]> git.ipfire.org Git - thirdparty/glibc.git/blame - nptl/sysdeps/pthread/timer_routines.c
Fix comment.
[thirdparty/glibc.git] / nptl / sysdeps / pthread / timer_routines.c
CommitLineData
cbbb4b6c
UD
1/* Helper code for POSIX timer implementation on NPTL.
2 Copyright (C) 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
76a50749
UD
3 This file is part of the GNU C Library.
4 Contributed by Kaz Kylheku <kaz@ashi.footprints.net>.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include <assert.h>
22#include <errno.h>
23#include <pthread.h>
24#include <stddef.h>
25#include <stdlib.h>
26#include <string.h>
27#include <sysdep.h>
28#include <time.h>
29#include <unistd.h>
30#include <sys/syscall.h>
31
32#include "posix-timer.h"
33#include <pthreadP.h>
34
35
36/* Number of threads used. */
37#define THREAD_MAXNODES 16
38
39/* Array containing the descriptors for the used threads. */
40static struct thread_node thread_array[THREAD_MAXNODES];
41
42/* Static array with the structures for all the timers. */
43struct timer_node __timer_array[TIMER_MAX];
44
45/* Global lock to protect operation on the lists. */
46pthread_mutex_t __timer_mutex = PTHREAD_MUTEX_INITIALIZER;
47
48/* Variable to protext initialization. */
49pthread_once_t __timer_init_once_control = PTHREAD_ONCE_INIT;
50
51/* Nonzero if initialization of timer implementation failed. */
52int __timer_init_failed;
53
54/* Node for the thread used to deliver signals. */
55struct thread_node __timer_signal_thread_rclk;
56#ifdef _POSIX_CPUTIME
57struct thread_node __timer_signal_thread_pclk;
58#endif
59#ifdef _POSIX_THREAD_CPUTIME
60struct thread_node __timer_signal_thread_tclk;
61#endif
62
63/* Lists to keep free and used timers and threads. */
64struct list_links timer_free_list;
65struct list_links thread_free_list;
66struct list_links thread_active_list;
67
68
69#ifdef __NR_rt_sigqueueinfo
70extern int __syscall_rt_sigqueueinfo (int, int, siginfo_t *);
71#endif
72
73
74/* List handling functions. */
75static inline void
76list_init (struct list_links *list)
77{
78 list->next = list->prev = list;
79}
80
81static inline void
82list_append (struct list_links *list, struct list_links *newp)
83{
84 newp->prev = list->prev;
85 newp->next = list;
86 list->prev->next = newp;
87 list->prev = newp;
88}
89
90static inline void
91list_insbefore (struct list_links *list, struct list_links *newp)
92{
93 list_append (list, newp);
94}
95
96/*
97 * Like list_unlink_ip, except that calling it on a node that
98 * is already unlinked is disastrous rather than a noop.
99 */
100
101static inline void
102list_unlink (struct list_links *list)
103{
104 struct list_links *lnext = list->next, *lprev = list->prev;
105
106 lnext->prev = lprev;
107 lprev->next = lnext;
108}
109
110static inline struct list_links *
111list_first (struct list_links *list)
112{
113 return list->next;
114}
115
116static inline struct list_links *
117list_null (struct list_links *list)
118{
119 return list;
120}
121
122static inline struct list_links *
123list_next (struct list_links *list)
124{
125 return list->next;
126}
127
128static inline int
129list_isempty (struct list_links *list)
130{
131 return list->next == list;
132}
133
134
135/* Functions build on top of the list functions. */
136static inline struct thread_node *
137thread_links2ptr (struct list_links *list)
138{
139 return (struct thread_node *) ((char *) list
140 - offsetof (struct thread_node, links));
141}
142
143static inline struct timer_node *
144timer_links2ptr (struct list_links *list)
145{
146 return (struct timer_node *) ((char *) list
147 - offsetof (struct timer_node, links));
148}
149
150
151/* Initialize a newly allocated thread structure. */
152static void
153thread_init (struct thread_node *thread, const pthread_attr_t *attr, clockid_t clock_id)
154{
155 if (attr != NULL)
156 thread->attr = *attr;
157 else
158 {
159 pthread_attr_init (&thread->attr);
160 pthread_attr_setdetachstate (&thread->attr, PTHREAD_CREATE_DETACHED);
161 }
162
163 thread->exists = 0;
164 list_init (&thread->timer_queue);
165 pthread_cond_init (&thread->cond, 0);
166 thread->current_timer = 0;
167 thread->captured = pthread_self ();
168 thread->clock_id = clock_id;
169}
170
171
172/* Initialize the global lists, and acquire global resources. Error
173 reporting is done by storing a non-zero value to the global variable
174 timer_init_failed. */
175static void
176init_module (void)
177{
178 int i;
179
180 list_init (&timer_free_list);
181 list_init (&thread_free_list);
182 list_init (&thread_active_list);
183
184 for (i = 0; i < TIMER_MAX; ++i)
185 {
186 list_append (&timer_free_list, &__timer_array[i].links);
187 __timer_array[i].inuse = TIMER_FREE;
188 }
189
190 for (i = 0; i < THREAD_MAXNODES; ++i)
191 list_append (&thread_free_list, &thread_array[i].links);
192
193 thread_init (&__timer_signal_thread_rclk, 0, CLOCK_REALTIME);
194#ifdef _POSIX_CPUTIME
195 thread_init (&__timer_signal_thread_pclk, 0, CLOCK_PROCESS_CPUTIME_ID);
196#endif
197#ifdef _POSIX_THREAD_CPUTIME
198 thread_init (&__timer_signal_thread_tclk, 0, CLOCK_THREAD_CPUTIME_ID);
199#endif
200}
201
202
203/* This is a handler executed in a child process after a fork()
204 occurs. It reinitializes the module, resetting all of the data
205 structures to their initial state. The mutex is initialized in
206 case it was locked in the parent process. */
207static void
208reinit_after_fork (void)
209{
210 init_module ();
211 pthread_mutex_init (&__timer_mutex, 0);
212}
213
214
215/* Called once form pthread_once in timer_init. This initializes the
216 module and ensures that reinit_after_fork will be executed in any
217 child process. */
218void
219__timer_init_once (void)
220{
221 init_module ();
222 pthread_atfork (0, 0, reinit_after_fork);
223}
224
225
226/* Deinitialize a thread that is about to be deallocated. */
227static void
228thread_deinit (struct thread_node *thread)
229{
230 assert (list_isempty (&thread->timer_queue));
231 pthread_cond_destroy (&thread->cond);
232}
233
234
235/* Allocate a thread structure from the global free list. Global
236 mutex lock must be held by caller. The thread is moved to
237 the active list. */
238struct thread_node *
239__timer_thread_alloc (const pthread_attr_t *desired_attr, clockid_t clock_id)
240{
241 struct list_links *node = list_first (&thread_free_list);
242
243 if (node != list_null (&thread_free_list))
244 {
245 struct thread_node *thread = thread_links2ptr (node);
246 list_unlink (node);
247 thread_init (thread, desired_attr, clock_id);
248 list_append (&thread_active_list, node);
249 return thread;
250 }
251
252 return 0;
253}
254
255
256/* Return a thread structure to the global free list. Global lock
257 must be held by caller. */
258void
259__timer_thread_dealloc (struct thread_node *thread)
260{
261 thread_deinit (thread);
262 list_unlink (&thread->links);
263 list_append (&thread_free_list, &thread->links);
264}
265
266
267/* Each of our threads which terminates executes this cleanup
268 handler. We never terminate threads ourselves; if a thread gets here
269 it means that the evil application has killed it. If the thread has
270 timers, these require servicing and so we must hire a replacement
271 thread right away. We must also unblock another thread that may
272 have been waiting for this thread to finish servicing a timer (see
273 timer_delete()). */
274
275static void
276thread_cleanup (void *val)
277{
278 if (val != NULL)
279 {
280 struct thread_node *thread = val;
281
282 /* How did the signal thread get killed? */
283 assert (thread != &__timer_signal_thread_rclk);
284#ifdef _POSIX_CPUTIME
285 assert (thread != &__timer_signal_thread_pclk);
286#endif
287#ifdef _POSIX_THREAD_CPUTIME
288 assert (thread != &__timer_signal_thread_tclk);
289#endif
290
291 pthread_mutex_lock (&__timer_mutex);
292
293 thread->exists = 0;
294
295 /* We are no longer processing a timer event. */
296 thread->current_timer = 0;
297
298 if (list_isempty (&thread->timer_queue))
299 __timer_thread_dealloc (thread);
300 else
301 (void) __timer_thread_start (thread);
302
303 pthread_mutex_unlock (&__timer_mutex);
304
305 /* Unblock potentially blocked timer_delete(). */
306 pthread_cond_broadcast (&thread->cond);
307 }
308}
309
310
311/* Handle a timer which is supposed to go off now. */
312static void
313thread_expire_timer (struct thread_node *self, struct timer_node *timer)
314{
315 self->current_timer = timer; /* Lets timer_delete know timer is running. */
316
317 pthread_mutex_unlock (&__timer_mutex);
318
319 switch (__builtin_expect (timer->event.sigev_notify, SIGEV_SIGNAL))
320 {
321 case SIGEV_NONE:
322 assert (! "timer_create should never have created such a timer");
323 break;
324
325 case SIGEV_SIGNAL:
326#ifdef __NR_rt_sigqueueinfo
327 {
328 siginfo_t info;
329
330 /* First, clear the siginfo_t structure, so that we don't pass our
331 stack content to other tasks. */
332 memset (&info, 0, sizeof (siginfo_t));
333 /* We must pass the information about the data in a siginfo_t
334 value. */
335 info.si_signo = timer->event.sigev_signo;
336 info.si_code = SI_TIMER;
337 info.si_pid = timer->creator_pid;
338 info.si_uid = getuid ();
339 info.si_value = timer->event.sigev_value;
340
341 INLINE_SYSCALL (rt_sigqueueinfo, 3, info.si_pid, info.si_signo, &info);
342 }
343#else
344 if (pthread_kill (self->captured, timer->event.sigev_signo) != 0)
345 {
346 if (pthread_kill (self->id, timer->event.sigev_signo) != 0)
347 abort ();
348 }
349#endif
350 break;
351
352 case SIGEV_THREAD:
353 timer->event.sigev_notify_function (timer->event.sigev_value);
354 break;
355
356 default:
357 assert (! "unknown event");
358 break;
359 }
360
361 pthread_mutex_lock (&__timer_mutex);
362
363 self->current_timer = 0;
364
365 pthread_cond_broadcast (&self->cond);
366}
367
368
369/* Thread function; executed by each timer thread. The job of this
370 function is to wait on the thread's timer queue and expire the
371 timers in chronological order as close to their scheduled time as
372 possible. */
373static void
374__attribute__ ((noreturn))
375thread_func (void *arg)
376{
377 struct thread_node *self = arg;
378
379 /* Register cleanup handler, in case rogue application terminates
380 this thread. (This cannot happen to __timer_signal_thread, which
381 doesn't invoke application callbacks). */
382
383 pthread_cleanup_push (thread_cleanup, self);
384
385 pthread_mutex_lock (&__timer_mutex);
386
387 while (1)
388 {
389 struct list_links *first;
390 struct timer_node *timer = NULL;
391
392 /* While the timer queue is not empty, inspect the first node. */
393 first = list_first (&self->timer_queue);
394 if (first != list_null (&self->timer_queue))
395 {
396 struct timespec now;
397
398 timer = timer_links2ptr (first);
399
400 /* This assumes that the elements of the list of one thread
401 are all for the same clock. */
402 clock_gettime (timer->clock, &now);
403
404 while (1)
405 {
406 /* If the timer is due or overdue, remove it from the queue.
407 If it's a periodic timer, re-compute its new time and
408 requeue it. Either way, perform the timer expiry. */
409 if (timespec_compare (&now, &timer->expirytime) < 0)
410 break;
411
412 list_unlink_ip (first);
413
414 if (__builtin_expect (timer->value.it_interval.tv_sec, 0) != 0
415 || timer->value.it_interval.tv_nsec != 0)
416 {
417 timer->overrun_count = 0;
418 timespec_add (&timer->expirytime, &timer->expirytime,
419 &timer->value.it_interval);
420 while (timespec_compare (&timer->expirytime, &now) < 0)
421 {
422 timespec_add (&timer->expirytime, &timer->expirytime,
423 &timer->value.it_interval);
424 if (timer->overrun_count < DELAYTIMER_MAX)
425 ++timer->overrun_count;
426 }
427 __timer_thread_queue_timer (self, timer);
428 }
429
430 thread_expire_timer (self, timer);
431
432 first = list_first (&self->timer_queue);
433 if (first == list_null (&self->timer_queue))
434 break;
435
436 timer = timer_links2ptr (first);
437 }
438 }
439
440 /* If the queue is not empty, wait until the expiry time of the
441 first node. Otherwise wait indefinitely. Insertions at the
442 head of the queue must wake up the thread by broadcasting
443 this condition variable. */
444 if (timer != NULL)
445 pthread_cond_timedwait (&self->cond, &__timer_mutex,
446 &timer->expirytime);
447 else
448 pthread_cond_wait (&self->cond, &__timer_mutex);
449 }
450 /* This macro will never be executed since the while loop loops
451 forever - but we have to add it for proper nesting. */
452 pthread_cleanup_pop (1);
453}
454
455
456/* Enqueue a timer in wakeup order in the thread's timer queue.
457 Returns 1 if the timer was inserted at the head of the queue,
458 causing the queue's next wakeup time to change. */
459
460int
461__timer_thread_queue_timer (struct thread_node *thread,
462 struct timer_node *insert)
463{
464 struct list_links *iter;
465 int athead = 1;
466
467 for (iter = list_first (&thread->timer_queue);
468 iter != list_null (&thread->timer_queue);
469 iter = list_next (iter))
470 {
471 struct timer_node *timer = timer_links2ptr (iter);
472
473 if (timespec_compare (&insert->expirytime, &timer->expirytime) < 0)
474 break;
475 athead = 0;
476 }
477
478 list_insbefore (iter, &insert->links);
479 return athead;
480}
481
482
483/* Start a thread and associate it with the given thread node. Global
484 lock must be held by caller. */
485int
486__timer_thread_start (struct thread_node *thread)
487{
488 int retval = 1;
489
490 assert (!thread->exists);
491 thread->exists = 1;
492
493 if (pthread_create (&thread->id, &thread->attr,
494 (void *(*) (void *)) thread_func, thread) != 0)
495 {
496 thread->exists = 0;
497 retval = -1;
498 }
499
500 return retval;
501}
502
503
504void
505__timer_thread_wakeup (struct thread_node *thread)
506{
507 pthread_cond_broadcast (&thread->cond);
508}
509
510
511/* Compare two pthread_attr_t thread attributes for exact equality.
512 Returns 1 if they are equal, otherwise zero if they are not equal or
513 contain illegal values. This version is LinuxThreads-specific for
514 performance reason. One could use the access functions to get the
515 values of all the fields of the attribute structure. */
516static int
517thread_attr_compare (const pthread_attr_t *left, const pthread_attr_t *right)
518{
519 struct pthread_attr *ileft = (struct pthread_attr *) left;
520 struct pthread_attr *iright = (struct pthread_attr *) right;
521
522 return (ileft->flags == iright->flags
523 && ileft->schedpolicy == iright->schedpolicy
524 && (ileft->schedparam.sched_priority
525 == iright->schedparam.sched_priority));
526}
527
528
529/* Search the list of active threads and find one which has matching
530 attributes. Global mutex lock must be held by caller. */
531struct thread_node *
532__timer_thread_find_matching (const pthread_attr_t *desired_attr,
533 clockid_t desired_clock_id)
534{
535 struct list_links *iter = list_first (&thread_active_list);
536
537 while (iter != list_null (&thread_active_list))
538 {
539 struct thread_node *candidate = thread_links2ptr (iter);
540
541 if (thread_attr_compare (desired_attr, &candidate->attr)
542 && desired_clock_id == candidate->clock_id)
543 {
544 list_unlink (iter);
545 return candidate;
546 }
547
548 iter = list_next (iter);
549 }
550
551 return NULL;
552}
553
554
555/* Grab a free timer structure from the global free list. The global
556 lock must be held by the caller. */
557struct timer_node *
558__timer_alloc (void)
559{
560 struct list_links *node = list_first (&timer_free_list);
561
562 if (node != list_null (&timer_free_list))
563 {
564 struct timer_node *timer = timer_links2ptr (node);
565 list_unlink_ip (node);
566 timer->inuse = TIMER_INUSE;
567 timer->refcount = 1;
568 return timer;
569 }
570
571 return NULL;
572}
573
574
575/* Return a timer structure to the global free list. The global lock
576 must be held by the caller. */
577void
578__timer_dealloc (struct timer_node *timer)
579{
580 assert (timer->refcount == 0);
581 timer->thread = NULL; /* Break association between timer and thread. */
582 timer->inuse = TIMER_FREE;
583 list_append (&timer_free_list, &timer->links);
584}
585
586
587/* Thread cancellation handler which unlocks a mutex. */
588void
589__timer_mutex_cancel_handler (void *arg)
590{
591 pthread_mutex_unlock (arg);
592}