 * is already purging.
1371 */
1372static void try_purge_vmap_area_lazy(void)
1373{
f9e09977 1374 if (mutex_trylock(&vmap_purge_lock)) {
0574ecd1 1375 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1376 mutex_unlock(&vmap_purge_lock);
0574ecd1 1377 }
496850e5
NP
1378}
1379
db64fe02
NP
1380/*
1381 * Kick off a purge of the outstanding lazy areas.
1382 */
1383static void purge_vmap_area_lazy(void)
1384{
f9e09977 1385 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1386 purge_fragmented_blocks_allcpus();
1387 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1388 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1389}
1390
1391/*
64141da5
JF
1392 * Free a vmap area, caller ensuring that the area has been unmapped
1393 * and flush_cache_vunmap had been called for the correct range
1394 * previously.
db64fe02 1395 */
64141da5 1396static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1397{
4d36e6f8 1398 unsigned long nr_lazy;
80c4bd7a 1399
dd3b8353
URS
1400 spin_lock(&vmap_area_lock);
1401 unlink_va(va, &vmap_area_root);
1402 spin_unlock(&vmap_area_lock);
1403
4d36e6f8
URS
1404 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1405 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a
CW
1406
1407 /* After this point, we may free va at any time */
1408 llist_add(&va->purge_list, &vmap_purge_list);
1409
1410 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 1411 try_purge_vmap_area_lazy();
db64fe02
NP
1412}
1413
b29acbdc
NP
1414/*
1415 * Free and unmap a vmap area
1416 */
1417static void free_unmap_vmap_area(struct vmap_area *va)
1418{
1419 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e 1420 unmap_vmap_area(va);
8e57f8ac 1421 if (debug_pagealloc_enabled_static())
82a2e924
CP
1422 flush_tlb_kernel_range(va->va_start, va->va_end);
1423
c8eef01e 1424 free_vmap_area_noflush(va);
b29acbdc
NP
1425}
1426
db64fe02
NP
1427static struct vmap_area *find_vmap_area(unsigned long addr)
1428{
1429 struct vmap_area *va;
1430
1431 spin_lock(&vmap_area_lock);
1432 va = __find_vmap_area(addr);
1433 spin_unlock(&vmap_area_lock);
1434
1435 return va;
1436}
1437
db64fe02
NP
1438/*** Per cpu kva allocator ***/
1439
1440/*
1441 * vmap space is limited especially on 32 bit architectures. Ensure there is
1442 * room for at least 16 percpu vmap blocks per CPU.
1443 */
1444/*
1445 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1446 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1447 * instead (we just need a rough idea)
1448 */
1449#if BITS_PER_LONG == 32
1450#define VMALLOC_SPACE (128UL*1024*1024)
1451#else
1452#define VMALLOC_SPACE (128UL*1024*1024*1024)
1453#endif
1454
1455#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1456#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1457#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1458#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1459#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1460#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1461#define VMAP_BBMAP_BITS \
1462 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1463 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1464 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1465
1466#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1467
1468struct vmap_block_queue {
1469 spinlock_t lock;
1470 struct list_head free;
db64fe02
NP
1471};
1472
1473struct vmap_block {
1474 spinlock_t lock;
1475 struct vmap_area *va;
db64fe02 1476 unsigned long free, dirty;
7d61bfe8 1477 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1478 struct list_head free_list;
1479 struct rcu_head rcu_head;
02b709df 1480 struct list_head purge;
db64fe02
NP
1481};
1482
1483/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1484static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1485
1486/*
1487 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1488 * in the free path. Could get rid of this if we change the API to return a
1489 * "cookie" from alloc, to be passed to free. But no big deal yet.
1490 */
1491static DEFINE_SPINLOCK(vmap_block_tree_lock);
1492static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1493
1494/*
1495 * We should probably have a fallback mechanism to allocate virtual memory
1496 * out of partially filled vmap blocks. However vmap block sizing should be
1497 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1498 * big problem.
1499 */
1500
1501static unsigned long addr_to_vb_idx(unsigned long addr)
1502{
1503 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1504 addr /= VMAP_BLOCK_SIZE;
1505 return addr;
1506}
1507
cf725ce2
RP
1508static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1509{
1510 unsigned long addr;
1511
1512 addr = va_start + (pages_off << PAGE_SHIFT);
1513 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1514 return (void *)addr;
1515}
1516
1517/**
1518 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1519 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1520 * @order: how many 2^order pages should be occupied in newly allocated block
1521 * @gfp_mask: flags for the page level allocator
1522 *
a862f68a 1523 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1524 */
1525static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1526{
1527 struct vmap_block_queue *vbq;
1528 struct vmap_block *vb;
1529 struct vmap_area *va;
1530 unsigned long vb_idx;
1531 int node, err;
cf725ce2 1532 void *vaddr;
db64fe02
NP
1533
1534 node = numa_node_id();
1535
1536 vb = kmalloc_node(sizeof(struct vmap_block),
1537 gfp_mask & GFP_RECLAIM_MASK, node);
1538 if (unlikely(!vb))
1539 return ERR_PTR(-ENOMEM);
1540
1541 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1542 VMALLOC_START, VMALLOC_END,
1543 node, gfp_mask);
ddf9c6d4 1544 if (IS_ERR(va)) {
db64fe02 1545 kfree(vb);
e7d86340 1546 return ERR_CAST(va);
db64fe02
NP
1547 }
1548
1549 err = radix_tree_preload(gfp_mask);
1550 if (unlikely(err)) {
1551 kfree(vb);
1552 free_vmap_area(va);
1553 return ERR_PTR(err);
1554 }
1555
cf725ce2 1556 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1557 spin_lock_init(&vb->lock);
1558 vb->va = va;
cf725ce2
RP
1559 /* At least something should be left free */
1560 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1561 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1562 vb->dirty = 0;
7d61bfe8
RP
1563 vb->dirty_min = VMAP_BBMAP_BITS;
1564 vb->dirty_max = 0;
db64fe02 1565 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1566
1567 vb_idx = addr_to_vb_idx(va->va_start);
1568 spin_lock(&vmap_block_tree_lock);
1569 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1570 spin_unlock(&vmap_block_tree_lock);
1571 BUG_ON(err);
1572 radix_tree_preload_end();
1573
1574 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1575 spin_lock(&vbq->lock);
68ac546f 1576 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1577 spin_unlock(&vbq->lock);
3f04ba85 1578 put_cpu_var(vmap_block_queue);
db64fe02 1579
cf725ce2 1580 return vaddr;
db64fe02
NP
1581}
1582
db64fe02
NP
1583static void free_vmap_block(struct vmap_block *vb)
1584{
1585 struct vmap_block *tmp;
1586 unsigned long vb_idx;
1587
db64fe02
NP
1588 vb_idx = addr_to_vb_idx(vb->va->va_start);
1589 spin_lock(&vmap_block_tree_lock);
1590 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1591 spin_unlock(&vmap_block_tree_lock);
1592 BUG_ON(tmp != vb);
1593
64141da5 1594 free_vmap_area_noflush(vb->va);
22a3c7d1 1595 kfree_rcu(vb, rcu_head);
db64fe02
NP
1596}
1597
02b709df
NP
1598static void purge_fragmented_blocks(int cpu)
1599{
1600 LIST_HEAD(purge);
1601 struct vmap_block *vb;
1602 struct vmap_block *n_vb;
1603 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1604
1605 rcu_read_lock();
1606 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1607
1608 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1609 continue;
1610
1611 spin_lock(&vb->lock);
1612 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1613 vb->free = 0; /* prevent further allocs after releasing lock */
1614 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1615 vb->dirty_min = 0;
1616 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1617 spin_lock(&vbq->lock);
1618 list_del_rcu(&vb->free_list);
1619 spin_unlock(&vbq->lock);
1620 spin_unlock(&vb->lock);
1621 list_add_tail(&vb->purge, &purge);
1622 } else
1623 spin_unlock(&vb->lock);
1624 }
1625 rcu_read_unlock();
1626
1627 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1628 list_del(&vb->purge);
1629 free_vmap_block(vb);
1630 }
1631}
1632
02b709df
NP
1633static void purge_fragmented_blocks_allcpus(void)
1634{
1635 int cpu;
1636
1637 for_each_possible_cpu(cpu)
1638 purge_fragmented_blocks(cpu);
1639}
1640
db64fe02
NP
1641static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1642{
1643 struct vmap_block_queue *vbq;
1644 struct vmap_block *vb;
cf725ce2 1645 void *vaddr = NULL;
db64fe02
NP
1646 unsigned int order;
1647
891c49ab 1648 BUG_ON(offset_in_page(size));
db64fe02 1649 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
1650 if (WARN_ON(size == 0)) {
1651 /*
1652 * Allocating 0 bytes isn't what caller wants since
1653 * get_order(0) returns funny result. Just warn and terminate
1654 * early.
1655 */
1656 return NULL;
1657 }
db64fe02
NP
1658 order = get_order(size);
1659
db64fe02
NP
1660 rcu_read_lock();
1661 vbq = &get_cpu_var(vmap_block_queue);
1662 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 1663 unsigned long pages_off;
db64fe02
NP
1664
1665 spin_lock(&vb->lock);
cf725ce2
RP
1666 if (vb->free < (1UL << order)) {
1667 spin_unlock(&vb->lock);
1668 continue;
1669 }
02b709df 1670
cf725ce2
RP
1671 pages_off = VMAP_BBMAP_BITS - vb->free;
1672 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
1673 vb->free -= 1UL << order;
1674 if (vb->free == 0) {
1675 spin_lock(&vbq->lock);
1676 list_del_rcu(&vb->free_list);
1677 spin_unlock(&vbq->lock);
1678 }
cf725ce2 1679
02b709df
NP
1680 spin_unlock(&vb->lock);
1681 break;
db64fe02 1682 }
02b709df 1683
3f04ba85 1684 put_cpu_var(vmap_block_queue);
db64fe02
NP
1685 rcu_read_unlock();
1686
cf725ce2
RP
1687 /* Allocate new block if nothing was found */
1688 if (!vaddr)
1689 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 1690
cf725ce2 1691 return vaddr;
db64fe02
NP
1692}
1693
78a0e8c4 1694static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
1695{
1696 unsigned long offset;
1697 unsigned long vb_idx;
1698 unsigned int order;
1699 struct vmap_block *vb;
1700
891c49ab 1701 BUG_ON(offset_in_page(size));
db64fe02 1702 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 1703
78a0e8c4 1704 flush_cache_vunmap(addr, addr + size);
b29acbdc 1705
db64fe02
NP
1706 order = get_order(size);
1707
78a0e8c4 1708 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
db64fe02 1709
78a0e8c4 1710 vb_idx = addr_to_vb_idx(addr);
db64fe02
NP
1711 rcu_read_lock();
1712 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1713 rcu_read_unlock();
1714 BUG_ON(!vb);
1715
b521c43f 1716 unmap_kernel_range_noflush(addr, size);
64141da5 1717
8e57f8ac 1718 if (debug_pagealloc_enabled_static())
78a0e8c4 1719 flush_tlb_kernel_range(addr, addr + size);
82a2e924 1720
db64fe02 1721 spin_lock(&vb->lock);
7d61bfe8
RP
1722
1723 /* Expand dirty range */
1724 vb->dirty_min = min(vb->dirty_min, offset);
1725 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1726
db64fe02
NP
1727 vb->dirty += 1UL << order;
1728 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1729 BUG_ON(vb->free);
db64fe02
NP
1730 spin_unlock(&vb->lock);
1731 free_vmap_block(vb);
1732 } else
1733 spin_unlock(&vb->lock);
1734}
1735
868b104d 1736static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 1737{
db64fe02 1738 int cpu;
db64fe02 1739
9b463334
JF
1740 if (unlikely(!vmap_initialized))
1741 return;
1742
5803ed29
CH
1743 might_sleep();
1744
db64fe02
NP
1745 for_each_possible_cpu(cpu) {
1746 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1747 struct vmap_block *vb;
1748
1749 rcu_read_lock();
1750 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1751 spin_lock(&vb->lock);
7d61bfe8
RP
1752 if (vb->dirty) {
1753 unsigned long va_start = vb->va->va_start;
db64fe02 1754 unsigned long s, e;
b136be5e 1755
7d61bfe8
RP
1756 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1757 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1758
7d61bfe8
RP
1759 start = min(s, start);
1760 end = max(e, end);
db64fe02 1761
7d61bfe8 1762 flush = 1;
db64fe02
NP
1763 }
1764 spin_unlock(&vb->lock);
1765 }
1766 rcu_read_unlock();
1767 }
1768
f9e09977 1769 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1770 purge_fragmented_blocks_allcpus();
1771 if (!__purge_vmap_area_lazy(start, end) && flush)
1772 flush_tlb_kernel_range(start, end);
f9e09977 1773 mutex_unlock(&vmap_purge_lock);
db64fe02 1774}
868b104d
RE
1775
1776/**
1777 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1778 *
1779 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1780 * to amortize TLB flushing overheads. What this means is that any page you
1781 * have now, may, in a former life, have been mapped into kernel virtual
1782 * address by the vmap layer and so there might be some CPUs with TLB entries
1783 * still referencing that page (additional to the regular 1:1 kernel mapping).
1784 *
1785 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1786 * be sure that none of the pages we have control over will have any aliases
1787 * from the vmap layer.
1788 */
1789void vm_unmap_aliases(void)
1790{
1791 unsigned long start = ULONG_MAX, end = 0;
1792 int flush = 0;
1793
1794 _vm_unmap_aliases(start, end, flush);
1795}
db64fe02
NP
1796EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1797
1798/**
1799 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1800 * @mem: the pointer returned by vm_map_ram
1801 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1802 */
1803void vm_unmap_ram(const void *mem, unsigned int count)
1804{
65ee03c4 1805 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 1806 unsigned long addr = (unsigned long)mem;
9c3acf60 1807 struct vmap_area *va;
db64fe02 1808
5803ed29 1809 might_sleep();
db64fe02
NP
1810 BUG_ON(!addr);
1811 BUG_ON(addr < VMALLOC_START);
1812 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1813 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 1814
d98c9e83
AR
1815 kasan_poison_vmalloc(mem, size);
1816
9c3acf60 1817 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 1818 debug_check_no_locks_freed(mem, size);
78a0e8c4 1819 vb_free(addr, size);
9c3acf60
CH
1820 return;
1821 }
1822
1823 va = find_vmap_area(addr);
1824 BUG_ON(!va);
05e3ff95
CP
1825 debug_check_no_locks_freed((void *)va->va_start,
1826 (va->va_end - va->va_start));
9c3acf60 1827 free_unmap_vmap_area(va);
db64fe02
NP
1828}
1829EXPORT_SYMBOL(vm_unmap_ram);
1830
1831/**
1832 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1833 * @pages: an array of pointers to the pages to be mapped
1834 * @count: number of pages
1835 * @node: prefer to allocate data structures on this node
1836 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1837 *
36437638
GK
1838 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1839 * faster than vmap so it's good. But if you mix long-life and short-life
1840 * objects with vm_map_ram(), it could consume lots of address space through
1841 * fragmentation (especially on a 32bit machine). You could see failures in
1842 * the end. Please use this function for short-lived objects.
1843 *
e99c97ad 1844 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1845 */
1846void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1847{
65ee03c4 1848 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1849 unsigned long addr;
1850 void *mem;
1851
1852 if (likely(count <= VMAP_MAX_ALLOC)) {
1853 mem = vb_alloc(size, GFP_KERNEL);
1854 if (IS_ERR(mem))
1855 return NULL;
1856 addr = (unsigned long)mem;
1857 } else {
1858 struct vmap_area *va;
1859 va = alloc_vmap_area(size, PAGE_SIZE,
1860 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1861 if (IS_ERR(va))
1862 return NULL;
1863
1864 addr = va->va_start;
1865 mem = (void *)addr;
1866 }
d98c9e83
AR
1867
1868 kasan_unpoison_vmalloc(mem, size);
1869
a29adb62 1870 if (map_kernel_range(addr, size, prot, pages) < 0) {
db64fe02
NP
1871 vm_unmap_ram(mem, count);
1872 return NULL;
1873 }
1874 return mem;
1875}
1876EXPORT_SYMBOL(vm_map_ram);
1877
4341fa45 1878static struct vm_struct *vmlist __initdata;
92eac168 1879
be9b7335
NP
1880/**
1881 * vm_area_add_early - add vmap area early during boot
1882 * @vm: vm_struct to add
1883 *
1884 * This function is used to add fixed kernel vm area to vmlist before
1885 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1886 * should contain proper values and the other fields should be zero.
1887 *
1888 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1889 */
1890void __init vm_area_add_early(struct vm_struct *vm)
1891{
1892 struct vm_struct *tmp, **p;
1893
1894 BUG_ON(vmap_initialized);
1895 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1896 if (tmp->addr >= vm->addr) {
1897 BUG_ON(tmp->addr < vm->addr + vm->size);
1898 break;
1899 } else
1900 BUG_ON(tmp->addr + tmp->size > vm->addr);
1901 }
1902 vm->next = *p;
1903 *p = vm;
1904}
1905
f0aa6617
TH
1906/**
1907 * vm_area_register_early - register vmap area early during boot
1908 * @vm: vm_struct to register
c0c0a293 1909 * @align: requested alignment
f0aa6617
TH
1910 *
1911 * This function is used to register kernel vm area before
1912 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1913 * proper values on entry and other fields should be zero. On return,
1914 * vm->addr contains the allocated address.
1915 *
1916 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1917 */
c0c0a293 1918void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1919{
1920 static size_t vm_init_off __initdata;
c0c0a293
TH
1921 unsigned long addr;
1922
1923 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1924 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1925
c0c0a293 1926 vm->addr = (void *)addr;
f0aa6617 1927
be9b7335 1928 vm_area_add_early(vm);
f0aa6617
TH
1929}
1930
68ad4a33
URS
1931static void vmap_init_free_space(void)
1932{
1933 unsigned long vmap_start = 1;
1934 const unsigned long vmap_end = ULONG_MAX;
1935 struct vmap_area *busy, *free;
1936
1937 /*
1938 * B F B B B F
1939 * -|-----|.....|-----|-----|-----|.....|-
1940 * | The KVA space |
1941 * |<--------------------------------->|
1942 */
1943 list_for_each_entry(busy, &vmap_area_list, list) {
1944 if (busy->va_start - vmap_start > 0) {
1945 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1946 if (!WARN_ON_ONCE(!free)) {
1947 free->va_start = vmap_start;
1948 free->va_end = busy->va_start;
1949
1950 insert_vmap_area_augment(free, NULL,
1951 &free_vmap_area_root,
1952 &free_vmap_area_list);
1953 }
1954 }
1955
1956 vmap_start = busy->va_end;
1957 }
1958
1959 if (vmap_end - vmap_start > 0) {
1960 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1961 if (!WARN_ON_ONCE(!free)) {
1962 free->va_start = vmap_start;
1963 free->va_end = vmap_end;
1964
1965 insert_vmap_area_augment(free, NULL,
1966 &free_vmap_area_root,
1967 &free_vmap_area_list);
1968 }
1969 }
1970}
1971
db64fe02
NP
1972void __init vmalloc_init(void)
1973{
822c18f2
IK
1974 struct vmap_area *va;
1975 struct vm_struct *tmp;
db64fe02
NP
1976 int i;
1977
68ad4a33
URS
1978 /*
1979 * Create the cache for vmap_area objects.
1980 */
1981 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1982
db64fe02
NP
1983 for_each_possible_cpu(i) {
1984 struct vmap_block_queue *vbq;
32fcfd40 1985 struct vfree_deferred *p;
db64fe02
NP
1986
1987 vbq = &per_cpu(vmap_block_queue, i);
1988 spin_lock_init(&vbq->lock);
1989 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1990 p = &per_cpu(vfree_deferred, i);
1991 init_llist_head(&p->list);
1992 INIT_WORK(&p->wq, free_work);
db64fe02 1993 }
9b463334 1994
822c18f2
IK
1995 /* Import existing vmlist entries. */
1996 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
1997 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1998 if (WARN_ON_ONCE(!va))
1999 continue;
2000
822c18f2
IK
2001 va->va_start = (unsigned long)tmp->addr;
2002 va->va_end = va->va_start + tmp->size;
dbda591d 2003 va->vm = tmp;
68ad4a33 2004 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2005 }
ca23e405 2006
68ad4a33
URS
2007 /*
2008 * Now we can initialize a free vmap space.
2009 */
2010 vmap_init_free_space();
9b463334 2011 vmap_initialized = true;
db64fe02
NP
2012}
2013
8fc48985
TH
2014/**
2015 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2016 * @addr: start of the VM area to unmap
2017 * @size: size of the VM area to unmap
2018 *
2019 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2020 * the unmapping and tlb after.
2021 */
db64fe02
NP
2022void unmap_kernel_range(unsigned long addr, unsigned long size)
2023{
2024 unsigned long end = addr + size;
f6fcba70
TH
2025
2026 flush_cache_vunmap(addr, end);
b521c43f 2027 unmap_kernel_range_noflush(addr, size);
db64fe02
NP
2028 flush_tlb_kernel_range(addr, end);
2029}
2030
f6f8ed47 2031int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
2032{
2033 unsigned long addr = (unsigned long)area->addr;
db64fe02
NP
2034 int err;
2035
a29adb62 2036 err = map_kernel_range(addr, get_vm_area_size(area), prot, pages);
db64fe02 2037
f6f8ed47 2038 return err > 0 ? 0 : err;
db64fe02 2039}
db64fe02 2040
e36176be
URS
2041static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2042 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2043{
cf88c790
TH
2044 vm->flags = flags;
2045 vm->addr = (void *)va->va_start;
2046 vm->size = va->va_end - va->va_start;
2047 vm->caller = caller;
db1aecaf 2048 va->vm = vm;
e36176be
URS
2049}
2050
2051static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2052 unsigned long flags, const void *caller)
2053{
2054 spin_lock(&vmap_area_lock);
2055 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2056 spin_unlock(&vmap_area_lock);
f5252e00 2057}
cf88c790 2058
20fc02b4 2059static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2060{
d4033afd 2061 /*
20fc02b4 2062 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2063 * we should make sure that vm has proper values.
2064 * Pair with smp_rmb() in show_numa_info().
2065 */
2066 smp_wmb();
20fc02b4 2067 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2068}
2069
db64fe02 2070static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 2071 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 2072 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 2073{
0006526d 2074 struct vmap_area *va;
db64fe02 2075 struct vm_struct *area;
d98c9e83 2076 unsigned long requested_size = size;
1da177e4 2077
52fd24ca 2078 BUG_ON(in_interrupt());
1da177e4 2079 size = PAGE_ALIGN(size);
31be8309
OH
2080 if (unlikely(!size))
2081 return NULL;
1da177e4 2082
252e5c6e 2083 if (flags & VM_IOREMAP)
2084 align = 1ul << clamp_t(int, get_count_order_long(size),
2085 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2086
cf88c790 2087 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2088 if (unlikely(!area))
2089 return NULL;
2090
71394fe5
AR
2091 if (!(flags & VM_NO_GUARD))
2092 size += PAGE_SIZE;
1da177e4 2093
db64fe02
NP
2094 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2095 if (IS_ERR(va)) {
2096 kfree(area);
2097 return NULL;
1da177e4 2098 }
1da177e4 2099
d98c9e83 2100 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2101
d98c9e83 2102 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2103
1da177e4 2104 return area;
1da177e4
LT
2105}
2106
c2968612
BH
2107struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2108 unsigned long start, unsigned long end,
5e6cafc8 2109 const void *caller)
c2968612 2110{
00ef2d2f
DR
2111 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2112 GFP_KERNEL, caller);
c2968612
BH
2113}
2114
1da177e4 2115/**
92eac168
MR
2116 * get_vm_area - reserve a contiguous kernel virtual area
2117 * @size: size of the area
2118 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2119 *
92eac168
MR
2120 * Search an area of @size in the kernel virtual mapping area,
2121 * and reserved it for out purposes. Returns the area descriptor
2122 * on success or %NULL on failure.
a862f68a
MR
2123 *
2124 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2125 */
2126struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2127{
2dca6999 2128 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2129 NUMA_NO_NODE, GFP_KERNEL,
2130 __builtin_return_address(0));
23016969
CL
2131}
2132
2133struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2134 const void *caller)
23016969 2135{
2dca6999 2136 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 2137 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2138}
2139
e9da6e99 2140/**
92eac168
MR
2141 * find_vm_area - find a continuous kernel virtual area
2142 * @addr: base address
e9da6e99 2143 *
92eac168
MR
2144 * Search for the kernel VM area starting at @addr, and return it.
2145 * It is up to the caller to do all required locking to keep the returned
2146 * pointer valid.
a862f68a
MR
2147 *
2148 * Return: pointer to the found area or %NULL on faulure
e9da6e99
MS
2149 */
2150struct vm_struct *find_vm_area(const void *addr)
83342314 2151{
db64fe02 2152 struct vmap_area *va;
83342314 2153
db64fe02 2154 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2155 if (!va)
2156 return NULL;
1da177e4 2157
688fcbfc 2158 return va->vm;
1da177e4
LT
2159}
2160
7856dfeb 2161/**
92eac168
MR
2162 * remove_vm_area - find and remove a continuous kernel virtual area
2163 * @addr: base address
7856dfeb 2164 *
92eac168
MR
2165 * Search for the kernel VM area starting at @addr, and remove it.
2166 * This function returns the found VM area, but using it is NOT safe
2167 * on SMP machines, except for its size or flags.
a862f68a
MR
2168 *
2169 * Return: pointer to the found area or %NULL on faulure
7856dfeb 2170 */
b3bdda02 2171struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2172{
db64fe02
NP
2173 struct vmap_area *va;
2174
5803ed29
CH
2175 might_sleep();
2176
dd3b8353
URS
2177 spin_lock(&vmap_area_lock);
2178 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2179 if (va && va->vm) {
db1aecaf 2180 struct vm_struct *vm = va->vm;
f5252e00 2181
c69480ad 2182 va->vm = NULL;
c69480ad
JK
2183 spin_unlock(&vmap_area_lock);
2184
a5af5aa8 2185 kasan_free_shadow(vm);
dd32c279 2186 free_unmap_vmap_area(va);
dd32c279 2187
db64fe02
NP
2188 return vm;
2189 }
dd3b8353
URS
2190
2191 spin_unlock(&vmap_area_lock);
db64fe02 2192 return NULL;
7856dfeb
AK
2193}
2194
868b104d
RE
2195static inline void set_area_direct_map(const struct vm_struct *area,
2196 int (*set_direct_map)(struct page *page))
2197{
2198 int i;
2199
2200 for (i = 0; i < area->nr_pages; i++)
2201 if (page_address(area->pages[i]))
2202 set_direct_map(area->pages[i]);
2203}
2204
2205/* Handle removing and resetting vm mappings related to the vm_struct. */
2206static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2207{
868b104d
RE
2208 unsigned long start = ULONG_MAX, end = 0;
2209 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2210 int flush_dmap = 0;
868b104d
RE
2211 int i;
2212
868b104d
RE
2213 remove_vm_area(area->addr);
2214
2215 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2216 if (!flush_reset)
2217 return;
2218
2219 /*
2220 * If not deallocating pages, just do the flush of the VM area and
2221 * return.
2222 */
2223 if (!deallocate_pages) {
2224 vm_unmap_aliases();
2225 return;
2226 }
2227
2228 /*
2229 * If execution gets here, flush the vm mapping and reset the direct
2230 * map. Find the start and end range of the direct mappings to make sure
2231 * the vm_unmap_aliases() flush includes the direct map.
2232 */
2233 for (i = 0; i < area->nr_pages; i++) {
8e41f872
RE
2234 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2235 if (addr) {
868b104d 2236 start = min(addr, start);
8e41f872 2237 end = max(addr + PAGE_SIZE, end);
31e67340 2238 flush_dmap = 1;
868b104d
RE
2239 }
2240 }
2241
2242 /*
2243 * Set direct map to something invalid so that it won't be cached if
2244 * there are any accesses after the TLB flush, then flush the TLB and
2245 * reset the direct map permissions to the default.
2246 */
2247 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2248 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2249 set_area_direct_map(area, set_direct_map_default_noflush);
2250}
2251
b3bdda02 2252static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2253{
2254 struct vm_struct *area;
2255
2256 if (!addr)
2257 return;
2258
e69e9d4a 2259 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2260 addr))
1da177e4 2261 return;
1da177e4 2262
6ade2032 2263 area = find_vm_area(addr);
1da177e4 2264 if (unlikely(!area)) {
4c8573e2 2265 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2266 addr);
1da177e4
LT
2267 return;
2268 }
2269
05e3ff95
CP
2270 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2271 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2272
d98c9e83 2273 kasan_poison_vmalloc(area->addr, area->size);
3c5c3cfb 2274
868b104d
RE
2275 vm_remove_mappings(area, deallocate_pages);
2276
1da177e4
LT
2277 if (deallocate_pages) {
2278 int i;
2279
2280 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2281 struct page *page = area->pages[i];
2282
2283 BUG_ON(!page);
4949148a 2284 __free_pages(page, 0);
1da177e4 2285 }
97105f0a 2286 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2287
244d63ee 2288 kvfree(area->pages);
1da177e4
LT
2289 }
2290
2291 kfree(area);
2292 return;
2293}
bf22e37a
AR
2294
2295static inline void __vfree_deferred(const void *addr)
2296{
2297 /*
2298 * Use raw_cpu_ptr() because this can be called from preemptible
2299 * context. Preemption is absolutely fine here, because the llist_add()
2300 * implementation is lockless, so it works even if we are adding to
2301 * nother cpu's list. schedule_work() should be fine with this too.
2302 */
2303 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2304
2305 if (llist_add((struct llist_node *)addr, &p->list))
2306 schedule_work(&p->wq);
2307}
2308
2309/**
92eac168
MR
2310 * vfree_atomic - release memory allocated by vmalloc()
2311 * @addr: memory base address
bf22e37a 2312 *
92eac168
MR
2313 * This one is just like vfree() but can be called in any atomic context
2314 * except NMIs.
bf22e37a
AR
2315 */
2316void vfree_atomic(const void *addr)
2317{
2318 BUG_ON(in_nmi());
2319
2320 kmemleak_free(addr);
2321
2322 if (!addr)
2323 return;
2324 __vfree_deferred(addr);
2325}
2326
c67dc624
RP
2327static void __vfree(const void *addr)
2328{
2329 if (unlikely(in_interrupt()))
2330 __vfree_deferred(addr);
2331 else
2332 __vunmap(addr, 1);
2333}
2334
1da177e4 2335/**
92eac168
MR
2336 * vfree - release memory allocated by vmalloc()
2337 * @addr: memory base address
1da177e4 2338 *
92eac168
MR
2339 * Free the virtually continuous memory area starting at @addr, as
2340 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2341 * NULL, no operation is performed.
1da177e4 2342 *
92eac168
MR
2343 * Must not be called in NMI context (strictly speaking, only if we don't
2344 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2345 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51 2346 *
92eac168 2347 * May sleep if called *not* from interrupt context.
3ca4ea3a 2348 *
92eac168 2349 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1da177e4 2350 */
b3bdda02 2351void vfree(const void *addr)
1da177e4 2352{
32fcfd40 2353 BUG_ON(in_nmi());
89219d37
CM
2354
2355 kmemleak_free(addr);
2356
a8dda165
AR
2357 might_sleep_if(!in_interrupt());
2358
32fcfd40
AV
2359 if (!addr)
2360 return;
c67dc624
RP
2361
2362 __vfree(addr);
1da177e4 2363}
1da177e4
LT
2364EXPORT_SYMBOL(vfree);
2365
2366/**
92eac168
MR
2367 * vunmap - release virtual mapping obtained by vmap()
2368 * @addr: memory base address
1da177e4 2369 *
92eac168
MR
2370 * Free the virtually contiguous memory area starting at @addr,
2371 * which was created from the page array passed to vmap().
1da177e4 2372 *
92eac168 2373 * Must not be called in interrupt context.
1da177e4 2374 */
b3bdda02 2375void vunmap(const void *addr)
1da177e4
LT
2376{
2377 BUG_ON(in_interrupt());
34754b69 2378 might_sleep();
32fcfd40
AV
2379 if (addr)
2380 __vunmap(addr, 0);
1da177e4 2381}
1da177e4
LT
2382EXPORT_SYMBOL(vunmap);
2383
2384/**
92eac168
MR
2385 * vmap - map an array of pages into virtually contiguous space
2386 * @pages: array of page pointers
2387 * @count: number of pages to map
2388 * @flags: vm_area->flags
2389 * @prot: page protection for the mapping
2390 *
2391 * Maps @count pages from @pages into contiguous kernel virtual
2392 * space.
a862f68a
MR
2393 *
2394 * Return: the address of the area or %NULL on failure
1da177e4
LT
2395 */
2396void *vmap(struct page **pages, unsigned int count,
92eac168 2397 unsigned long flags, pgprot_t prot)
1da177e4
LT
2398{
2399 struct vm_struct *area;
65ee03c4 2400 unsigned long size; /* In bytes */
1da177e4 2401
34754b69
PZ
2402 might_sleep();
2403
ca79b0c2 2404 if (count > totalram_pages())
1da177e4
LT
2405 return NULL;
2406
65ee03c4
GJM
2407 size = (unsigned long)count << PAGE_SHIFT;
2408 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2409 if (!area)
2410 return NULL;
23016969 2411
f6f8ed47 2412 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
2413 vunmap(area->addr);
2414 return NULL;
2415 }
2416
2417 return area->addr;
2418}
1da177e4
LT
2419EXPORT_SYMBOL(vmap);
2420
8594a21c
MH
2421static void *__vmalloc_node(unsigned long size, unsigned long align,
2422 gfp_t gfp_mask, pgprot_t prot,
2423 int node, const void *caller);
e31d9eb5 2424static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 2425 pgprot_t prot, int node)
1da177e4
LT
2426{
2427 struct page **pages;
2428 unsigned int nr_pages, array_size, i;
930f036b 2429 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
704b862f
LA
2430 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2431 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2432 0 :
2433 __GFP_HIGHMEM;
1da177e4 2434
762216ab 2435 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
2436 array_size = (nr_pages * sizeof(struct page *));
2437
1da177e4 2438 /* Please note that the recursion is strictly bounded. */
8757d5fa 2439 if (array_size > PAGE_SIZE) {
704b862f 2440 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
3722e13c 2441 PAGE_KERNEL, node, area->caller);
286e1ea3 2442 } else {
976d6dfb 2443 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2444 }
7ea36242
AK
2445
2446 if (!pages) {
1da177e4
LT
2447 remove_vm_area(area->addr);
2448 kfree(area);
2449 return NULL;
2450 }
1da177e4 2451
7ea36242
AK
2452 area->pages = pages;
2453 area->nr_pages = nr_pages;
2454
1da177e4 2455 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
2456 struct page *page;
2457
4b90951c 2458 if (node == NUMA_NO_NODE)
704b862f 2459 page = alloc_page(alloc_mask|highmem_mask);
930fc45a 2460 else
704b862f 2461 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
bf53d6f8
CL
2462
2463 if (unlikely(!page)) {
1da177e4
LT
2464 /* Successfully allocated i pages, free them in __vunmap() */
2465 area->nr_pages = i;
97105f0a 2466 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4
LT
2467 goto fail;
2468 }
bf53d6f8 2469 area->pages[i] = page;
dcf61ff0 2470 if (gfpflags_allow_blocking(gfp_mask))
660654f9 2471 cond_resched();
1da177e4 2472 }
97105f0a 2473 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2474
f6f8ed47 2475 if (map_vm_area(area, prot, pages))
1da177e4
LT
2476 goto fail;
2477 return area->addr;
2478
2479fail:
a8e99259 2480 warn_alloc(gfp_mask, NULL,
7877cdcc 2481 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 2482 (area->nr_pages*PAGE_SIZE), area->size);
c67dc624 2483 __vfree(area->addr);
1da177e4
LT
2484 return NULL;
2485}
2486
2487/**
92eac168
MR
2488 * __vmalloc_node_range - allocate virtually contiguous memory
2489 * @size: allocation size
2490 * @align: desired alignment
2491 * @start: vm area range start
2492 * @end: vm area range end
2493 * @gfp_mask: flags for the page level allocator
2494 * @prot: protection mask for the allocated pages
2495 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2496 * @node: node to use for allocation or NUMA_NO_NODE
2497 * @caller: caller's return address
2498 *
2499 * Allocate enough pages to cover @size from the page level
2500 * allocator with @gfp_mask flags. Map them into contiguous
2501 * kernel virtual space, using a pagetable protection of @prot.
a862f68a
MR
2502 *
2503 * Return: the address of the area or %NULL on failure
1da177e4 2504 */
d0a21265
DR
2505void *__vmalloc_node_range(unsigned long size, unsigned long align,
2506 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
2507 pgprot_t prot, unsigned long vm_flags, int node,
2508 const void *caller)
1da177e4
LT
2509{
2510 struct vm_struct *area;
89219d37
CM
2511 void *addr;
2512 unsigned long real_size = size;
1da177e4
LT
2513
2514 size = PAGE_ALIGN(size);
ca79b0c2 2515 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
de7d2b56 2516 goto fail;
1da177e4 2517
d98c9e83 2518 area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
cb9e3c29 2519 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 2520 if (!area)
de7d2b56 2521 goto fail;
1da177e4 2522
3722e13c 2523 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 2524 if (!addr)
b82225f3 2525 return NULL;
89219d37 2526
f5252e00 2527 /*
20fc02b4
ZY
2528 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2529 * flag. It means that vm_struct is not fully initialized.
4341fa45 2530 * Now, it is fully initialized, so remove this flag here.
f5252e00 2531 */
20fc02b4 2532 clear_vm_uninitialized_flag(area);
f5252e00 2533
94f4a161 2534 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
2535
2536 return addr;
de7d2b56
JP
2537
2538fail:
a8e99259 2539 warn_alloc(gfp_mask, NULL,
7877cdcc 2540 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 2541 return NULL;
1da177e4
LT
2542}
2543
153178ed
URS
2544/*
2545 * This is only for performance analysis of vmalloc and stress purpose.
2546 * It is required by vmalloc test module, therefore do not use it other
2547 * than that.
2548 */
2549#ifdef CONFIG_TEST_VMALLOC_MODULE
2550EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2551#endif
2552
d0a21265 2553/**
92eac168
MR
2554 * __vmalloc_node - allocate virtually contiguous memory
2555 * @size: allocation size
2556 * @align: desired alignment
2557 * @gfp_mask: flags for the page level allocator
2558 * @prot: protection mask for the allocated pages
2559 * @node: node to use for allocation or NUMA_NO_NODE
2560 * @caller: caller's return address
a7c3e901 2561 *
92eac168
MR
2562 * Allocate enough pages to cover @size from the page level
2563 * allocator with @gfp_mask flags. Map them into contiguous
2564 * kernel virtual space, using a pagetable protection of @prot.
a7c3e901 2565 *
92eac168
MR
2566 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2567 * and __GFP_NOFAIL are not supported
a7c3e901 2568 *
92eac168
MR
2569 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2570 * with mm people.
a862f68a
MR
2571 *
2572 * Return: pointer to the allocated memory or %NULL on error
d0a21265 2573 */
8594a21c 2574static void *__vmalloc_node(unsigned long size, unsigned long align,
d0a21265 2575 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 2576 int node, const void *caller)
d0a21265
DR
2577{
2578 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 2579 gfp_mask, prot, 0, node, caller);
d0a21265
DR
2580}
2581
930fc45a
CL
2582void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2583{
00ef2d2f 2584 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 2585 __builtin_return_address(0));
930fc45a 2586}
1da177e4
LT
2587EXPORT_SYMBOL(__vmalloc);
2588
8594a21c
MH
2589static inline void *__vmalloc_node_flags(unsigned long size,
2590 int node, gfp_t flags)
2591{
2592 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2593 node, __builtin_return_address(0));
2594}
2595
2596
2597void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2598 void *caller)
2599{
2600 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2601}
2602
1da177e4 2603/**
92eac168
MR
2604 * vmalloc - allocate virtually contiguous memory
2605 * @size: allocation size
2606 *
2607 * Allocate enough pages to cover @size from the page level
2608 * allocator and map them into contiguous kernel virtual space.
1da177e4 2609 *
92eac168
MR
2610 * For tight control over page level allocator and protection flags
2611 * use __vmalloc() instead.
a862f68a
MR
2612 *
2613 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2614 */
2615void *vmalloc(unsigned long size)
2616{
00ef2d2f 2617 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2618 GFP_KERNEL);
1da177e4 2619}
1da177e4
LT
2620EXPORT_SYMBOL(vmalloc);
2621
e1ca7788 2622/**
92eac168
MR
2623 * vzalloc - allocate virtually contiguous memory with zero fill
2624 * @size: allocation size
2625 *
2626 * Allocate enough pages to cover @size from the page level
2627 * allocator and map them into contiguous kernel virtual space.
2628 * The memory allocated is set to zero.
2629 *
2630 * For tight control over page level allocator and protection flags
2631 * use __vmalloc() instead.
a862f68a
MR
2632 *
2633 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2634 */
2635void *vzalloc(unsigned long size)
2636{
00ef2d2f 2637 return __vmalloc_node_flags(size, NUMA_NO_NODE,
19809c2d 2638 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2639}
2640EXPORT_SYMBOL(vzalloc);
2641
83342314 2642/**
ead04089
REB
2643 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2644 * @size: allocation size
83342314 2645 *
ead04089
REB
2646 * The resulting memory area is zeroed so it can be mapped to userspace
2647 * without leaking data.
a862f68a
MR
2648 *
2649 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2650 */
2651void *vmalloc_user(unsigned long size)
2652{
bc84c535
RP
2653 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2654 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2655 VM_USERMAP, NUMA_NO_NODE,
2656 __builtin_return_address(0));
83342314
NP
2657}
2658EXPORT_SYMBOL(vmalloc_user);
2659
930fc45a 2660/**
92eac168
MR
2661 * vmalloc_node - allocate memory on a specific node
2662 * @size: allocation size
2663 * @node: numa node
930fc45a 2664 *
92eac168
MR
2665 * Allocate enough pages to cover @size from the page level
2666 * allocator and map them into contiguous kernel virtual space.
930fc45a 2667 *
92eac168
MR
2668 * For tight control over page level allocator and protection flags
2669 * use __vmalloc() instead.
a862f68a
MR
2670 *
2671 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
2672 */
2673void *vmalloc_node(unsigned long size, int node)
2674{
19809c2d 2675 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
23016969 2676 node, __builtin_return_address(0));
930fc45a
CL
2677}
2678EXPORT_SYMBOL(vmalloc_node);
2679
e1ca7788
DY
2680/**
2681 * vzalloc_node - allocate memory on a specific node with zero fill
2682 * @size: allocation size
2683 * @node: numa node
2684 *
2685 * Allocate enough pages to cover @size from the page level
2686 * allocator and map them into contiguous kernel virtual space.
2687 * The memory allocated is set to zero.
2688 *
2689 * For tight control over page level allocator and protection flags
2690 * use __vmalloc_node() instead.
a862f68a
MR
2691 *
2692 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
2693 */
2694void *vzalloc_node(unsigned long size, int node)
2695{
2696 return __vmalloc_node_flags(size, node,
19809c2d 2697 GFP_KERNEL | __GFP_ZERO);
e1ca7788
DY
2698}
2699EXPORT_SYMBOL(vzalloc_node);
2700
fc970227
AN
2701/**
2702 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
2703 * @size: allocation size
2704 * @node: numa node
2705 * @flags: flags for the page level allocator
2706 *
2707 * The resulting memory area is zeroed so it can be mapped to userspace
2708 * without leaking data.
2709 *
2710 * Return: pointer to the allocated memory or %NULL on error
2711 */
2712void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
2713{
2714 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2715 flags | __GFP_ZERO, PAGE_KERNEL,
2716 VM_USERMAP, node,
2717 __builtin_return_address(0));
2718}
2719EXPORT_SYMBOL(vmalloc_user_node_flags);
2720
1da177e4 2721/**
92eac168
MR
2722 * vmalloc_exec - allocate virtually contiguous, executable memory
2723 * @size: allocation size
1da177e4 2724 *
92eac168
MR
2725 * Kernel-internal function to allocate enough pages to cover @size
2726 * the page level allocator and map them into contiguous and
2727 * executable kernel virtual space.
1da177e4 2728 *
92eac168
MR
2729 * For tight control over page level allocator and protection flags
2730 * use __vmalloc() instead.
a862f68a
MR
2731 *
2732 * Return: pointer to the allocated memory or %NULL on error
1da177e4 2733 */
1da177e4
LT
2734void *vmalloc_exec(unsigned long size)
2735{
868b104d
RE
2736 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2737 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2738 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
2739}
2740
0d08e0d3 2741#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 2742#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 2743#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 2744#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 2745#else
698d0831
MH
2746/*
2747 * 64b systems should always have either DMA or DMA32 zones. For others
2748 * GFP_DMA32 should do the right thing and use the normal zone.
2749 */
2750#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3
AK
2751#endif
2752
1da177e4 2753/**
92eac168
MR
2754 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2755 * @size: allocation size
1da177e4 2756 *
92eac168
MR
2757 * Allocate enough 32bit PA addressable pages to cover @size from the
2758 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
2759 *
2760 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
2761 */
2762void *vmalloc_32(unsigned long size)
2763{
2dca6999 2764 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 2765 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 2766}
1da177e4
LT
2767EXPORT_SYMBOL(vmalloc_32);
2768
83342314 2769/**
ead04089 2770 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 2771 * @size: allocation size
ead04089
REB
2772 *
2773 * The resulting memory area is 32bit addressable and zeroed so it can be
2774 * mapped to userspace without leaking data.
a862f68a
MR
2775 *
2776 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
2777 */
2778void *vmalloc_32_user(unsigned long size)
2779{
bc84c535
RP
2780 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2781 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2782 VM_USERMAP, NUMA_NO_NODE,
2783 __builtin_return_address(0));
83342314
NP
2784}
2785EXPORT_SYMBOL(vmalloc_32_user);
2786
d0107eb0
KH
2787/*
2788 * small helper routine , copy contents to buf from addr.
2789 * If the page is not present, fill zero.
2790 */
2791
2792static int aligned_vread(char *buf, char *addr, unsigned long count)
2793{
2794 struct page *p;
2795 int copied = 0;
2796
2797 while (count) {
2798 unsigned long offset, length;
2799
891c49ab 2800 offset = offset_in_page(addr);
d0107eb0
KH
2801 length = PAGE_SIZE - offset;
2802 if (length > count)
2803 length = count;
2804 p = vmalloc_to_page(addr);
2805 /*
2806 * To do safe access to this _mapped_ area, we need
2807 * lock. But adding lock here means that we need to add
2808 * overhead of vmalloc()/vfree() calles for this _debug_
2809 * interface, rarely used. Instead of that, we'll use
2810 * kmap() and get small overhead in this access function.
2811 */
2812 if (p) {
2813 /*
2814 * we can expect USER0 is not used (see vread/vwrite's
2815 * function description)
2816 */
9b04c5fe 2817 void *map = kmap_atomic(p);
d0107eb0 2818 memcpy(buf, map + offset, length);
9b04c5fe 2819 kunmap_atomic(map);
d0107eb0
KH
2820 } else
2821 memset(buf, 0, length);
2822
2823 addr += length;
2824 buf += length;
2825 copied += length;
2826 count -= length;
2827 }
2828 return copied;
2829}
2830
2831static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2832{
2833 struct page *p;
2834 int copied = 0;
2835
2836 while (count) {
2837 unsigned long offset, length;
2838
891c49ab 2839 offset = offset_in_page(addr);
d0107eb0
KH
2840 length = PAGE_SIZE - offset;
2841 if (length > count)
2842 length = count;
2843 p = vmalloc_to_page(addr);
2844 /*
2845 * To do safe access to this _mapped_ area, we need
2846 * lock. But adding lock here means that we need to add
2847 * overhead of vmalloc()/vfree() calles for this _debug_
2848 * interface, rarely used. Instead of that, we'll use
2849 * kmap() and get small overhead in this access function.
2850 */
2851 if (p) {
2852 /*
2853 * we can expect USER0 is not used (see vread/vwrite's
2854 * function description)
2855 */
9b04c5fe 2856 void *map = kmap_atomic(p);
d0107eb0 2857 memcpy(map + offset, buf, length);
9b04c5fe 2858 kunmap_atomic(map);
d0107eb0
KH
2859 }
2860 addr += length;
2861 buf += length;
2862 copied += length;
2863 count -= length;
2864 }
2865 return copied;
2866}
2867
2868/**
92eac168
MR
2869 * vread() - read vmalloc area in a safe way.
2870 * @buf: buffer for reading data
2871 * @addr: vm address.
2872 * @count: number of bytes to be read.
2873 *
92eac168
MR
2874 * This function checks that addr is a valid vmalloc'ed area, and
2875 * copy data from that area to a given buffer. If the given memory range
2876 * of [addr...addr+count) includes some valid address, data is copied to
2877 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2878 * IOREMAP area is treated as memory hole and no copy is done.
2879 *
2880 * If [addr...addr+count) doesn't includes any intersects with alive
2881 * vm_struct area, returns 0. @buf should be kernel's buffer.
2882 *
2883 * Note: In usual ops, vread() is never necessary because the caller
2884 * should know vmalloc() area is valid and can use memcpy().
2885 * This is for routines which have to access vmalloc area without
d9009d67 2886 * any information, as /dev/kmem.
a862f68a
MR
2887 *
2888 * Return: number of bytes for which addr and buf should be increased
2889 * (same number as @count) or %0 if [addr...addr+count) doesn't
2890 * include any intersection with valid vmalloc area
d0107eb0 2891 */
1da177e4
LT
2892long vread(char *buf, char *addr, unsigned long count)
2893{
e81ce85f
JK
2894 struct vmap_area *va;
2895 struct vm_struct *vm;
1da177e4 2896 char *vaddr, *buf_start = buf;
d0107eb0 2897 unsigned long buflen = count;
1da177e4
LT
2898 unsigned long n;
2899
2900 /* Don't allow overflow */
2901 if ((unsigned long) addr + count < count)
2902 count = -(unsigned long) addr;
2903
e81ce85f
JK
2904 spin_lock(&vmap_area_lock);
2905 list_for_each_entry(va, &vmap_area_list, list) {
2906 if (!count)
2907 break;
2908
688fcbfc 2909 if (!va->vm)
e81ce85f
JK
2910 continue;
2911
2912 vm = va->vm;
2913 vaddr = (char *) vm->addr;
762216ab 2914 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2915 continue;
2916 while (addr < vaddr) {
2917 if (count == 0)
2918 goto finished;
2919 *buf = '\0';
2920 buf++;
2921 addr++;
2922 count--;
2923 }
762216ab 2924 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2925 if (n > count)
2926 n = count;
e81ce85f 2927 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2928 aligned_vread(buf, addr, n);
2929 else /* IOREMAP area is treated as memory hole */
2930 memset(buf, 0, n);
2931 buf += n;
2932 addr += n;
2933 count -= n;
1da177e4
LT
2934 }
2935finished:
e81ce85f 2936 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2937
2938 if (buf == buf_start)
2939 return 0;
2940 /* zero-fill memory holes */
2941 if (buf != buf_start + buflen)
2942 memset(buf, 0, buflen - (buf - buf_start));
2943
2944 return buflen;
1da177e4
LT
2945}
2946
d0107eb0 2947/**
92eac168
MR
2948 * vwrite() - write vmalloc area in a safe way.
2949 * @buf: buffer for source data
2950 * @addr: vm address.
2951 * @count: number of bytes to be read.
2952 *
92eac168
MR
2953 * This function checks that addr is a valid vmalloc'ed area, and
2954 * copy data from a buffer to the given addr. If specified range of
2955 * [addr...addr+count) includes some valid address, data is copied from
2956 * proper area of @buf. If there are memory holes, no copy to hole.
2957 * IOREMAP area is treated as memory hole and no copy is done.
2958 *
2959 * If [addr...addr+count) doesn't includes any intersects with alive
2960 * vm_struct area, returns 0. @buf should be kernel's buffer.
2961 *
2962 * Note: In usual ops, vwrite() is never necessary because the caller
2963 * should know vmalloc() area is valid and can use memcpy().
2964 * This is for routines which have to access vmalloc area without
d9009d67 2965 * any information, as /dev/kmem.
a862f68a
MR
2966 *
2967 * Return: number of bytes for which addr and buf should be
2968 * increased (same number as @count) or %0 if [addr...addr+count)
2969 * doesn't include any intersection with valid vmalloc area
d0107eb0 2970 */
1da177e4
LT
2971long vwrite(char *buf, char *addr, unsigned long count)
2972{
e81ce85f
JK
2973 struct vmap_area *va;
2974 struct vm_struct *vm;
d0107eb0
KH
2975 char *vaddr;
2976 unsigned long n, buflen;
2977 int copied = 0;
1da177e4
LT
2978
2979 /* Don't allow overflow */
2980 if ((unsigned long) addr + count < count)
2981 count = -(unsigned long) addr;
d0107eb0 2982 buflen = count;
1da177e4 2983
e81ce85f
JK
2984 spin_lock(&vmap_area_lock);
2985 list_for_each_entry(va, &vmap_area_list, list) {
2986 if (!count)
2987 break;
2988
688fcbfc 2989 if (!va->vm)
e81ce85f
JK
2990 continue;
2991
2992 vm = va->vm;
2993 vaddr = (char *) vm->addr;
762216ab 2994 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2995 continue;
2996 while (addr < vaddr) {
2997 if (count == 0)
2998 goto finished;
2999 buf++;
3000 addr++;
3001 count--;
3002 }
762216ab 3003 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3004 if (n > count)
3005 n = count;
e81ce85f 3006 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
3007 aligned_vwrite(buf, addr, n);
3008 copied++;
3009 }
3010 buf += n;
3011 addr += n;
3012 count -= n;
1da177e4
LT
3013 }
3014finished:
e81ce85f 3015 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3016 if (!copied)
3017 return 0;
3018 return buflen;
1da177e4 3019}
83342314
NP
3020
3021/**
92eac168
MR
3022 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3023 * @vma: vma to cover
3024 * @uaddr: target user address to start at
3025 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3026 * @pgoff: offset from @kaddr to start at
92eac168 3027 * @size: size of map area
7682486b 3028 *
92eac168 3029 * Returns: 0 for success, -Exxx on failure
83342314 3030 *
92eac168
MR
3031 * This function checks that @kaddr is a valid vmalloc'ed area,
3032 * and that it is big enough to cover the range starting at
3033 * @uaddr in @vma. Will return failure if that criteria isn't
3034 * met.
83342314 3035 *
92eac168 3036 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3037 */
e69e9d4a 3038int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3039 void *kaddr, unsigned long pgoff,
3040 unsigned long size)
83342314
NP
3041{
3042 struct vm_struct *area;
bdebd6a2
JH
3043 unsigned long off;
3044 unsigned long end_index;
3045
3046 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3047 return -EINVAL;
83342314 3048
e69e9d4a
HD
3049 size = PAGE_ALIGN(size);
3050
3051 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3052 return -EINVAL;
3053
e69e9d4a 3054 area = find_vm_area(kaddr);
83342314 3055 if (!area)
db64fe02 3056 return -EINVAL;
83342314 3057
fe9041c2 3058 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3059 return -EINVAL;
83342314 3060
bdebd6a2
JH
3061 if (check_add_overflow(size, off, &end_index) ||
3062 end_index > get_vm_area_size(area))
db64fe02 3063 return -EINVAL;
bdebd6a2 3064 kaddr += off;
83342314 3065
83342314 3066 do {
e69e9d4a 3067 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3068 int ret;
3069
83342314
NP
3070 ret = vm_insert_page(vma, uaddr, page);
3071 if (ret)
3072 return ret;
3073
3074 uaddr += PAGE_SIZE;
e69e9d4a
HD
3075 kaddr += PAGE_SIZE;
3076 size -= PAGE_SIZE;
3077 } while (size > 0);
83342314 3078
314e51b9 3079 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3080
db64fe02 3081 return 0;
83342314 3082}
e69e9d4a
HD
3083EXPORT_SYMBOL(remap_vmalloc_range_partial);
3084
3085/**
92eac168
MR
3086 * remap_vmalloc_range - map vmalloc pages to userspace
3087 * @vma: vma to cover (map full range of vma)
3088 * @addr: vmalloc memory
3089 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3090 *
92eac168 3091 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3092 *
92eac168
MR
3093 * This function checks that addr is a valid vmalloc'ed area, and
3094 * that it is big enough to cover the vma. Will return failure if
3095 * that criteria isn't met.
e69e9d4a 3096 *
92eac168 3097 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3098 */
3099int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3100 unsigned long pgoff)
3101{
3102 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3103 addr, pgoff,
e69e9d4a
HD
3104 vma->vm_end - vma->vm_start);
3105}
83342314
NP
3106EXPORT_SYMBOL(remap_vmalloc_range);
3107
1eeb66a1 3108/*
763802b5
JR
3109 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3110 * not to have one.
3f8fd02b
JR
3111 *
3112 * The purpose of this function is to make sure the vmalloc area
3113 * mappings are identical in all page-tables in the system.
1eeb66a1 3114 */
763802b5 3115void __weak vmalloc_sync_mappings(void)
1eeb66a1
CH
3116{
3117}
5f4352fb 3118
763802b5
JR
3119void __weak vmalloc_sync_unmappings(void)
3120{
3121}
5f4352fb 3122
8b1e0f81 3123static int f(pte_t *pte, unsigned long addr, void *data)
5f4352fb 3124{
cd12909c
DV
3125 pte_t ***p = data;
3126
3127 if (p) {
3128 *(*p) = pte;
3129 (*p)++;
3130 }
5f4352fb
JF
3131 return 0;
3132}
3133
3134/**
92eac168
MR
3135 * alloc_vm_area - allocate a range of kernel address space
3136 * @size: size of the area
3137 * @ptes: returns the PTEs for the address space
7682486b 3138 *
92eac168 3139 * Returns: NULL on failure, vm_struct on success
5f4352fb 3140 *
92eac168
MR
3141 * This function reserves a range of kernel address space, and
3142 * allocates pagetables to map that range. No actual mappings
3143 * are created.
cd12909c 3144 *
92eac168
MR
3145 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3146 * allocated for the VM area are returned.
5f4352fb 3147 */
cd12909c 3148struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
3149{
3150 struct vm_struct *area;
3151
23016969
CL
3152 area = get_vm_area_caller(size, VM_IOREMAP,
3153 __builtin_return_address(0));
5f4352fb
JF
3154 if (area == NULL)
3155 return NULL;
3156
3157 /*
3158 * This ensures that page tables are constructed for this region
3159 * of kernel virtual address space and mapped into init_mm.
3160 */
3161 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 3162 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
3163 free_vm_area(area);
3164 return NULL;
3165 }
3166
5f4352fb
JF
3167 return area;
3168}
3169EXPORT_SYMBOL_GPL(alloc_vm_area);
3170
3171void free_vm_area(struct vm_struct *area)
3172{
3173 struct vm_struct *ret;
3174 ret = remove_vm_area(area->addr);
3175 BUG_ON(ret != area);
3176 kfree(area);
3177}
3178EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3179
4f8b02b4 3180#ifdef CONFIG_SMP
ca23e405
TH
3181static struct vmap_area *node_to_va(struct rb_node *n)
3182{
4583e773 3183 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3184}
3185
3186/**
68ad4a33
URS
3187 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3188 * @addr: target address
ca23e405 3189 *
68ad4a33
URS
3190 * Returns: vmap_area if it is found. If there is no such area
3191 * the first highest(reverse order) vmap_area is returned
3192 * i.e. va->va_start < addr && va->va_end < addr or NULL
3193 * if there are no any areas before @addr.
ca23e405 3194 */
68ad4a33
URS
3195static struct vmap_area *
3196pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3197{
68ad4a33
URS
3198 struct vmap_area *va, *tmp;
3199 struct rb_node *n;
3200
3201 n = free_vmap_area_root.rb_node;
3202 va = NULL;
ca23e405
TH
3203
3204 while (n) {
68ad4a33
URS
3205 tmp = rb_entry(n, struct vmap_area, rb_node);
3206 if (tmp->va_start <= addr) {
3207 va = tmp;
3208 if (tmp->va_end >= addr)
3209 break;
3210
ca23e405 3211 n = n->rb_right;
68ad4a33
URS
3212 } else {
3213 n = n->rb_left;
3214 }
ca23e405
TH
3215 }
3216
68ad4a33 3217 return va;
ca23e405
TH
3218}
3219
3220/**
68ad4a33
URS
3221 * pvm_determine_end_from_reverse - find the highest aligned address
3222 * of free block below VMALLOC_END
3223 * @va:
3224 * in - the VA we start the search(reverse order);
3225 * out - the VA with the highest aligned end address.
ca23e405 3226 *
68ad4a33 3227 * Returns: determined end address within vmap_area
ca23e405 3228 */
68ad4a33
URS
3229static unsigned long
3230pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3231{
68ad4a33 3232 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3233 unsigned long addr;
3234
68ad4a33
URS
3235 if (likely(*va)) {
3236 list_for_each_entry_from_reverse((*va),
3237 &free_vmap_area_list, list) {
3238 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3239 if ((*va)->va_start < addr)
3240 return addr;
3241 }
ca23e405
TH
3242 }
3243
68ad4a33 3244 return 0;
ca23e405
TH
3245}
3246
3247/**
3248 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3249 * @offsets: array containing offset of each area
3250 * @sizes: array containing size of each area
3251 * @nr_vms: the number of areas to allocate
3252 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3253 *
3254 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3255 * vm_structs on success, %NULL on failure
3256 *
3257 * Percpu allocator wants to use congruent vm areas so that it can
3258 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3259 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3260 * be scattered pretty far, distance between two areas easily going up
3261 * to gigabytes. To avoid interacting with regular vmallocs, these
3262 * areas are allocated from top.
ca23e405 3263 *
68ad4a33
URS
3264 * Despite its complicated look, this allocator is rather simple. It
3265 * does everything top-down and scans free blocks from the end looking
3266 * for matching base. While scanning, if any of the areas do not fit the
3267 * base address is pulled down to fit the area. Scanning is repeated till
3268 * all the areas fit and then all necessary data structures are inserted
3269 * and the result is returned.
ca23e405
TH
3270 */
3271struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3272 const size_t *sizes, int nr_vms,
ec3f64fc 3273 size_t align)
ca23e405
TH
3274{
3275 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3276 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3277 struct vmap_area **vas, *va;
ca23e405
TH
3278 struct vm_struct **vms;
3279 int area, area2, last_area, term_area;
253a496d 3280 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3281 bool purged = false;
68ad4a33 3282 enum fit_type type;
ca23e405 3283
ca23e405 3284 /* verify parameters and allocate data structures */
891c49ab 3285 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3286 for (last_area = 0, area = 0; area < nr_vms; area++) {
3287 start = offsets[area];
3288 end = start + sizes[area];
3289
3290 /* is everything aligned properly? */
3291 BUG_ON(!IS_ALIGNED(offsets[area], align));
3292 BUG_ON(!IS_ALIGNED(sizes[area], align));
3293
3294 /* detect the area with the highest address */
3295 if (start > offsets[last_area])
3296 last_area = area;
3297
c568da28 3298 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3299 unsigned long start2 = offsets[area2];
3300 unsigned long end2 = start2 + sizes[area2];
3301
c568da28 3302 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3303 }
3304 }
3305 last_end = offsets[last_area] + sizes[last_area];
3306
3307 if (vmalloc_end - vmalloc_start < last_end) {
3308 WARN_ON(true);
3309 return NULL;
3310 }
3311
4d67d860
TM
3312 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3313 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3314 if (!vas || !vms)
f1db7afd 3315 goto err_free2;
ca23e405
TH
3316
3317 for (area = 0; area < nr_vms; area++) {
68ad4a33 3318 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3319 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3320 if (!vas[area] || !vms[area])
3321 goto err_free;
3322 }
3323retry:
e36176be 3324 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3325
3326 /* start scanning - we scan from the top, begin with the last area */
3327 area = term_area = last_area;
3328 start = offsets[area];
3329 end = start + sizes[area];
3330
68ad4a33
URS
3331 va = pvm_find_va_enclose_addr(vmalloc_end);
3332 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3333
3334 while (true) {
ca23e405
TH
3335 /*
3336 * base might have underflowed, add last_end before
3337 * comparing.
3338 */
68ad4a33
URS
3339 if (base + last_end < vmalloc_start + last_end)
3340 goto overflow;
ca23e405
TH
3341
3342 /*
68ad4a33 3343 * Fitting base has not been found.
ca23e405 3344 */
68ad4a33
URS
3345 if (va == NULL)
3346 goto overflow;
ca23e405 3347
5336e52c 3348 /*
d8cc323d 3349 * If required width exceeds current VA block, move
5336e52c
KS
3350 * base downwards and then recheck.
3351 */
3352 if (base + end > va->va_end) {
3353 base = pvm_determine_end_from_reverse(&va, align) - end;
3354 term_area = area;
3355 continue;
3356 }
3357
ca23e405 3358 /*
68ad4a33 3359 * If this VA does not fit, move base downwards and recheck.
ca23e405 3360 */
5336e52c 3361 if (base + start < va->va_start) {
68ad4a33
URS
3362 va = node_to_va(rb_prev(&va->rb_node));
3363 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3364 term_area = area;
3365 continue;
3366 }
3367
3368 /*
3369 * This area fits, move on to the previous one. If
3370 * the previous one is the terminal one, we're done.
3371 */
3372 area = (area + nr_vms - 1) % nr_vms;
3373 if (area == term_area)
3374 break;
68ad4a33 3375
ca23e405
TH
3376 start = offsets[area];
3377 end = start + sizes[area];
68ad4a33 3378 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3379 }
68ad4a33 3380
ca23e405
TH
3381 /* we've found a fitting base, insert all va's */
3382 for (area = 0; area < nr_vms; area++) {
68ad4a33 3383 int ret;
ca23e405 3384
68ad4a33
URS
3385 start = base + offsets[area];
3386 size = sizes[area];
ca23e405 3387
68ad4a33
URS
3388 va = pvm_find_va_enclose_addr(start);
3389 if (WARN_ON_ONCE(va == NULL))
3390 /* It is a BUG(), but trigger recovery instead. */
3391 goto recovery;
3392
3393 type = classify_va_fit_type(va, start, size);
3394 if (WARN_ON_ONCE(type == NOTHING_FIT))
3395 /* It is a BUG(), but trigger recovery instead. */
3396 goto recovery;
3397
3398 ret = adjust_va_to_fit_type(va, start, size, type);
3399 if (unlikely(ret))
3400 goto recovery;
3401
3402 /* Allocated area. */
3403 va = vas[area];
3404 va->va_start = start;
3405 va->va_end = start + size;
68ad4a33 3406 }
ca23e405 3407
e36176be 3408 spin_unlock(&free_vmap_area_lock);
ca23e405 3409
253a496d
DA
3410 /* populate the kasan shadow space */
3411 for (area = 0; area < nr_vms; area++) {
3412 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3413 goto err_free_shadow;
3414
3415 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3416 sizes[area]);
3417 }
3418
ca23e405 3419 /* insert all vm's */
e36176be
URS
3420 spin_lock(&vmap_area_lock);
3421 for (area = 0; area < nr_vms; area++) {
3422 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3423
3424 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3425 pcpu_get_vm_areas);
e36176be
URS
3426 }
3427 spin_unlock(&vmap_area_lock);
ca23e405
TH
3428
3429 kfree(vas);
3430 return vms;
3431
68ad4a33 3432recovery:
e36176be
URS
3433 /*
3434 * Remove previously allocated areas. There is no
3435 * need in removing these areas from the busy tree,
3436 * because they are inserted only on the final step
3437 * and when pcpu_get_vm_areas() is success.
3438 */
68ad4a33 3439 while (area--) {
253a496d
DA
3440 orig_start = vas[area]->va_start;
3441 orig_end = vas[area]->va_end;
3442 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3443 &free_vmap_area_list);
3444 kasan_release_vmalloc(orig_start, orig_end,
3445 va->va_start, va->va_end);
68ad4a33
URS
3446 vas[area] = NULL;
3447 }
3448
3449overflow:
e36176be 3450 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3451 if (!purged) {
3452 purge_vmap_area_lazy();
3453 purged = true;
3454
3455 /* Before "retry", check if we recover. */
3456 for (area = 0; area < nr_vms; area++) {
3457 if (vas[area])
3458 continue;
3459
3460 vas[area] = kmem_cache_zalloc(
3461 vmap_area_cachep, GFP_KERNEL);
3462 if (!vas[area])
3463 goto err_free;
3464 }
3465
3466 goto retry;
3467 }
3468
ca23e405
TH
3469err_free:
3470 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3471 if (vas[area])
3472 kmem_cache_free(vmap_area_cachep, vas[area]);
3473
f1db7afd 3474 kfree(vms[area]);
ca23e405 3475 }
f1db7afd 3476err_free2:
ca23e405
TH
3477 kfree(vas);
3478 kfree(vms);
3479 return NULL;
253a496d
DA
3480
3481err_free_shadow:
3482 spin_lock(&free_vmap_area_lock);
3483 /*
3484 * We release all the vmalloc shadows, even the ones for regions that
3485 * hadn't been successfully added. This relies on kasan_release_vmalloc
3486 * being able to tolerate this case.
3487 */
3488 for (area = 0; area < nr_vms; area++) {
3489 orig_start = vas[area]->va_start;
3490 orig_end = vas[area]->va_end;
3491 va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3492 &free_vmap_area_list);
3493 kasan_release_vmalloc(orig_start, orig_end,
3494 va->va_start, va->va_end);
3495 vas[area] = NULL;
3496 kfree(vms[area]);
3497 }
3498 spin_unlock(&free_vmap_area_lock);
3499 kfree(vas);
3500 kfree(vms);
3501 return NULL;
ca23e405
TH
3502}
3503
3504/**
3505 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3506 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3507 * @nr_vms: the number of allocated areas
3508 *
3509 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3510 */
3511void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3512{
3513 int i;
3514
3515 for (i = 0; i < nr_vms; i++)
3516 free_vm_area(vms[i]);
3517 kfree(vms);
3518}
4f8b02b4 3519#endif /* CONFIG_SMP */
a10aa579
CL
3520
3521#ifdef CONFIG_PROC_FS
3522static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3523 __acquires(&vmap_purge_lock)
d4033afd 3524 __acquires(&vmap_area_lock)
a10aa579 3525{
e36176be 3526 mutex_lock(&vmap_purge_lock);
d4033afd 3527 spin_lock(&vmap_area_lock);
e36176be 3528
3f500069 3529 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3530}
3531
3532static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3533{
3f500069 3534 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3535}
3536
3537static void s_stop(struct seq_file *m, void *p)
e36176be 3538 __releases(&vmap_purge_lock)
d4033afd 3539 __releases(&vmap_area_lock)
a10aa579 3540{
e36176be 3541 mutex_unlock(&vmap_purge_lock);
d4033afd 3542 spin_unlock(&vmap_area_lock);
a10aa579
CL
3543}
3544
a47a126a
ED
3545static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3546{
e5adfffc 3547 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
3548 unsigned int nr, *counters = m->private;
3549
3550 if (!counters)
3551 return;
3552
af12346c
WL
3553 if (v->flags & VM_UNINITIALIZED)
3554 return;
7e5b528b
DV
3555 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3556 smp_rmb();
af12346c 3557
a47a126a
ED
3558 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3559
3560 for (nr = 0; nr < v->nr_pages; nr++)
3561 counters[page_to_nid(v->pages[nr])]++;
3562
3563 for_each_node_state(nr, N_HIGH_MEMORY)
3564 if (counters[nr])
3565 seq_printf(m, " N%u=%u", nr, counters[nr]);
3566 }
3567}
3568
dd3b8353
URS
3569static void show_purge_info(struct seq_file *m)
3570{
3571 struct llist_node *head;
3572 struct vmap_area *va;
3573
3574 head = READ_ONCE(vmap_purge_list.first);
3575 if (head == NULL)
3576 return;
3577
3578 llist_for_each_entry(va, head, purge_list) {
3579 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3580 (void *)va->va_start, (void *)va->va_end,
3581 va->va_end - va->va_start);
3582 }
3583}
3584
a10aa579
CL
3585static int s_show(struct seq_file *m, void *p)
3586{
3f500069 3587 struct vmap_area *va;
d4033afd
JK
3588 struct vm_struct *v;
3589
3f500069 3590 va = list_entry(p, struct vmap_area, list);
3591
c2ce8c14 3592 /*
688fcbfc
PL
3593 * s_show can encounter race with remove_vm_area, !vm on behalf
3594 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3595 */
688fcbfc 3596 if (!va->vm) {
dd3b8353 3597 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3598 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3599 va->va_end - va->va_start);
78c72746 3600
d4033afd 3601 return 0;
78c72746 3602 }
d4033afd
JK
3603
3604 v = va->vm;
a10aa579 3605
45ec1690 3606 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
3607 v->addr, v->addr + v->size, v->size);
3608
62c70bce
JP
3609 if (v->caller)
3610 seq_printf(m, " %pS", v->caller);
23016969 3611
a10aa579
CL
3612 if (v->nr_pages)
3613 seq_printf(m, " pages=%d", v->nr_pages);
3614
3615 if (v->phys_addr)
199eaa05 3616 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
3617
3618 if (v->flags & VM_IOREMAP)
f4527c90 3619 seq_puts(m, " ioremap");
a10aa579
CL
3620
3621 if (v->flags & VM_ALLOC)
f4527c90 3622 seq_puts(m, " vmalloc");
a10aa579
CL
3623
3624 if (v->flags & VM_MAP)
f4527c90 3625 seq_puts(m, " vmap");
a10aa579
CL
3626
3627 if (v->flags & VM_USERMAP)
f4527c90 3628 seq_puts(m, " user");
a10aa579 3629
fe9041c2
CH
3630 if (v->flags & VM_DMA_COHERENT)
3631 seq_puts(m, " dma-coherent");
3632
244d63ee 3633 if (is_vmalloc_addr(v->pages))
f4527c90 3634 seq_puts(m, " vpages");
a10aa579 3635
a47a126a 3636 show_numa_info(m, v);
a10aa579 3637 seq_putc(m, '\n');
dd3b8353
URS
3638
3639 /*
3640 * As a final step, dump "unpurged" areas. Note,
3641 * that entire "/proc/vmallocinfo" output will not
3642 * be address sorted, because the purge list is not
3643 * sorted.
3644 */
3645 if (list_is_last(&va->list, &vmap_area_list))
3646 show_purge_info(m);
3647
a10aa579
CL
3648 return 0;
3649}
3650
5f6a6a9c 3651static const struct seq_operations vmalloc_op = {
a10aa579
CL
3652 .start = s_start,
3653 .next = s_next,
3654 .stop = s_stop,
3655 .show = s_show,
3656};
5f6a6a9c 3657
5f6a6a9c
AD
3658static int __init proc_vmalloc_init(void)
3659{
fddda2b7 3660 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 3661 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
3662 &vmalloc_op,
3663 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 3664 else
0825a6f9 3665 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
3666 return 0;
3667}
3668module_init(proc_vmalloc_init);
db3808c1 3669
a10aa579 3670#endif