]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/vmalloc.c
mm/vmalloc: Move draining areas out of caller context
[thirdparty/linux.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
0f616be1 36#include <linux/bitops.h>
68ad4a33 37#include <linux/rbtree_augmented.h>
bdebd6a2 38#include <linux/overflow.h>
c0eb315a 39#include <linux/pgtable.h>
7c0f6ba6 40#include <linux/uaccess.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
dd56b046 46#include "internal.h"
2a681cfa 47#include "pgalloc-track.h"
dd56b046 48
82a70ce0
CH
49#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51
52static int __init set_nohugeiomap(char *str)
53{
54 ioremap_max_page_shift = PAGE_SHIFT;
55 return 0;
56}
57early_param("nohugeiomap", set_nohugeiomap);
58#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
61
121e6f32
NP
62#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63static bool __ro_after_init vmap_allow_huge = true;
64
65static int __init set_nohugevmalloc(char *str)
66{
67 vmap_allow_huge = false;
68 return 0;
69}
70early_param("nohugevmalloc", set_nohugevmalloc);
71#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72static const bool vmap_allow_huge = false;
73#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74
186525bd
IM
75bool is_vmalloc_addr(const void *x)
76{
77 unsigned long addr = (unsigned long)x;
78
79 return addr >= VMALLOC_START && addr < VMALLOC_END;
80}
81EXPORT_SYMBOL(is_vmalloc_addr);
82
32fcfd40
AV
83struct vfree_deferred {
84 struct llist_head list;
85 struct work_struct wq;
86};
87static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88
89static void __vunmap(const void *, int);
90
91static void free_work(struct work_struct *w)
92{
93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
894e58c1
BP
94 struct llist_node *t, *llnode;
95
96 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 __vunmap((void *)llnode, 1);
32fcfd40
AV
98}
99
db64fe02 100/*** Page table manipulation functions ***/
5e9e3d77
NP
101static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 103 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
104{
105 pte_t *pte;
106 u64 pfn;
f7ee1f13 107 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
108
109 pfn = phys_addr >> PAGE_SHIFT;
110 pte = pte_alloc_kernel_track(pmd, addr, mask);
111 if (!pte)
112 return -ENOMEM;
113 do {
114 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
115
116#ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
f7ee1f13
CL
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126#endif
5e9e3d77
NP
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
f7ee1f13 129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132}
133
134static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137{
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157}
158
159static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162{
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
f7ee1f13 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182}
183
184static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187{
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207}
208
209static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212{
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233}
234
235static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238{
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258}
259
260static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263{
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284}
285
5d87510d 286static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289{
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
5e9e3d77
NP
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313}
b221385b 314
82a70ce0
CH
315int ioremap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
317{
318 int err;
319
8491502f 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 321 ioremap_max_page_shift);
5d87510d 322 flush_cache_vmap(addr, end);
5d87510d
NP
323 return err;
324}
325
2ba3e694
JR
326static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 pgtbl_mod_mask *mask)
1da177e4
LT
328{
329 pte_t *pte;
330
331 pte = pte_offset_kernel(pmd, addr);
332 do {
333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 336 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
337}
338
2ba3e694
JR
339static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 pgtbl_mod_mask *mask)
1da177e4
LT
341{
342 pmd_t *pmd;
343 unsigned long next;
2ba3e694 344 int cleared;
1da177e4
LT
345
346 pmd = pmd_offset(pud, addr);
347 do {
348 next = pmd_addr_end(addr, end);
2ba3e694
JR
349
350 cleared = pmd_clear_huge(pmd);
351 if (cleared || pmd_bad(*pmd))
352 *mask |= PGTBL_PMD_MODIFIED;
353
354 if (cleared)
b9820d8f 355 continue;
1da177e4
LT
356 if (pmd_none_or_clear_bad(pmd))
357 continue;
2ba3e694 358 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
359
360 cond_resched();
1da177e4
LT
361 } while (pmd++, addr = next, addr != end);
362}
363
2ba3e694
JR
364static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 pgtbl_mod_mask *mask)
1da177e4
LT
366{
367 pud_t *pud;
368 unsigned long next;
2ba3e694 369 int cleared;
1da177e4 370
c2febafc 371 pud = pud_offset(p4d, addr);
1da177e4
LT
372 do {
373 next = pud_addr_end(addr, end);
2ba3e694
JR
374
375 cleared = pud_clear_huge(pud);
376 if (cleared || pud_bad(*pud))
377 *mask |= PGTBL_PUD_MODIFIED;
378
379 if (cleared)
b9820d8f 380 continue;
1da177e4
LT
381 if (pud_none_or_clear_bad(pud))
382 continue;
2ba3e694 383 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
384 } while (pud++, addr = next, addr != end);
385}
386
2ba3e694
JR
387static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
c2febafc
KS
389{
390 p4d_t *p4d;
391 unsigned long next;
2ba3e694 392 int cleared;
c2febafc
KS
393
394 p4d = p4d_offset(pgd, addr);
395 do {
396 next = p4d_addr_end(addr, end);
2ba3e694
JR
397
398 cleared = p4d_clear_huge(p4d);
399 if (cleared || p4d_bad(*p4d))
400 *mask |= PGTBL_P4D_MODIFIED;
401
402 if (cleared)
c2febafc
KS
403 continue;
404 if (p4d_none_or_clear_bad(p4d))
405 continue;
2ba3e694 406 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
407 } while (p4d++, addr = next, addr != end);
408}
409
4ad0ae8c
NP
410/*
411 * vunmap_range_noflush is similar to vunmap_range, but does not
412 * flush caches or TLBs.
b521c43f 413 *
4ad0ae8c
NP
414 * The caller is responsible for calling flush_cache_vmap() before calling
415 * this function, and flush_tlb_kernel_range after it has returned
416 * successfully (and before the addresses are expected to cause a page fault
417 * or be re-mapped for something else, if TLB flushes are being delayed or
418 * coalesced).
b521c43f 419 *
4ad0ae8c 420 * This is an internal function only. Do not use outside mm/.
b521c43f 421 */
4ad0ae8c 422void vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 423{
1da177e4 424 unsigned long next;
b521c43f 425 pgd_t *pgd;
2ba3e694
JR
426 unsigned long addr = start;
427 pgtbl_mod_mask mask = 0;
1da177e4
LT
428
429 BUG_ON(addr >= end);
430 pgd = pgd_offset_k(addr);
1da177e4
LT
431 do {
432 next = pgd_addr_end(addr, end);
2ba3e694
JR
433 if (pgd_bad(*pgd))
434 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
435 if (pgd_none_or_clear_bad(pgd))
436 continue;
2ba3e694 437 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 438 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
439
440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 arch_sync_kernel_mappings(start, end);
1da177e4
LT
442}
443
4ad0ae8c
NP
444/**
445 * vunmap_range - unmap kernel virtual addresses
446 * @addr: start of the VM area to unmap
447 * @end: end of the VM area to unmap (non-inclusive)
448 *
449 * Clears any present PTEs in the virtual address range, flushes TLBs and
450 * caches. Any subsequent access to the address before it has been re-mapped
451 * is a kernel bug.
452 */
453void vunmap_range(unsigned long addr, unsigned long end)
454{
455 flush_cache_vunmap(addr, end);
456 vunmap_range_noflush(addr, end);
457 flush_tlb_kernel_range(addr, end);
458}
459
0a264884 460static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
461 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 pgtbl_mod_mask *mask)
1da177e4
LT
463{
464 pte_t *pte;
465
db64fe02
NP
466 /*
467 * nr is a running index into the array which helps higher level
468 * callers keep track of where we're up to.
469 */
470
2ba3e694 471 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
472 if (!pte)
473 return -ENOMEM;
474 do {
db64fe02
NP
475 struct page *page = pages[*nr];
476
477 if (WARN_ON(!pte_none(*pte)))
478 return -EBUSY;
479 if (WARN_ON(!page))
1da177e4
LT
480 return -ENOMEM;
481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 482 (*nr)++;
1da177e4 483 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 484 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
485 return 0;
486}
487
0a264884 488static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
489 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 pgtbl_mod_mask *mask)
1da177e4
LT
491{
492 pmd_t *pmd;
493 unsigned long next;
494
2ba3e694 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
496 if (!pmd)
497 return -ENOMEM;
498 do {
499 next = pmd_addr_end(addr, end);
0a264884 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
501 return -ENOMEM;
502 } while (pmd++, addr = next, addr != end);
503 return 0;
504}
505
0a264884 506static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
507 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 pgtbl_mod_mask *mask)
1da177e4
LT
509{
510 pud_t *pud;
511 unsigned long next;
512
2ba3e694 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
514 if (!pud)
515 return -ENOMEM;
516 do {
517 next = pud_addr_end(addr, end);
0a264884 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
519 return -ENOMEM;
520 } while (pud++, addr = next, addr != end);
521 return 0;
522}
523
0a264884 524static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
525 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 pgtbl_mod_mask *mask)
c2febafc
KS
527{
528 p4d_t *p4d;
529 unsigned long next;
530
2ba3e694 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
532 if (!p4d)
533 return -ENOMEM;
534 do {
535 next = p4d_addr_end(addr, end);
0a264884 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
537 return -ENOMEM;
538 } while (p4d++, addr = next, addr != end);
539 return 0;
540}
541
121e6f32
NP
542static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 pgprot_t prot, struct page **pages)
1da177e4 544{
2ba3e694 545 unsigned long start = addr;
b521c43f 546 pgd_t *pgd;
121e6f32 547 unsigned long next;
db64fe02
NP
548 int err = 0;
549 int nr = 0;
2ba3e694 550 pgtbl_mod_mask mask = 0;
1da177e4
LT
551
552 BUG_ON(addr >= end);
553 pgd = pgd_offset_k(addr);
1da177e4
LT
554 do {
555 next = pgd_addr_end(addr, end);
2ba3e694
JR
556 if (pgd_bad(*pgd))
557 mask |= PGTBL_PGD_MODIFIED;
0a264884 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 559 if (err)
bf88c8c8 560 return err;
1da177e4 561 } while (pgd++, addr = next, addr != end);
db64fe02 562
2ba3e694
JR
563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 arch_sync_kernel_mappings(start, end);
565
60bb4465 566 return 0;
1da177e4
LT
567}
568
b67177ec
NP
569/*
570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571 * flush caches.
572 *
573 * The caller is responsible for calling flush_cache_vmap() after this
574 * function returns successfully and before the addresses are accessed.
575 *
576 * This is an internal function only. Do not use outside mm/.
577 */
578int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
579 pgprot_t prot, struct page **pages, unsigned int page_shift)
580{
581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582
583 WARN_ON(page_shift < PAGE_SHIFT);
584
585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 page_shift == PAGE_SHIFT)
587 return vmap_small_pages_range_noflush(addr, end, prot, pages);
588
589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 int err;
591
592 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 __pa(page_address(pages[i])), prot,
594 page_shift);
595 if (err)
596 return err;
597
598 addr += 1UL << page_shift;
599 }
600
601 return 0;
602}
603
121e6f32 604/**
b67177ec 605 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 606 * @addr: start of the VM area to map
b67177ec 607 * @end: end of the VM area to map (non-inclusive)
121e6f32 608 * @prot: page protection flags to use
b67177ec
NP
609 * @pages: pages to map (always PAGE_SIZE pages)
610 * @page_shift: maximum shift that the pages may be mapped with, @pages must
611 * be aligned and contiguous up to at least this shift.
121e6f32
NP
612 *
613 * RETURNS:
614 * 0 on success, -errno on failure.
615 */
b67177ec
NP
616static int vmap_pages_range(unsigned long addr, unsigned long end,
617 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 618{
b67177ec 619 int err;
8fc48985 620
b67177ec
NP
621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 flush_cache_vmap(addr, end);
623 return err;
8fc48985
TH
624}
625
81ac3ad9 626int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
627{
628 /*
ab4f2ee1 629 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
630 * and fall back on vmalloc() if that fails. Others
631 * just put it in the vmalloc space.
632 */
633#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 unsigned long addr = (unsigned long)x;
635 if (addr >= MODULES_VADDR && addr < MODULES_END)
636 return 1;
637#endif
638 return is_vmalloc_addr(x);
639}
640
48667e7a 641/*
c0eb315a
NP
642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643 * return the tail page that corresponds to the base page address, which
644 * matches small vmap mappings.
48667e7a 645 */
add688fb 646struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
647{
648 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 649 struct page *page = NULL;
48667e7a 650 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
651 p4d_t *p4d;
652 pud_t *pud;
653 pmd_t *pmd;
654 pte_t *ptep, pte;
48667e7a 655
7aa413de
IM
656 /*
657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 * architectures that do not vmalloc module space
659 */
73bdf0a6 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 661
c2febafc
KS
662 if (pgd_none(*pgd))
663 return NULL;
c0eb315a
NP
664 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 return NULL; /* XXX: no allowance for huge pgd */
666 if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 return NULL;
668
c2febafc
KS
669 p4d = p4d_offset(pgd, addr);
670 if (p4d_none(*p4d))
671 return NULL;
c0eb315a
NP
672 if (p4d_leaf(*p4d))
673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 return NULL;
029c54b0 676
c0eb315a
NP
677 pud = pud_offset(p4d, addr);
678 if (pud_none(*pud))
679 return NULL;
680 if (pud_leaf(*pud))
681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 683 return NULL;
c0eb315a 684
c2febafc 685 pmd = pmd_offset(pud, addr);
c0eb315a
NP
686 if (pmd_none(*pmd))
687 return NULL;
688 if (pmd_leaf(*pmd))
689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
691 return NULL;
692
693 ptep = pte_offset_map(pmd, addr);
694 pte = *ptep;
695 if (pte_present(pte))
696 page = pte_page(pte);
697 pte_unmap(ptep);
c0eb315a 698
add688fb 699 return page;
48667e7a 700}
add688fb 701EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
702
703/*
add688fb 704 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 705 */
add688fb 706unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 707{
add688fb 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 709}
add688fb 710EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 711
db64fe02
NP
712
713/*** Global kva allocator ***/
714
bb850f4d 715#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 716#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 717
db64fe02 718
db64fe02 719static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 720static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
721/* Export for kexec only */
722LIST_HEAD(vmap_area_list);
89699605 723static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 724static bool vmap_initialized __read_mostly;
89699605 725
96e2db45
URS
726static struct rb_root purge_vmap_area_root = RB_ROOT;
727static LIST_HEAD(purge_vmap_area_list);
728static DEFINE_SPINLOCK(purge_vmap_area_lock);
729
68ad4a33
URS
730/*
731 * This kmem_cache is used for vmap_area objects. Instead of
732 * allocating from slab we reuse an object from this cache to
733 * make things faster. Especially in "no edge" splitting of
734 * free block.
735 */
736static struct kmem_cache *vmap_area_cachep;
737
738/*
739 * This linked list is used in pair with free_vmap_area_root.
740 * It gives O(1) access to prev/next to perform fast coalescing.
741 */
742static LIST_HEAD(free_vmap_area_list);
743
744/*
745 * This augment red-black tree represents the free vmap space.
746 * All vmap_area objects in this tree are sorted by va->va_start
747 * address. It is used for allocation and merging when a vmap
748 * object is released.
749 *
750 * Each vmap_area node contains a maximum available free block
751 * of its sub-tree, right or left. Therefore it is possible to
752 * find a lowest match of free area.
753 */
754static struct rb_root free_vmap_area_root = RB_ROOT;
755
82dd23e8
URS
756/*
757 * Preload a CPU with one object for "no edge" split case. The
758 * aim is to get rid of allocations from the atomic context, thus
759 * to use more permissive allocation masks.
760 */
761static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762
68ad4a33
URS
763static __always_inline unsigned long
764va_size(struct vmap_area *va)
765{
766 return (va->va_end - va->va_start);
767}
768
769static __always_inline unsigned long
770get_subtree_max_size(struct rb_node *node)
771{
772 struct vmap_area *va;
773
774 va = rb_entry_safe(node, struct vmap_area, rb_node);
775 return va ? va->subtree_max_size : 0;
776}
89699605 777
68ad4a33
URS
778/*
779 * Gets called when remove the node and rotate.
780 */
781static __always_inline unsigned long
782compute_subtree_max_size(struct vmap_area *va)
783{
784 return max3(va_size(va),
785 get_subtree_max_size(va->rb_node.rb_left),
786 get_subtree_max_size(va->rb_node.rb_right));
787}
788
315cc066
ML
789RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
790 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
791
792static void purge_vmap_area_lazy(void);
793static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
794static void drain_vmap_area_work(struct work_struct *work);
795static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 796
97105f0a
RG
797static atomic_long_t nr_vmalloc_pages;
798
799unsigned long vmalloc_nr_pages(void)
800{
801 return atomic_long_read(&nr_vmalloc_pages);
802}
803
f181234a
CW
804static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
805{
806 struct vmap_area *va = NULL;
807 struct rb_node *n = vmap_area_root.rb_node;
808
809 while (n) {
810 struct vmap_area *tmp;
811
812 tmp = rb_entry(n, struct vmap_area, rb_node);
813 if (tmp->va_end > addr) {
814 va = tmp;
815 if (tmp->va_start <= addr)
816 break;
817
818 n = n->rb_left;
819 } else
820 n = n->rb_right;
821 }
822
823 return va;
824}
825
db64fe02 826static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 827{
db64fe02
NP
828 struct rb_node *n = vmap_area_root.rb_node;
829
830 while (n) {
831 struct vmap_area *va;
832
833 va = rb_entry(n, struct vmap_area, rb_node);
834 if (addr < va->va_start)
835 n = n->rb_left;
cef2ac3f 836 else if (addr >= va->va_end)
db64fe02
NP
837 n = n->rb_right;
838 else
839 return va;
840 }
841
842 return NULL;
843}
844
68ad4a33
URS
845/*
846 * This function returns back addresses of parent node
847 * and its left or right link for further processing.
9c801f61
URS
848 *
849 * Otherwise NULL is returned. In that case all further
850 * steps regarding inserting of conflicting overlap range
851 * have to be declined and actually considered as a bug.
68ad4a33
URS
852 */
853static __always_inline struct rb_node **
854find_va_links(struct vmap_area *va,
855 struct rb_root *root, struct rb_node *from,
856 struct rb_node **parent)
857{
858 struct vmap_area *tmp_va;
859 struct rb_node **link;
860
861 if (root) {
862 link = &root->rb_node;
863 if (unlikely(!*link)) {
864 *parent = NULL;
865 return link;
866 }
867 } else {
868 link = &from;
869 }
db64fe02 870
68ad4a33
URS
871 /*
872 * Go to the bottom of the tree. When we hit the last point
873 * we end up with parent rb_node and correct direction, i name
874 * it link, where the new va->rb_node will be attached to.
875 */
876 do {
877 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 878
68ad4a33
URS
879 /*
880 * During the traversal we also do some sanity check.
881 * Trigger the BUG() if there are sides(left/right)
882 * or full overlaps.
883 */
884 if (va->va_start < tmp_va->va_end &&
885 va->va_end <= tmp_va->va_start)
886 link = &(*link)->rb_left;
887 else if (va->va_end > tmp_va->va_start &&
888 va->va_start >= tmp_va->va_end)
889 link = &(*link)->rb_right;
9c801f61
URS
890 else {
891 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
892 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
893
894 return NULL;
895 }
68ad4a33
URS
896 } while (*link);
897
898 *parent = &tmp_va->rb_node;
899 return link;
900}
901
902static __always_inline struct list_head *
903get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
904{
905 struct list_head *list;
906
907 if (unlikely(!parent))
908 /*
909 * The red-black tree where we try to find VA neighbors
910 * before merging or inserting is empty, i.e. it means
911 * there is no free vmap space. Normally it does not
912 * happen but we handle this case anyway.
913 */
914 return NULL;
915
916 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
917 return (&parent->rb_right == link ? list->next : list);
918}
919
920static __always_inline void
921link_va(struct vmap_area *va, struct rb_root *root,
922 struct rb_node *parent, struct rb_node **link, struct list_head *head)
923{
924 /*
925 * VA is still not in the list, but we can
926 * identify its future previous list_head node.
927 */
928 if (likely(parent)) {
929 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
930 if (&parent->rb_right != link)
931 head = head->prev;
db64fe02
NP
932 }
933
68ad4a33
URS
934 /* Insert to the rb-tree */
935 rb_link_node(&va->rb_node, parent, link);
936 if (root == &free_vmap_area_root) {
937 /*
938 * Some explanation here. Just perform simple insertion
939 * to the tree. We do not set va->subtree_max_size to
940 * its current size before calling rb_insert_augmented().
941 * It is because of we populate the tree from the bottom
942 * to parent levels when the node _is_ in the tree.
943 *
944 * Therefore we set subtree_max_size to zero after insertion,
945 * to let __augment_tree_propagate_from() puts everything to
946 * the correct order later on.
947 */
948 rb_insert_augmented(&va->rb_node,
949 root, &free_vmap_area_rb_augment_cb);
950 va->subtree_max_size = 0;
951 } else {
952 rb_insert_color(&va->rb_node, root);
953 }
db64fe02 954
68ad4a33
URS
955 /* Address-sort this list */
956 list_add(&va->list, head);
db64fe02
NP
957}
958
68ad4a33
URS
959static __always_inline void
960unlink_va(struct vmap_area *va, struct rb_root *root)
961{
460e42d1
URS
962 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
963 return;
db64fe02 964
460e42d1
URS
965 if (root == &free_vmap_area_root)
966 rb_erase_augmented(&va->rb_node,
967 root, &free_vmap_area_rb_augment_cb);
968 else
969 rb_erase(&va->rb_node, root);
970
971 list_del(&va->list);
972 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
973}
974
bb850f4d
URS
975#if DEBUG_AUGMENT_PROPAGATE_CHECK
976static void
da27c9ed 977augment_tree_propagate_check(void)
bb850f4d
URS
978{
979 struct vmap_area *va;
da27c9ed 980 unsigned long computed_size;
bb850f4d 981
da27c9ed
URS
982 list_for_each_entry(va, &free_vmap_area_list, list) {
983 computed_size = compute_subtree_max_size(va);
984 if (computed_size != va->subtree_max_size)
985 pr_emerg("tree is corrupted: %lu, %lu\n",
986 va_size(va), va->subtree_max_size);
bb850f4d 987 }
bb850f4d
URS
988}
989#endif
990
68ad4a33
URS
991/*
992 * This function populates subtree_max_size from bottom to upper
993 * levels starting from VA point. The propagation must be done
994 * when VA size is modified by changing its va_start/va_end. Or
995 * in case of newly inserting of VA to the tree.
996 *
997 * It means that __augment_tree_propagate_from() must be called:
998 * - After VA has been inserted to the tree(free path);
999 * - After VA has been shrunk(allocation path);
1000 * - After VA has been increased(merging path).
1001 *
1002 * Please note that, it does not mean that upper parent nodes
1003 * and their subtree_max_size are recalculated all the time up
1004 * to the root node.
1005 *
1006 * 4--8
1007 * /\
1008 * / \
1009 * / \
1010 * 2--2 8--8
1011 *
1012 * For example if we modify the node 4, shrinking it to 2, then
1013 * no any modification is required. If we shrink the node 2 to 1
1014 * its subtree_max_size is updated only, and set to 1. If we shrink
1015 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1016 * node becomes 4--6.
1017 */
1018static __always_inline void
1019augment_tree_propagate_from(struct vmap_area *va)
1020{
15ae144f
URS
1021 /*
1022 * Populate the tree from bottom towards the root until
1023 * the calculated maximum available size of checked node
1024 * is equal to its current one.
1025 */
1026 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1027
1028#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1029 augment_tree_propagate_check();
bb850f4d 1030#endif
68ad4a33
URS
1031}
1032
1033static void
1034insert_vmap_area(struct vmap_area *va,
1035 struct rb_root *root, struct list_head *head)
1036{
1037 struct rb_node **link;
1038 struct rb_node *parent;
1039
1040 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1041 if (link)
1042 link_va(va, root, parent, link, head);
68ad4a33
URS
1043}
1044
1045static void
1046insert_vmap_area_augment(struct vmap_area *va,
1047 struct rb_node *from, struct rb_root *root,
1048 struct list_head *head)
1049{
1050 struct rb_node **link;
1051 struct rb_node *parent;
1052
1053 if (from)
1054 link = find_va_links(va, NULL, from, &parent);
1055 else
1056 link = find_va_links(va, root, NULL, &parent);
1057
9c801f61
URS
1058 if (link) {
1059 link_va(va, root, parent, link, head);
1060 augment_tree_propagate_from(va);
1061 }
68ad4a33
URS
1062}
1063
1064/*
1065 * Merge de-allocated chunk of VA memory with previous
1066 * and next free blocks. If coalesce is not done a new
1067 * free area is inserted. If VA has been merged, it is
1068 * freed.
9c801f61
URS
1069 *
1070 * Please note, it can return NULL in case of overlap
1071 * ranges, followed by WARN() report. Despite it is a
1072 * buggy behaviour, a system can be alive and keep
1073 * ongoing.
68ad4a33 1074 */
3c5c3cfb 1075static __always_inline struct vmap_area *
68ad4a33
URS
1076merge_or_add_vmap_area(struct vmap_area *va,
1077 struct rb_root *root, struct list_head *head)
1078{
1079 struct vmap_area *sibling;
1080 struct list_head *next;
1081 struct rb_node **link;
1082 struct rb_node *parent;
1083 bool merged = false;
1084
1085 /*
1086 * Find a place in the tree where VA potentially will be
1087 * inserted, unless it is merged with its sibling/siblings.
1088 */
1089 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1090 if (!link)
1091 return NULL;
68ad4a33
URS
1092
1093 /*
1094 * Get next node of VA to check if merging can be done.
1095 */
1096 next = get_va_next_sibling(parent, link);
1097 if (unlikely(next == NULL))
1098 goto insert;
1099
1100 /*
1101 * start end
1102 * | |
1103 * |<------VA------>|<-----Next----->|
1104 * | |
1105 * start end
1106 */
1107 if (next != head) {
1108 sibling = list_entry(next, struct vmap_area, list);
1109 if (sibling->va_start == va->va_end) {
1110 sibling->va_start = va->va_start;
1111
68ad4a33
URS
1112 /* Free vmap_area object. */
1113 kmem_cache_free(vmap_area_cachep, va);
1114
1115 /* Point to the new merged area. */
1116 va = sibling;
1117 merged = true;
1118 }
1119 }
1120
1121 /*
1122 * start end
1123 * | |
1124 * |<-----Prev----->|<------VA------>|
1125 * | |
1126 * start end
1127 */
1128 if (next->prev != head) {
1129 sibling = list_entry(next->prev, struct vmap_area, list);
1130 if (sibling->va_end == va->va_start) {
5dd78640
URS
1131 /*
1132 * If both neighbors are coalesced, it is important
1133 * to unlink the "next" node first, followed by merging
1134 * with "previous" one. Otherwise the tree might not be
1135 * fully populated if a sibling's augmented value is
1136 * "normalized" because of rotation operations.
1137 */
54f63d9d
URS
1138 if (merged)
1139 unlink_va(va, root);
68ad4a33 1140
5dd78640
URS
1141 sibling->va_end = va->va_end;
1142
68ad4a33
URS
1143 /* Free vmap_area object. */
1144 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1145
1146 /* Point to the new merged area. */
1147 va = sibling;
1148 merged = true;
68ad4a33
URS
1149 }
1150 }
1151
1152insert:
5dd78640 1153 if (!merged)
68ad4a33 1154 link_va(va, root, parent, link, head);
3c5c3cfb 1155
96e2db45
URS
1156 return va;
1157}
1158
1159static __always_inline struct vmap_area *
1160merge_or_add_vmap_area_augment(struct vmap_area *va,
1161 struct rb_root *root, struct list_head *head)
1162{
1163 va = merge_or_add_vmap_area(va, root, head);
1164 if (va)
1165 augment_tree_propagate_from(va);
1166
3c5c3cfb 1167 return va;
68ad4a33
URS
1168}
1169
1170static __always_inline bool
1171is_within_this_va(struct vmap_area *va, unsigned long size,
1172 unsigned long align, unsigned long vstart)
1173{
1174 unsigned long nva_start_addr;
1175
1176 if (va->va_start > vstart)
1177 nva_start_addr = ALIGN(va->va_start, align);
1178 else
1179 nva_start_addr = ALIGN(vstart, align);
1180
1181 /* Can be overflowed due to big size or alignment. */
1182 if (nva_start_addr + size < nva_start_addr ||
1183 nva_start_addr < vstart)
1184 return false;
1185
1186 return (nva_start_addr + size <= va->va_end);
1187}
1188
1189/*
1190 * Find the first free block(lowest start address) in the tree,
1191 * that will accomplish the request corresponding to passing
1192 * parameters.
1193 */
1194static __always_inline struct vmap_area *
1195find_vmap_lowest_match(unsigned long size,
1196 unsigned long align, unsigned long vstart)
1197{
1198 struct vmap_area *va;
1199 struct rb_node *node;
68ad4a33
URS
1200
1201 /* Start from the root. */
1202 node = free_vmap_area_root.rb_node;
1203
68ad4a33
URS
1204 while (node) {
1205 va = rb_entry(node, struct vmap_area, rb_node);
1206
9f531973 1207 if (get_subtree_max_size(node->rb_left) >= size &&
68ad4a33
URS
1208 vstart < va->va_start) {
1209 node = node->rb_left;
1210 } else {
1211 if (is_within_this_va(va, size, align, vstart))
1212 return va;
1213
1214 /*
1215 * Does not make sense to go deeper towards the right
1216 * sub-tree if it does not have a free block that is
9f531973 1217 * equal or bigger to the requested search size.
68ad4a33 1218 */
9f531973 1219 if (get_subtree_max_size(node->rb_right) >= size) {
68ad4a33
URS
1220 node = node->rb_right;
1221 continue;
1222 }
1223
1224 /*
3806b041 1225 * OK. We roll back and find the first right sub-tree,
68ad4a33 1226 * that will satisfy the search criteria. It can happen
9f531973
URS
1227 * due to "vstart" restriction or an alignment overhead
1228 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1229 */
1230 while ((node = rb_parent(node))) {
1231 va = rb_entry(node, struct vmap_area, rb_node);
1232 if (is_within_this_va(va, size, align, vstart))
1233 return va;
1234
9f531973 1235 if (get_subtree_max_size(node->rb_right) >= size &&
68ad4a33 1236 vstart <= va->va_start) {
9f531973
URS
1237 /*
1238 * Shift the vstart forward. Please note, we update it with
1239 * parent's start address adding "1" because we do not want
1240 * to enter same sub-tree after it has already been checked
1241 * and no suitable free block found there.
1242 */
1243 vstart = va->va_start + 1;
68ad4a33
URS
1244 node = node->rb_right;
1245 break;
1246 }
1247 }
1248 }
1249 }
1250
1251 return NULL;
1252}
1253
a6cf4e0f
URS
1254#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1255#include <linux/random.h>
1256
1257static struct vmap_area *
1258find_vmap_lowest_linear_match(unsigned long size,
1259 unsigned long align, unsigned long vstart)
1260{
1261 struct vmap_area *va;
1262
1263 list_for_each_entry(va, &free_vmap_area_list, list) {
1264 if (!is_within_this_va(va, size, align, vstart))
1265 continue;
1266
1267 return va;
1268 }
1269
1270 return NULL;
1271}
1272
1273static void
066fed59 1274find_vmap_lowest_match_check(unsigned long size, unsigned long align)
a6cf4e0f
URS
1275{
1276 struct vmap_area *va_1, *va_2;
1277 unsigned long vstart;
1278 unsigned int rnd;
1279
1280 get_random_bytes(&rnd, sizeof(rnd));
1281 vstart = VMALLOC_START + rnd;
1282
066fed59
URS
1283 va_1 = find_vmap_lowest_match(size, align, vstart);
1284 va_2 = find_vmap_lowest_linear_match(size, align, vstart);
a6cf4e0f
URS
1285
1286 if (va_1 != va_2)
1287 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1288 va_1, va_2, vstart);
1289}
1290#endif
1291
68ad4a33
URS
1292enum fit_type {
1293 NOTHING_FIT = 0,
1294 FL_FIT_TYPE = 1, /* full fit */
1295 LE_FIT_TYPE = 2, /* left edge fit */
1296 RE_FIT_TYPE = 3, /* right edge fit */
1297 NE_FIT_TYPE = 4 /* no edge fit */
1298};
1299
1300static __always_inline enum fit_type
1301classify_va_fit_type(struct vmap_area *va,
1302 unsigned long nva_start_addr, unsigned long size)
1303{
1304 enum fit_type type;
1305
1306 /* Check if it is within VA. */
1307 if (nva_start_addr < va->va_start ||
1308 nva_start_addr + size > va->va_end)
1309 return NOTHING_FIT;
1310
1311 /* Now classify. */
1312 if (va->va_start == nva_start_addr) {
1313 if (va->va_end == nva_start_addr + size)
1314 type = FL_FIT_TYPE;
1315 else
1316 type = LE_FIT_TYPE;
1317 } else if (va->va_end == nva_start_addr + size) {
1318 type = RE_FIT_TYPE;
1319 } else {
1320 type = NE_FIT_TYPE;
1321 }
1322
1323 return type;
1324}
1325
1326static __always_inline int
1327adjust_va_to_fit_type(struct vmap_area *va,
1328 unsigned long nva_start_addr, unsigned long size,
1329 enum fit_type type)
1330{
2c929233 1331 struct vmap_area *lva = NULL;
68ad4a33
URS
1332
1333 if (type == FL_FIT_TYPE) {
1334 /*
1335 * No need to split VA, it fully fits.
1336 *
1337 * | |
1338 * V NVA V
1339 * |---------------|
1340 */
1341 unlink_va(va, &free_vmap_area_root);
1342 kmem_cache_free(vmap_area_cachep, va);
1343 } else if (type == LE_FIT_TYPE) {
1344 /*
1345 * Split left edge of fit VA.
1346 *
1347 * | |
1348 * V NVA V R
1349 * |-------|-------|
1350 */
1351 va->va_start += size;
1352 } else if (type == RE_FIT_TYPE) {
1353 /*
1354 * Split right edge of fit VA.
1355 *
1356 * | |
1357 * L V NVA V
1358 * |-------|-------|
1359 */
1360 va->va_end = nva_start_addr;
1361 } else if (type == NE_FIT_TYPE) {
1362 /*
1363 * Split no edge of fit VA.
1364 *
1365 * | |
1366 * L V NVA V R
1367 * |---|-------|---|
1368 */
82dd23e8
URS
1369 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1370 if (unlikely(!lva)) {
1371 /*
1372 * For percpu allocator we do not do any pre-allocation
1373 * and leave it as it is. The reason is it most likely
1374 * never ends up with NE_FIT_TYPE splitting. In case of
1375 * percpu allocations offsets and sizes are aligned to
1376 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1377 * are its main fitting cases.
1378 *
1379 * There are a few exceptions though, as an example it is
1380 * a first allocation (early boot up) when we have "one"
1381 * big free space that has to be split.
060650a2
URS
1382 *
1383 * Also we can hit this path in case of regular "vmap"
1384 * allocations, if "this" current CPU was not preloaded.
1385 * See the comment in alloc_vmap_area() why. If so, then
1386 * GFP_NOWAIT is used instead to get an extra object for
1387 * split purpose. That is rare and most time does not
1388 * occur.
1389 *
1390 * What happens if an allocation gets failed. Basically,
1391 * an "overflow" path is triggered to purge lazily freed
1392 * areas to free some memory, then, the "retry" path is
1393 * triggered to repeat one more time. See more details
1394 * in alloc_vmap_area() function.
82dd23e8
URS
1395 */
1396 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1397 if (!lva)
1398 return -1;
1399 }
68ad4a33
URS
1400
1401 /*
1402 * Build the remainder.
1403 */
1404 lva->va_start = va->va_start;
1405 lva->va_end = nva_start_addr;
1406
1407 /*
1408 * Shrink this VA to remaining size.
1409 */
1410 va->va_start = nva_start_addr + size;
1411 } else {
1412 return -1;
1413 }
1414
1415 if (type != FL_FIT_TYPE) {
1416 augment_tree_propagate_from(va);
1417
2c929233 1418 if (lva) /* type == NE_FIT_TYPE */
68ad4a33
URS
1419 insert_vmap_area_augment(lva, &va->rb_node,
1420 &free_vmap_area_root, &free_vmap_area_list);
1421 }
1422
1423 return 0;
1424}
1425
1426/*
1427 * Returns a start address of the newly allocated area, if success.
1428 * Otherwise a vend is returned that indicates failure.
1429 */
1430static __always_inline unsigned long
1431__alloc_vmap_area(unsigned long size, unsigned long align,
cacca6ba 1432 unsigned long vstart, unsigned long vend)
68ad4a33
URS
1433{
1434 unsigned long nva_start_addr;
1435 struct vmap_area *va;
1436 enum fit_type type;
1437 int ret;
1438
1439 va = find_vmap_lowest_match(size, align, vstart);
1440 if (unlikely(!va))
1441 return vend;
1442
1443 if (va->va_start > vstart)
1444 nva_start_addr = ALIGN(va->va_start, align);
1445 else
1446 nva_start_addr = ALIGN(vstart, align);
1447
1448 /* Check the "vend" restriction. */
1449 if (nva_start_addr + size > vend)
1450 return vend;
1451
1452 /* Classify what we have found. */
1453 type = classify_va_fit_type(va, nva_start_addr, size);
1454 if (WARN_ON_ONCE(type == NOTHING_FIT))
1455 return vend;
1456
1457 /* Update the free vmap_area. */
1458 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1459 if (ret)
1460 return vend;
1461
a6cf4e0f 1462#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
066fed59 1463 find_vmap_lowest_match_check(size, align);
a6cf4e0f
URS
1464#endif
1465
68ad4a33
URS
1466 return nva_start_addr;
1467}
4da56b99 1468
d98c9e83
AR
1469/*
1470 * Free a region of KVA allocated by alloc_vmap_area
1471 */
1472static void free_vmap_area(struct vmap_area *va)
1473{
1474 /*
1475 * Remove from the busy tree/list.
1476 */
1477 spin_lock(&vmap_area_lock);
1478 unlink_va(va, &vmap_area_root);
1479 spin_unlock(&vmap_area_lock);
1480
1481 /*
1482 * Insert/Merge it back to the free tree/list.
1483 */
1484 spin_lock(&free_vmap_area_lock);
96e2db45 1485 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1486 spin_unlock(&free_vmap_area_lock);
1487}
1488
187f8cc4
URS
1489static inline void
1490preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1491{
1492 struct vmap_area *va = NULL;
1493
1494 /*
1495 * Preload this CPU with one extra vmap_area object. It is used
1496 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1497 * a CPU that does an allocation is preloaded.
1498 *
1499 * We do it in non-atomic context, thus it allows us to use more
1500 * permissive allocation masks to be more stable under low memory
1501 * condition and high memory pressure.
1502 */
1503 if (!this_cpu_read(ne_fit_preload_node))
1504 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1505
1506 spin_lock(lock);
1507
1508 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1509 kmem_cache_free(vmap_area_cachep, va);
1510}
1511
db64fe02
NP
1512/*
1513 * Allocate a region of KVA of the specified size and alignment, within the
1514 * vstart and vend.
1515 */
1516static struct vmap_area *alloc_vmap_area(unsigned long size,
1517 unsigned long align,
1518 unsigned long vstart, unsigned long vend,
1519 int node, gfp_t gfp_mask)
1520{
187f8cc4 1521 struct vmap_area *va;
12e376a6 1522 unsigned long freed;
1da177e4 1523 unsigned long addr;
db64fe02 1524 int purged = 0;
d98c9e83 1525 int ret;
db64fe02 1526
7766970c 1527 BUG_ON(!size);
891c49ab 1528 BUG_ON(offset_in_page(size));
89699605 1529 BUG_ON(!is_power_of_2(align));
db64fe02 1530
68ad4a33
URS
1531 if (unlikely(!vmap_initialized))
1532 return ERR_PTR(-EBUSY);
1533
5803ed29 1534 might_sleep();
f07116d7 1535 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1536
f07116d7 1537 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1538 if (unlikely(!va))
1539 return ERR_PTR(-ENOMEM);
1540
7f88f88f
CM
1541 /*
1542 * Only scan the relevant parts containing pointers to other objects
1543 * to avoid false negatives.
1544 */
f07116d7 1545 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1546
db64fe02 1547retry:
187f8cc4
URS
1548 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1549 addr = __alloc_vmap_area(size, align, vstart, vend);
1550 spin_unlock(&free_vmap_area_lock);
89699605 1551
afd07389 1552 /*
68ad4a33
URS
1553 * If an allocation fails, the "vend" address is
1554 * returned. Therefore trigger the overflow path.
afd07389 1555 */
68ad4a33 1556 if (unlikely(addr == vend))
89699605 1557 goto overflow;
db64fe02
NP
1558
1559 va->va_start = addr;
1560 va->va_end = addr + size;
688fcbfc 1561 va->vm = NULL;
68ad4a33 1562
e36176be
URS
1563 spin_lock(&vmap_area_lock);
1564 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1565 spin_unlock(&vmap_area_lock);
1566
61e16557 1567 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1568 BUG_ON(va->va_start < vstart);
1569 BUG_ON(va->va_end > vend);
1570
d98c9e83
AR
1571 ret = kasan_populate_vmalloc(addr, size);
1572 if (ret) {
1573 free_vmap_area(va);
1574 return ERR_PTR(ret);
1575 }
1576
db64fe02 1577 return va;
89699605
NP
1578
1579overflow:
89699605
NP
1580 if (!purged) {
1581 purge_vmap_area_lazy();
1582 purged = 1;
1583 goto retry;
1584 }
4da56b99 1585
12e376a6
URS
1586 freed = 0;
1587 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1588
1589 if (freed > 0) {
1590 purged = 0;
1591 goto retry;
4da56b99
CW
1592 }
1593
03497d76 1594 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1595 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1596 size);
68ad4a33
URS
1597
1598 kmem_cache_free(vmap_area_cachep, va);
89699605 1599 return ERR_PTR(-EBUSY);
db64fe02
NP
1600}
1601
4da56b99
CW
1602int register_vmap_purge_notifier(struct notifier_block *nb)
1603{
1604 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1605}
1606EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1607
1608int unregister_vmap_purge_notifier(struct notifier_block *nb)
1609{
1610 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1611}
1612EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1613
db64fe02
NP
1614/*
1615 * lazy_max_pages is the maximum amount of virtual address space we gather up
1616 * before attempting to purge with a TLB flush.
1617 *
1618 * There is a tradeoff here: a larger number will cover more kernel page tables
1619 * and take slightly longer to purge, but it will linearly reduce the number of
1620 * global TLB flushes that must be performed. It would seem natural to scale
1621 * this number up linearly with the number of CPUs (because vmapping activity
1622 * could also scale linearly with the number of CPUs), however it is likely
1623 * that in practice, workloads might be constrained in other ways that mean
1624 * vmap activity will not scale linearly with CPUs. Also, I want to be
1625 * conservative and not introduce a big latency on huge systems, so go with
1626 * a less aggressive log scale. It will still be an improvement over the old
1627 * code, and it will be simple to change the scale factor if we find that it
1628 * becomes a problem on bigger systems.
1629 */
1630static unsigned long lazy_max_pages(void)
1631{
1632 unsigned int log;
1633
1634 log = fls(num_online_cpus());
1635
1636 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1637}
1638
4d36e6f8 1639static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1640
0574ecd1 1641/*
f0953a1b 1642 * Serialize vmap purging. There is no actual critical section protected
0574ecd1
CH
1643 * by this look, but we want to avoid concurrent calls for performance
1644 * reasons and to make the pcpu_get_vm_areas more deterministic.
1645 */
f9e09977 1646static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1647
02b709df
NP
1648/* for per-CPU blocks */
1649static void purge_fragmented_blocks_allcpus(void);
1650
5da96bdd 1651#ifdef CONFIG_X86_64
3ee48b6a
CW
1652/*
1653 * called before a call to iounmap() if the caller wants vm_area_struct's
1654 * immediately freed.
1655 */
1656void set_iounmap_nonlazy(void)
1657{
4d36e6f8 1658 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
3ee48b6a 1659}
5da96bdd 1660#endif /* CONFIG_X86_64 */
3ee48b6a 1661
db64fe02
NP
1662/*
1663 * Purges all lazily-freed vmap areas.
db64fe02 1664 */
0574ecd1 1665static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1666{
4d36e6f8 1667 unsigned long resched_threshold;
96e2db45
URS
1668 struct list_head local_pure_list;
1669 struct vmap_area *va, *n_va;
db64fe02 1670
0574ecd1 1671 lockdep_assert_held(&vmap_purge_lock);
02b709df 1672
96e2db45
URS
1673 spin_lock(&purge_vmap_area_lock);
1674 purge_vmap_area_root = RB_ROOT;
1675 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1676 spin_unlock(&purge_vmap_area_lock);
1677
1678 if (unlikely(list_empty(&local_pure_list)))
68571be9
URS
1679 return false;
1680
96e2db45
URS
1681 start = min(start,
1682 list_first_entry(&local_pure_list,
1683 struct vmap_area, list)->va_start);
1684
1685 end = max(end,
1686 list_last_entry(&local_pure_list,
1687 struct vmap_area, list)->va_end);
db64fe02 1688
0574ecd1 1689 flush_tlb_kernel_range(start, end);
4d36e6f8 1690 resched_threshold = lazy_max_pages() << 1;
db64fe02 1691
e36176be 1692 spin_lock(&free_vmap_area_lock);
96e2db45 1693 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
4d36e6f8 1694 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1695 unsigned long orig_start = va->va_start;
1696 unsigned long orig_end = va->va_end;
763b218d 1697
dd3b8353
URS
1698 /*
1699 * Finally insert or merge lazily-freed area. It is
1700 * detached and there is no need to "unlink" it from
1701 * anything.
1702 */
96e2db45
URS
1703 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1704 &free_vmap_area_list);
3c5c3cfb 1705
9c801f61
URS
1706 if (!va)
1707 continue;
1708
3c5c3cfb
DA
1709 if (is_vmalloc_or_module_addr((void *)orig_start))
1710 kasan_release_vmalloc(orig_start, orig_end,
1711 va->va_start, va->va_end);
dd3b8353 1712
4d36e6f8 1713 atomic_long_sub(nr, &vmap_lazy_nr);
68571be9 1714
4d36e6f8 1715 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1716 cond_resched_lock(&free_vmap_area_lock);
763b218d 1717 }
e36176be 1718 spin_unlock(&free_vmap_area_lock);
0574ecd1 1719 return true;
db64fe02
NP
1720}
1721
1722/*
1723 * Kick off a purge of the outstanding lazy areas.
1724 */
1725static void purge_vmap_area_lazy(void)
1726{
f9e09977 1727 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1728 purge_fragmented_blocks_allcpus();
1729 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1730 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1731}
1732
690467c8
URS
1733static void drain_vmap_area_work(struct work_struct *work)
1734{
1735 unsigned long nr_lazy;
1736
1737 do {
1738 mutex_lock(&vmap_purge_lock);
1739 __purge_vmap_area_lazy(ULONG_MAX, 0);
1740 mutex_unlock(&vmap_purge_lock);
1741
1742 /* Recheck if further work is required. */
1743 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1744 } while (nr_lazy > lazy_max_pages());
1745}
1746
db64fe02 1747/*
64141da5
JF
1748 * Free a vmap area, caller ensuring that the area has been unmapped
1749 * and flush_cache_vunmap had been called for the correct range
1750 * previously.
db64fe02 1751 */
64141da5 1752static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1753{
4d36e6f8 1754 unsigned long nr_lazy;
80c4bd7a 1755
dd3b8353
URS
1756 spin_lock(&vmap_area_lock);
1757 unlink_va(va, &vmap_area_root);
1758 spin_unlock(&vmap_area_lock);
1759
4d36e6f8
URS
1760 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1761 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1762
96e2db45
URS
1763 /*
1764 * Merge or place it to the purge tree/list.
1765 */
1766 spin_lock(&purge_vmap_area_lock);
1767 merge_or_add_vmap_area(va,
1768 &purge_vmap_area_root, &purge_vmap_area_list);
1769 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1770
96e2db45 1771 /* After this point, we may free va at any time */
80c4bd7a 1772 if (unlikely(nr_lazy > lazy_max_pages()))
690467c8 1773 schedule_work(&drain_vmap_work);
db64fe02
NP
1774}
1775
b29acbdc
NP
1776/*
1777 * Free and unmap a vmap area
1778 */
1779static void free_unmap_vmap_area(struct vmap_area *va)
1780{
1781 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1782 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1783 if (debug_pagealloc_enabled_static())
82a2e924
CP
1784 flush_tlb_kernel_range(va->va_start, va->va_end);
1785
c8eef01e 1786 free_vmap_area_noflush(va);
b29acbdc
NP
1787}
1788
db64fe02
NP
1789static struct vmap_area *find_vmap_area(unsigned long addr)
1790{
1791 struct vmap_area *va;
1792
1793 spin_lock(&vmap_area_lock);
1794 va = __find_vmap_area(addr);
1795 spin_unlock(&vmap_area_lock);
1796
1797 return va;
1798}
1799
db64fe02
NP
1800/*** Per cpu kva allocator ***/
1801
1802/*
1803 * vmap space is limited especially on 32 bit architectures. Ensure there is
1804 * room for at least 16 percpu vmap blocks per CPU.
1805 */
1806/*
1807 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1808 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1809 * instead (we just need a rough idea)
1810 */
1811#if BITS_PER_LONG == 32
1812#define VMALLOC_SPACE (128UL*1024*1024)
1813#else
1814#define VMALLOC_SPACE (128UL*1024*1024*1024)
1815#endif
1816
1817#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1818#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1819#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1820#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1821#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1822#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1823#define VMAP_BBMAP_BITS \
1824 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1825 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1826 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1827
1828#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1829
1830struct vmap_block_queue {
1831 spinlock_t lock;
1832 struct list_head free;
db64fe02
NP
1833};
1834
1835struct vmap_block {
1836 spinlock_t lock;
1837 struct vmap_area *va;
db64fe02 1838 unsigned long free, dirty;
7d61bfe8 1839 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1840 struct list_head free_list;
1841 struct rcu_head rcu_head;
02b709df 1842 struct list_head purge;
db64fe02
NP
1843};
1844
1845/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1846static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1847
1848/*
0f14599c 1849 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
db64fe02
NP
1850 * in the free path. Could get rid of this if we change the API to return a
1851 * "cookie" from alloc, to be passed to free. But no big deal yet.
1852 */
0f14599c 1853static DEFINE_XARRAY(vmap_blocks);
db64fe02
NP
1854
1855/*
1856 * We should probably have a fallback mechanism to allocate virtual memory
1857 * out of partially filled vmap blocks. However vmap block sizing should be
1858 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1859 * big problem.
1860 */
1861
1862static unsigned long addr_to_vb_idx(unsigned long addr)
1863{
1864 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1865 addr /= VMAP_BLOCK_SIZE;
1866 return addr;
1867}
1868
cf725ce2
RP
1869static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1870{
1871 unsigned long addr;
1872
1873 addr = va_start + (pages_off << PAGE_SHIFT);
1874 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1875 return (void *)addr;
1876}
1877
1878/**
1879 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1880 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1881 * @order: how many 2^order pages should be occupied in newly allocated block
1882 * @gfp_mask: flags for the page level allocator
1883 *
a862f68a 1884 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
1885 */
1886static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
1887{
1888 struct vmap_block_queue *vbq;
1889 struct vmap_block *vb;
1890 struct vmap_area *va;
1891 unsigned long vb_idx;
1892 int node, err;
cf725ce2 1893 void *vaddr;
db64fe02
NP
1894
1895 node = numa_node_id();
1896
1897 vb = kmalloc_node(sizeof(struct vmap_block),
1898 gfp_mask & GFP_RECLAIM_MASK, node);
1899 if (unlikely(!vb))
1900 return ERR_PTR(-ENOMEM);
1901
1902 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1903 VMALLOC_START, VMALLOC_END,
1904 node, gfp_mask);
ddf9c6d4 1905 if (IS_ERR(va)) {
db64fe02 1906 kfree(vb);
e7d86340 1907 return ERR_CAST(va);
db64fe02
NP
1908 }
1909
cf725ce2 1910 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
1911 spin_lock_init(&vb->lock);
1912 vb->va = va;
cf725ce2
RP
1913 /* At least something should be left free */
1914 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1915 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 1916 vb->dirty = 0;
7d61bfe8
RP
1917 vb->dirty_min = VMAP_BBMAP_BITS;
1918 vb->dirty_max = 0;
db64fe02 1919 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
1920
1921 vb_idx = addr_to_vb_idx(va->va_start);
0f14599c
MWO
1922 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1923 if (err) {
1924 kfree(vb);
1925 free_vmap_area(va);
1926 return ERR_PTR(err);
1927 }
db64fe02
NP
1928
1929 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 1930 spin_lock(&vbq->lock);
68ac546f 1931 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 1932 spin_unlock(&vbq->lock);
3f04ba85 1933 put_cpu_var(vmap_block_queue);
db64fe02 1934
cf725ce2 1935 return vaddr;
db64fe02
NP
1936}
1937
db64fe02
NP
1938static void free_vmap_block(struct vmap_block *vb)
1939{
1940 struct vmap_block *tmp;
db64fe02 1941
0f14599c 1942 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
1943 BUG_ON(tmp != vb);
1944
64141da5 1945 free_vmap_area_noflush(vb->va);
22a3c7d1 1946 kfree_rcu(vb, rcu_head);
db64fe02
NP
1947}
1948
02b709df
NP
1949static void purge_fragmented_blocks(int cpu)
1950{
1951 LIST_HEAD(purge);
1952 struct vmap_block *vb;
1953 struct vmap_block *n_vb;
1954 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1955
1956 rcu_read_lock();
1957 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1958
1959 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1960 continue;
1961
1962 spin_lock(&vb->lock);
1963 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1964 vb->free = 0; /* prevent further allocs after releasing lock */
1965 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
1966 vb->dirty_min = 0;
1967 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
1968 spin_lock(&vbq->lock);
1969 list_del_rcu(&vb->free_list);
1970 spin_unlock(&vbq->lock);
1971 spin_unlock(&vb->lock);
1972 list_add_tail(&vb->purge, &purge);
1973 } else
1974 spin_unlock(&vb->lock);
1975 }
1976 rcu_read_unlock();
1977
1978 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1979 list_del(&vb->purge);
1980 free_vmap_block(vb);
1981 }
1982}
1983
02b709df
NP
1984static void purge_fragmented_blocks_allcpus(void)
1985{
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 purge_fragmented_blocks(cpu);
1990}
1991
db64fe02
NP
1992static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1993{
1994 struct vmap_block_queue *vbq;
1995 struct vmap_block *vb;
cf725ce2 1996 void *vaddr = NULL;
db64fe02
NP
1997 unsigned int order;
1998
891c49ab 1999 BUG_ON(offset_in_page(size));
db64fe02 2000 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2001 if (WARN_ON(size == 0)) {
2002 /*
2003 * Allocating 0 bytes isn't what caller wants since
2004 * get_order(0) returns funny result. Just warn and terminate
2005 * early.
2006 */
2007 return NULL;
2008 }
db64fe02
NP
2009 order = get_order(size);
2010
db64fe02
NP
2011 rcu_read_lock();
2012 vbq = &get_cpu_var(vmap_block_queue);
2013 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2014 unsigned long pages_off;
db64fe02
NP
2015
2016 spin_lock(&vb->lock);
cf725ce2
RP
2017 if (vb->free < (1UL << order)) {
2018 spin_unlock(&vb->lock);
2019 continue;
2020 }
02b709df 2021
cf725ce2
RP
2022 pages_off = VMAP_BBMAP_BITS - vb->free;
2023 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
2024 vb->free -= 1UL << order;
2025 if (vb->free == 0) {
2026 spin_lock(&vbq->lock);
2027 list_del_rcu(&vb->free_list);
2028 spin_unlock(&vbq->lock);
2029 }
cf725ce2 2030
02b709df
NP
2031 spin_unlock(&vb->lock);
2032 break;
db64fe02 2033 }
02b709df 2034
3f04ba85 2035 put_cpu_var(vmap_block_queue);
db64fe02
NP
2036 rcu_read_unlock();
2037
cf725ce2
RP
2038 /* Allocate new block if nothing was found */
2039 if (!vaddr)
2040 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2041
cf725ce2 2042 return vaddr;
db64fe02
NP
2043}
2044
78a0e8c4 2045static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2046{
2047 unsigned long offset;
db64fe02
NP
2048 unsigned int order;
2049 struct vmap_block *vb;
2050
891c49ab 2051 BUG_ON(offset_in_page(size));
db64fe02 2052 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2053
78a0e8c4 2054 flush_cache_vunmap(addr, addr + size);
b29acbdc 2055
db64fe02 2056 order = get_order(size);
78a0e8c4 2057 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
0f14599c 2058 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
db64fe02 2059
4ad0ae8c 2060 vunmap_range_noflush(addr, addr + size);
64141da5 2061
8e57f8ac 2062 if (debug_pagealloc_enabled_static())
78a0e8c4 2063 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2064
db64fe02 2065 spin_lock(&vb->lock);
7d61bfe8
RP
2066
2067 /* Expand dirty range */
2068 vb->dirty_min = min(vb->dirty_min, offset);
2069 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2070
db64fe02
NP
2071 vb->dirty += 1UL << order;
2072 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2073 BUG_ON(vb->free);
db64fe02
NP
2074 spin_unlock(&vb->lock);
2075 free_vmap_block(vb);
2076 } else
2077 spin_unlock(&vb->lock);
2078}
2079
868b104d 2080static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2081{
db64fe02 2082 int cpu;
db64fe02 2083
9b463334
JF
2084 if (unlikely(!vmap_initialized))
2085 return;
2086
5803ed29
CH
2087 might_sleep();
2088
db64fe02
NP
2089 for_each_possible_cpu(cpu) {
2090 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2091 struct vmap_block *vb;
2092
2093 rcu_read_lock();
2094 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 2095 spin_lock(&vb->lock);
ad216c03 2096 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2097 unsigned long va_start = vb->va->va_start;
db64fe02 2098 unsigned long s, e;
b136be5e 2099
7d61bfe8
RP
2100 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2101 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2102
7d61bfe8
RP
2103 start = min(s, start);
2104 end = max(e, end);
db64fe02 2105
7d61bfe8 2106 flush = 1;
db64fe02
NP
2107 }
2108 spin_unlock(&vb->lock);
2109 }
2110 rcu_read_unlock();
2111 }
2112
f9e09977 2113 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2114 purge_fragmented_blocks_allcpus();
2115 if (!__purge_vmap_area_lazy(start, end) && flush)
2116 flush_tlb_kernel_range(start, end);
f9e09977 2117 mutex_unlock(&vmap_purge_lock);
db64fe02 2118}
868b104d
RE
2119
2120/**
2121 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2122 *
2123 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2124 * to amortize TLB flushing overheads. What this means is that any page you
2125 * have now, may, in a former life, have been mapped into kernel virtual
2126 * address by the vmap layer and so there might be some CPUs with TLB entries
2127 * still referencing that page (additional to the regular 1:1 kernel mapping).
2128 *
2129 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2130 * be sure that none of the pages we have control over will have any aliases
2131 * from the vmap layer.
2132 */
2133void vm_unmap_aliases(void)
2134{
2135 unsigned long start = ULONG_MAX, end = 0;
2136 int flush = 0;
2137
2138 _vm_unmap_aliases(start, end, flush);
2139}
db64fe02
NP
2140EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2141
2142/**
2143 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2144 * @mem: the pointer returned by vm_map_ram
2145 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2146 */
2147void vm_unmap_ram(const void *mem, unsigned int count)
2148{
65ee03c4 2149 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02 2150 unsigned long addr = (unsigned long)mem;
9c3acf60 2151 struct vmap_area *va;
db64fe02 2152
5803ed29 2153 might_sleep();
db64fe02
NP
2154 BUG_ON(!addr);
2155 BUG_ON(addr < VMALLOC_START);
2156 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2157 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2158
d98c9e83
AR
2159 kasan_poison_vmalloc(mem, size);
2160
9c3acf60 2161 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2162 debug_check_no_locks_freed(mem, size);
78a0e8c4 2163 vb_free(addr, size);
9c3acf60
CH
2164 return;
2165 }
2166
2167 va = find_vmap_area(addr);
2168 BUG_ON(!va);
05e3ff95
CP
2169 debug_check_no_locks_freed((void *)va->va_start,
2170 (va->va_end - va->va_start));
9c3acf60 2171 free_unmap_vmap_area(va);
db64fe02
NP
2172}
2173EXPORT_SYMBOL(vm_unmap_ram);
2174
2175/**
2176 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2177 * @pages: an array of pointers to the pages to be mapped
2178 * @count: number of pages
2179 * @node: prefer to allocate data structures on this node
e99c97ad 2180 *
36437638
GK
2181 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2182 * faster than vmap so it's good. But if you mix long-life and short-life
2183 * objects with vm_map_ram(), it could consume lots of address space through
2184 * fragmentation (especially on a 32bit machine). You could see failures in
2185 * the end. Please use this function for short-lived objects.
2186 *
e99c97ad 2187 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2188 */
d4efd79a 2189void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2190{
65ee03c4 2191 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2192 unsigned long addr;
2193 void *mem;
2194
2195 if (likely(count <= VMAP_MAX_ALLOC)) {
2196 mem = vb_alloc(size, GFP_KERNEL);
2197 if (IS_ERR(mem))
2198 return NULL;
2199 addr = (unsigned long)mem;
2200 } else {
2201 struct vmap_area *va;
2202 va = alloc_vmap_area(size, PAGE_SIZE,
2203 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2204 if (IS_ERR(va))
2205 return NULL;
2206
2207 addr = va->va_start;
2208 mem = (void *)addr;
2209 }
d98c9e83
AR
2210
2211 kasan_unpoison_vmalloc(mem, size);
2212
b67177ec
NP
2213 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2214 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2215 vm_unmap_ram(mem, count);
2216 return NULL;
2217 }
b67177ec 2218
db64fe02
NP
2219 return mem;
2220}
2221EXPORT_SYMBOL(vm_map_ram);
2222
4341fa45 2223static struct vm_struct *vmlist __initdata;
92eac168 2224
121e6f32
NP
2225static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2226{
2227#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2228 return vm->page_order;
2229#else
2230 return 0;
2231#endif
2232}
2233
2234static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2235{
2236#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2237 vm->page_order = order;
2238#else
2239 BUG_ON(order != 0);
2240#endif
2241}
2242
be9b7335
NP
2243/**
2244 * vm_area_add_early - add vmap area early during boot
2245 * @vm: vm_struct to add
2246 *
2247 * This function is used to add fixed kernel vm area to vmlist before
2248 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2249 * should contain proper values and the other fields should be zero.
2250 *
2251 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2252 */
2253void __init vm_area_add_early(struct vm_struct *vm)
2254{
2255 struct vm_struct *tmp, **p;
2256
2257 BUG_ON(vmap_initialized);
2258 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2259 if (tmp->addr >= vm->addr) {
2260 BUG_ON(tmp->addr < vm->addr + vm->size);
2261 break;
2262 } else
2263 BUG_ON(tmp->addr + tmp->size > vm->addr);
2264 }
2265 vm->next = *p;
2266 *p = vm;
2267}
2268
f0aa6617
TH
2269/**
2270 * vm_area_register_early - register vmap area early during boot
2271 * @vm: vm_struct to register
c0c0a293 2272 * @align: requested alignment
f0aa6617
TH
2273 *
2274 * This function is used to register kernel vm area before
2275 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2276 * proper values on entry and other fields should be zero. On return,
2277 * vm->addr contains the allocated address.
2278 *
2279 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2280 */
c0c0a293 2281void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2282{
0eb68437
KW
2283 unsigned long addr = ALIGN(VMALLOC_START, align);
2284 struct vm_struct *cur, **p;
c0c0a293 2285
0eb68437 2286 BUG_ON(vmap_initialized);
f0aa6617 2287
0eb68437
KW
2288 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2289 if ((unsigned long)cur->addr - addr >= vm->size)
2290 break;
2291 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2292 }
f0aa6617 2293
0eb68437
KW
2294 BUG_ON(addr > VMALLOC_END - vm->size);
2295 vm->addr = (void *)addr;
2296 vm->next = *p;
2297 *p = vm;
3252b1d8 2298 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2299}
2300
68ad4a33
URS
2301static void vmap_init_free_space(void)
2302{
2303 unsigned long vmap_start = 1;
2304 const unsigned long vmap_end = ULONG_MAX;
2305 struct vmap_area *busy, *free;
2306
2307 /*
2308 * B F B B B F
2309 * -|-----|.....|-----|-----|-----|.....|-
2310 * | The KVA space |
2311 * |<--------------------------------->|
2312 */
2313 list_for_each_entry(busy, &vmap_area_list, list) {
2314 if (busy->va_start - vmap_start > 0) {
2315 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2316 if (!WARN_ON_ONCE(!free)) {
2317 free->va_start = vmap_start;
2318 free->va_end = busy->va_start;
2319
2320 insert_vmap_area_augment(free, NULL,
2321 &free_vmap_area_root,
2322 &free_vmap_area_list);
2323 }
2324 }
2325
2326 vmap_start = busy->va_end;
2327 }
2328
2329 if (vmap_end - vmap_start > 0) {
2330 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2331 if (!WARN_ON_ONCE(!free)) {
2332 free->va_start = vmap_start;
2333 free->va_end = vmap_end;
2334
2335 insert_vmap_area_augment(free, NULL,
2336 &free_vmap_area_root,
2337 &free_vmap_area_list);
2338 }
2339 }
2340}
2341
db64fe02
NP
2342void __init vmalloc_init(void)
2343{
822c18f2
IK
2344 struct vmap_area *va;
2345 struct vm_struct *tmp;
db64fe02
NP
2346 int i;
2347
68ad4a33
URS
2348 /*
2349 * Create the cache for vmap_area objects.
2350 */
2351 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2352
db64fe02
NP
2353 for_each_possible_cpu(i) {
2354 struct vmap_block_queue *vbq;
32fcfd40 2355 struct vfree_deferred *p;
db64fe02
NP
2356
2357 vbq = &per_cpu(vmap_block_queue, i);
2358 spin_lock_init(&vbq->lock);
2359 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
2360 p = &per_cpu(vfree_deferred, i);
2361 init_llist_head(&p->list);
2362 INIT_WORK(&p->wq, free_work);
db64fe02 2363 }
9b463334 2364
822c18f2
IK
2365 /* Import existing vmlist entries. */
2366 for (tmp = vmlist; tmp; tmp = tmp->next) {
68ad4a33
URS
2367 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2368 if (WARN_ON_ONCE(!va))
2369 continue;
2370
822c18f2
IK
2371 va->va_start = (unsigned long)tmp->addr;
2372 va->va_end = va->va_start + tmp->size;
dbda591d 2373 va->vm = tmp;
68ad4a33 2374 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
822c18f2 2375 }
ca23e405 2376
68ad4a33
URS
2377 /*
2378 * Now we can initialize a free vmap space.
2379 */
2380 vmap_init_free_space();
9b463334 2381 vmap_initialized = true;
db64fe02
NP
2382}
2383
e36176be
URS
2384static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2385 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2386{
cf88c790
TH
2387 vm->flags = flags;
2388 vm->addr = (void *)va->va_start;
2389 vm->size = va->va_end - va->va_start;
2390 vm->caller = caller;
db1aecaf 2391 va->vm = vm;
e36176be
URS
2392}
2393
2394static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2395 unsigned long flags, const void *caller)
2396{
2397 spin_lock(&vmap_area_lock);
2398 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2399 spin_unlock(&vmap_area_lock);
f5252e00 2400}
cf88c790 2401
20fc02b4 2402static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2403{
d4033afd 2404 /*
20fc02b4 2405 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2406 * we should make sure that vm has proper values.
2407 * Pair with smp_rmb() in show_numa_info().
2408 */
2409 smp_wmb();
20fc02b4 2410 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2411}
2412
db64fe02 2413static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2414 unsigned long align, unsigned long shift, unsigned long flags,
2415 unsigned long start, unsigned long end, int node,
2416 gfp_t gfp_mask, const void *caller)
db64fe02 2417{
0006526d 2418 struct vmap_area *va;
db64fe02 2419 struct vm_struct *area;
d98c9e83 2420 unsigned long requested_size = size;
1da177e4 2421
52fd24ca 2422 BUG_ON(in_interrupt());
7ca3027b 2423 size = ALIGN(size, 1ul << shift);
31be8309
OH
2424 if (unlikely(!size))
2425 return NULL;
1da177e4 2426
252e5c6e 2427 if (flags & VM_IOREMAP)
2428 align = 1ul << clamp_t(int, get_count_order_long(size),
2429 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2430
cf88c790 2431 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2432 if (unlikely(!area))
2433 return NULL;
2434
71394fe5
AR
2435 if (!(flags & VM_NO_GUARD))
2436 size += PAGE_SIZE;
1da177e4 2437
db64fe02
NP
2438 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2439 if (IS_ERR(va)) {
2440 kfree(area);
2441 return NULL;
1da177e4 2442 }
1da177e4 2443
d98c9e83 2444 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
f5252e00 2445
d98c9e83 2446 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2447
1da177e4 2448 return area;
1da177e4
LT
2449}
2450
c2968612
BH
2451struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2452 unsigned long start, unsigned long end,
5e6cafc8 2453 const void *caller)
c2968612 2454{
7ca3027b
DA
2455 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2456 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2457}
2458
1da177e4 2459/**
92eac168
MR
2460 * get_vm_area - reserve a contiguous kernel virtual area
2461 * @size: size of the area
2462 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2463 *
92eac168
MR
2464 * Search an area of @size in the kernel virtual mapping area,
2465 * and reserved it for out purposes. Returns the area descriptor
2466 * on success or %NULL on failure.
a862f68a
MR
2467 *
2468 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2469 */
2470struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2471{
7ca3027b
DA
2472 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2473 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2474 NUMA_NO_NODE, GFP_KERNEL,
2475 __builtin_return_address(0));
23016969
CL
2476}
2477
2478struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2479 const void *caller)
23016969 2480{
7ca3027b
DA
2481 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2482 VMALLOC_START, VMALLOC_END,
00ef2d2f 2483 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2484}
2485
e9da6e99 2486/**
92eac168
MR
2487 * find_vm_area - find a continuous kernel virtual area
2488 * @addr: base address
e9da6e99 2489 *
92eac168
MR
2490 * Search for the kernel VM area starting at @addr, and return it.
2491 * It is up to the caller to do all required locking to keep the returned
2492 * pointer valid.
a862f68a 2493 *
74640617 2494 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2495 */
2496struct vm_struct *find_vm_area(const void *addr)
83342314 2497{
db64fe02 2498 struct vmap_area *va;
83342314 2499
db64fe02 2500 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2501 if (!va)
2502 return NULL;
1da177e4 2503
688fcbfc 2504 return va->vm;
1da177e4
LT
2505}
2506
7856dfeb 2507/**
92eac168
MR
2508 * remove_vm_area - find and remove a continuous kernel virtual area
2509 * @addr: base address
7856dfeb 2510 *
92eac168
MR
2511 * Search for the kernel VM area starting at @addr, and remove it.
2512 * This function returns the found VM area, but using it is NOT safe
2513 * on SMP machines, except for its size or flags.
a862f68a 2514 *
74640617 2515 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2516 */
b3bdda02 2517struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2518{
db64fe02
NP
2519 struct vmap_area *va;
2520
5803ed29
CH
2521 might_sleep();
2522
dd3b8353
URS
2523 spin_lock(&vmap_area_lock);
2524 va = __find_vmap_area((unsigned long)addr);
688fcbfc 2525 if (va && va->vm) {
db1aecaf 2526 struct vm_struct *vm = va->vm;
f5252e00 2527
c69480ad 2528 va->vm = NULL;
c69480ad
JK
2529 spin_unlock(&vmap_area_lock);
2530
a5af5aa8 2531 kasan_free_shadow(vm);
dd32c279 2532 free_unmap_vmap_area(va);
dd32c279 2533
db64fe02
NP
2534 return vm;
2535 }
dd3b8353
URS
2536
2537 spin_unlock(&vmap_area_lock);
db64fe02 2538 return NULL;
7856dfeb
AK
2539}
2540
868b104d
RE
2541static inline void set_area_direct_map(const struct vm_struct *area,
2542 int (*set_direct_map)(struct page *page))
2543{
2544 int i;
2545
121e6f32 2546 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2547 for (i = 0; i < area->nr_pages; i++)
2548 if (page_address(area->pages[i]))
2549 set_direct_map(area->pages[i]);
2550}
2551
2552/* Handle removing and resetting vm mappings related to the vm_struct. */
2553static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2554{
868b104d 2555 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2556 unsigned int page_order = vm_area_page_order(area);
868b104d 2557 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
31e67340 2558 int flush_dmap = 0;
868b104d
RE
2559 int i;
2560
868b104d
RE
2561 remove_vm_area(area->addr);
2562
2563 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2564 if (!flush_reset)
2565 return;
2566
2567 /*
2568 * If not deallocating pages, just do the flush of the VM area and
2569 * return.
2570 */
2571 if (!deallocate_pages) {
2572 vm_unmap_aliases();
2573 return;
2574 }
2575
2576 /*
2577 * If execution gets here, flush the vm mapping and reset the direct
2578 * map. Find the start and end range of the direct mappings to make sure
2579 * the vm_unmap_aliases() flush includes the direct map.
2580 */
121e6f32 2581 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872
RE
2582 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2583 if (addr) {
121e6f32
NP
2584 unsigned long page_size;
2585
2586 page_size = PAGE_SIZE << page_order;
868b104d 2587 start = min(addr, start);
121e6f32 2588 end = max(addr + page_size, end);
31e67340 2589 flush_dmap = 1;
868b104d
RE
2590 }
2591 }
2592
2593 /*
2594 * Set direct map to something invalid so that it won't be cached if
2595 * there are any accesses after the TLB flush, then flush the TLB and
2596 * reset the direct map permissions to the default.
2597 */
2598 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2599 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2600 set_area_direct_map(area, set_direct_map_default_noflush);
2601}
2602
b3bdda02 2603static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
2604{
2605 struct vm_struct *area;
2606
2607 if (!addr)
2608 return;
2609
e69e9d4a 2610 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 2611 addr))
1da177e4 2612 return;
1da177e4 2613
6ade2032 2614 area = find_vm_area(addr);
1da177e4 2615 if (unlikely(!area)) {
4c8573e2 2616 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 2617 addr);
1da177e4
LT
2618 return;
2619 }
2620
05e3ff95
CP
2621 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2622 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
9a11b49a 2623
c041098c 2624 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
3c5c3cfb 2625
868b104d
RE
2626 vm_remove_mappings(area, deallocate_pages);
2627
1da177e4 2628 if (deallocate_pages) {
121e6f32 2629 unsigned int page_order = vm_area_page_order(area);
4e5aa1f4 2630 int i, step = 1U << page_order;
1da177e4 2631
4e5aa1f4 2632 for (i = 0; i < area->nr_pages; i += step) {
bf53d6f8
CL
2633 struct page *page = area->pages[i];
2634
2635 BUG_ON(!page);
4e5aa1f4 2636 mod_memcg_page_state(page, MEMCG_VMALLOC, -step);
121e6f32 2637 __free_pages(page, page_order);
a850e932 2638 cond_resched();
1da177e4 2639 }
97105f0a 2640 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
1da177e4 2641
244d63ee 2642 kvfree(area->pages);
1da177e4
LT
2643 }
2644
2645 kfree(area);
1da177e4 2646}
bf22e37a
AR
2647
2648static inline void __vfree_deferred(const void *addr)
2649{
2650 /*
2651 * Use raw_cpu_ptr() because this can be called from preemptible
2652 * context. Preemption is absolutely fine here, because the llist_add()
2653 * implementation is lockless, so it works even if we are adding to
73221d88 2654 * another cpu's list. schedule_work() should be fine with this too.
bf22e37a
AR
2655 */
2656 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2657
2658 if (llist_add((struct llist_node *)addr, &p->list))
2659 schedule_work(&p->wq);
2660}
2661
2662/**
92eac168
MR
2663 * vfree_atomic - release memory allocated by vmalloc()
2664 * @addr: memory base address
bf22e37a 2665 *
92eac168
MR
2666 * This one is just like vfree() but can be called in any atomic context
2667 * except NMIs.
bf22e37a
AR
2668 */
2669void vfree_atomic(const void *addr)
2670{
2671 BUG_ON(in_nmi());
2672
2673 kmemleak_free(addr);
2674
2675 if (!addr)
2676 return;
2677 __vfree_deferred(addr);
2678}
2679
c67dc624
RP
2680static void __vfree(const void *addr)
2681{
2682 if (unlikely(in_interrupt()))
2683 __vfree_deferred(addr);
2684 else
2685 __vunmap(addr, 1);
2686}
2687
1da177e4 2688/**
fa307474
MWO
2689 * vfree - Release memory allocated by vmalloc()
2690 * @addr: Memory base address
1da177e4 2691 *
fa307474
MWO
2692 * Free the virtually continuous memory area starting at @addr, as obtained
2693 * from one of the vmalloc() family of APIs. This will usually also free the
2694 * physical memory underlying the virtual allocation, but that memory is
2695 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2696 *
fa307474 2697 * If @addr is NULL, no operation is performed.
c9fcee51 2698 *
fa307474 2699 * Context:
92eac168 2700 * May sleep if called *not* from interrupt context.
fa307474
MWO
2701 * Must not be called in NMI context (strictly speaking, it could be
2702 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2703 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2704 */
b3bdda02 2705void vfree(const void *addr)
1da177e4 2706{
32fcfd40 2707 BUG_ON(in_nmi());
89219d37
CM
2708
2709 kmemleak_free(addr);
2710
a8dda165
AR
2711 might_sleep_if(!in_interrupt());
2712
32fcfd40
AV
2713 if (!addr)
2714 return;
c67dc624
RP
2715
2716 __vfree(addr);
1da177e4 2717}
1da177e4
LT
2718EXPORT_SYMBOL(vfree);
2719
2720/**
92eac168
MR
2721 * vunmap - release virtual mapping obtained by vmap()
2722 * @addr: memory base address
1da177e4 2723 *
92eac168
MR
2724 * Free the virtually contiguous memory area starting at @addr,
2725 * which was created from the page array passed to vmap().
1da177e4 2726 *
92eac168 2727 * Must not be called in interrupt context.
1da177e4 2728 */
b3bdda02 2729void vunmap(const void *addr)
1da177e4
LT
2730{
2731 BUG_ON(in_interrupt());
34754b69 2732 might_sleep();
32fcfd40
AV
2733 if (addr)
2734 __vunmap(addr, 0);
1da177e4 2735}
1da177e4
LT
2736EXPORT_SYMBOL(vunmap);
2737
2738/**
92eac168
MR
2739 * vmap - map an array of pages into virtually contiguous space
2740 * @pages: array of page pointers
2741 * @count: number of pages to map
2742 * @flags: vm_area->flags
2743 * @prot: page protection for the mapping
2744 *
b944afc9
CH
2745 * Maps @count pages from @pages into contiguous kernel virtual space.
2746 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2747 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2748 * are transferred from the caller to vmap(), and will be freed / dropped when
2749 * vfree() is called on the return value.
a862f68a
MR
2750 *
2751 * Return: the address of the area or %NULL on failure
1da177e4
LT
2752 */
2753void *vmap(struct page **pages, unsigned int count,
92eac168 2754 unsigned long flags, pgprot_t prot)
1da177e4
LT
2755{
2756 struct vm_struct *area;
b67177ec 2757 unsigned long addr;
65ee03c4 2758 unsigned long size; /* In bytes */
1da177e4 2759
34754b69
PZ
2760 might_sleep();
2761
bd1a8fb2
PZ
2762 /*
2763 * Your top guard is someone else's bottom guard. Not having a top
2764 * guard compromises someone else's mappings too.
2765 */
2766 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2767 flags &= ~VM_NO_GUARD;
2768
ca79b0c2 2769 if (count > totalram_pages())
1da177e4
LT
2770 return NULL;
2771
65ee03c4
GJM
2772 size = (unsigned long)count << PAGE_SHIFT;
2773 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2774 if (!area)
2775 return NULL;
23016969 2776
b67177ec
NP
2777 addr = (unsigned long)area->addr;
2778 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2779 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2780 vunmap(area->addr);
2781 return NULL;
2782 }
2783
c22ee528 2784 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2785 area->pages = pages;
c22ee528
ML
2786 area->nr_pages = count;
2787 }
1da177e4
LT
2788 return area->addr;
2789}
1da177e4
LT
2790EXPORT_SYMBOL(vmap);
2791
3e9a9e25
CH
2792#ifdef CONFIG_VMAP_PFN
2793struct vmap_pfn_data {
2794 unsigned long *pfns;
2795 pgprot_t prot;
2796 unsigned int idx;
2797};
2798
2799static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2800{
2801 struct vmap_pfn_data *data = private;
2802
2803 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2804 return -EINVAL;
2805 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2806 return 0;
2807}
2808
2809/**
2810 * vmap_pfn - map an array of PFNs into virtually contiguous space
2811 * @pfns: array of PFNs
2812 * @count: number of pages to map
2813 * @prot: page protection for the mapping
2814 *
2815 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2816 * the start address of the mapping.
2817 */
2818void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2819{
2820 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2821 struct vm_struct *area;
2822
2823 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2824 __builtin_return_address(0));
2825 if (!area)
2826 return NULL;
2827 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2828 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2829 free_vm_area(area);
2830 return NULL;
2831 }
2832 return area->addr;
2833}
2834EXPORT_SYMBOL_GPL(vmap_pfn);
2835#endif /* CONFIG_VMAP_PFN */
2836
12b9f873
UR
2837static inline unsigned int
2838vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2839 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2840{
2841 unsigned int nr_allocated = 0;
ffb29b1c
CW
2842 struct page *page;
2843 int i;
12b9f873
UR
2844
2845 /*
2846 * For order-0 pages we make use of bulk allocator, if
2847 * the page array is partly or not at all populated due
2848 * to fails, fallback to a single page allocator that is
2849 * more permissive.
2850 */
c00b6b96 2851 if (!order) {
9376130c
MH
2852 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2853
343ab817
URS
2854 while (nr_allocated < nr_pages) {
2855 unsigned int nr, nr_pages_request;
2856
2857 /*
2858 * A maximum allowed request is hard-coded and is 100
2859 * pages per call. That is done in order to prevent a
2860 * long preemption off scenario in the bulk-allocator
2861 * so the range is [1:100].
2862 */
2863 nr_pages_request = min(100U, nr_pages - nr_allocated);
2864
c00b6b96
CW
2865 /* memory allocation should consider mempolicy, we can't
2866 * wrongly use nearest node when nid == NUMA_NO_NODE,
2867 * otherwise memory may be allocated in only one node,
2868 * but mempolcy want to alloc memory by interleaving.
2869 */
2870 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2871 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2872 nr_pages_request,
2873 pages + nr_allocated);
2874
2875 else
9376130c 2876 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2877 nr_pages_request,
2878 pages + nr_allocated);
343ab817
URS
2879
2880 nr_allocated += nr;
2881 cond_resched();
2882
2883 /*
2884 * If zero or pages were obtained partly,
2885 * fallback to a single page allocator.
2886 */
2887 if (nr != nr_pages_request)
2888 break;
2889 }
c00b6b96 2890 } else
12b9f873
UR
2891 /*
2892 * Compound pages required for remap_vmalloc_page if
2893 * high-order pages.
2894 */
2895 gfp |= __GFP_COMP;
2896
2897 /* High-order pages or fallback path if "bulk" fails. */
12b9f873 2898
ffb29b1c 2899 while (nr_allocated < nr_pages) {
dd544141
VA
2900 if (fatal_signal_pending(current))
2901 break;
2902
ffb29b1c
CW
2903 if (nid == NUMA_NO_NODE)
2904 page = alloc_pages(gfp, order);
2905 else
2906 page = alloc_pages_node(nid, gfp, order);
12b9f873
UR
2907 if (unlikely(!page))
2908 break;
2909
2910 /*
2911 * Careful, we allocate and map page-order pages, but
2912 * tracking is done per PAGE_SIZE page so as to keep the
2913 * vm_struct APIs independent of the physical/mapped size.
2914 */
2915 for (i = 0; i < (1U << order); i++)
2916 pages[nr_allocated + i] = page + i;
2917
12e376a6 2918 cond_resched();
12b9f873
UR
2919 nr_allocated += 1U << order;
2920 }
2921
2922 return nr_allocated;
2923}
2924
e31d9eb5 2925static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
2926 pgprot_t prot, unsigned int page_shift,
2927 int node)
1da177e4 2928{
930f036b 2929 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
228f778e 2930 const gfp_t orig_gfp_mask = gfp_mask;
9376130c 2931 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
2932 unsigned long addr = (unsigned long)area->addr;
2933 unsigned long size = get_vm_area_size(area);
34fe6537 2934 unsigned long array_size;
121e6f32
NP
2935 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2936 unsigned int page_order;
451769eb
MH
2937 unsigned int flags;
2938 int ret;
1da177e4 2939
121e6f32 2940 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
f255935b
CH
2941 gfp_mask |= __GFP_NOWARN;
2942 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2943 gfp_mask |= __GFP_HIGHMEM;
1da177e4 2944
1da177e4 2945 /* Please note that the recursion is strictly bounded. */
8757d5fa 2946 if (array_size > PAGE_SIZE) {
5c1f4e69 2947 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 2948 area->caller);
286e1ea3 2949 } else {
5c1f4e69 2950 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 2951 }
7ea36242 2952
5c1f4e69 2953 if (!area->pages) {
228f778e 2954 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf
URS
2955 "vmalloc error: size %lu, failed to allocated page array size %lu",
2956 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 2957 free_vm_area(area);
1da177e4
LT
2958 return NULL;
2959 }
1da177e4 2960
121e6f32 2961 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 2962 page_order = vm_area_page_order(area);
bf53d6f8 2963
12b9f873
UR
2964 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2965 page_order, nr_small_pages, area->pages);
5c1f4e69 2966
97105f0a 2967 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4
SB
2968 if (gfp_mask & __GFP_ACCOUNT) {
2969 int i, step = 1U << page_order;
2970
2971 for (i = 0; i < area->nr_pages; i += step)
2972 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC,
2973 step);
2974 }
1da177e4 2975
5c1f4e69
URS
2976 /*
2977 * If not enough pages were obtained to accomplish an
2978 * allocation request, free them via __vfree() if any.
2979 */
2980 if (area->nr_pages != nr_small_pages) {
228f778e 2981 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf 2982 "vmalloc error: size %lu, page order %u, failed to allocate pages",
5c1f4e69
URS
2983 area->nr_pages * PAGE_SIZE, page_order);
2984 goto fail;
2985 }
2986
451769eb
MH
2987 /*
2988 * page tables allocations ignore external gfp mask, enforce it
2989 * by the scope API
2990 */
2991 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
2992 flags = memalloc_nofs_save();
2993 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
2994 flags = memalloc_noio_save();
2995
9376130c
MH
2996 do {
2997 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 2998 page_shift);
9376130c
MH
2999 if (nofail && (ret < 0))
3000 schedule_timeout_uninterruptible(1);
3001 } while (nofail && (ret < 0));
451769eb
MH
3002
3003 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3004 memalloc_nofs_restore(flags);
3005 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3006 memalloc_noio_restore(flags);
3007
3008 if (ret < 0) {
228f778e 3009 warn_alloc(orig_gfp_mask, NULL,
f4bdfeaf
URS
3010 "vmalloc error: size %lu, failed to map pages",
3011 area->nr_pages * PAGE_SIZE);
1da177e4 3012 goto fail;
d70bec8c 3013 }
ed1f324c 3014
1da177e4
LT
3015 return area->addr;
3016
3017fail:
c67dc624 3018 __vfree(area->addr);
1da177e4
LT
3019 return NULL;
3020}
3021
3022/**
92eac168
MR
3023 * __vmalloc_node_range - allocate virtually contiguous memory
3024 * @size: allocation size
3025 * @align: desired alignment
3026 * @start: vm area range start
3027 * @end: vm area range end
3028 * @gfp_mask: flags for the page level allocator
3029 * @prot: protection mask for the allocated pages
3030 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3031 * @node: node to use for allocation or NUMA_NO_NODE
3032 * @caller: caller's return address
3033 *
3034 * Allocate enough pages to cover @size from the page level
b7d90e7a 3035 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3036 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3037 * supported.
3038 * Zone modifiers are not supported. From the reclaim modifiers
3039 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3040 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3041 * __GFP_RETRY_MAYFAIL are not supported).
3042 *
3043 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3044 *
3045 * Map them into contiguous kernel virtual space, using a pagetable
3046 * protection of @prot.
a862f68a
MR
3047 *
3048 * Return: the address of the area or %NULL on failure
1da177e4 3049 */
d0a21265
DR
3050void *__vmalloc_node_range(unsigned long size, unsigned long align,
3051 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3052 pgprot_t prot, unsigned long vm_flags, int node,
3053 const void *caller)
1da177e4
LT
3054{
3055 struct vm_struct *area;
89219d37
CM
3056 void *addr;
3057 unsigned long real_size = size;
121e6f32
NP
3058 unsigned long real_align = align;
3059 unsigned int shift = PAGE_SHIFT;
1da177e4 3060
d70bec8c
NP
3061 if (WARN_ON_ONCE(!size))
3062 return NULL;
3063
3064 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3065 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3066 "vmalloc error: size %lu, exceeds total pages",
3067 real_size);
d70bec8c 3068 return NULL;
121e6f32
NP
3069 }
3070
3382bbee 3071 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
121e6f32 3072 unsigned long size_per_node;
1da177e4 3073
121e6f32
NP
3074 /*
3075 * Try huge pages. Only try for PAGE_KERNEL allocations,
3076 * others like modules don't yet expect huge pages in
3077 * their allocations due to apply_to_page_range not
3078 * supporting them.
3079 */
3080
3081 size_per_node = size;
3082 if (node == NUMA_NO_NODE)
3083 size_per_node /= num_online_nodes();
3382bbee 3084 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3085 shift = PMD_SHIFT;
3382bbee
CL
3086 else
3087 shift = arch_vmap_pte_supported_shift(size_per_node);
3088
3089 align = max(real_align, 1UL << shift);
3090 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3091 }
3092
3093again:
7ca3027b
DA
3094 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3095 VM_UNINITIALIZED | vm_flags, start, end, node,
3096 gfp_mask, caller);
d70bec8c 3097 if (!area) {
9376130c 3098 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3099 warn_alloc(gfp_mask, NULL,
9376130c
MH
3100 "vmalloc error: size %lu, vm_struct allocation failed%s",
3101 real_size, (nofail) ? ". Retrying." : "");
3102 if (nofail) {
3103 schedule_timeout_uninterruptible(1);
3104 goto again;
3105 }
de7d2b56 3106 goto fail;
d70bec8c 3107 }
1da177e4 3108
121e6f32 3109 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
1368edf0 3110 if (!addr)
121e6f32 3111 goto fail;
89219d37 3112
f5252e00 3113 /*
20fc02b4
ZY
3114 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3115 * flag. It means that vm_struct is not fully initialized.
4341fa45 3116 * Now, it is fully initialized, so remove this flag here.
f5252e00 3117 */
20fc02b4 3118 clear_vm_uninitialized_flag(area);
f5252e00 3119
7ca3027b 3120 size = PAGE_ALIGN(size);
60115fa5
KW
3121 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3122 kmemleak_vmalloc(area, size, gfp_mask);
89219d37
CM
3123
3124 return addr;
de7d2b56
JP
3125
3126fail:
121e6f32
NP
3127 if (shift > PAGE_SHIFT) {
3128 shift = PAGE_SHIFT;
3129 align = real_align;
3130 size = real_size;
3131 goto again;
3132 }
3133
de7d2b56 3134 return NULL;
1da177e4
LT
3135}
3136
d0a21265 3137/**
92eac168
MR
3138 * __vmalloc_node - allocate virtually contiguous memory
3139 * @size: allocation size
3140 * @align: desired alignment
3141 * @gfp_mask: flags for the page level allocator
92eac168
MR
3142 * @node: node to use for allocation or NUMA_NO_NODE
3143 * @caller: caller's return address
a7c3e901 3144 *
f38fcb9c
CH
3145 * Allocate enough pages to cover @size from the page level allocator with
3146 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3147 *
92eac168
MR
3148 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3149 * and __GFP_NOFAIL are not supported
a7c3e901 3150 *
92eac168
MR
3151 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3152 * with mm people.
a862f68a
MR
3153 *
3154 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3155 */
2b905948 3156void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3157 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3158{
3159 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3160 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3161}
c3f896dc
CH
3162/*
3163 * This is only for performance analysis of vmalloc and stress purpose.
3164 * It is required by vmalloc test module, therefore do not use it other
3165 * than that.
3166 */
3167#ifdef CONFIG_TEST_VMALLOC_MODULE
3168EXPORT_SYMBOL_GPL(__vmalloc_node);
3169#endif
d0a21265 3170
88dca4ca 3171void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3172{
f38fcb9c 3173 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3174 __builtin_return_address(0));
930fc45a 3175}
1da177e4
LT
3176EXPORT_SYMBOL(__vmalloc);
3177
3178/**
92eac168
MR
3179 * vmalloc - allocate virtually contiguous memory
3180 * @size: allocation size
3181 *
3182 * Allocate enough pages to cover @size from the page level
3183 * allocator and map them into contiguous kernel virtual space.
1da177e4 3184 *
92eac168
MR
3185 * For tight control over page level allocator and protection flags
3186 * use __vmalloc() instead.
a862f68a
MR
3187 *
3188 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3189 */
3190void *vmalloc(unsigned long size)
3191{
4d39d728
CH
3192 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3193 __builtin_return_address(0));
1da177e4 3194}
1da177e4
LT
3195EXPORT_SYMBOL(vmalloc);
3196
15a64f5a
CI
3197/**
3198 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3199 * @size: allocation size
3200 *
3201 * Allocate enough non-huge pages to cover @size from the page level
3202 * allocator and map them into contiguous kernel virtual space.
3203 *
3204 * Return: pointer to the allocated memory or %NULL on error
3205 */
3206void *vmalloc_no_huge(unsigned long size)
3207{
3208 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3209 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3210 NUMA_NO_NODE, __builtin_return_address(0));
3211}
3212EXPORT_SYMBOL(vmalloc_no_huge);
3213
e1ca7788 3214/**
92eac168
MR
3215 * vzalloc - allocate virtually contiguous memory with zero fill
3216 * @size: allocation size
3217 *
3218 * Allocate enough pages to cover @size from the page level
3219 * allocator and map them into contiguous kernel virtual space.
3220 * The memory allocated is set to zero.
3221 *
3222 * For tight control over page level allocator and protection flags
3223 * use __vmalloc() instead.
a862f68a
MR
3224 *
3225 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3226 */
3227void *vzalloc(unsigned long size)
3228{
4d39d728
CH
3229 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3230 __builtin_return_address(0));
e1ca7788
DY
3231}
3232EXPORT_SYMBOL(vzalloc);
3233
83342314 3234/**
ead04089
REB
3235 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3236 * @size: allocation size
83342314 3237 *
ead04089
REB
3238 * The resulting memory area is zeroed so it can be mapped to userspace
3239 * without leaking data.
a862f68a
MR
3240 *
3241 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3242 */
3243void *vmalloc_user(unsigned long size)
3244{
bc84c535
RP
3245 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3246 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3247 VM_USERMAP, NUMA_NO_NODE,
3248 __builtin_return_address(0));
83342314
NP
3249}
3250EXPORT_SYMBOL(vmalloc_user);
3251
930fc45a 3252/**
92eac168
MR
3253 * vmalloc_node - allocate memory on a specific node
3254 * @size: allocation size
3255 * @node: numa node
930fc45a 3256 *
92eac168
MR
3257 * Allocate enough pages to cover @size from the page level
3258 * allocator and map them into contiguous kernel virtual space.
930fc45a 3259 *
92eac168
MR
3260 * For tight control over page level allocator and protection flags
3261 * use __vmalloc() instead.
a862f68a
MR
3262 *
3263 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3264 */
3265void *vmalloc_node(unsigned long size, int node)
3266{
f38fcb9c
CH
3267 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3268 __builtin_return_address(0));
930fc45a
CL
3269}
3270EXPORT_SYMBOL(vmalloc_node);
3271
e1ca7788
DY
3272/**
3273 * vzalloc_node - allocate memory on a specific node with zero fill
3274 * @size: allocation size
3275 * @node: numa node
3276 *
3277 * Allocate enough pages to cover @size from the page level
3278 * allocator and map them into contiguous kernel virtual space.
3279 * The memory allocated is set to zero.
3280 *
a862f68a 3281 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3282 */
3283void *vzalloc_node(unsigned long size, int node)
3284{
4d39d728
CH
3285 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3286 __builtin_return_address(0));
e1ca7788
DY
3287}
3288EXPORT_SYMBOL(vzalloc_node);
3289
0d08e0d3 3290#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3291#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3292#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3293#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3294#else
698d0831
MH
3295/*
3296 * 64b systems should always have either DMA or DMA32 zones. For others
3297 * GFP_DMA32 should do the right thing and use the normal zone.
3298 */
68d68ff6 3299#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3300#endif
3301
1da177e4 3302/**
92eac168
MR
3303 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3304 * @size: allocation size
1da177e4 3305 *
92eac168
MR
3306 * Allocate enough 32bit PA addressable pages to cover @size from the
3307 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3308 *
3309 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3310 */
3311void *vmalloc_32(unsigned long size)
3312{
f38fcb9c
CH
3313 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3314 __builtin_return_address(0));
1da177e4 3315}
1da177e4
LT
3316EXPORT_SYMBOL(vmalloc_32);
3317
83342314 3318/**
ead04089 3319 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3320 * @size: allocation size
ead04089
REB
3321 *
3322 * The resulting memory area is 32bit addressable and zeroed so it can be
3323 * mapped to userspace without leaking data.
a862f68a
MR
3324 *
3325 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3326 */
3327void *vmalloc_32_user(unsigned long size)
3328{
bc84c535
RP
3329 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3330 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3331 VM_USERMAP, NUMA_NO_NODE,
3332 __builtin_return_address(0));
83342314
NP
3333}
3334EXPORT_SYMBOL(vmalloc_32_user);
3335
d0107eb0
KH
3336/*
3337 * small helper routine , copy contents to buf from addr.
3338 * If the page is not present, fill zero.
3339 */
3340
3341static int aligned_vread(char *buf, char *addr, unsigned long count)
3342{
3343 struct page *p;
3344 int copied = 0;
3345
3346 while (count) {
3347 unsigned long offset, length;
3348
891c49ab 3349 offset = offset_in_page(addr);
d0107eb0
KH
3350 length = PAGE_SIZE - offset;
3351 if (length > count)
3352 length = count;
3353 p = vmalloc_to_page(addr);
3354 /*
3355 * To do safe access to this _mapped_ area, we need
3356 * lock. But adding lock here means that we need to add
f0953a1b 3357 * overhead of vmalloc()/vfree() calls for this _debug_
d0107eb0
KH
3358 * interface, rarely used. Instead of that, we'll use
3359 * kmap() and get small overhead in this access function.
3360 */
3361 if (p) {
f7c8ce44 3362 /* We can expect USER0 is not used -- see vread() */
9b04c5fe 3363 void *map = kmap_atomic(p);
d0107eb0 3364 memcpy(buf, map + offset, length);
9b04c5fe 3365 kunmap_atomic(map);
d0107eb0
KH
3366 } else
3367 memset(buf, 0, length);
3368
3369 addr += length;
3370 buf += length;
3371 copied += length;
3372 count -= length;
3373 }
3374 return copied;
3375}
3376
d0107eb0 3377/**
92eac168
MR
3378 * vread() - read vmalloc area in a safe way.
3379 * @buf: buffer for reading data
3380 * @addr: vm address.
3381 * @count: number of bytes to be read.
3382 *
92eac168
MR
3383 * This function checks that addr is a valid vmalloc'ed area, and
3384 * copy data from that area to a given buffer. If the given memory range
3385 * of [addr...addr+count) includes some valid address, data is copied to
3386 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3387 * IOREMAP area is treated as memory hole and no copy is done.
3388 *
3389 * If [addr...addr+count) doesn't includes any intersects with alive
3390 * vm_struct area, returns 0. @buf should be kernel's buffer.
3391 *
3392 * Note: In usual ops, vread() is never necessary because the caller
3393 * should know vmalloc() area is valid and can use memcpy().
3394 * This is for routines which have to access vmalloc area without
bbcd53c9 3395 * any information, as /proc/kcore.
a862f68a
MR
3396 *
3397 * Return: number of bytes for which addr and buf should be increased
3398 * (same number as @count) or %0 if [addr...addr+count) doesn't
3399 * include any intersection with valid vmalloc area
d0107eb0 3400 */
1da177e4
LT
3401long vread(char *buf, char *addr, unsigned long count)
3402{
e81ce85f
JK
3403 struct vmap_area *va;
3404 struct vm_struct *vm;
1da177e4 3405 char *vaddr, *buf_start = buf;
d0107eb0 3406 unsigned long buflen = count;
1da177e4
LT
3407 unsigned long n;
3408
3409 /* Don't allow overflow */
3410 if ((unsigned long) addr + count < count)
3411 count = -(unsigned long) addr;
3412
e81ce85f 3413 spin_lock(&vmap_area_lock);
f181234a 3414 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c
SD
3415 if (!va)
3416 goto finished;
f181234a
CW
3417
3418 /* no intersects with alive vmap_area */
3419 if ((unsigned long)addr + count <= va->va_start)
3420 goto finished;
3421
f608788c 3422 list_for_each_entry_from(va, &vmap_area_list, list) {
e81ce85f
JK
3423 if (!count)
3424 break;
3425
688fcbfc 3426 if (!va->vm)
e81ce85f
JK
3427 continue;
3428
3429 vm = va->vm;
3430 vaddr = (char *) vm->addr;
762216ab 3431 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
3432 continue;
3433 while (addr < vaddr) {
3434 if (count == 0)
3435 goto finished;
3436 *buf = '\0';
3437 buf++;
3438 addr++;
3439 count--;
3440 }
762216ab 3441 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
3442 if (n > count)
3443 n = count;
e81ce85f 3444 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
3445 aligned_vread(buf, addr, n);
3446 else /* IOREMAP area is treated as memory hole */
3447 memset(buf, 0, n);
3448 buf += n;
3449 addr += n;
3450 count -= n;
1da177e4
LT
3451 }
3452finished:
e81ce85f 3453 spin_unlock(&vmap_area_lock);
d0107eb0
KH
3454
3455 if (buf == buf_start)
3456 return 0;
3457 /* zero-fill memory holes */
3458 if (buf != buf_start + buflen)
3459 memset(buf, 0, buflen - (buf - buf_start));
3460
3461 return buflen;
1da177e4
LT
3462}
3463
83342314 3464/**
92eac168
MR
3465 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3466 * @vma: vma to cover
3467 * @uaddr: target user address to start at
3468 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3469 * @pgoff: offset from @kaddr to start at
92eac168 3470 * @size: size of map area
7682486b 3471 *
92eac168 3472 * Returns: 0 for success, -Exxx on failure
83342314 3473 *
92eac168
MR
3474 * This function checks that @kaddr is a valid vmalloc'ed area,
3475 * and that it is big enough to cover the range starting at
3476 * @uaddr in @vma. Will return failure if that criteria isn't
3477 * met.
83342314 3478 *
92eac168 3479 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3480 */
e69e9d4a 3481int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3482 void *kaddr, unsigned long pgoff,
3483 unsigned long size)
83342314
NP
3484{
3485 struct vm_struct *area;
bdebd6a2
JH
3486 unsigned long off;
3487 unsigned long end_index;
3488
3489 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3490 return -EINVAL;
83342314 3491
e69e9d4a
HD
3492 size = PAGE_ALIGN(size);
3493
3494 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3495 return -EINVAL;
3496
e69e9d4a 3497 area = find_vm_area(kaddr);
83342314 3498 if (!area)
db64fe02 3499 return -EINVAL;
83342314 3500
fe9041c2 3501 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3502 return -EINVAL;
83342314 3503
bdebd6a2
JH
3504 if (check_add_overflow(size, off, &end_index) ||
3505 end_index > get_vm_area_size(area))
db64fe02 3506 return -EINVAL;
bdebd6a2 3507 kaddr += off;
83342314 3508
83342314 3509 do {
e69e9d4a 3510 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3511 int ret;
3512
83342314
NP
3513 ret = vm_insert_page(vma, uaddr, page);
3514 if (ret)
3515 return ret;
3516
3517 uaddr += PAGE_SIZE;
e69e9d4a
HD
3518 kaddr += PAGE_SIZE;
3519 size -= PAGE_SIZE;
3520 } while (size > 0);
83342314 3521
314e51b9 3522 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 3523
db64fe02 3524 return 0;
83342314 3525}
e69e9d4a
HD
3526
3527/**
92eac168
MR
3528 * remap_vmalloc_range - map vmalloc pages to userspace
3529 * @vma: vma to cover (map full range of vma)
3530 * @addr: vmalloc memory
3531 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3532 *
92eac168 3533 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3534 *
92eac168
MR
3535 * This function checks that addr is a valid vmalloc'ed area, and
3536 * that it is big enough to cover the vma. Will return failure if
3537 * that criteria isn't met.
e69e9d4a 3538 *
92eac168 3539 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3540 */
3541int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3542 unsigned long pgoff)
3543{
3544 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3545 addr, pgoff,
e69e9d4a
HD
3546 vma->vm_end - vma->vm_start);
3547}
83342314
NP
3548EXPORT_SYMBOL(remap_vmalloc_range);
3549
5f4352fb
JF
3550void free_vm_area(struct vm_struct *area)
3551{
3552 struct vm_struct *ret;
3553 ret = remove_vm_area(area->addr);
3554 BUG_ON(ret != area);
3555 kfree(area);
3556}
3557EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3558
4f8b02b4 3559#ifdef CONFIG_SMP
ca23e405
TH
3560static struct vmap_area *node_to_va(struct rb_node *n)
3561{
4583e773 3562 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3563}
3564
3565/**
68ad4a33
URS
3566 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3567 * @addr: target address
ca23e405 3568 *
68ad4a33
URS
3569 * Returns: vmap_area if it is found. If there is no such area
3570 * the first highest(reverse order) vmap_area is returned
3571 * i.e. va->va_start < addr && va->va_end < addr or NULL
3572 * if there are no any areas before @addr.
ca23e405 3573 */
68ad4a33
URS
3574static struct vmap_area *
3575pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3576{
68ad4a33
URS
3577 struct vmap_area *va, *tmp;
3578 struct rb_node *n;
3579
3580 n = free_vmap_area_root.rb_node;
3581 va = NULL;
ca23e405
TH
3582
3583 while (n) {
68ad4a33
URS
3584 tmp = rb_entry(n, struct vmap_area, rb_node);
3585 if (tmp->va_start <= addr) {
3586 va = tmp;
3587 if (tmp->va_end >= addr)
3588 break;
3589
ca23e405 3590 n = n->rb_right;
68ad4a33
URS
3591 } else {
3592 n = n->rb_left;
3593 }
ca23e405
TH
3594 }
3595
68ad4a33 3596 return va;
ca23e405
TH
3597}
3598
3599/**
68ad4a33
URS
3600 * pvm_determine_end_from_reverse - find the highest aligned address
3601 * of free block below VMALLOC_END
3602 * @va:
3603 * in - the VA we start the search(reverse order);
3604 * out - the VA with the highest aligned end address.
799fa85d 3605 * @align: alignment for required highest address
ca23e405 3606 *
68ad4a33 3607 * Returns: determined end address within vmap_area
ca23e405 3608 */
68ad4a33
URS
3609static unsigned long
3610pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3611{
68ad4a33 3612 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3613 unsigned long addr;
3614
68ad4a33
URS
3615 if (likely(*va)) {
3616 list_for_each_entry_from_reverse((*va),
3617 &free_vmap_area_list, list) {
3618 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3619 if ((*va)->va_start < addr)
3620 return addr;
3621 }
ca23e405
TH
3622 }
3623
68ad4a33 3624 return 0;
ca23e405
TH
3625}
3626
3627/**
3628 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3629 * @offsets: array containing offset of each area
3630 * @sizes: array containing size of each area
3631 * @nr_vms: the number of areas to allocate
3632 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3633 *
3634 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3635 * vm_structs on success, %NULL on failure
3636 *
3637 * Percpu allocator wants to use congruent vm areas so that it can
3638 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3639 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3640 * be scattered pretty far, distance between two areas easily going up
3641 * to gigabytes. To avoid interacting with regular vmallocs, these
3642 * areas are allocated from top.
ca23e405 3643 *
68ad4a33
URS
3644 * Despite its complicated look, this allocator is rather simple. It
3645 * does everything top-down and scans free blocks from the end looking
3646 * for matching base. While scanning, if any of the areas do not fit the
3647 * base address is pulled down to fit the area. Scanning is repeated till
3648 * all the areas fit and then all necessary data structures are inserted
3649 * and the result is returned.
ca23e405
TH
3650 */
3651struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3652 const size_t *sizes, int nr_vms,
ec3f64fc 3653 size_t align)
ca23e405
TH
3654{
3655 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3656 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3657 struct vmap_area **vas, *va;
ca23e405
TH
3658 struct vm_struct **vms;
3659 int area, area2, last_area, term_area;
253a496d 3660 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405 3661 bool purged = false;
68ad4a33 3662 enum fit_type type;
ca23e405 3663
ca23e405 3664 /* verify parameters and allocate data structures */
891c49ab 3665 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3666 for (last_area = 0, area = 0; area < nr_vms; area++) {
3667 start = offsets[area];
3668 end = start + sizes[area];
3669
3670 /* is everything aligned properly? */
3671 BUG_ON(!IS_ALIGNED(offsets[area], align));
3672 BUG_ON(!IS_ALIGNED(sizes[area], align));
3673
3674 /* detect the area with the highest address */
3675 if (start > offsets[last_area])
3676 last_area = area;
3677
c568da28 3678 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3679 unsigned long start2 = offsets[area2];
3680 unsigned long end2 = start2 + sizes[area2];
3681
c568da28 3682 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3683 }
3684 }
3685 last_end = offsets[last_area] + sizes[last_area];
3686
3687 if (vmalloc_end - vmalloc_start < last_end) {
3688 WARN_ON(true);
3689 return NULL;
3690 }
3691
4d67d860
TM
3692 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3693 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 3694 if (!vas || !vms)
f1db7afd 3695 goto err_free2;
ca23e405
TH
3696
3697 for (area = 0; area < nr_vms; area++) {
68ad4a33 3698 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 3699 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
3700 if (!vas[area] || !vms[area])
3701 goto err_free;
3702 }
3703retry:
e36176be 3704 spin_lock(&free_vmap_area_lock);
ca23e405
TH
3705
3706 /* start scanning - we scan from the top, begin with the last area */
3707 area = term_area = last_area;
3708 start = offsets[area];
3709 end = start + sizes[area];
3710
68ad4a33
URS
3711 va = pvm_find_va_enclose_addr(vmalloc_end);
3712 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3713
3714 while (true) {
ca23e405
TH
3715 /*
3716 * base might have underflowed, add last_end before
3717 * comparing.
3718 */
68ad4a33
URS
3719 if (base + last_end < vmalloc_start + last_end)
3720 goto overflow;
ca23e405
TH
3721
3722 /*
68ad4a33 3723 * Fitting base has not been found.
ca23e405 3724 */
68ad4a33
URS
3725 if (va == NULL)
3726 goto overflow;
ca23e405 3727
5336e52c 3728 /*
d8cc323d 3729 * If required width exceeds current VA block, move
5336e52c
KS
3730 * base downwards and then recheck.
3731 */
3732 if (base + end > va->va_end) {
3733 base = pvm_determine_end_from_reverse(&va, align) - end;
3734 term_area = area;
3735 continue;
3736 }
3737
ca23e405 3738 /*
68ad4a33 3739 * If this VA does not fit, move base downwards and recheck.
ca23e405 3740 */
5336e52c 3741 if (base + start < va->va_start) {
68ad4a33
URS
3742 va = node_to_va(rb_prev(&va->rb_node));
3743 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
3744 term_area = area;
3745 continue;
3746 }
3747
3748 /*
3749 * This area fits, move on to the previous one. If
3750 * the previous one is the terminal one, we're done.
3751 */
3752 area = (area + nr_vms - 1) % nr_vms;
3753 if (area == term_area)
3754 break;
68ad4a33 3755
ca23e405
TH
3756 start = offsets[area];
3757 end = start + sizes[area];
68ad4a33 3758 va = pvm_find_va_enclose_addr(base + end);
ca23e405 3759 }
68ad4a33 3760
ca23e405
TH
3761 /* we've found a fitting base, insert all va's */
3762 for (area = 0; area < nr_vms; area++) {
68ad4a33 3763 int ret;
ca23e405 3764
68ad4a33
URS
3765 start = base + offsets[area];
3766 size = sizes[area];
ca23e405 3767
68ad4a33
URS
3768 va = pvm_find_va_enclose_addr(start);
3769 if (WARN_ON_ONCE(va == NULL))
3770 /* It is a BUG(), but trigger recovery instead. */
3771 goto recovery;
3772
3773 type = classify_va_fit_type(va, start, size);
3774 if (WARN_ON_ONCE(type == NOTHING_FIT))
3775 /* It is a BUG(), but trigger recovery instead. */
3776 goto recovery;
3777
3778 ret = adjust_va_to_fit_type(va, start, size, type);
3779 if (unlikely(ret))
3780 goto recovery;
3781
3782 /* Allocated area. */
3783 va = vas[area];
3784 va->va_start = start;
3785 va->va_end = start + size;
68ad4a33 3786 }
ca23e405 3787
e36176be 3788 spin_unlock(&free_vmap_area_lock);
ca23e405 3789
253a496d
DA
3790 /* populate the kasan shadow space */
3791 for (area = 0; area < nr_vms; area++) {
3792 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3793 goto err_free_shadow;
3794
3795 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3796 sizes[area]);
3797 }
3798
ca23e405 3799 /* insert all vm's */
e36176be
URS
3800 spin_lock(&vmap_area_lock);
3801 for (area = 0; area < nr_vms; area++) {
3802 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3803
3804 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 3805 pcpu_get_vm_areas);
e36176be
URS
3806 }
3807 spin_unlock(&vmap_area_lock);
ca23e405
TH
3808
3809 kfree(vas);
3810 return vms;
3811
68ad4a33 3812recovery:
e36176be
URS
3813 /*
3814 * Remove previously allocated areas. There is no
3815 * need in removing these areas from the busy tree,
3816 * because they are inserted only on the final step
3817 * and when pcpu_get_vm_areas() is success.
3818 */
68ad4a33 3819 while (area--) {
253a496d
DA
3820 orig_start = vas[area]->va_start;
3821 orig_end = vas[area]->va_end;
96e2db45
URS
3822 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3823 &free_vmap_area_list);
9c801f61
URS
3824 if (va)
3825 kasan_release_vmalloc(orig_start, orig_end,
3826 va->va_start, va->va_end);
68ad4a33
URS
3827 vas[area] = NULL;
3828 }
3829
3830overflow:
e36176be 3831 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
3832 if (!purged) {
3833 purge_vmap_area_lazy();
3834 purged = true;
3835
3836 /* Before "retry", check if we recover. */
3837 for (area = 0; area < nr_vms; area++) {
3838 if (vas[area])
3839 continue;
3840
3841 vas[area] = kmem_cache_zalloc(
3842 vmap_area_cachep, GFP_KERNEL);
3843 if (!vas[area])
3844 goto err_free;
3845 }
3846
3847 goto retry;
3848 }
3849
ca23e405
TH
3850err_free:
3851 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
3852 if (vas[area])
3853 kmem_cache_free(vmap_area_cachep, vas[area]);
3854
f1db7afd 3855 kfree(vms[area]);
ca23e405 3856 }
f1db7afd 3857err_free2:
ca23e405
TH
3858 kfree(vas);
3859 kfree(vms);
3860 return NULL;
253a496d
DA
3861
3862err_free_shadow:
3863 spin_lock(&free_vmap_area_lock);
3864 /*
3865 * We release all the vmalloc shadows, even the ones for regions that
3866 * hadn't been successfully added. This relies on kasan_release_vmalloc
3867 * being able to tolerate this case.
3868 */
3869 for (area = 0; area < nr_vms; area++) {
3870 orig_start = vas[area]->va_start;
3871 orig_end = vas[area]->va_end;
96e2db45
URS
3872 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3873 &free_vmap_area_list);
9c801f61
URS
3874 if (va)
3875 kasan_release_vmalloc(orig_start, orig_end,
3876 va->va_start, va->va_end);
253a496d
DA
3877 vas[area] = NULL;
3878 kfree(vms[area]);
3879 }
3880 spin_unlock(&free_vmap_area_lock);
3881 kfree(vas);
3882 kfree(vms);
3883 return NULL;
ca23e405
TH
3884}
3885
3886/**
3887 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3888 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3889 * @nr_vms: the number of allocated areas
3890 *
3891 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3892 */
3893void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3894{
3895 int i;
3896
3897 for (i = 0; i < nr_vms; i++)
3898 free_vm_area(vms[i]);
3899 kfree(vms);
3900}
4f8b02b4 3901#endif /* CONFIG_SMP */
a10aa579 3902
5bb1bb35 3903#ifdef CONFIG_PRINTK
98f18083
PM
3904bool vmalloc_dump_obj(void *object)
3905{
3906 struct vm_struct *vm;
3907 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3908
3909 vm = find_vm_area(objp);
3910 if (!vm)
3911 return false;
bd34dcd4
PM
3912 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3913 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
3914 return true;
3915}
5bb1bb35 3916#endif
98f18083 3917
a10aa579
CL
3918#ifdef CONFIG_PROC_FS
3919static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 3920 __acquires(&vmap_purge_lock)
d4033afd 3921 __acquires(&vmap_area_lock)
a10aa579 3922{
e36176be 3923 mutex_lock(&vmap_purge_lock);
d4033afd 3924 spin_lock(&vmap_area_lock);
e36176be 3925
3f500069 3926 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
3927}
3928
3929static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3930{
3f500069 3931 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
3932}
3933
3934static void s_stop(struct seq_file *m, void *p)
d4033afd 3935 __releases(&vmap_area_lock)
0a7dd4e9 3936 __releases(&vmap_purge_lock)
a10aa579 3937{
d4033afd 3938 spin_unlock(&vmap_area_lock);
0a7dd4e9 3939 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
3940}
3941
a47a126a
ED
3942static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3943{
e5adfffc 3944 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 3945 unsigned int nr, *counters = m->private;
51e50b3a 3946 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
3947
3948 if (!counters)
3949 return;
3950
af12346c
WL
3951 if (v->flags & VM_UNINITIALIZED)
3952 return;
7e5b528b
DV
3953 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3954 smp_rmb();
af12346c 3955
a47a126a
ED
3956 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3957
51e50b3a
ED
3958 for (nr = 0; nr < v->nr_pages; nr += step)
3959 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
3960 for_each_node_state(nr, N_HIGH_MEMORY)
3961 if (counters[nr])
3962 seq_printf(m, " N%u=%u", nr, counters[nr]);
3963 }
3964}
3965
dd3b8353
URS
3966static void show_purge_info(struct seq_file *m)
3967{
dd3b8353
URS
3968 struct vmap_area *va;
3969
96e2db45
URS
3970 spin_lock(&purge_vmap_area_lock);
3971 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
3972 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3973 (void *)va->va_start, (void *)va->va_end,
3974 va->va_end - va->va_start);
3975 }
96e2db45 3976 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
3977}
3978
a10aa579
CL
3979static int s_show(struct seq_file *m, void *p)
3980{
3f500069 3981 struct vmap_area *va;
d4033afd
JK
3982 struct vm_struct *v;
3983
3f500069 3984 va = list_entry(p, struct vmap_area, list);
3985
c2ce8c14 3986 /*
688fcbfc
PL
3987 * s_show can encounter race with remove_vm_area, !vm on behalf
3988 * of vmap area is being tear down or vm_map_ram allocation.
c2ce8c14 3989 */
688fcbfc 3990 if (!va->vm) {
dd3b8353 3991 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
78c72746 3992 (void *)va->va_start, (void *)va->va_end,
dd3b8353 3993 va->va_end - va->va_start);
78c72746 3994
7cc7913e 3995 goto final;
78c72746 3996 }
d4033afd
JK
3997
3998 v = va->vm;
a10aa579 3999
45ec1690 4000 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4001 v->addr, v->addr + v->size, v->size);
4002
62c70bce
JP
4003 if (v->caller)
4004 seq_printf(m, " %pS", v->caller);
23016969 4005
a10aa579
CL
4006 if (v->nr_pages)
4007 seq_printf(m, " pages=%d", v->nr_pages);
4008
4009 if (v->phys_addr)
199eaa05 4010 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4011
4012 if (v->flags & VM_IOREMAP)
f4527c90 4013 seq_puts(m, " ioremap");
a10aa579
CL
4014
4015 if (v->flags & VM_ALLOC)
f4527c90 4016 seq_puts(m, " vmalloc");
a10aa579
CL
4017
4018 if (v->flags & VM_MAP)
f4527c90 4019 seq_puts(m, " vmap");
a10aa579
CL
4020
4021 if (v->flags & VM_USERMAP)
f4527c90 4022 seq_puts(m, " user");
a10aa579 4023
fe9041c2
CH
4024 if (v->flags & VM_DMA_COHERENT)
4025 seq_puts(m, " dma-coherent");
4026
244d63ee 4027 if (is_vmalloc_addr(v->pages))
f4527c90 4028 seq_puts(m, " vpages");
a10aa579 4029
a47a126a 4030 show_numa_info(m, v);
a10aa579 4031 seq_putc(m, '\n');
dd3b8353
URS
4032
4033 /*
96e2db45 4034 * As a final step, dump "unpurged" areas.
dd3b8353 4035 */
7cc7913e 4036final:
dd3b8353
URS
4037 if (list_is_last(&va->list, &vmap_area_list))
4038 show_purge_info(m);
4039
a10aa579
CL
4040 return 0;
4041}
4042
5f6a6a9c 4043static const struct seq_operations vmalloc_op = {
a10aa579
CL
4044 .start = s_start,
4045 .next = s_next,
4046 .stop = s_stop,
4047 .show = s_show,
4048};
5f6a6a9c 4049
5f6a6a9c
AD
4050static int __init proc_vmalloc_init(void)
4051{
fddda2b7 4052 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4053 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4054 &vmalloc_op,
4055 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4056 else
0825a6f9 4057 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4058 return 0;
4059}
4060module_init(proc_vmalloc_init);
db3808c1 4061
a10aa579 4062#endif