]> git.ipfire.org Git - thirdparty/glibc.git/blame - posix/regex.c
Update to 2.1.x development version
[thirdparty/glibc.git] / posix / regex.c
CommitLineData
2b83a2a4
RM
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
c84142e8 6 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
2b83a2a4 7
c84142e8
UD
8 This file is part of the GNU C Library. Its master source is NOT part of
9 the C library, however. The master source lives in /gd/gnu/lib.
2b83a2a4 10
c84142e8
UD
11 The GNU C Library is free software; you can redistribute it and/or
12 modify it under the terms of the GNU Library General Public License as
13 published by the Free Software Foundation; either version 2 of the
14 License, or (at your option) any later version.
2b83a2a4 15
c84142e8
UD
16 The GNU C Library is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 Library General Public License for more details.
2b83a2a4 20
c84142e8
UD
21 You should have received a copy of the GNU Library General Public
22 License along with the GNU C Library; see the file COPYING.LIB. If not,
23 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
2b83a2a4
RM
25
26/* AIX requires this to be the first thing in the file. */
27#if defined (_AIX) && !defined (REGEX_MALLOC)
28 #pragma alloca
29#endif
30
80b55d32 31#undef _GNU_SOURCE
2b83a2a4
RM
32#define _GNU_SOURCE
33
34#ifdef HAVE_CONFIG_H
35#include <config.h>
36#endif
37
38/* We need this for `regex.h', and perhaps for the Emacs include files. */
39#include <sys/types.h>
40
41/* This is for other GNU distributions with internationalized messages. */
42#if HAVE_LIBINTL_H || defined (_LIBC)
43# include <libintl.h>
44#else
45# define gettext(msgid) (msgid)
46#endif
47
91c7b85d
RM
48#ifndef gettext_noop
49/* This define is so xgettext can find the internationalizable
50 strings. */
51#define gettext_noop(String) String
52#endif
53
2b83a2a4
RM
54/* The `emacs' switch turns on certain matching commands
55 that make sense only in Emacs. */
56#ifdef emacs
57
58#include "lisp.h"
59#include "buffer.h"
60#include "syntax.h"
61
62#else /* not emacs */
63
64/* If we are not linking with Emacs proper,
65 we can't use the relocating allocator
66 even if config.h says that we can. */
67#undef REL_ALLOC
68
69#if defined (STDC_HEADERS) || defined (_LIBC)
70#include <stdlib.h>
71#else
72char *malloc ();
73char *realloc ();
74#endif
75
5bf62f2d
RM
76/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
77 If nothing else has been done, use the method below. */
78#ifdef INHIBIT_STRING_HEADER
79#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
80#if !defined (bzero) && !defined (bcopy)
81#undef INHIBIT_STRING_HEADER
82#endif
83#endif
84#endif
85
86/* This is the normal way of making sure we have a bcopy and a bzero.
87 This is used in most programs--a few other programs avoid this
88 by defining INHIBIT_STRING_HEADER. */
2b83a2a4 89#ifndef INHIBIT_STRING_HEADER
b1099b2f 90#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
2b83a2a4
RM
91#include <string.h>
92#ifndef bcmp
93#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
94#endif
95#ifndef bcopy
96#define bcopy(s, d, n) memcpy ((d), (s), (n))
97#endif
98#ifndef bzero
99#define bzero(s, n) memset ((s), 0, (n))
100#endif
101#else
102#include <strings.h>
103#endif
104#endif
105
106/* Define the syntax stuff for \<, \>, etc. */
107
108/* This must be nonzero for the wordchar and notwordchar pattern
109 commands in re_match_2. */
91c7b85d 110#ifndef Sword
2b83a2a4
RM
111#define Sword 1
112#endif
113
114#ifdef SWITCH_ENUM_BUG
115#define SWITCH_ENUM_CAST(x) ((int)(x))
116#else
117#define SWITCH_ENUM_CAST(x) (x)
118#endif
119
120#ifdef SYNTAX_TABLE
121
122extern char *re_syntax_table;
123
124#else /* not SYNTAX_TABLE */
125
126/* How many characters in the character set. */
127#define CHAR_SET_SIZE 256
128
129static char re_syntax_table[CHAR_SET_SIZE];
130
131static void
132init_syntax_once ()
133{
134 register int c;
135 static int done = 0;
136
137 if (done)
138 return;
139
140 bzero (re_syntax_table, sizeof re_syntax_table);
141
142 for (c = 'a'; c <= 'z'; c++)
143 re_syntax_table[c] = Sword;
144
145 for (c = 'A'; c <= 'Z'; c++)
146 re_syntax_table[c] = Sword;
147
148 for (c = '0'; c <= '9'; c++)
149 re_syntax_table[c] = Sword;
150
151 re_syntax_table['_'] = Sword;
152
153 done = 1;
154}
155
156#endif /* not SYNTAX_TABLE */
157
158#define SYNTAX(c) re_syntax_table[c]
159
160#endif /* not emacs */
161\f
162/* Get the interface, including the syntax bits. */
163#include "regex.h"
164
165/* isalpha etc. are used for the character classes. */
166#include <ctype.h>
167
168/* Jim Meyering writes:
169
170 "... Some ctype macros are valid only for character codes that
171 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
172 using /bin/cc or gcc but without giving an ansi option). So, all
173 ctype uses should be through macros like ISPRINT... If
174 STDC_HEADERS is defined, then autoconf has verified that the ctype
175 macros don't need to be guarded with references to isascii. ...
176 Defining isascii to 1 should let any compiler worth its salt
177 eliminate the && through constant folding." */
178
179#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
180#define ISASCII(c) 1
181#else
182#define ISASCII(c) isascii(c)
183#endif
184
185#ifdef isblank
186#define ISBLANK(c) (ISASCII (c) && isblank (c))
187#else
188#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
189#endif
190#ifdef isgraph
191#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
192#else
193#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
194#endif
195
196#define ISPRINT(c) (ISASCII (c) && isprint (c))
197#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
198#define ISALNUM(c) (ISASCII (c) && isalnum (c))
199#define ISALPHA(c) (ISASCII (c) && isalpha (c))
200#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
201#define ISLOWER(c) (ISASCII (c) && islower (c))
202#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
203#define ISSPACE(c) (ISASCII (c) && isspace (c))
204#define ISUPPER(c) (ISASCII (c) && isupper (c))
205#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
206
207#ifndef NULL
5bf62f2d 208#define NULL (void *)0
2b83a2a4
RM
209#endif
210
211/* We remove any previous definition of `SIGN_EXTEND_CHAR',
212 since ours (we hope) works properly with all combinations of
213 machines, compilers, `char' and `unsigned char' argument types.
214 (Per Bothner suggested the basic approach.) */
215#undef SIGN_EXTEND_CHAR
216#if __STDC__
217#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
218#else /* not __STDC__ */
219/* As in Harbison and Steele. */
220#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
221#endif
222\f
223/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
224 use `alloca' instead of `malloc'. This is because using malloc in
225 re_search* or re_match* could cause memory leaks when C-g is used in
226 Emacs; also, malloc is slower and causes storage fragmentation. On
91c7b85d
RM
227 the other hand, malloc is more portable, and easier to debug.
228
2b83a2a4
RM
229 Because we sometimes use alloca, some routines have to be macros,
230 not functions -- `alloca'-allocated space disappears at the end of the
231 function it is called in. */
232
233#ifdef REGEX_MALLOC
234
235#define REGEX_ALLOCATE malloc
236#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
237#define REGEX_FREE free
238
239#else /* not REGEX_MALLOC */
240
241/* Emacs already defines alloca, sometimes. */
242#ifndef alloca
243
244/* Make alloca work the best possible way. */
245#ifdef __GNUC__
246#define alloca __builtin_alloca
247#else /* not __GNUC__ */
248#if HAVE_ALLOCA_H
249#include <alloca.h>
250#else /* not __GNUC__ or HAVE_ALLOCA_H */
03a75825 251#if 0 /* It is a bad idea to declare alloca. We always cast the result. */
2b83a2a4
RM
252#ifndef _AIX /* Already did AIX, up at the top. */
253char *alloca ();
254#endif /* not _AIX */
03a75825 255#endif
91c7b85d 256#endif /* not HAVE_ALLOCA_H */
2b83a2a4
RM
257#endif /* not __GNUC__ */
258
259#endif /* not alloca */
260
261#define REGEX_ALLOCATE alloca
262
263/* Assumes a `char *destination' variable. */
264#define REGEX_REALLOCATE(source, osize, nsize) \
265 (destination = (char *) alloca (nsize), \
266 bcopy (source, destination, osize), \
267 destination)
268
269/* No need to do anything to free, after alloca. */
78732ba8 270#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
2b83a2a4
RM
271
272#endif /* not REGEX_MALLOC */
273
274/* Define how to allocate the failure stack. */
275
ff48a63c
RM
276#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
277
2b83a2a4
RM
278#define REGEX_ALLOCATE_STACK(size) \
279 r_alloc (&failure_stack_ptr, (size))
280#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
281 r_re_alloc (&failure_stack_ptr, (nsize))
282#define REGEX_FREE_STACK(ptr) \
283 r_alloc_free (&failure_stack_ptr)
284
ff48a63c 285#else /* not using relocating allocator */
2b83a2a4
RM
286
287#ifdef REGEX_MALLOC
288
289#define REGEX_ALLOCATE_STACK malloc
290#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
291#define REGEX_FREE_STACK free
292
293#else /* not REGEX_MALLOC */
294
295#define REGEX_ALLOCATE_STACK alloca
296
297#define REGEX_REALLOCATE_STACK(source, osize, nsize) \
298 REGEX_REALLOCATE (source, osize, nsize)
299/* No need to explicitly free anything. */
300#define REGEX_FREE_STACK(arg)
301
302#endif /* not REGEX_MALLOC */
ff48a63c 303#endif /* not using relocating allocator */
2b83a2a4
RM
304
305
306/* True if `size1' is non-NULL and PTR is pointing anywhere inside
307 `string1' or just past its end. This works if PTR is NULL, which is
308 a good thing. */
309#define FIRST_STRING_P(ptr) \
310 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
311
312/* (Re)Allocate N items of type T using malloc, or fail. */
313#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
314#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
315#define RETALLOC_IF(addr, n, t) \
316 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
317#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
318
319#define BYTEWIDTH 8 /* In bits. */
320
321#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
322
323#undef MAX
324#undef MIN
325#define MAX(a, b) ((a) > (b) ? (a) : (b))
326#define MIN(a, b) ((a) < (b) ? (a) : (b))
327
328typedef char boolean;
329#define false 0
330#define true 1
331
332static int re_match_2_internal ();
333\f
334/* These are the command codes that appear in compiled regular
335 expressions. Some opcodes are followed by argument bytes. A
336 command code can specify any interpretation whatsoever for its
337 arguments. Zero bytes may appear in the compiled regular expression. */
338
339typedef enum
340{
341 no_op = 0,
342
343 /* Succeed right away--no more backtracking. */
344 succeed,
345
346 /* Followed by one byte giving n, then by n literal bytes. */
347 exactn,
348
349 /* Matches any (more or less) character. */
350 anychar,
351
352 /* Matches any one char belonging to specified set. First
353 following byte is number of bitmap bytes. Then come bytes
354 for a bitmap saying which chars are in. Bits in each byte
355 are ordered low-bit-first. A character is in the set if its
356 bit is 1. A character too large to have a bit in the map is
357 automatically not in the set. */
358 charset,
359
360 /* Same parameters as charset, but match any character that is
361 not one of those specified. */
362 charset_not,
363
364 /* Start remembering the text that is matched, for storing in a
365 register. Followed by one byte with the register number, in
366 the range 0 to one less than the pattern buffer's re_nsub
367 field. Then followed by one byte with the number of groups
368 inner to this one. (This last has to be part of the
369 start_memory only because we need it in the on_failure_jump
370 of re_match_2.) */
371 start_memory,
372
373 /* Stop remembering the text that is matched and store it in a
374 memory register. Followed by one byte with the register
375 number, in the range 0 to one less than `re_nsub' in the
376 pattern buffer, and one byte with the number of inner groups,
377 just like `start_memory'. (We need the number of inner
378 groups here because we don't have any easy way of finding the
379 corresponding start_memory when we're at a stop_memory.) */
380 stop_memory,
381
382 /* Match a duplicate of something remembered. Followed by one
383 byte containing the register number. */
384 duplicate,
385
386 /* Fail unless at beginning of line. */
387 begline,
388
389 /* Fail unless at end of line. */
390 endline,
391
392 /* Succeeds if at beginning of buffer (if emacs) or at beginning
393 of string to be matched (if not). */
394 begbuf,
395
396 /* Analogously, for end of buffer/string. */
397 endbuf,
91c7b85d 398
2b83a2a4 399 /* Followed by two byte relative address to which to jump. */
91c7b85d 400 jump,
2b83a2a4
RM
401
402 /* Same as jump, but marks the end of an alternative. */
403 jump_past_alt,
404
405 /* Followed by two-byte relative address of place to resume at
406 in case of failure. */
407 on_failure_jump,
91c7b85d 408
2b83a2a4
RM
409 /* Like on_failure_jump, but pushes a placeholder instead of the
410 current string position when executed. */
411 on_failure_keep_string_jump,
91c7b85d 412
2b83a2a4
RM
413 /* Throw away latest failure point and then jump to following
414 two-byte relative address. */
415 pop_failure_jump,
416
417 /* Change to pop_failure_jump if know won't have to backtrack to
418 match; otherwise change to jump. This is used to jump
419 back to the beginning of a repeat. If what follows this jump
420 clearly won't match what the repeat does, such that we can be
421 sure that there is no use backtracking out of repetitions
422 already matched, then we change it to a pop_failure_jump.
423 Followed by two-byte address. */
424 maybe_pop_jump,
425
426 /* Jump to following two-byte address, and push a dummy failure
427 point. This failure point will be thrown away if an attempt
428 is made to use it for a failure. A `+' construct makes this
429 before the first repeat. Also used as an intermediary kind
430 of jump when compiling an alternative. */
431 dummy_failure_jump,
432
433 /* Push a dummy failure point and continue. Used at the end of
434 alternatives. */
435 push_dummy_failure,
436
437 /* Followed by two-byte relative address and two-byte number n.
438 After matching N times, jump to the address upon failure. */
439 succeed_n,
440
441 /* Followed by two-byte relative address, and two-byte number n.
442 Jump to the address N times, then fail. */
443 jump_n,
444
445 /* Set the following two-byte relative address to the
446 subsequent two-byte number. The address *includes* the two
447 bytes of number. */
448 set_number_at,
449
450 wordchar, /* Matches any word-constituent character. */
451 notwordchar, /* Matches any char that is not a word-constituent. */
452
453 wordbeg, /* Succeeds if at word beginning. */
454 wordend, /* Succeeds if at word end. */
455
456 wordbound, /* Succeeds if at a word boundary. */
457 notwordbound /* Succeeds if not at a word boundary. */
458
459#ifdef emacs
460 ,before_dot, /* Succeeds if before point. */
461 at_dot, /* Succeeds if at point. */
462 after_dot, /* Succeeds if after point. */
463
464 /* Matches any character whose syntax is specified. Followed by
465 a byte which contains a syntax code, e.g., Sword. */
466 syntaxspec,
467
468 /* Matches any character whose syntax is not that specified. */
469 notsyntaxspec
470#endif /* emacs */
471} re_opcode_t;
472\f
473/* Common operations on the compiled pattern. */
474
475/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
476
477#define STORE_NUMBER(destination, number) \
478 do { \
479 (destination)[0] = (number) & 0377; \
480 (destination)[1] = (number) >> 8; \
481 } while (0)
482
483/* Same as STORE_NUMBER, except increment DESTINATION to
484 the byte after where the number is stored. Therefore, DESTINATION
485 must be an lvalue. */
486
487#define STORE_NUMBER_AND_INCR(destination, number) \
488 do { \
489 STORE_NUMBER (destination, number); \
490 (destination) += 2; \
491 } while (0)
492
493/* Put into DESTINATION a number stored in two contiguous bytes starting
494 at SOURCE. */
495
496#define EXTRACT_NUMBER(destination, source) \
497 do { \
498 (destination) = *(source) & 0377; \
499 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
500 } while (0)
501
502#ifdef DEBUG
503static void
504extract_number (dest, source)
505 int *dest;
506 unsigned char *source;
507{
91c7b85d 508 int temp = SIGN_EXTEND_CHAR (*(source + 1));
2b83a2a4
RM
509 *dest = *source & 0377;
510 *dest += temp << 8;
511}
512
513#ifndef EXTRACT_MACROS /* To debug the macros. */
514#undef EXTRACT_NUMBER
515#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
516#endif /* not EXTRACT_MACROS */
517
518#endif /* DEBUG */
519
520/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
521 SOURCE must be an lvalue. */
522
523#define EXTRACT_NUMBER_AND_INCR(destination, source) \
524 do { \
525 EXTRACT_NUMBER (destination, source); \
526 (source) += 2; \
527 } while (0)
528
529#ifdef DEBUG
530static void
531extract_number_and_incr (destination, source)
532 int *destination;
533 unsigned char **source;
91c7b85d 534{
2b83a2a4
RM
535 extract_number (destination, *source);
536 *source += 2;
537}
538
539#ifndef EXTRACT_MACROS
540#undef EXTRACT_NUMBER_AND_INCR
541#define EXTRACT_NUMBER_AND_INCR(dest, src) \
542 extract_number_and_incr (&dest, &src)
543#endif /* not EXTRACT_MACROS */
544
545#endif /* DEBUG */
546\f
547/* If DEBUG is defined, Regex prints many voluminous messages about what
548 it is doing (if the variable `debug' is nonzero). If linked with the
549 main program in `iregex.c', you can enter patterns and strings
550 interactively. And if linked with the main program in `main.c' and
551 the other test files, you can run the already-written tests. */
552
553#ifdef DEBUG
554
555/* We use standard I/O for debugging. */
556#include <stdio.h>
557
558/* It is useful to test things that ``must'' be true when debugging. */
559#include <assert.h>
560
561static int debug = 0;
562
563#define DEBUG_STATEMENT(e) e
564#define DEBUG_PRINT1(x) if (debug) printf (x)
565#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
566#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
567#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
568#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
569 if (debug) print_partial_compiled_pattern (s, e)
570#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
571 if (debug) print_double_string (w, s1, sz1, s2, sz2)
572
573
574/* Print the fastmap in human-readable form. */
575
576void
577print_fastmap (fastmap)
578 char *fastmap;
579{
580 unsigned was_a_range = 0;
91c7b85d
RM
581 unsigned i = 0;
582
2b83a2a4
RM
583 while (i < (1 << BYTEWIDTH))
584 {
585 if (fastmap[i++])
586 {
587 was_a_range = 0;
588 putchar (i - 1);
589 while (i < (1 << BYTEWIDTH) && fastmap[i])
590 {
591 was_a_range = 1;
592 i++;
593 }
594 if (was_a_range)
595 {
596 printf ("-");
597 putchar (i - 1);
598 }
599 }
600 }
91c7b85d 601 putchar ('\n');
2b83a2a4
RM
602}
603
604
605/* Print a compiled pattern string in human-readable form, starting at
606 the START pointer into it and ending just before the pointer END. */
607
608void
609print_partial_compiled_pattern (start, end)
610 unsigned char *start;
611 unsigned char *end;
612{
613 int mcnt, mcnt2;
614 unsigned char *p = start;
615 unsigned char *pend = end;
616
617 if (start == NULL)
618 {
619 printf ("(null)\n");
620 return;
621 }
91c7b85d 622
2b83a2a4
RM
623 /* Loop over pattern commands. */
624 while (p < pend)
625 {
626 printf ("%d:\t", p - start);
627
628 switch ((re_opcode_t) *p++)
629 {
630 case no_op:
631 printf ("/no_op");
632 break;
633
634 case exactn:
635 mcnt = *p++;
636 printf ("/exactn/%d", mcnt);
637 do
638 {
639 putchar ('/');
640 putchar (*p++);
641 }
642 while (--mcnt);
643 break;
644
645 case start_memory:
646 mcnt = *p++;
647 printf ("/start_memory/%d/%d", mcnt, *p++);
648 break;
649
650 case stop_memory:
651 mcnt = *p++;
652 printf ("/stop_memory/%d/%d", mcnt, *p++);
653 break;
654
655 case duplicate:
656 printf ("/duplicate/%d", *p++);
657 break;
658
659 case anychar:
660 printf ("/anychar");
661 break;
662
663 case charset:
664 case charset_not:
665 {
666 register int c, last = -100;
667 register int in_range = 0;
668
669 printf ("/charset [%s",
670 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
91c7b85d 671
2b83a2a4
RM
672 assert (p + *p < pend);
673
674 for (c = 0; c < 256; c++)
675 if (c / 8 < *p
676 && (p[1 + (c/8)] & (1 << (c % 8))))
677 {
678 /* Are we starting a range? */
679 if (last + 1 == c && ! in_range)
680 {
681 putchar ('-');
682 in_range = 1;
683 }
684 /* Have we broken a range? */
685 else if (last + 1 != c && in_range)
686 {
687 putchar (last);
688 in_range = 0;
689 }
91c7b85d 690
2b83a2a4
RM
691 if (! in_range)
692 putchar (c);
693
694 last = c;
695 }
696
697 if (in_range)
698 putchar (last);
699
700 putchar (']');
701
702 p += 1 + *p;
703 }
704 break;
705
706 case begline:
707 printf ("/begline");
708 break;
709
710 case endline:
711 printf ("/endline");
712 break;
713
714 case on_failure_jump:
715 extract_number_and_incr (&mcnt, &p);
716 printf ("/on_failure_jump to %d", p + mcnt - start);
717 break;
718
719 case on_failure_keep_string_jump:
720 extract_number_and_incr (&mcnt, &p);
721 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
722 break;
723
724 case dummy_failure_jump:
725 extract_number_and_incr (&mcnt, &p);
726 printf ("/dummy_failure_jump to %d", p + mcnt - start);
727 break;
728
729 case push_dummy_failure:
730 printf ("/push_dummy_failure");
731 break;
91c7b85d 732
2b83a2a4
RM
733 case maybe_pop_jump:
734 extract_number_and_incr (&mcnt, &p);
735 printf ("/maybe_pop_jump to %d", p + mcnt - start);
736 break;
737
738 case pop_failure_jump:
739 extract_number_and_incr (&mcnt, &p);
740 printf ("/pop_failure_jump to %d", p + mcnt - start);
91c7b85d
RM
741 break;
742
2b83a2a4
RM
743 case jump_past_alt:
744 extract_number_and_incr (&mcnt, &p);
745 printf ("/jump_past_alt to %d", p + mcnt - start);
91c7b85d
RM
746 break;
747
2b83a2a4
RM
748 case jump:
749 extract_number_and_incr (&mcnt, &p);
750 printf ("/jump to %d", p + mcnt - start);
751 break;
752
91c7b85d 753 case succeed_n:
2b83a2a4
RM
754 extract_number_and_incr (&mcnt, &p);
755 extract_number_and_incr (&mcnt2, &p);
756 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
757 break;
91c7b85d
RM
758
759 case jump_n:
2b83a2a4
RM
760 extract_number_and_incr (&mcnt, &p);
761 extract_number_and_incr (&mcnt2, &p);
762 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
763 break;
91c7b85d
RM
764
765 case set_number_at:
2b83a2a4
RM
766 extract_number_and_incr (&mcnt, &p);
767 extract_number_and_incr (&mcnt2, &p);
768 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
769 break;
91c7b85d 770
2b83a2a4
RM
771 case wordbound:
772 printf ("/wordbound");
773 break;
774
775 case notwordbound:
776 printf ("/notwordbound");
777 break;
778
779 case wordbeg:
780 printf ("/wordbeg");
781 break;
91c7b85d 782
2b83a2a4
RM
783 case wordend:
784 printf ("/wordend");
91c7b85d 785
2b83a2a4
RM
786#ifdef emacs
787 case before_dot:
788 printf ("/before_dot");
789 break;
790
791 case at_dot:
792 printf ("/at_dot");
793 break;
794
795 case after_dot:
796 printf ("/after_dot");
797 break;
798
799 case syntaxspec:
800 printf ("/syntaxspec");
801 mcnt = *p++;
802 printf ("/%d", mcnt);
803 break;
91c7b85d 804
2b83a2a4
RM
805 case notsyntaxspec:
806 printf ("/notsyntaxspec");
807 mcnt = *p++;
808 printf ("/%d", mcnt);
809 break;
810#endif /* emacs */
811
812 case wordchar:
813 printf ("/wordchar");
814 break;
91c7b85d 815
2b83a2a4
RM
816 case notwordchar:
817 printf ("/notwordchar");
818 break;
819
820 case begbuf:
821 printf ("/begbuf");
822 break;
823
824 case endbuf:
825 printf ("/endbuf");
826 break;
827
828 default:
829 printf ("?%d", *(p-1));
830 }
831
832 putchar ('\n');
833 }
834
835 printf ("%d:\tend of pattern.\n", p - start);
836}
837
838
839void
840print_compiled_pattern (bufp)
841 struct re_pattern_buffer *bufp;
842{
843 unsigned char *buffer = bufp->buffer;
844
845 print_partial_compiled_pattern (buffer, buffer + bufp->used);
846 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
847
848 if (bufp->fastmap_accurate && bufp->fastmap)
849 {
850 printf ("fastmap: ");
851 print_fastmap (bufp->fastmap);
852 }
853
854 printf ("re_nsub: %d\t", bufp->re_nsub);
855 printf ("regs_alloc: %d\t", bufp->regs_allocated);
856 printf ("can_be_null: %d\t", bufp->can_be_null);
857 printf ("newline_anchor: %d\n", bufp->newline_anchor);
858 printf ("no_sub: %d\t", bufp->no_sub);
859 printf ("not_bol: %d\t", bufp->not_bol);
860 printf ("not_eol: %d\t", bufp->not_eol);
861 printf ("syntax: %d\n", bufp->syntax);
862 /* Perhaps we should print the translate table? */
863}
864
865
866void
867print_double_string (where, string1, size1, string2, size2)
868 const char *where;
869 const char *string1;
870 const char *string2;
871 int size1;
872 int size2;
873{
874 unsigned this_char;
91c7b85d 875
2b83a2a4
RM
876 if (where == NULL)
877 printf ("(null)");
878 else
879 {
880 if (FIRST_STRING_P (where))
881 {
882 for (this_char = where - string1; this_char < size1; this_char++)
883 putchar (string1[this_char]);
884
91c7b85d 885 where = string2;
2b83a2a4
RM
886 }
887
888 for (this_char = where - string2; this_char < size2; this_char++)
889 putchar (string2[this_char]);
890 }
891}
892
893#else /* not DEBUG */
894
895#undef assert
896#define assert(e)
897
898#define DEBUG_STATEMENT(e)
899#define DEBUG_PRINT1(x)
900#define DEBUG_PRINT2(x1, x2)
901#define DEBUG_PRINT3(x1, x2, x3)
902#define DEBUG_PRINT4(x1, x2, x3, x4)
903#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
904#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
905
906#endif /* not DEBUG */
907\f
908/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
909 also be assigned to arbitrarily: each pattern buffer stores its own
910 syntax, so it can be changed between regex compilations. */
911/* This has no initializer because initialized variables in Emacs
912 become read-only after dumping. */
913reg_syntax_t re_syntax_options;
914
915
916/* Specify the precise syntax of regexps for compilation. This provides
917 for compatibility for various utilities which historically have
918 different, incompatible syntaxes.
919
920 The argument SYNTAX is a bit mask comprised of the various bits
921 defined in regex.h. We return the old syntax. */
922
923reg_syntax_t
924re_set_syntax (syntax)
925 reg_syntax_t syntax;
926{
927 reg_syntax_t ret = re_syntax_options;
91c7b85d 928
2b83a2a4
RM
929 re_syntax_options = syntax;
930 return ret;
931}
932\f
933/* This table gives an error message for each of the error codes listed
934 in regex.h. Obviously the order here has to be same as there.
935 POSIX doesn't require that we do anything for REG_NOERROR,
936 but why not be nice? */
937
938static const char *re_error_msgid[] =
91c7b85d
RM
939 {
940 gettext_noop ("Success"), /* REG_NOERROR */
941 gettext_noop ("No match"), /* REG_NOMATCH */
942 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
943 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
944 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
945 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
946 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
947 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
948 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
949 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
950 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
951 gettext_noop ("Invalid range end"), /* REG_ERANGE */
952 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
953 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
954 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
955 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
956 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
2b83a2a4
RM
957 };
958\f
959/* Avoiding alloca during matching, to placate r_alloc. */
960
961/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
962 searching and matching functions should not call alloca. On some
963 systems, alloca is implemented in terms of malloc, and if we're
964 using the relocating allocator routines, then malloc could cause a
965 relocation, which might (if the strings being searched are in the
966 ralloc heap) shift the data out from underneath the regexp
967 routines.
968
91c7b85d 969 Here's another reason to avoid allocation: Emacs
2b83a2a4
RM
970 processes input from X in a signal handler; processing X input may
971 call malloc; if input arrives while a matching routine is calling
972 malloc, then we're scrod. But Emacs can't just block input while
973 calling matching routines; then we don't notice interrupts when
974 they come in. So, Emacs blocks input around all regexp calls
975 except the matching calls, which it leaves unprotected, in the
976 faith that they will not malloc. */
977
978/* Normally, this is fine. */
979#define MATCH_MAY_ALLOCATE
980
981/* When using GNU C, we are not REALLY using the C alloca, no matter
982 what config.h may say. So don't take precautions for it. */
983#ifdef __GNUC__
984#undef C_ALLOCA
985#endif
986
987/* The match routines may not allocate if (1) they would do it with malloc
988 and (2) it's not safe for them to use malloc.
989 Note that if REL_ALLOC is defined, matching would not use malloc for the
990 failure stack, but we would still use it for the register vectors;
991 so REL_ALLOC should not affect this. */
992#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
993#undef MATCH_MAY_ALLOCATE
994#endif
995
996\f
997/* Failure stack declarations and macros; both re_compile_fastmap and
998 re_match_2 use a failure stack. These have to be macros because of
999 REGEX_ALLOCATE_STACK. */
91c7b85d 1000
2b83a2a4
RM
1001
1002/* Number of failure points for which to initially allocate space
1003 when matching. If this number is exceeded, we allocate more
1004 space, so it is not a hard limit. */
1005#ifndef INIT_FAILURE_ALLOC
1006#define INIT_FAILURE_ALLOC 5
1007#endif
1008
1009/* Roughly the maximum number of failure points on the stack. Would be
a641835a 1010 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
2b83a2a4
RM
1011 This is a variable only so users of regex can assign to it; we never
1012 change it ourselves. */
1013#if defined (MATCH_MAY_ALLOCATE)
5f0e6fc7 1014/* 4400 was enough to cause a crash on Alpha OSF/1,
710f7bab 1015 whose default stack limit is 2mb. */
5f0e6fc7 1016int re_max_failures = 4000;
2b83a2a4
RM
1017#else
1018int re_max_failures = 2000;
1019#endif
1020
1021union fail_stack_elt
1022{
1023 unsigned char *pointer;
1024 int integer;
1025};
1026
1027typedef union fail_stack_elt fail_stack_elt_t;
1028
1029typedef struct
1030{
1031 fail_stack_elt_t *stack;
1032 unsigned size;
1033 unsigned avail; /* Offset of next open position. */
1034} fail_stack_type;
1035
1036#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1037#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1038#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1039
1040
1041/* Define macros to initialize and free the failure stack.
1042 Do `return -2' if the alloc fails. */
1043
1044#ifdef MATCH_MAY_ALLOCATE
1045#define INIT_FAIL_STACK() \
1046 do { \
1047 fail_stack.stack = (fail_stack_elt_t *) \
1048 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1049 \
1050 if (fail_stack.stack == NULL) \
1051 return -2; \
1052 \
1053 fail_stack.size = INIT_FAILURE_ALLOC; \
1054 fail_stack.avail = 0; \
1055 } while (0)
1056
1057#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1058#else
1059#define INIT_FAIL_STACK() \
1060 do { \
1061 fail_stack.avail = 0; \
1062 } while (0)
1063
1064#define RESET_FAIL_STACK()
1065#endif
1066
1067
1068/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1069
1070 Return 1 if succeeds, and 0 if either ran out of memory
91c7b85d
RM
1071 allocating space for it or it was already too large.
1072
2b83a2a4
RM
1073 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1074
1075#define DOUBLE_FAIL_STACK(fail_stack) \
cccda09f 1076 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
2b83a2a4
RM
1077 ? 0 \
1078 : ((fail_stack).stack = (fail_stack_elt_t *) \
1079 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1080 (fail_stack).size * sizeof (fail_stack_elt_t), \
1081 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1082 \
1083 (fail_stack).stack == NULL \
1084 ? 0 \
1085 : ((fail_stack).size <<= 1, \
1086 1)))
1087
1088
91c7b85d 1089/* Push pointer POINTER on FAIL_STACK.
2b83a2a4
RM
1090 Return 1 if was able to do so and 0 if ran out of memory allocating
1091 space to do so. */
1092#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1093 ((FAIL_STACK_FULL () \
1094 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1095 ? 0 \
1096 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1097 1))
1098
1099/* Push a pointer value onto the failure stack.
1100 Assumes the variable `fail_stack'. Probably should only
1101 be called from within `PUSH_FAILURE_POINT'. */
1102#define PUSH_FAILURE_POINTER(item) \
1103 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1104
1105/* This pushes an integer-valued item onto the failure stack.
1106 Assumes the variable `fail_stack'. Probably should only
1107 be called from within `PUSH_FAILURE_POINT'. */
1108#define PUSH_FAILURE_INT(item) \
1109 fail_stack.stack[fail_stack.avail++].integer = (item)
1110
1111/* Push a fail_stack_elt_t value onto the failure stack.
1112 Assumes the variable `fail_stack'. Probably should only
1113 be called from within `PUSH_FAILURE_POINT'. */
1114#define PUSH_FAILURE_ELT(item) \
1115 fail_stack.stack[fail_stack.avail++] = (item)
1116
1117/* These three POP... operations complement the three PUSH... operations.
1118 All assume that `fail_stack' is nonempty. */
1119#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1120#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1121#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1122
1123/* Used to omit pushing failure point id's when we're not debugging. */
1124#ifdef DEBUG
1125#define DEBUG_PUSH PUSH_FAILURE_INT
1126#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1127#else
1128#define DEBUG_PUSH(item)
1129#define DEBUG_POP(item_addr)
1130#endif
1131
1132
1133/* Push the information about the state we will need
91c7b85d
RM
1134 if we ever fail back to it.
1135
2b83a2a4
RM
1136 Requires variables fail_stack, regstart, regend, reg_info, and
1137 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1138 declared.
91c7b85d 1139
2b83a2a4
RM
1140 Does `return FAILURE_CODE' if runs out of memory. */
1141
1142#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1143 do { \
1144 char *destination; \
1145 /* Must be int, so when we don't save any registers, the arithmetic \
1146 of 0 + -1 isn't done as unsigned. */ \
ba1ffaa1 1147 unsigned this_reg; \
2b83a2a4
RM
1148 \
1149 DEBUG_STATEMENT (failure_id++); \
1150 DEBUG_STATEMENT (nfailure_points_pushed++); \
1151 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1152 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1153 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1154 \
1155 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1156 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1157 \
1158 /* Ensure we have enough space allocated for what we will push. */ \
1159 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1160 { \
1161 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1162 return failure_code; \
1163 \
1164 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1165 (fail_stack).size); \
1166 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1167 } \
1168 \
1169 /* Push the info, starting with the registers. */ \
1170 DEBUG_PRINT1 ("\n"); \
1171 \
3bbceb12 1172 if (1) \
537257ae
MB
1173 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1174 this_reg++) \
1175 { \
1176 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1177 DEBUG_STATEMENT (num_regs_pushed++); \
2b83a2a4 1178 \
537257ae
MB
1179 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1180 PUSH_FAILURE_POINTER (regstart[this_reg]); \
2b83a2a4 1181 \
537257ae
MB
1182 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1183 PUSH_FAILURE_POINTER (regend[this_reg]); \
1184 \
1185 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1186 DEBUG_PRINT2 (" match_null=%d", \
1187 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1189 DEBUG_PRINT2 (" matched_something=%d", \
1190 MATCHED_SOMETHING (reg_info[this_reg])); \
1191 DEBUG_PRINT2 (" ever_matched=%d", \
1192 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1193 DEBUG_PRINT1 ("\n"); \
1194 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1195 } \
2b83a2a4
RM
1196 \
1197 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1198 PUSH_FAILURE_INT (lowest_active_reg); \
1199 \
1200 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1201 PUSH_FAILURE_INT (highest_active_reg); \
1202 \
1203 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1204 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1205 PUSH_FAILURE_POINTER (pattern_place); \
1206 \
1207 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1208 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1209 size2); \
1210 DEBUG_PRINT1 ("'\n"); \
1211 PUSH_FAILURE_POINTER (string_place); \
1212 \
1213 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1214 DEBUG_PUSH (failure_id); \
1215 } while (0)
1216
1217/* This is the number of items that are pushed and popped on the stack
1218 for each register. */
1219#define NUM_REG_ITEMS 3
1220
1221/* Individual items aside from the registers. */
1222#ifdef DEBUG
1223#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1224#else
1225#define NUM_NONREG_ITEMS 4
1226#endif
1227
1228/* We push at most this many items on the stack. */
a641835a
RM
1229/* We used to use (num_regs - 1), which is the number of registers
1230 this regexp will save; but that was changed to 5
1231 to avoid stack overflow for a regexp with lots of parens. */
1232#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2b83a2a4
RM
1233
1234/* We actually push this many items. */
537257ae 1235#define NUM_FAILURE_ITEMS \
3bbceb12 1236 (((0 \
537257ae
MB
1237 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1238 * NUM_REG_ITEMS) \
1239 + NUM_NONREG_ITEMS)
2b83a2a4
RM
1240
1241/* How many items can still be added to the stack without overflowing it. */
1242#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1243
1244
1245/* Pops what PUSH_FAIL_STACK pushes.
1246
1247 We restore into the parameters, all of which should be lvalues:
1248 STR -- the saved data position.
1249 PAT -- the saved pattern position.
1250 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1251 REGSTART, REGEND -- arrays of string positions.
1252 REG_INFO -- array of information about each subexpression.
91c7b85d 1253
2b83a2a4
RM
1254 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1255 `pend', `string1', `size1', `string2', and `size2'. */
1256
1257#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1258{ \
1259 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
ba1ffaa1 1260 unsigned this_reg; \
2b83a2a4
RM
1261 const unsigned char *string_temp; \
1262 \
1263 assert (!FAIL_STACK_EMPTY ()); \
1264 \
1265 /* Remove failure points and point to how many regs pushed. */ \
1266 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1267 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1268 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1269 \
1270 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1271 \
1272 DEBUG_POP (&failure_id); \
1273 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1274 \
1275 /* If the saved string location is NULL, it came from an \
1276 on_failure_keep_string_jump opcode, and we want to throw away the \
1277 saved NULL, thus retaining our current position in the string. */ \
1278 string_temp = POP_FAILURE_POINTER (); \
1279 if (string_temp != NULL) \
1280 str = (const char *) string_temp; \
1281 \
1282 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1283 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1284 DEBUG_PRINT1 ("'\n"); \
1285 \
1286 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1287 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1288 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1289 \
1290 /* Restore register info. */ \
1291 high_reg = (unsigned) POP_FAILURE_INT (); \
1292 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1293 \
1294 low_reg = (unsigned) POP_FAILURE_INT (); \
1295 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1296 \
3bbceb12 1297 if (1) \
537257ae
MB
1298 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1299 { \
1300 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2b83a2a4 1301 \
537257ae
MB
1302 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1303 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2b83a2a4 1304 \
537257ae
MB
1305 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1306 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2b83a2a4 1307 \
537257ae
MB
1308 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1309 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1310 } \
57aefafe
RM
1311 else \
1312 { \
1313 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1314 { \
3bbceb12 1315 reg_info[this_reg].word.integer = 0; \
57aefafe
RM
1316 regend[this_reg] = 0; \
1317 regstart[this_reg] = 0; \
1318 } \
1319 highest_active_reg = high_reg; \
1320 } \
2b83a2a4
RM
1321 \
1322 set_regs_matched_done = 0; \
1323 DEBUG_STATEMENT (nfailure_points_popped++); \
1324} /* POP_FAILURE_POINT */
1325
1326
1327\f
1328/* Structure for per-register (a.k.a. per-group) information.
1329 Other register information, such as the
1330 starting and ending positions (which are addresses), and the list of
1331 inner groups (which is a bits list) are maintained in separate
91c7b85d
RM
1332 variables.
1333
2b83a2a4
RM
1334 We are making a (strictly speaking) nonportable assumption here: that
1335 the compiler will pack our bit fields into something that fits into
1336 the type of `word', i.e., is something that fits into one item on the
1337 failure stack. */
1338
1339typedef union
1340{
1341 fail_stack_elt_t word;
1342 struct
1343 {
1344 /* This field is one if this group can match the empty string,
1345 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1346#define MATCH_NULL_UNSET_VALUE 3
1347 unsigned match_null_string_p : 2;
1348 unsigned is_active : 1;
1349 unsigned matched_something : 1;
1350 unsigned ever_matched_something : 1;
1351 } bits;
1352} register_info_type;
1353
1354#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1355#define IS_ACTIVE(R) ((R).bits.is_active)
1356#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1357#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1358
1359
1360/* Call this when have matched a real character; it sets `matched' flags
1361 for the subexpressions which we are currently inside. Also records
1362 that those subexprs have matched. */
1363#define SET_REGS_MATCHED() \
1364 do \
1365 { \
1366 if (!set_regs_matched_done) \
1367 { \
1368 unsigned r; \
1369 set_regs_matched_done = 1; \
1370 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1371 { \
1372 MATCHED_SOMETHING (reg_info[r]) \
1373 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1374 = 1; \
1375 } \
1376 } \
1377 } \
1378 while (0)
1379
1380/* Registers are set to a sentinel when they haven't yet matched. */
1381static char reg_unset_dummy;
1382#define REG_UNSET_VALUE (&reg_unset_dummy)
1383#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1384\f
1385/* Subroutine declarations and macros for regex_compile. */
1386
1387static void store_op1 (), store_op2 ();
1388static void insert_op1 (), insert_op2 ();
1389static boolean at_begline_loc_p (), at_endline_loc_p ();
1390static boolean group_in_compile_stack ();
1391static reg_errcode_t compile_range ();
1392
91c7b85d 1393/* Fetch the next character in the uncompiled pattern---translating it
2b83a2a4
RM
1394 if necessary. Also cast from a signed character in the constant
1395 string passed to us by the user to an unsigned char that we can use
1396 as an array index (in, e.g., `translate'). */
03a75825 1397#ifndef PATFETCH
2b83a2a4
RM
1398#define PATFETCH(c) \
1399 do {if (p == pend) return REG_EEND; \
1400 c = (unsigned char) *p++; \
03a75825 1401 if (translate) c = (unsigned char) translate[c]; \
2b83a2a4 1402 } while (0)
03a75825 1403#endif
2b83a2a4
RM
1404
1405/* Fetch the next character in the uncompiled pattern, with no
1406 translation. */
1407#define PATFETCH_RAW(c) \
1408 do {if (p == pend) return REG_EEND; \
1409 c = (unsigned char) *p++; \
1410 } while (0)
1411
1412/* Go backwards one character in the pattern. */
1413#define PATUNFETCH p--
1414
1415
1416/* If `translate' is non-null, return translate[D], else just D. We
1417 cast the subscript to translate because some data is declared as
1418 `char *', to avoid warnings when a string constant is passed. But
1419 when we use a character as a subscript we must make it unsigned. */
03a75825
RM
1420#ifndef TRANSLATE
1421#define TRANSLATE(d) \
1422 (translate ? (char) translate[(unsigned char) (d)] : (d))
1423#endif
2b83a2a4
RM
1424
1425
1426/* Macros for outputting the compiled pattern into `buffer'. */
1427
1428/* If the buffer isn't allocated when it comes in, use this. */
1429#define INIT_BUF_SIZE 32
1430
1431/* Make sure we have at least N more bytes of space in buffer. */
1432#define GET_BUFFER_SPACE(n) \
cccda09f 1433 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2b83a2a4
RM
1434 EXTEND_BUFFER ()
1435
1436/* Make sure we have one more byte of buffer space and then add C to it. */
1437#define BUF_PUSH(c) \
1438 do { \
1439 GET_BUFFER_SPACE (1); \
1440 *b++ = (unsigned char) (c); \
1441 } while (0)
1442
1443
1444/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1445#define BUF_PUSH_2(c1, c2) \
1446 do { \
1447 GET_BUFFER_SPACE (2); \
1448 *b++ = (unsigned char) (c1); \
1449 *b++ = (unsigned char) (c2); \
1450 } while (0)
1451
1452
1453/* As with BUF_PUSH_2, except for three bytes. */
1454#define BUF_PUSH_3(c1, c2, c3) \
1455 do { \
1456 GET_BUFFER_SPACE (3); \
1457 *b++ = (unsigned char) (c1); \
1458 *b++ = (unsigned char) (c2); \
1459 *b++ = (unsigned char) (c3); \
1460 } while (0)
1461
1462
1463/* Store a jump with opcode OP at LOC to location TO. We store a
1464 relative address offset by the three bytes the jump itself occupies. */
1465#define STORE_JUMP(op, loc, to) \
1466 store_op1 (op, loc, (to) - (loc) - 3)
1467
1468/* Likewise, for a two-argument jump. */
1469#define STORE_JUMP2(op, loc, to, arg) \
1470 store_op2 (op, loc, (to) - (loc) - 3, arg)
1471
1472/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1473#define INSERT_JUMP(op, loc, to) \
1474 insert_op1 (op, loc, (to) - (loc) - 3, b)
1475
1476/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1477#define INSERT_JUMP2(op, loc, to, arg) \
1478 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1479
1480
1481/* This is not an arbitrary limit: the arguments which represent offsets
1482 into the pattern are two bytes long. So if 2^16 bytes turns out to
1483 be too small, many things would have to change. */
1484#define MAX_BUF_SIZE (1L << 16)
1485
1486
1487/* Extend the buffer by twice its current size via realloc and
1488 reset the pointers that pointed into the old block to point to the
1489 correct places in the new one. If extending the buffer results in it
1490 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1491#define EXTEND_BUFFER() \
1492 do { \
1493 unsigned char *old_buffer = bufp->buffer; \
1494 if (bufp->allocated == MAX_BUF_SIZE) \
1495 return REG_ESIZE; \
1496 bufp->allocated <<= 1; \
1497 if (bufp->allocated > MAX_BUF_SIZE) \
1498 bufp->allocated = MAX_BUF_SIZE; \
1499 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1500 if (bufp->buffer == NULL) \
1501 return REG_ESPACE; \
1502 /* If the buffer moved, move all the pointers into it. */ \
1503 if (old_buffer != bufp->buffer) \
1504 { \
1505 b = (b - old_buffer) + bufp->buffer; \
1506 begalt = (begalt - old_buffer) + bufp->buffer; \
1507 if (fixup_alt_jump) \
1508 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1509 if (laststart) \
1510 laststart = (laststart - old_buffer) + bufp->buffer; \
1511 if (pending_exact) \
1512 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1513 } \
1514 } while (0)
1515
1516
1517/* Since we have one byte reserved for the register number argument to
1518 {start,stop}_memory, the maximum number of groups we can report
1519 things about is what fits in that byte. */
1520#define MAX_REGNUM 255
1521
1522/* But patterns can have more than `MAX_REGNUM' registers. We just
1523 ignore the excess. */
1524typedef unsigned regnum_t;
1525
1526
1527/* Macros for the compile stack. */
1528
1529/* Since offsets can go either forwards or backwards, this type needs to
1530 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1531typedef int pattern_offset_t;
1532
1533typedef struct
1534{
1535 pattern_offset_t begalt_offset;
1536 pattern_offset_t fixup_alt_jump;
1537 pattern_offset_t inner_group_offset;
91c7b85d 1538 pattern_offset_t laststart_offset;
2b83a2a4
RM
1539 regnum_t regnum;
1540} compile_stack_elt_t;
1541
1542
1543typedef struct
1544{
1545 compile_stack_elt_t *stack;
1546 unsigned size;
1547 unsigned avail; /* Offset of next open position. */
1548} compile_stack_type;
1549
1550
1551#define INIT_COMPILE_STACK_SIZE 32
1552
1553#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1554#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1555
1556/* The next available element. */
1557#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1558
1559
1560/* Set the bit for character C in a list. */
1561#define SET_LIST_BIT(c) \
1562 (b[((unsigned char) (c)) / BYTEWIDTH] \
1563 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1564
1565
1566/* Get the next unsigned number in the uncompiled pattern. */
1567#define GET_UNSIGNED_NUMBER(num) \
1568 { if (p != pend) \
1569 { \
1570 PATFETCH (c); \
1571 while (ISDIGIT (c)) \
1572 { \
1573 if (num < 0) \
1574 num = 0; \
1575 num = num * 10 + c - '0'; \
1576 if (p == pend) \
1577 break; \
1578 PATFETCH (c); \
1579 } \
1580 } \
91c7b85d 1581 }
2b83a2a4
RM
1582
1583#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1584
1585#define IS_CHAR_CLASS(string) \
1586 (STREQ (string, "alpha") || STREQ (string, "upper") \
1587 || STREQ (string, "lower") || STREQ (string, "digit") \
1588 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1589 || STREQ (string, "space") || STREQ (string, "print") \
1590 || STREQ (string, "punct") || STREQ (string, "graph") \
1591 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1592\f
1593#ifndef MATCH_MAY_ALLOCATE
1594
1595/* If we cannot allocate large objects within re_match_2_internal,
1596 we make the fail stack and register vectors global.
1597 The fail stack, we grow to the maximum size when a regexp
1598 is compiled.
1599 The register vectors, we adjust in size each time we
1600 compile a regexp, according to the number of registers it needs. */
1601
1602static fail_stack_type fail_stack;
1603
1604/* Size with which the following vectors are currently allocated.
1605 That is so we can make them bigger as needed,
1606 but never make them smaller. */
1607static int regs_allocated_size;
1608
1609static const char ** regstart, ** regend;
1610static const char ** old_regstart, ** old_regend;
1611static const char **best_regstart, **best_regend;
91c7b85d 1612static register_info_type *reg_info;
2b83a2a4
RM
1613static const char **reg_dummy;
1614static register_info_type *reg_info_dummy;
1615
1616/* Make the register vectors big enough for NUM_REGS registers,
1617 but don't make them smaller. */
1618
1619static
1620regex_grow_registers (num_regs)
1621 int num_regs;
1622{
1623 if (num_regs > regs_allocated_size)
1624 {
1625 RETALLOC_IF (regstart, num_regs, const char *);
1626 RETALLOC_IF (regend, num_regs, const char *);
1627 RETALLOC_IF (old_regstart, num_regs, const char *);
1628 RETALLOC_IF (old_regend, num_regs, const char *);
1629 RETALLOC_IF (best_regstart, num_regs, const char *);
1630 RETALLOC_IF (best_regend, num_regs, const char *);
1631 RETALLOC_IF (reg_info, num_regs, register_info_type);
1632 RETALLOC_IF (reg_dummy, num_regs, const char *);
1633 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1634
1635 regs_allocated_size = num_regs;
1636 }
1637}
1638
1639#endif /* not MATCH_MAY_ALLOCATE */
1640\f
1641/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1642 Returns one of error codes defined in `regex.h', or zero for success.
1643
1644 Assumes the `allocated' (and perhaps `buffer') and `translate'
1645 fields are set in BUFP on entry.
1646
1647 If it succeeds, results are put in BUFP (if it returns an error, the
1648 contents of BUFP are undefined):
1649 `buffer' is the compiled pattern;
1650 `syntax' is set to SYNTAX;
1651 `used' is set to the length of the compiled pattern;
1652 `fastmap_accurate' is zero;
1653 `re_nsub' is the number of subexpressions in PATTERN;
1654 `not_bol' and `not_eol' are zero;
91c7b85d 1655
2b83a2a4
RM
1656 The `fastmap' and `newline_anchor' fields are neither
1657 examined nor set. */
1658
1659/* Return, freeing storage we allocated. */
1660#define FREE_STACK_RETURN(value) \
1661 return (free (compile_stack.stack), value)
1662
1663static reg_errcode_t
1664regex_compile (pattern, size, syntax, bufp)
1665 const char *pattern;
1666 int size;
1667 reg_syntax_t syntax;
1668 struct re_pattern_buffer *bufp;
1669{
1670 /* We fetch characters from PATTERN here. Even though PATTERN is
1671 `char *' (i.e., signed), we declare these variables as unsigned, so
1672 they can be reliably used as array indices. */
1673 register unsigned char c, c1;
91c7b85d 1674
2b83a2a4
RM
1675 /* A random temporary spot in PATTERN. */
1676 const char *p1;
1677
1678 /* Points to the end of the buffer, where we should append. */
1679 register unsigned char *b;
91c7b85d 1680
2b83a2a4
RM
1681 /* Keeps track of unclosed groups. */
1682 compile_stack_type compile_stack;
1683
1684 /* Points to the current (ending) position in the pattern. */
1685 const char *p = pattern;
1686 const char *pend = pattern + size;
91c7b85d 1687
2b83a2a4 1688 /* How to translate the characters in the pattern. */
03a75825 1689 RE_TRANSLATE_TYPE translate = bufp->translate;
2b83a2a4
RM
1690
1691 /* Address of the count-byte of the most recently inserted `exactn'
1692 command. This makes it possible to tell if a new exact-match
1693 character can be added to that command or if the character requires
1694 a new `exactn' command. */
1695 unsigned char *pending_exact = 0;
1696
1697 /* Address of start of the most recently finished expression.
1698 This tells, e.g., postfix * where to find the start of its
1699 operand. Reset at the beginning of groups and alternatives. */
1700 unsigned char *laststart = 0;
1701
1702 /* Address of beginning of regexp, or inside of last group. */
1703 unsigned char *begalt;
1704
1705 /* Place in the uncompiled pattern (i.e., the {) to
1706 which to go back if the interval is invalid. */
1707 const char *beg_interval;
91c7b85d 1708
2b83a2a4
RM
1709 /* Address of the place where a forward jump should go to the end of
1710 the containing expression. Each alternative of an `or' -- except the
1711 last -- ends with a forward jump of this sort. */
1712 unsigned char *fixup_alt_jump = 0;
1713
1714 /* Counts open-groups as they are encountered. Remembered for the
1715 matching close-group on the compile stack, so the same register
1716 number is put in the stop_memory as the start_memory. */
1717 regnum_t regnum = 0;
1718
1719#ifdef DEBUG
1720 DEBUG_PRINT1 ("\nCompiling pattern: ");
1721 if (debug)
1722 {
1723 unsigned debug_count;
91c7b85d 1724
2b83a2a4
RM
1725 for (debug_count = 0; debug_count < size; debug_count++)
1726 putchar (pattern[debug_count]);
1727 putchar ('\n');
1728 }
1729#endif /* DEBUG */
1730
1731 /* Initialize the compile stack. */
1732 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1733 if (compile_stack.stack == NULL)
1734 return REG_ESPACE;
1735
1736 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1737 compile_stack.avail = 0;
1738
1739 /* Initialize the pattern buffer. */
1740 bufp->syntax = syntax;
1741 bufp->fastmap_accurate = 0;
1742 bufp->not_bol = bufp->not_eol = 0;
1743
1744 /* Set `used' to zero, so that if we return an error, the pattern
1745 printer (for debugging) will think there's no pattern. We reset it
1746 at the end. */
1747 bufp->used = 0;
91c7b85d 1748
2b83a2a4 1749 /* Always count groups, whether or not bufp->no_sub is set. */
91c7b85d 1750 bufp->re_nsub = 0;
2b83a2a4
RM
1751
1752#if !defined (emacs) && !defined (SYNTAX_TABLE)
1753 /* Initialize the syntax table. */
1754 init_syntax_once ();
1755#endif
1756
1757 if (bufp->allocated == 0)
1758 {
1759 if (bufp->buffer)
1760 { /* If zero allocated, but buffer is non-null, try to realloc
1761 enough space. This loses if buffer's address is bogus, but
1762 that is the user's responsibility. */
1763 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1764 }
1765 else
1766 { /* Caller did not allocate a buffer. Do it for them. */
1767 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1768 }
1769 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1770
1771 bufp->allocated = INIT_BUF_SIZE;
1772 }
1773
1774 begalt = b = bufp->buffer;
1775
1776 /* Loop through the uncompiled pattern until we're at the end. */
1777 while (p != pend)
1778 {
1779 PATFETCH (c);
1780
1781 switch (c)
1782 {
1783 case '^':
1784 {
1785 if ( /* If at start of pattern, it's an operator. */
1786 p == pattern + 1
1787 /* If context independent, it's an operator. */
1788 || syntax & RE_CONTEXT_INDEP_ANCHORS
1789 /* Otherwise, depends on what's come before. */
1790 || at_begline_loc_p (pattern, p, syntax))
1791 BUF_PUSH (begline);
1792 else
1793 goto normal_char;
1794 }
1795 break;
1796
1797
1798 case '$':
1799 {
1800 if ( /* If at end of pattern, it's an operator. */
91c7b85d 1801 p == pend
2b83a2a4
RM
1802 /* If context independent, it's an operator. */
1803 || syntax & RE_CONTEXT_INDEP_ANCHORS
1804 /* Otherwise, depends on what's next. */
1805 || at_endline_loc_p (p, pend, syntax))
1806 BUF_PUSH (endline);
1807 else
1808 goto normal_char;
1809 }
1810 break;
1811
1812
1813 case '+':
1814 case '?':
1815 if ((syntax & RE_BK_PLUS_QM)
1816 || (syntax & RE_LIMITED_OPS))
1817 goto normal_char;
1818 handle_plus:
1819 case '*':
1820 /* If there is no previous pattern... */
1821 if (!laststart)
1822 {
1823 if (syntax & RE_CONTEXT_INVALID_OPS)
1824 FREE_STACK_RETURN (REG_BADRPT);
1825 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1826 goto normal_char;
1827 }
1828
1829 {
1830 /* Are we optimizing this jump? */
1831 boolean keep_string_p = false;
91c7b85d 1832
2b83a2a4
RM
1833 /* 1 means zero (many) matches is allowed. */
1834 char zero_times_ok = 0, many_times_ok = 0;
1835
1836 /* If there is a sequence of repetition chars, collapse it
1837 down to just one (the right one). We can't combine
1838 interval operators with these because of, e.g., `a{2}*',
1839 which should only match an even number of `a's. */
1840
1841 for (;;)
1842 {
1843 zero_times_ok |= c != '+';
1844 many_times_ok |= c != '?';
1845
1846 if (p == pend)
1847 break;
1848
1849 PATFETCH (c);
1850
1851 if (c == '*'
1852 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1853 ;
1854
1855 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1856 {
1857 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1858
1859 PATFETCH (c1);
1860 if (!(c1 == '+' || c1 == '?'))
1861 {
1862 PATUNFETCH;
1863 PATUNFETCH;
1864 break;
1865 }
1866
1867 c = c1;
1868 }
1869 else
1870 {
1871 PATUNFETCH;
1872 break;
1873 }
1874
1875 /* If we get here, we found another repeat character. */
1876 }
1877
1878 /* Star, etc. applied to an empty pattern is equivalent
1879 to an empty pattern. */
91c7b85d 1880 if (!laststart)
2b83a2a4
RM
1881 break;
1882
1883 /* Now we know whether or not zero matches is allowed
1884 and also whether or not two or more matches is allowed. */
1885 if (many_times_ok)
1886 { /* More than one repetition is allowed, so put in at the
1887 end a backward relative jump from `b' to before the next
1888 jump we're going to put in below (which jumps from
91c7b85d 1889 laststart to after this jump).
2b83a2a4
RM
1890
1891 But if we are at the `*' in the exact sequence `.*\n',
1892 insert an unconditional jump backwards to the .,
1893 instead of the beginning of the loop. This way we only
1894 push a failure point once, instead of every time
1895 through the loop. */
1896 assert (p - 1 > pattern);
1897
1898 /* Allocate the space for the jump. */
1899 GET_BUFFER_SPACE (3);
1900
1901 /* We know we are not at the first character of the pattern,
1902 because laststart was nonzero. And we've already
1903 incremented `p', by the way, to be the character after
1904 the `*'. Do we have to do something analogous here
1905 for null bytes, because of RE_DOT_NOT_NULL? */
1906 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1907 && zero_times_ok
1908 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1909 && !(syntax & RE_DOT_NEWLINE))
1910 { /* We have .*\n. */
1911 STORE_JUMP (jump, b, laststart);
1912 keep_string_p = true;
1913 }
1914 else
1915 /* Anything else. */
1916 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1917
1918 /* We've added more stuff to the buffer. */
1919 b += 3;
1920 }
1921
1922 /* On failure, jump from laststart to b + 3, which will be the
1923 end of the buffer after this jump is inserted. */
1924 GET_BUFFER_SPACE (3);
1925 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1926 : on_failure_jump,
1927 laststart, b + 3);
1928 pending_exact = 0;
1929 b += 3;
1930
1931 if (!zero_times_ok)
1932 {
1933 /* At least one repetition is required, so insert a
1934 `dummy_failure_jump' before the initial
1935 `on_failure_jump' instruction of the loop. This
1936 effects a skip over that instruction the first time
1937 we hit that loop. */
1938 GET_BUFFER_SPACE (3);
1939 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1940 b += 3;
1941 }
1942 }
1943 break;
1944
1945
1946 case '.':
1947 laststart = b;
1948 BUF_PUSH (anychar);
1949 break;
1950
1951
1952 case '[':
1953 {
1954 boolean had_char_class = false;
1955
1956 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1957
1958 /* Ensure that we have enough space to push a charset: the
1959 opcode, the length count, and the bitset; 34 bytes in all. */
1960 GET_BUFFER_SPACE (34);
1961
1962 laststart = b;
1963
1964 /* We test `*p == '^' twice, instead of using an if
1965 statement, so we only need one BUF_PUSH. */
91c7b85d 1966 BUF_PUSH (*p == '^' ? charset_not : charset);
2b83a2a4
RM
1967 if (*p == '^')
1968 p++;
1969
1970 /* Remember the first position in the bracket expression. */
1971 p1 = p;
1972
1973 /* Push the number of bytes in the bitmap. */
1974 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1975
1976 /* Clear the whole map. */
1977 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1978
1979 /* charset_not matches newline according to a syntax bit. */
1980 if ((re_opcode_t) b[-2] == charset_not
1981 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1982 SET_LIST_BIT ('\n');
1983
1984 /* Read in characters and ranges, setting map bits. */
1985 for (;;)
1986 {
1987 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1988
1989 PATFETCH (c);
1990
1991 /* \ might escape characters inside [...] and [^...]. */
1992 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1993 {
1994 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1995
1996 PATFETCH (c1);
1997 SET_LIST_BIT (c1);
1998 continue;
1999 }
2000
2001 /* Could be the end of the bracket expression. If it's
2002 not (i.e., when the bracket expression is `[]' so
2003 far), the ']' character bit gets set way below. */
2004 if (c == ']' && p != p1 + 1)
2005 break;
2006
2007 /* Look ahead to see if it's a range when the last thing
2008 was a character class. */
2009 if (had_char_class && c == '-' && *p != ']')
2010 FREE_STACK_RETURN (REG_ERANGE);
2011
2012 /* Look ahead to see if it's a range when the last thing
2013 was a character: if this is a hyphen not at the
2014 beginning or the end of a list, then it's the range
2015 operator. */
91c7b85d
RM
2016 if (c == '-'
2017 && !(p - 2 >= pattern && p[-2] == '[')
2b83a2a4
RM
2018 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2019 && *p != ']')
2020 {
2021 reg_errcode_t ret
2022 = compile_range (&p, pend, translate, syntax, b);
2023 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2024 }
2025
2026 else if (p[0] == '-' && p[1] != ']')
2027 { /* This handles ranges made up of characters only. */
2028 reg_errcode_t ret;
2029
2030 /* Move past the `-'. */
2031 PATFETCH (c1);
91c7b85d 2032
2b83a2a4
RM
2033 ret = compile_range (&p, pend, translate, syntax, b);
2034 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2035 }
2036
2037 /* See if we're at the beginning of a possible character
2038 class. */
2039
2040 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2041 { /* Leave room for the null. */
2042 char str[CHAR_CLASS_MAX_LENGTH + 1];
2043
2044 PATFETCH (c);
2045 c1 = 0;
2046
2047 /* If pattern is `[[:'. */
2048 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2049
2050 for (;;)
2051 {
2052 PATFETCH (c);
2053 if (c == ':' || c == ']' || p == pend
2054 || c1 == CHAR_CLASS_MAX_LENGTH)
2055 break;
2056 str[c1++] = c;
2057 }
2058 str[c1] = '\0';
2059
2060 /* If isn't a word bracketed by `[:' and:`]':
91c7b85d 2061 undo the ending character, the letters, and leave
2b83a2a4
RM
2062 the leading `:' and `[' (but set bits for them). */
2063 if (c == ':' && *p == ']')
2064 {
2065 int ch;
2066 boolean is_alnum = STREQ (str, "alnum");
2067 boolean is_alpha = STREQ (str, "alpha");
2068 boolean is_blank = STREQ (str, "blank");
2069 boolean is_cntrl = STREQ (str, "cntrl");
2070 boolean is_digit = STREQ (str, "digit");
2071 boolean is_graph = STREQ (str, "graph");
2072 boolean is_lower = STREQ (str, "lower");
2073 boolean is_print = STREQ (str, "print");
2074 boolean is_punct = STREQ (str, "punct");
2075 boolean is_space = STREQ (str, "space");
2076 boolean is_upper = STREQ (str, "upper");
2077 boolean is_xdigit = STREQ (str, "xdigit");
91c7b85d 2078
2b83a2a4
RM
2079 if (!IS_CHAR_CLASS (str))
2080 FREE_STACK_RETURN (REG_ECTYPE);
2081
2082 /* Throw away the ] at the end of the character
2083 class. */
91c7b85d 2084 PATFETCH (c);
2b83a2a4
RM
2085
2086 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2087
2088 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2089 {
2090 /* This was split into 3 if's to
2091 avoid an arbitrary limit in some compiler. */
2092 if ( (is_alnum && ISALNUM (ch))
2093 || (is_alpha && ISALPHA (ch))
2094 || (is_blank && ISBLANK (ch))
2095 || (is_cntrl && ISCNTRL (ch)))
2096 SET_LIST_BIT (ch);
2097 if ( (is_digit && ISDIGIT (ch))
2098 || (is_graph && ISGRAPH (ch))
2099 || (is_lower && ISLOWER (ch))
2100 || (is_print && ISPRINT (ch)))
2101 SET_LIST_BIT (ch);
2102 if ( (is_punct && ISPUNCT (ch))
2103 || (is_space && ISSPACE (ch))
2104 || (is_upper && ISUPPER (ch))
2105 || (is_xdigit && ISXDIGIT (ch)))
2106 SET_LIST_BIT (ch);
2107 }
2108 had_char_class = true;
2109 }
2110 else
2111 {
2112 c1++;
91c7b85d 2113 while (c1--)
2b83a2a4
RM
2114 PATUNFETCH;
2115 SET_LIST_BIT ('[');
2116 SET_LIST_BIT (':');
2117 had_char_class = false;
2118 }
2119 }
2120 else
2121 {
2122 had_char_class = false;
2123 SET_LIST_BIT (c);
2124 }
2125 }
2126
2127 /* Discard any (non)matching list bytes that are all 0 at the
2128 end of the map. Decrease the map-length byte too. */
91c7b85d
RM
2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2130 b[-1]--;
2b83a2a4
RM
2131 b += b[-1];
2132 }
2133 break;
2134
2135
2136 case '(':
2137 if (syntax & RE_NO_BK_PARENS)
2138 goto handle_open;
2139 else
2140 goto normal_char;
2141
2142
2143 case ')':
2144 if (syntax & RE_NO_BK_PARENS)
2145 goto handle_close;
2146 else
2147 goto normal_char;
2148
2149
2150 case '\n':
2151 if (syntax & RE_NEWLINE_ALT)
2152 goto handle_alt;
2153 else
2154 goto normal_char;
2155
2156
2157 case '|':
2158 if (syntax & RE_NO_BK_VBAR)
2159 goto handle_alt;
2160 else
2161 goto normal_char;
2162
2163
2164 case '{':
2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2166 goto handle_interval;
2167 else
2168 goto normal_char;
2169
2170
2171 case '\\':
2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2173
2174 /* Do not translate the character after the \, so that we can
2175 distinguish, e.g., \B from \b, even if we normally would
2176 translate, e.g., B to b. */
2177 PATFETCH_RAW (c);
2178
2179 switch (c)
2180 {
2181 case '(':
2182 if (syntax & RE_NO_BK_PARENS)
2183 goto normal_backslash;
2184
2185 handle_open:
2186 bufp->re_nsub++;
2187 regnum++;
2188
2189 if (COMPILE_STACK_FULL)
91c7b85d 2190 {
2b83a2a4
RM
2191 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2192 compile_stack_elt_t);
2193 if (compile_stack.stack == NULL) return REG_ESPACE;
2194
2195 compile_stack.size <<= 1;
2196 }
2197
2198 /* These are the values to restore when we hit end of this
2199 group. They are all relative offsets, so that if the
2200 whole pattern moves because of realloc, they will still
2201 be valid. */
2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
91c7b85d 2203 COMPILE_STACK_TOP.fixup_alt_jump
2b83a2a4
RM
2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2206 COMPILE_STACK_TOP.regnum = regnum;
2207
2208 /* We will eventually replace the 0 with the number of
2209 groups inner to this one. But do not push a
2210 start_memory for groups beyond the last one we can
2211 represent in the compiled pattern. */
2212 if (regnum <= MAX_REGNUM)
2213 {
2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2215 BUF_PUSH_3 (start_memory, regnum, 0);
2216 }
91c7b85d 2217
2b83a2a4
RM
2218 compile_stack.avail++;
2219
2220 fixup_alt_jump = 0;
2221 laststart = 0;
2222 begalt = b;
2223 /* If we've reached MAX_REGNUM groups, then this open
2224 won't actually generate any code, so we'll have to
2225 clear pending_exact explicitly. */
2226 pending_exact = 0;
2227 break;
2228
2229
2230 case ')':
2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2232
2233 if (COMPILE_STACK_EMPTY)
2234 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2235 goto normal_backslash;
2236 else
2237 FREE_STACK_RETURN (REG_ERPAREN);
2238
2239 handle_close:
2240 if (fixup_alt_jump)
2241 { /* Push a dummy failure point at the end of the
2242 alternative for a possible future
2243 `pop_failure_jump' to pop. See comments at
2244 `push_dummy_failure' in `re_match_2'. */
2245 BUF_PUSH (push_dummy_failure);
91c7b85d 2246
2b83a2a4
RM
2247 /* We allocated space for this jump when we assigned
2248 to `fixup_alt_jump', in the `handle_alt' case below. */
2249 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2250 }
2251
2252 /* See similar code for backslashed left paren above. */
2253 if (COMPILE_STACK_EMPTY)
2254 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2255 goto normal_char;
2256 else
2257 FREE_STACK_RETURN (REG_ERPAREN);
2258
2259 /* Since we just checked for an empty stack above, this
2260 ``can't happen''. */
2261 assert (compile_stack.avail != 0);
2262 {
2263 /* We don't just want to restore into `regnum', because
2264 later groups should continue to be numbered higher,
2265 as in `(ab)c(de)' -- the second group is #2. */
2266 regnum_t this_group_regnum;
2267
91c7b85d 2268 compile_stack.avail--;
2b83a2a4
RM
2269 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2270 fixup_alt_jump
2271 = COMPILE_STACK_TOP.fixup_alt_jump
91c7b85d 2272 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2b83a2a4
RM
2273 : 0;
2274 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2275 this_group_regnum = COMPILE_STACK_TOP.regnum;
2276 /* If we've reached MAX_REGNUM groups, then this open
2277 won't actually generate any code, so we'll have to
2278 clear pending_exact explicitly. */
2279 pending_exact = 0;
2280
2281 /* We're at the end of the group, so now we know how many
2282 groups were inside this one. */
2283 if (this_group_regnum <= MAX_REGNUM)
2284 {
2285 unsigned char *inner_group_loc
2286 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
91c7b85d 2287
2b83a2a4
RM
2288 *inner_group_loc = regnum - this_group_regnum;
2289 BUF_PUSH_3 (stop_memory, this_group_regnum,
2290 regnum - this_group_regnum);
2291 }
2292 }
2293 break;
2294
2295
2296 case '|': /* `\|'. */
2297 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2298 goto normal_backslash;
2299 handle_alt:
2300 if (syntax & RE_LIMITED_OPS)
2301 goto normal_char;
2302
2303 /* Insert before the previous alternative a jump which
2304 jumps to this alternative if the former fails. */
2305 GET_BUFFER_SPACE (3);
2306 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2307 pending_exact = 0;
2308 b += 3;
2309
2310 /* The alternative before this one has a jump after it
2311 which gets executed if it gets matched. Adjust that
2312 jump so it will jump to this alternative's analogous
2313 jump (put in below, which in turn will jump to the next
2314 (if any) alternative's such jump, etc.). The last such
2315 jump jumps to the correct final destination. A picture:
91c7b85d
RM
2316 _____ _____
2317 | | | |
2318 | v | v
2319 a | b | c
2b83a2a4
RM
2320
2321 If we are at `b', then fixup_alt_jump right now points to a
2322 three-byte space after `a'. We'll put in the jump, set
2323 fixup_alt_jump to right after `b', and leave behind three
2324 bytes which we'll fill in when we get to after `c'. */
2325
2326 if (fixup_alt_jump)
2327 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2328
2329 /* Mark and leave space for a jump after this alternative,
2330 to be filled in later either by next alternative or
2331 when know we're at the end of a series of alternatives. */
2332 fixup_alt_jump = b;
2333 GET_BUFFER_SPACE (3);
2334 b += 3;
2335
2336 laststart = 0;
2337 begalt = b;
2338 break;
2339
2340
91c7b85d 2341 case '{':
2b83a2a4
RM
2342 /* If \{ is a literal. */
2343 if (!(syntax & RE_INTERVALS)
91c7b85d 2344 /* If we're at `\{' and it's not the open-interval
2b83a2a4
RM
2345 operator. */
2346 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2347 || (p - 2 == pattern && p == pend))
2348 goto normal_backslash;
2349
2350 handle_interval:
2351 {
2352 /* If got here, then the syntax allows intervals. */
2353
2354 /* At least (most) this many matches must be made. */
2355 int lower_bound = -1, upper_bound = -1;
2356
2357 beg_interval = p - 1;
2358
2359 if (p == pend)
2360 {
2361 if (syntax & RE_NO_BK_BRACES)
2362 goto unfetch_interval;
2363 else
2364 FREE_STACK_RETURN (REG_EBRACE);
2365 }
2366
2367 GET_UNSIGNED_NUMBER (lower_bound);
2368
2369 if (c == ',')
2370 {
2371 GET_UNSIGNED_NUMBER (upper_bound);
2372 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2373 }
2374 else
2375 /* Interval such as `{1}' => match exactly once. */
2376 upper_bound = lower_bound;
2377
2378 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2379 || lower_bound > upper_bound)
2380 {
2381 if (syntax & RE_NO_BK_BRACES)
2382 goto unfetch_interval;
91c7b85d 2383 else
2b83a2a4
RM
2384 FREE_STACK_RETURN (REG_BADBR);
2385 }
2386
91c7b85d 2387 if (!(syntax & RE_NO_BK_BRACES))
2b83a2a4
RM
2388 {
2389 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2390
2391 PATFETCH (c);
2392 }
2393
2394 if (c != '}')
2395 {
2396 if (syntax & RE_NO_BK_BRACES)
2397 goto unfetch_interval;
91c7b85d 2398 else
2b83a2a4
RM
2399 FREE_STACK_RETURN (REG_BADBR);
2400 }
2401
2402 /* We just parsed a valid interval. */
2403
2404 /* If it's invalid to have no preceding re. */
2405 if (!laststart)
2406 {
2407 if (syntax & RE_CONTEXT_INVALID_OPS)
2408 FREE_STACK_RETURN (REG_BADRPT);
2409 else if (syntax & RE_CONTEXT_INDEP_OPS)
2410 laststart = b;
2411 else
2412 goto unfetch_interval;
2413 }
2414
2415 /* If the upper bound is zero, don't want to succeed at
2416 all; jump from `laststart' to `b + 3', which will be
2417 the end of the buffer after we insert the jump. */
2418 if (upper_bound == 0)
2419 {
2420 GET_BUFFER_SPACE (3);
2421 INSERT_JUMP (jump, laststart, b + 3);
2422 b += 3;
2423 }
2424
2425 /* Otherwise, we have a nontrivial interval. When
2426 we're all done, the pattern will look like:
2427 set_number_at <jump count> <upper bound>
2428 set_number_at <succeed_n count> <lower bound>
2429 succeed_n <after jump addr> <succeed_n count>
2430 <body of loop>
2431 jump_n <succeed_n addr> <jump count>
2432 (The upper bound and `jump_n' are omitted if
2433 `upper_bound' is 1, though.) */
91c7b85d 2434 else
2b83a2a4
RM
2435 { /* If the upper bound is > 1, we need to insert
2436 more at the end of the loop. */
2437 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2438
2439 GET_BUFFER_SPACE (nbytes);
2440
2441 /* Initialize lower bound of the `succeed_n', even
2442 though it will be set during matching by its
2443 attendant `set_number_at' (inserted next),
2444 because `re_compile_fastmap' needs to know.
2445 Jump to the `jump_n' we might insert below. */
2446 INSERT_JUMP2 (succeed_n, laststart,
2447 b + 5 + (upper_bound > 1) * 5,
2448 lower_bound);
2449 b += 5;
2450
91c7b85d 2451 /* Code to initialize the lower bound. Insert
2b83a2a4
RM
2452 before the `succeed_n'. The `5' is the last two
2453 bytes of this `set_number_at', plus 3 bytes of
2454 the following `succeed_n'. */
2455 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2456 b += 5;
2457
2458 if (upper_bound > 1)
2459 { /* More than one repetition is allowed, so
2460 append a backward jump to the `succeed_n'
2461 that starts this interval.
91c7b85d 2462
2b83a2a4
RM
2463 When we've reached this during matching,
2464 we'll have matched the interval once, so
2465 jump back only `upper_bound - 1' times. */
2466 STORE_JUMP2 (jump_n, b, laststart + 5,
2467 upper_bound - 1);
2468 b += 5;
2469
2470 /* The location we want to set is the second
2471 parameter of the `jump_n'; that is `b-2' as
2472 an absolute address. `laststart' will be
2473 the `set_number_at' we're about to insert;
2474 `laststart+3' the number to set, the source
2475 for the relative address. But we are
2476 inserting into the middle of the pattern --
2477 so everything is getting moved up by 5.
2478 Conclusion: (b - 2) - (laststart + 3) + 5,
2479 i.e., b - laststart.
91c7b85d 2480
2b83a2a4
RM
2481 We insert this at the beginning of the loop
2482 so that if we fail during matching, we'll
2483 reinitialize the bounds. */
2484 insert_op2 (set_number_at, laststart, b - laststart,
2485 upper_bound - 1, b);
2486 b += 5;
2487 }
2488 }
2489 pending_exact = 0;
2490 beg_interval = NULL;
2491 }
2492 break;
2493
2494 unfetch_interval:
2495 /* If an invalid interval, match the characters as literals. */
2496 assert (beg_interval);
2497 p = beg_interval;
2498 beg_interval = NULL;
2499
2500 /* normal_char and normal_backslash need `c'. */
91c7b85d 2501 PATFETCH (c);
2b83a2a4
RM
2502
2503 if (!(syntax & RE_NO_BK_BRACES))
2504 {
2505 if (p > pattern && p[-1] == '\\')
2506 goto normal_backslash;
2507 }
2508 goto normal_char;
2509
2510#ifdef emacs
2511 /* There is no way to specify the before_dot and after_dot
2512 operators. rms says this is ok. --karl */
2513 case '=':
2514 BUF_PUSH (at_dot);
2515 break;
2516
91c7b85d 2517 case 's':
2b83a2a4
RM
2518 laststart = b;
2519 PATFETCH (c);
2520 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2521 break;
2522
2523 case 'S':
2524 laststart = b;
2525 PATFETCH (c);
2526 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2527 break;
2528#endif /* emacs */
2529
2530
2531 case 'w':
2532 laststart = b;
2533 BUF_PUSH (wordchar);
2534 break;
2535
2536
2537 case 'W':
2538 laststart = b;
2539 BUF_PUSH (notwordchar);
2540 break;
2541
2542
2543 case '<':
2544 BUF_PUSH (wordbeg);
2545 break;
2546
2547 case '>':
2548 BUF_PUSH (wordend);
2549 break;
2550
2551 case 'b':
2552 BUF_PUSH (wordbound);
2553 break;
2554
2555 case 'B':
2556 BUF_PUSH (notwordbound);
2557 break;
2558
2559 case '`':
2560 BUF_PUSH (begbuf);
2561 break;
2562
2563 case '\'':
2564 BUF_PUSH (endbuf);
2565 break;
2566
2567 case '1': case '2': case '3': case '4': case '5':
2568 case '6': case '7': case '8': case '9':
2569 if (syntax & RE_NO_BK_REFS)
2570 goto normal_char;
2571
2572 c1 = c - '0';
2573
2574 if (c1 > regnum)
2575 FREE_STACK_RETURN (REG_ESUBREG);
2576
2577 /* Can't back reference to a subexpression if inside of it. */
2578 if (group_in_compile_stack (compile_stack, c1))
2579 goto normal_char;
2580
2581 laststart = b;
2582 BUF_PUSH_2 (duplicate, c1);
2583 break;
2584
2585
2586 case '+':
2587 case '?':
2588 if (syntax & RE_BK_PLUS_QM)
2589 goto handle_plus;
2590 else
2591 goto normal_backslash;
2592
2593 default:
2594 normal_backslash:
2595 /* You might think it would be useful for \ to mean
2596 not to translate; but if we don't translate it
2597 it will never match anything. */
2598 c = TRANSLATE (c);
2599 goto normal_char;
2600 }
2601 break;
2602
2603
2604 default:
2605 /* Expects the character in `c'. */
2606 normal_char:
2607 /* If no exactn currently being built. */
91c7b85d 2608 if (!pending_exact
2b83a2a4
RM
2609
2610 /* If last exactn not at current position. */
2611 || pending_exact + *pending_exact + 1 != b
91c7b85d 2612
2b83a2a4
RM
2613 /* We have only one byte following the exactn for the count. */
2614 || *pending_exact == (1 << BYTEWIDTH) - 1
2615
2616 /* If followed by a repetition operator. */
2617 || *p == '*' || *p == '^'
2618 || ((syntax & RE_BK_PLUS_QM)
2619 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2620 : (*p == '+' || *p == '?'))
2621 || ((syntax & RE_INTERVALS)
2622 && ((syntax & RE_NO_BK_BRACES)
2623 ? *p == '{'
2624 : (p[0] == '\\' && p[1] == '{'))))
2625 {
2626 /* Start building a new exactn. */
91c7b85d 2627
2b83a2a4
RM
2628 laststart = b;
2629
2630 BUF_PUSH_2 (exactn, 0);
2631 pending_exact = b - 1;
2632 }
91c7b85d 2633
2b83a2a4
RM
2634 BUF_PUSH (c);
2635 (*pending_exact)++;
2636 break;
2637 } /* switch (c) */
2638 } /* while p != pend */
2639
91c7b85d 2640
2b83a2a4 2641 /* Through the pattern now. */
91c7b85d 2642
2b83a2a4
RM
2643 if (fixup_alt_jump)
2644 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2645
91c7b85d 2646 if (!COMPILE_STACK_EMPTY)
2b83a2a4
RM
2647 FREE_STACK_RETURN (REG_EPAREN);
2648
2649 /* If we don't want backtracking, force success
2650 the first time we reach the end of the compiled pattern. */
2651 if (syntax & RE_NO_POSIX_BACKTRACKING)
2652 BUF_PUSH (succeed);
2653
2654 free (compile_stack.stack);
2655
2656 /* We have succeeded; set the length of the buffer. */
2657 bufp->used = b - bufp->buffer;
2658
2659#ifdef DEBUG
2660 if (debug)
2661 {
2662 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2663 print_compiled_pattern (bufp);
2664 }
2665#endif /* DEBUG */
2666
2667#ifndef MATCH_MAY_ALLOCATE
2668 /* Initialize the failure stack to the largest possible stack. This
2669 isn't necessary unless we're trying to avoid calling alloca in
2670 the search and match routines. */
2671 {
2672 int num_regs = bufp->re_nsub + 1;
2673
2674 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2675 is strictly greater than re_max_failures, the largest possible stack
2676 is 2 * re_max_failures failure points. */
2677 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2678 {
2679 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2680
2681#ifdef emacs
2682 if (! fail_stack.stack)
2683 fail_stack.stack
91c7b85d 2684 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2b83a2a4
RM
2685 * sizeof (fail_stack_elt_t));
2686 else
2687 fail_stack.stack
2688 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2689 (fail_stack.size
2690 * sizeof (fail_stack_elt_t)));
2691#else /* not emacs */
2692 if (! fail_stack.stack)
2693 fail_stack.stack
91c7b85d 2694 = (fail_stack_elt_t *) malloc (fail_stack.size
2b83a2a4
RM
2695 * sizeof (fail_stack_elt_t));
2696 else
2697 fail_stack.stack
2698 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2699 (fail_stack.size
2700 * sizeof (fail_stack_elt_t)));
2701#endif /* not emacs */
2702 }
2703
2704 regex_grow_registers (num_regs);
2705 }
2706#endif /* not MATCH_MAY_ALLOCATE */
2707
2708 return REG_NOERROR;
2709} /* regex_compile */
2710\f
2711/* Subroutines for `regex_compile'. */
2712
2713/* Store OP at LOC followed by two-byte integer parameter ARG. */
2714
2715static void
2716store_op1 (op, loc, arg)
2717 re_opcode_t op;
2718 unsigned char *loc;
2719 int arg;
2720{
2721 *loc = (unsigned char) op;
2722 STORE_NUMBER (loc + 1, arg);
2723}
2724
2725
2726/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2727
2728static void
2729store_op2 (op, loc, arg1, arg2)
2730 re_opcode_t op;
2731 unsigned char *loc;
2732 int arg1, arg2;
2733{
2734 *loc = (unsigned char) op;
2735 STORE_NUMBER (loc + 1, arg1);
2736 STORE_NUMBER (loc + 3, arg2);
2737}
2738
2739
2740/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2741 for OP followed by two-byte integer parameter ARG. */
2742
2743static void
2744insert_op1 (op, loc, arg, end)
2745 re_opcode_t op;
2746 unsigned char *loc;
2747 int arg;
91c7b85d 2748 unsigned char *end;
2b83a2a4
RM
2749{
2750 register unsigned char *pfrom = end;
2751 register unsigned char *pto = end + 3;
2752
2753 while (pfrom != loc)
2754 *--pto = *--pfrom;
91c7b85d 2755
2b83a2a4
RM
2756 store_op1 (op, loc, arg);
2757}
2758
2759
2760/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2761
2762static void
2763insert_op2 (op, loc, arg1, arg2, end)
2764 re_opcode_t op;
2765 unsigned char *loc;
2766 int arg1, arg2;
91c7b85d 2767 unsigned char *end;
2b83a2a4
RM
2768{
2769 register unsigned char *pfrom = end;
2770 register unsigned char *pto = end + 5;
2771
2772 while (pfrom != loc)
2773 *--pto = *--pfrom;
91c7b85d 2774
2b83a2a4
RM
2775 store_op2 (op, loc, arg1, arg2);
2776}
2777
2778
2779/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2780 after an alternative or a begin-subexpression. We assume there is at
2781 least one character before the ^. */
2782
2783static boolean
2784at_begline_loc_p (pattern, p, syntax)
2785 const char *pattern, *p;
2786 reg_syntax_t syntax;
2787{
2788 const char *prev = p - 2;
2789 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
91c7b85d 2790
2b83a2a4
RM
2791 return
2792 /* After a subexpression? */
2793 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2794 /* After an alternative? */
2795 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2796}
2797
2798
2799/* The dual of at_begline_loc_p. This one is for $. We assume there is
2800 at least one character after the $, i.e., `P < PEND'. */
2801
2802static boolean
2803at_endline_loc_p (p, pend, syntax)
2804 const char *p, *pend;
2805 int syntax;
2806{
2807 const char *next = p;
2808 boolean next_backslash = *next == '\\';
5bf62f2d 2809 const char *next_next = p + 1 < pend ? p + 1 : 0;
91c7b85d 2810
2b83a2a4
RM
2811 return
2812 /* Before a subexpression? */
2813 (syntax & RE_NO_BK_PARENS ? *next == ')'
2814 : next_backslash && next_next && *next_next == ')')
2815 /* Before an alternative? */
2816 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2817 : next_backslash && next_next && *next_next == '|');
2818}
2819
2820
91c7b85d 2821/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2b83a2a4
RM
2822 false if it's not. */
2823
2824static boolean
2825group_in_compile_stack (compile_stack, regnum)
2826 compile_stack_type compile_stack;
2827 regnum_t regnum;
2828{
2829 int this_element;
2830
91c7b85d
RM
2831 for (this_element = compile_stack.avail - 1;
2832 this_element >= 0;
2b83a2a4
RM
2833 this_element--)
2834 if (compile_stack.stack[this_element].regnum == regnum)
2835 return true;
2836
2837 return false;
2838}
2839
2840
2841/* Read the ending character of a range (in a bracket expression) from the
2842 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2843 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2844 Then we set the translation of all bits between the starting and
2845 ending characters (inclusive) in the compiled pattern B.
91c7b85d 2846
2b83a2a4 2847 Return an error code.
91c7b85d 2848
2b83a2a4
RM
2849 We use these short variable names so we can use the same macros as
2850 `regex_compile' itself. */
2851
2852static reg_errcode_t
2853compile_range (p_ptr, pend, translate, syntax, b)
2854 const char **p_ptr, *pend;
03a75825 2855 RE_TRANSLATE_TYPE translate;
2b83a2a4
RM
2856 reg_syntax_t syntax;
2857 unsigned char *b;
2858{
2859 unsigned this_char;
2860
2861 const char *p = *p_ptr;
cccda09f 2862 unsigned int range_start, range_end;
91c7b85d 2863
2b83a2a4
RM
2864 if (p == pend)
2865 return REG_ERANGE;
2866
2867 /* Even though the pattern is a signed `char *', we need to fetch
2868 with unsigned char *'s; if the high bit of the pattern character
2869 is set, the range endpoints will be negative if we fetch using a
2870 signed char *.
2871
91c7b85d 2872 We also want to fetch the endpoints without translating them; the
2b83a2a4
RM
2873 appropriate translation is done in the bit-setting loop below. */
2874 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2875 range_start = ((const unsigned char *) p)[-2];
2876 range_end = ((const unsigned char *) p)[0];
2877
2878 /* Have to increment the pointer into the pattern string, so the
2879 caller isn't still at the ending character. */
2880 (*p_ptr)++;
2881
2882 /* If the start is after the end, the range is empty. */
2883 if (range_start > range_end)
2884 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2885
2886 /* Here we see why `this_char' has to be larger than an `unsigned
2887 char' -- the range is inclusive, so if `range_end' == 0xff
2888 (assuming 8-bit characters), we would otherwise go into an infinite
2889 loop, since all characters <= 0xff. */
2890 for (this_char = range_start; this_char <= range_end; this_char++)
2891 {
2892 SET_LIST_BIT (TRANSLATE (this_char));
2893 }
91c7b85d 2894
2b83a2a4
RM
2895 return REG_NOERROR;
2896}
2897\f
2898/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2899 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2900 characters can start a string that matches the pattern. This fastmap
2901 is used by re_search to skip quickly over impossible starting points.
2902
2903 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2904 area as BUFP->fastmap.
91c7b85d 2905
2b83a2a4
RM
2906 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2907 the pattern buffer.
2908
2909 Returns 0 if we succeed, -2 if an internal error. */
2910
2911int
2912re_compile_fastmap (bufp)
2913 struct re_pattern_buffer *bufp;
2914{
2915 int j, k;
2916#ifdef MATCH_MAY_ALLOCATE
2917 fail_stack_type fail_stack;
2918#endif
2919#ifndef REGEX_MALLOC
2920 char *destination;
2921#endif
2922 /* We don't push any register information onto the failure stack. */
2923 unsigned num_regs = 0;
91c7b85d 2924
2b83a2a4
RM
2925 register char *fastmap = bufp->fastmap;
2926 unsigned char *pattern = bufp->buffer;
2927 unsigned long size = bufp->used;
2928 unsigned char *p = pattern;
2929 register unsigned char *pend = pattern + size;
2930
2931 /* This holds the pointer to the failure stack, when
2932 it is allocated relocatably. */
2933 fail_stack_elt_t *failure_stack_ptr;
2934
2935 /* Assume that each path through the pattern can be null until
2936 proven otherwise. We set this false at the bottom of switch
2937 statement, to which we get only if a particular path doesn't
2938 match the empty string. */
2939 boolean path_can_be_null = true;
2940
2941 /* We aren't doing a `succeed_n' to begin with. */
2942 boolean succeed_n_p = false;
2943
2944 assert (fastmap != NULL && p != NULL);
91c7b85d 2945
2b83a2a4
RM
2946 INIT_FAIL_STACK ();
2947 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2948 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2949 bufp->can_be_null = 0;
91c7b85d 2950
2b83a2a4
RM
2951 while (1)
2952 {
2953 if (p == pend || *p == succeed)
2954 {
2955 /* We have reached the (effective) end of pattern. */
2956 if (!FAIL_STACK_EMPTY ())
2957 {
2958 bufp->can_be_null |= path_can_be_null;
2959
2960 /* Reset for next path. */
2961 path_can_be_null = true;
2962
2963 p = fail_stack.stack[--fail_stack.avail].pointer;
2964
2965 continue;
2966 }
2967 else
2968 break;
2969 }
2970
2971 /* We should never be about to go beyond the end of the pattern. */
2972 assert (p < pend);
91c7b85d 2973
2b83a2a4
RM
2974 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2975 {
2976
2977 /* I guess the idea here is to simply not bother with a fastmap
2978 if a backreference is used, since it's too hard to figure out
2979 the fastmap for the corresponding group. Setting
2980 `can_be_null' stops `re_search_2' from using the fastmap, so
2981 that is all we do. */
2982 case duplicate:
2983 bufp->can_be_null = 1;
2984 goto done;
2985
2986
2987 /* Following are the cases which match a character. These end
2988 with `break'. */
2989
2990 case exactn:
2991 fastmap[p[1]] = 1;
2992 break;
2993
2994
2995 case charset:
2996 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2997 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2998 fastmap[j] = 1;
2999 break;
3000
3001
3002 case charset_not:
3003 /* Chars beyond end of map must be allowed. */
3004 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3005 fastmap[j] = 1;
3006
3007 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3008 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3009 fastmap[j] = 1;
3010 break;
3011
3012
3013 case wordchar:
3014 for (j = 0; j < (1 << BYTEWIDTH); j++)
3015 if (SYNTAX (j) == Sword)
3016 fastmap[j] = 1;
3017 break;
3018
3019
3020 case notwordchar:
3021 for (j = 0; j < (1 << BYTEWIDTH); j++)
3022 if (SYNTAX (j) != Sword)
3023 fastmap[j] = 1;
3024 break;
3025
3026
3027 case anychar:
3028 {
3029 int fastmap_newline = fastmap['\n'];
3030
3031 /* `.' matches anything ... */
3032 for (j = 0; j < (1 << BYTEWIDTH); j++)
3033 fastmap[j] = 1;
3034
3035 /* ... except perhaps newline. */
3036 if (!(bufp->syntax & RE_DOT_NEWLINE))
3037 fastmap['\n'] = fastmap_newline;
3038
3039 /* Return if we have already set `can_be_null'; if we have,
3040 then the fastmap is irrelevant. Something's wrong here. */
3041 else if (bufp->can_be_null)
3042 goto done;
3043
3044 /* Otherwise, have to check alternative paths. */
3045 break;
3046 }
3047
3048#ifdef emacs
3049 case syntaxspec:
3050 k = *p++;
3051 for (j = 0; j < (1 << BYTEWIDTH); j++)
3052 if (SYNTAX (j) == (enum syntaxcode) k)
3053 fastmap[j] = 1;
3054 break;
3055
3056
3057 case notsyntaxspec:
3058 k = *p++;
3059 for (j = 0; j < (1 << BYTEWIDTH); j++)
3060 if (SYNTAX (j) != (enum syntaxcode) k)
3061 fastmap[j] = 1;
3062 break;
3063
3064
3065 /* All cases after this match the empty string. These end with
3066 `continue'. */
3067
3068
3069 case before_dot:
3070 case at_dot:
3071 case after_dot:
3072 continue;
44c8d1a2 3073#endif /* emacs */
2b83a2a4
RM
3074
3075
3076 case no_op:
3077 case begline:
3078 case endline:
3079 case begbuf:
3080 case endbuf:
3081 case wordbound:
3082 case notwordbound:
3083 case wordbeg:
3084 case wordend:
3085 case push_dummy_failure:
3086 continue;
3087
3088
3089 case jump_n:
3090 case pop_failure_jump:
3091 case maybe_pop_jump:
3092 case jump:
3093 case jump_past_alt:
3094 case dummy_failure_jump:
3095 EXTRACT_NUMBER_AND_INCR (j, p);
91c7b85d 3096 p += j;
2b83a2a4
RM
3097 if (j > 0)
3098 continue;
91c7b85d 3099
2b83a2a4
RM
3100 /* Jump backward implies we just went through the body of a
3101 loop and matched nothing. Opcode jumped to should be
3102 `on_failure_jump' or `succeed_n'. Just treat it like an
3103 ordinary jump. For a * loop, it has pushed its failure
3104 point already; if so, discard that as redundant. */
3105 if ((re_opcode_t) *p != on_failure_jump
3106 && (re_opcode_t) *p != succeed_n)
3107 continue;
3108
3109 p++;
3110 EXTRACT_NUMBER_AND_INCR (j, p);
91c7b85d
RM
3111 p += j;
3112
2b83a2a4 3113 /* If what's on the stack is where we are now, pop it. */
91c7b85d 3114 if (!FAIL_STACK_EMPTY ()
2b83a2a4
RM
3115 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3116 fail_stack.avail--;
3117
3118 continue;
3119
3120
3121 case on_failure_jump:
3122 case on_failure_keep_string_jump:
3123 handle_on_failure_jump:
3124 EXTRACT_NUMBER_AND_INCR (j, p);
3125
3126 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3127 end of the pattern. We don't want to push such a point,
3128 since when we restore it above, entering the switch will
3129 increment `p' past the end of the pattern. We don't need
3130 to push such a point since we obviously won't find any more
3131 fastmap entries beyond `pend'. Such a pattern can match
3132 the null string, though. */
3133 if (p + j < pend)
3134 {
3135 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3136 {
3137 RESET_FAIL_STACK ();
3138 return -2;
3139 }
3140 }
3141 else
3142 bufp->can_be_null = 1;
3143
3144 if (succeed_n_p)
3145 {
3146 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3147 succeed_n_p = false;
3148 }
3149
3150 continue;
3151
3152
3153 case succeed_n:
3154 /* Get to the number of times to succeed. */
91c7b85d 3155 p += 2;
2b83a2a4
RM
3156
3157 /* Increment p past the n for when k != 0. */
3158 EXTRACT_NUMBER_AND_INCR (k, p);
3159 if (k == 0)
3160 {
3161 p -= 4;
3162 succeed_n_p = true; /* Spaghetti code alert. */
3163 goto handle_on_failure_jump;
3164 }
3165 continue;
3166
3167
3168 case set_number_at:
3169 p += 4;
3170 continue;
3171
3172
3173 case start_memory:
3174 case stop_memory:
3175 p += 2;
3176 continue;
3177
3178
3179 default:
3180 abort (); /* We have listed all the cases. */
3181 } /* switch *p++ */
3182
3183 /* Getting here means we have found the possible starting
3184 characters for one path of the pattern -- and that the empty
3185 string does not match. We need not follow this path further.
3186 Instead, look at the next alternative (remembered on the
3187 stack), or quit if no more. The test at the top of the loop
3188 does these things. */
3189 path_can_be_null = false;
3190 p = pend;
3191 } /* while p */
3192
3193 /* Set `can_be_null' for the last path (also the first path, if the
3194 pattern is empty). */
3195 bufp->can_be_null |= path_can_be_null;
3196
3197 done:
3198 RESET_FAIL_STACK ();
3199 return 0;
3200} /* re_compile_fastmap */
3201\f
3202/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3203 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3204 this memory for recording register information. STARTS and ENDS
3205 must be allocated using the malloc library routine, and must each
3206 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3207
3208 If NUM_REGS == 0, then subsequent matches should allocate their own
3209 register data.
3210
3211 Unless this function is called, the first search or match using
3212 PATTERN_BUFFER will allocate its own register data, without
3213 freeing the old data. */
3214
3215void
3216re_set_registers (bufp, regs, num_regs, starts, ends)
3217 struct re_pattern_buffer *bufp;
3218 struct re_registers *regs;
3219 unsigned num_regs;
3220 regoff_t *starts, *ends;
3221{
3222 if (num_regs)
3223 {
3224 bufp->regs_allocated = REGS_REALLOCATE;
3225 regs->num_regs = num_regs;
3226 regs->start = starts;
3227 regs->end = ends;
3228 }
3229 else
3230 {
3231 bufp->regs_allocated = REGS_UNALLOCATED;
3232 regs->num_regs = 0;
3233 regs->start = regs->end = (regoff_t *) 0;
3234 }
3235}
3236\f
3237/* Searching routines. */
3238
3239/* Like re_search_2, below, but only one string is specified, and
3240 doesn't let you say where to stop matching. */
3241
3242int
3243re_search (bufp, string, size, startpos, range, regs)
3244 struct re_pattern_buffer *bufp;
3245 const char *string;
3246 int size, startpos, range;
3247 struct re_registers *regs;
3248{
91c7b85d 3249 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2b83a2a4
RM
3250 regs, size);
3251}
3252
3253
3254/* Using the compiled pattern in BUFP->buffer, first tries to match the
3255 virtual concatenation of STRING1 and STRING2, starting first at index
3256 STARTPOS, then at STARTPOS + 1, and so on.
91c7b85d 3257
2b83a2a4 3258 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
91c7b85d 3259
2b83a2a4
RM
3260 RANGE is how far to scan while trying to match. RANGE = 0 means try
3261 only at STARTPOS; in general, the last start tried is STARTPOS +
3262 RANGE.
91c7b85d 3263
2b83a2a4
RM
3264 In REGS, return the indices of the virtual concatenation of STRING1
3265 and STRING2 that matched the entire BUFP->buffer and its contained
3266 subexpressions.
91c7b85d 3267
2b83a2a4
RM
3268 Do not consider matching one past the index STOP in the virtual
3269 concatenation of STRING1 and STRING2.
3270
3271 We return either the position in the strings at which the match was
3272 found, -1 if no match, or -2 if error (such as failure
3273 stack overflow). */
3274
3275int
3276re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3277 struct re_pattern_buffer *bufp;
3278 const char *string1, *string2;
3279 int size1, size2;
3280 int startpos;
3281 int range;
3282 struct re_registers *regs;
3283 int stop;
3284{
3285 int val;
3286 register char *fastmap = bufp->fastmap;
03a75825 3287 register RE_TRANSLATE_TYPE translate = bufp->translate;
2b83a2a4
RM
3288 int total_size = size1 + size2;
3289 int endpos = startpos + range;
3290
3291 /* Check for out-of-range STARTPOS. */
3292 if (startpos < 0 || startpos > total_size)
3293 return -1;
91c7b85d 3294
2b83a2a4 3295 /* Fix up RANGE if it might eventually take us outside
57aefafe 3296 the virtual concatenation of STRING1 and STRING2.
91c7b85d 3297 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
57aefafe
RM
3298 if (endpos < 0)
3299 range = 0 - startpos;
2b83a2a4
RM
3300 else if (endpos > total_size)
3301 range = total_size - startpos;
3302
3303 /* If the search isn't to be a backwards one, don't waste time in a
3304 search for a pattern that must be anchored. */
3305 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3306 {
3307 if (startpos > 0)
3308 return -1;
3309 else
3310 range = 1;
3311 }
3312
44c8d1a2
RM
3313#ifdef emacs
3314 /* In a forward search for something that starts with \=.
3315 don't keep searching past point. */
3316 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3317 {
3318 range = PT - startpos;
3319 if (range <= 0)
3320 return -1;
3321 }
3322#endif /* emacs */
3323
2b83a2a4
RM
3324 /* Update the fastmap now if not correct already. */
3325 if (fastmap && !bufp->fastmap_accurate)
3326 if (re_compile_fastmap (bufp) == -2)
3327 return -2;
91c7b85d 3328
2b83a2a4
RM
3329 /* Loop through the string, looking for a place to start matching. */
3330 for (;;)
91c7b85d 3331 {
2b83a2a4
RM
3332 /* If a fastmap is supplied, skip quickly over characters that
3333 cannot be the start of a match. If the pattern can match the
3334 null string, however, we don't need to skip characters; we want
3335 the first null string. */
3336 if (fastmap && startpos < total_size && !bufp->can_be_null)
3337 {
3338 if (range > 0) /* Searching forwards. */
3339 {
3340 register const char *d;
3341 register int lim = 0;
3342 int irange = range;
3343
3344 if (startpos < size1 && startpos + range >= size1)
3345 lim = range - (size1 - startpos);
3346
3347 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
91c7b85d 3348
2b83a2a4
RM
3349 /* Written out as an if-else to avoid testing `translate'
3350 inside the loop. */
3351 if (translate)
3352 while (range > lim
3353 && !fastmap[(unsigned char)
3354 translate[(unsigned char) *d++]])
3355 range--;
3356 else
3357 while (range > lim && !fastmap[(unsigned char) *d++])
3358 range--;
3359
3360 startpos += irange - range;
3361 }
3362 else /* Searching backwards. */
3363 {
3364 register char c = (size1 == 0 || startpos >= size1
91c7b85d 3365 ? string2[startpos - size1]
2b83a2a4
RM
3366 : string1[startpos]);
3367
3368 if (!fastmap[(unsigned char) TRANSLATE (c)])
3369 goto advance;
3370 }
3371 }
3372
3373 /* If can't match the null string, and that's all we have left, fail. */
3374 if (range >= 0 && startpos == total_size && fastmap
3375 && !bufp->can_be_null)
3376 return -1;
3377
3378 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3379 startpos, regs, stop);
3380#ifndef REGEX_MALLOC
3381#ifdef C_ALLOCA
3382 alloca (0);
3383#endif
3384#endif
3385
3386 if (val >= 0)
3387 return startpos;
91c7b85d 3388
2b83a2a4
RM
3389 if (val == -2)
3390 return -2;
3391
3392 advance:
91c7b85d 3393 if (!range)
2b83a2a4 3394 break;
91c7b85d 3395 else if (range > 0)
2b83a2a4 3396 {
91c7b85d 3397 range--;
2b83a2a4
RM
3398 startpos++;
3399 }
3400 else
3401 {
91c7b85d 3402 range++;
2b83a2a4
RM
3403 startpos--;
3404 }
3405 }
3406 return -1;
3407} /* re_search_2 */
3408\f
3409/* Declarations and macros for re_match_2. */
3410
3411static int bcmp_translate ();
3412static boolean alt_match_null_string_p (),
3413 common_op_match_null_string_p (),
3414 group_match_null_string_p ();
3415
3416/* This converts PTR, a pointer into one of the search strings `string1'
3417 and `string2' into an offset from the beginning of that string. */
3418#define POINTER_TO_OFFSET(ptr) \
3419 (FIRST_STRING_P (ptr) \
3420 ? ((regoff_t) ((ptr) - string1)) \
3421 : ((regoff_t) ((ptr) - string2 + size1)))
3422
3423/* Macros for dealing with the split strings in re_match_2. */
3424
3425#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3426
3427/* Call before fetching a character with *d. This switches over to
3428 string2 if necessary. */
3429#define PREFETCH() \
3430 while (d == dend) \
3431 { \
3432 /* End of string2 => fail. */ \
3433 if (dend == end_match_2) \
3434 goto fail; \
3435 /* End of string1 => advance to string2. */ \
3436 d = string2; \
3437 dend = end_match_2; \
3438 }
3439
3440
3441/* Test if at very beginning or at very end of the virtual concatenation
3442 of `string1' and `string2'. If only one string, it's `string2'. */
3443#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
91c7b85d 3444#define AT_STRINGS_END(d) ((d) == end2)
2b83a2a4
RM
3445
3446
3447/* Test if D points to a character which is word-constituent. We have
3448 two special cases to check for: if past the end of string1, look at
3449 the first character in string2; and if before the beginning of
3450 string2, look at the last character in string1. */
3451#define WORDCHAR_P(d) \
3452 (SYNTAX ((d) == end1 ? *string2 \
3453 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3454 == Sword)
3455
102800e0
RM
3456/* Disabled due to a compiler bug -- see comment at case wordbound */
3457#if 0
2b83a2a4
RM
3458/* Test if the character before D and the one at D differ with respect
3459 to being word-constituent. */
3460#define AT_WORD_BOUNDARY(d) \
3461 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3462 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
102800e0 3463#endif
2b83a2a4
RM
3464
3465/* Free everything we malloc. */
3466#ifdef MATCH_MAY_ALLOCATE
3467#define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3468#define FREE_VARIABLES() \
3469 do { \
3470 REGEX_FREE_STACK (fail_stack.stack); \
3471 FREE_VAR (regstart); \
3472 FREE_VAR (regend); \
3473 FREE_VAR (old_regstart); \
3474 FREE_VAR (old_regend); \
3475 FREE_VAR (best_regstart); \
3476 FREE_VAR (best_regend); \
3477 FREE_VAR (reg_info); \
3478 FREE_VAR (reg_dummy); \
3479 FREE_VAR (reg_info_dummy); \
3480 } while (0)
3481#else
3482#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3483#endif /* not MATCH_MAY_ALLOCATE */
3484
3485/* These values must meet several constraints. They must not be valid
3486 register values; since we have a limit of 255 registers (because
3487 we use only one byte in the pattern for the register number), we can
3488 use numbers larger than 255. They must differ by 1, because of
3489 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3490 be larger than the value for the highest register, so we do not try
3491 to actually save any registers when none are active. */
3492#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3493#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3494\f
3495/* Matching routines. */
3496
3497#ifndef emacs /* Emacs never uses this. */
3498/* re_match is like re_match_2 except it takes only a single string. */
3499
3500int
3501re_match (bufp, string, size, pos, regs)
3502 struct re_pattern_buffer *bufp;
3503 const char *string;
3504 int size, pos;
3505 struct re_registers *regs;
3506{
3507 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3508 pos, regs, size);
3509 alloca (0);
3510 return result;
3511}
3512#endif /* not emacs */
3513
3514
3515/* re_match_2 matches the compiled pattern in BUFP against the
3516 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3517 and SIZE2, respectively). We start matching at POS, and stop
3518 matching at STOP.
91c7b85d 3519
2b83a2a4
RM
3520 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3521 store offsets for the substring each group matched in REGS. See the
3522 documentation for exactly how many groups we fill.
3523
3524 We return -1 if no match, -2 if an internal error (such as the
3525 failure stack overflowing). Otherwise, we return the length of the
3526 matched substring. */
3527
3528int
3529re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3530 struct re_pattern_buffer *bufp;
3531 const char *string1, *string2;
3532 int size1, size2;
3533 int pos;
3534 struct re_registers *regs;
3535 int stop;
3536{
3537 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3538 pos, regs, stop);
3539 alloca (0);
3540 return result;
3541}
3542
3543/* This is a separate function so that we can force an alloca cleanup
3544 afterwards. */
3545static int
3546re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3547 struct re_pattern_buffer *bufp;
3548 const char *string1, *string2;
3549 int size1, size2;
3550 int pos;
3551 struct re_registers *regs;
3552 int stop;
3553{
3554 /* General temporaries. */
3555 int mcnt;
3556 unsigned char *p1;
3557
3558 /* Just past the end of the corresponding string. */
3559 const char *end1, *end2;
3560
3561 /* Pointers into string1 and string2, just past the last characters in
3562 each to consider matching. */
3563 const char *end_match_1, *end_match_2;
3564
3565 /* Where we are in the data, and the end of the current string. */
3566 const char *d, *dend;
91c7b85d 3567
2b83a2a4
RM
3568 /* Where we are in the pattern, and the end of the pattern. */
3569 unsigned char *p = bufp->buffer;
3570 register unsigned char *pend = p + bufp->used;
3571
3572 /* Mark the opcode just after a start_memory, so we can test for an
3573 empty subpattern when we get to the stop_memory. */
3574 unsigned char *just_past_start_mem = 0;
3575
3576 /* We use this to map every character in the string. */
03a75825 3577 RE_TRANSLATE_TYPE translate = bufp->translate;
2b83a2a4
RM
3578
3579 /* Failure point stack. Each place that can handle a failure further
3580 down the line pushes a failure point on this stack. It consists of
3581 restart, regend, and reg_info for all registers corresponding to
3582 the subexpressions we're currently inside, plus the number of such
3583 registers, and, finally, two char *'s. The first char * is where
3584 to resume scanning the pattern; the second one is where to resume
3585 scanning the strings. If the latter is zero, the failure point is
3586 a ``dummy''; if a failure happens and the failure point is a dummy,
3587 it gets discarded and the next next one is tried. */
3588#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3589 fail_stack_type fail_stack;
3590#endif
3591#ifdef DEBUG
3592 static unsigned failure_id = 0;
3593 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3594#endif
3595
3596 /* This holds the pointer to the failure stack, when
3597 it is allocated relocatably. */
3598 fail_stack_elt_t *failure_stack_ptr;
3599
3600 /* We fill all the registers internally, independent of what we
3601 return, for use in backreferences. The number here includes
3602 an element for register zero. */
3603 unsigned num_regs = bufp->re_nsub + 1;
91c7b85d 3604
2b83a2a4
RM
3605 /* The currently active registers. */
3606 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3607 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3608
3609 /* Information on the contents of registers. These are pointers into
3610 the input strings; they record just what was matched (on this
3611 attempt) by a subexpression part of the pattern, that is, the
3612 regnum-th regstart pointer points to where in the pattern we began
3613 matching and the regnum-th regend points to right after where we
3614 stopped matching the regnum-th subexpression. (The zeroth register
3615 keeps track of what the whole pattern matches.) */
3616#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3617 const char **regstart, **regend;
3618#endif
3619
3620 /* If a group that's operated upon by a repetition operator fails to
3621 match anything, then the register for its start will need to be
3622 restored because it will have been set to wherever in the string we
3623 are when we last see its open-group operator. Similarly for a
3624 register's end. */
3625#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3626 const char **old_regstart, **old_regend;
3627#endif
3628
3629 /* The is_active field of reg_info helps us keep track of which (possibly
3630 nested) subexpressions we are currently in. The matched_something
3631 field of reg_info[reg_num] helps us tell whether or not we have
3632 matched any of the pattern so far this time through the reg_num-th
3633 subexpression. These two fields get reset each time through any
3634 loop their register is in. */
3635#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
91c7b85d 3636 register_info_type *reg_info;
2b83a2a4
RM
3637#endif
3638
3639 /* The following record the register info as found in the above
91c7b85d 3640 variables when we find a match better than any we've seen before.
2b83a2a4
RM
3641 This happens as we backtrack through the failure points, which in
3642 turn happens only if we have not yet matched the entire string. */
3643 unsigned best_regs_set = false;
3644#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3645 const char **best_regstart, **best_regend;
3646#endif
91c7b85d 3647
2b83a2a4
RM
3648 /* Logically, this is `best_regend[0]'. But we don't want to have to
3649 allocate space for that if we're not allocating space for anything
3650 else (see below). Also, we never need info about register 0 for
3651 any of the other register vectors, and it seems rather a kludge to
3652 treat `best_regend' differently than the rest. So we keep track of
3653 the end of the best match so far in a separate variable. We
3654 initialize this to NULL so that when we backtrack the first time
3655 and need to test it, it's not garbage. */
3656 const char *match_end = NULL;
3657
3658 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3659 int set_regs_matched_done = 0;
3660
3661 /* Used when we pop values we don't care about. */
3662#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3663 const char **reg_dummy;
3664 register_info_type *reg_info_dummy;
3665#endif
3666
3667#ifdef DEBUG
3668 /* Counts the total number of registers pushed. */
91c7b85d 3669 unsigned num_regs_pushed = 0;
2b83a2a4
RM
3670#endif
3671
3672 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
91c7b85d 3673
2b83a2a4 3674 INIT_FAIL_STACK ();
91c7b85d 3675
2b83a2a4
RM
3676#ifdef MATCH_MAY_ALLOCATE
3677 /* Do not bother to initialize all the register variables if there are
3678 no groups in the pattern, as it takes a fair amount of time. If
3679 there are groups, we include space for register 0 (the whole
3680 pattern), even though we never use it, since it simplifies the
3681 array indexing. We should fix this. */
3682 if (bufp->re_nsub)
3683 {
3684 regstart = REGEX_TALLOC (num_regs, const char *);
3685 regend = REGEX_TALLOC (num_regs, const char *);
3686 old_regstart = REGEX_TALLOC (num_regs, const char *);
3687 old_regend = REGEX_TALLOC (num_regs, const char *);
3688 best_regstart = REGEX_TALLOC (num_regs, const char *);
3689 best_regend = REGEX_TALLOC (num_regs, const char *);
3690 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3691 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3692 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3693
91c7b85d
RM
3694 if (!(regstart && regend && old_regstart && old_regend && reg_info
3695 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
2b83a2a4
RM
3696 {
3697 FREE_VARIABLES ();
3698 return -2;
3699 }
3700 }
3701 else
3702 {
3703 /* We must initialize all our variables to NULL, so that
3704 `FREE_VARIABLES' doesn't try to free them. */
3705 regstart = regend = old_regstart = old_regend = best_regstart
3706 = best_regend = reg_dummy = NULL;
3707 reg_info = reg_info_dummy = (register_info_type *) NULL;
3708 }
3709#endif /* MATCH_MAY_ALLOCATE */
3710
3711 /* The starting position is bogus. */
3712 if (pos < 0 || pos > size1 + size2)
3713 {
3714 FREE_VARIABLES ();
3715 return -1;
3716 }
91c7b85d 3717
2b83a2a4
RM
3718 /* Initialize subexpression text positions to -1 to mark ones that no
3719 start_memory/stop_memory has been seen for. Also initialize the
3720 register information struct. */
cccda09f 3721 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
2b83a2a4 3722 {
91c7b85d 3723 regstart[mcnt] = regend[mcnt]
2b83a2a4 3724 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
91c7b85d 3725
2b83a2a4
RM
3726 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3727 IS_ACTIVE (reg_info[mcnt]) = 0;
3728 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3729 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3730 }
91c7b85d 3731
2b83a2a4
RM
3732 /* We move `string1' into `string2' if the latter's empty -- but not if
3733 `string1' is null. */
3734 if (size2 == 0 && string1 != NULL)
3735 {
3736 string2 = string1;
3737 size2 = size1;
3738 string1 = 0;
3739 size1 = 0;
3740 }
3741 end1 = string1 + size1;
3742 end2 = string2 + size2;
3743
3744 /* Compute where to stop matching, within the two strings. */
3745 if (stop <= size1)
3746 {
3747 end_match_1 = string1 + stop;
3748 end_match_2 = string2;
3749 }
3750 else
3751 {
3752 end_match_1 = end1;
3753 end_match_2 = string2 + stop - size1;
3754 }
3755
91c7b85d 3756 /* `p' scans through the pattern as `d' scans through the data.
2b83a2a4
RM
3757 `dend' is the end of the input string that `d' points within. `d'
3758 is advanced into the following input string whenever necessary, but
3759 this happens before fetching; therefore, at the beginning of the
3760 loop, `d' can be pointing at the end of a string, but it cannot
3761 equal `string2'. */
3762 if (size1 > 0 && pos <= size1)
3763 {
3764 d = string1 + pos;
3765 dend = end_match_1;
3766 }
3767 else
3768 {
3769 d = string2 + pos - size1;
3770 dend = end_match_2;
3771 }
3772
3773 DEBUG_PRINT1 ("The compiled pattern is: ");
3774 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3775 DEBUG_PRINT1 ("The string to match is: `");
3776 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3777 DEBUG_PRINT1 ("'\n");
91c7b85d 3778
2b83a2a4
RM
3779 /* This loops over pattern commands. It exits by returning from the
3780 function if the match is complete, or it drops through if the match
3781 fails at this starting point in the input data. */
3782 for (;;)
3783 {
3784 DEBUG_PRINT2 ("\n0x%x: ", p);
3785
3786 if (p == pend)
3787 { /* End of pattern means we might have succeeded. */
3788 DEBUG_PRINT1 ("end of pattern ... ");
91c7b85d 3789
2b83a2a4
RM
3790 /* If we haven't matched the entire string, and we want the
3791 longest match, try backtracking. */
3792 if (d != end_match_2)
3793 {
3794 /* 1 if this match ends in the same string (string1 or string2)
3795 as the best previous match. */
91c7b85d 3796 boolean same_str_p = (FIRST_STRING_P (match_end)
2b83a2a4
RM
3797 == MATCHING_IN_FIRST_STRING);
3798 /* 1 if this match is the best seen so far. */
3799 boolean best_match_p;
3800
3801 /* AIX compiler got confused when this was combined
3802 with the previous declaration. */
3803 if (same_str_p)
3804 best_match_p = d > match_end;
3805 else
3806 best_match_p = !MATCHING_IN_FIRST_STRING;
3807
3808 DEBUG_PRINT1 ("backtracking.\n");
91c7b85d 3809
2b83a2a4
RM
3810 if (!FAIL_STACK_EMPTY ())
3811 { /* More failure points to try. */
3812
3813 /* If exceeds best match so far, save it. */
3814 if (!best_regs_set || best_match_p)
3815 {
3816 best_regs_set = true;
3817 match_end = d;
91c7b85d 3818
2b83a2a4 3819 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
91c7b85d 3820
cccda09f 3821 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
2b83a2a4
RM
3822 {
3823 best_regstart[mcnt] = regstart[mcnt];
3824 best_regend[mcnt] = regend[mcnt];
3825 }
3826 }
91c7b85d 3827 goto fail;
2b83a2a4
RM
3828 }
3829
3830 /* If no failure points, don't restore garbage. And if
3831 last match is real best match, don't restore second
3832 best one. */
3833 else if (best_regs_set && !best_match_p)
3834 {
3835 restore_best_regs:
3836 /* Restore best match. It may happen that `dend ==
3837 end_match_1' while the restored d is in string2.
3838 For example, the pattern `x.*y.*z' against the
3839 strings `x-' and `y-z-', if the two strings are
3840 not consecutive in memory. */
3841 DEBUG_PRINT1 ("Restoring best registers.\n");
91c7b85d 3842
2b83a2a4
RM
3843 d = match_end;
3844 dend = ((d >= string1 && d <= end1)
3845 ? end_match_1 : end_match_2);
3846
cccda09f 3847 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
2b83a2a4
RM
3848 {
3849 regstart[mcnt] = best_regstart[mcnt];
3850 regend[mcnt] = best_regend[mcnt];
3851 }
3852 }
3853 } /* d != end_match_2 */
3854
3855 succeed_label:
3856 DEBUG_PRINT1 ("Accepting match.\n");
3857
3858 /* If caller wants register contents data back, do it. */
3859 if (regs && !bufp->no_sub)
3860 {
3861 /* Have the register data arrays been allocated? */
3862 if (bufp->regs_allocated == REGS_UNALLOCATED)
3863 { /* No. So allocate them with malloc. We need one
3864 extra element beyond `num_regs' for the `-1' marker
3865 GNU code uses. */
3866 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3867 regs->start = TALLOC (regs->num_regs, regoff_t);
3868 regs->end = TALLOC (regs->num_regs, regoff_t);
3869 if (regs->start == NULL || regs->end == NULL)
3870 {
3871 FREE_VARIABLES ();
3872 return -2;
3873 }
3874 bufp->regs_allocated = REGS_REALLOCATE;
3875 }
3876 else if (bufp->regs_allocated == REGS_REALLOCATE)
3877 { /* Yes. If we need more elements than were already
3878 allocated, reallocate them. If we need fewer, just
3879 leave it alone. */
3880 if (regs->num_regs < num_regs + 1)
3881 {
3882 regs->num_regs = num_regs + 1;
3883 RETALLOC (regs->start, regs->num_regs, regoff_t);
3884 RETALLOC (regs->end, regs->num_regs, regoff_t);
3885 if (regs->start == NULL || regs->end == NULL)
3886 {
3887 FREE_VARIABLES ();
3888 return -2;
3889 }
3890 }
3891 }
3892 else
3893 {
3894 /* These braces fend off a "empty body in an else-statement"
3895 warning under GCC when assert expands to nothing. */
3896 assert (bufp->regs_allocated == REGS_FIXED);
3897 }
3898
3899 /* Convert the pointer data in `regstart' and `regend' to
3900 indices. Register zero has to be set differently,
3901 since we haven't kept track of any info for it. */
3902 if (regs->num_regs > 0)
3903 {
3904 regs->start[0] = pos;
3905 regs->end[0] = (MATCHING_IN_FIRST_STRING
3906 ? ((regoff_t) (d - string1))
3907 : ((regoff_t) (d - string2 + size1)));
3908 }
91c7b85d 3909
2b83a2a4
RM
3910 /* Go through the first `min (num_regs, regs->num_regs)'
3911 registers, since that is all we initialized. */
cccda09f
UD
3912 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
3913 mcnt++)
2b83a2a4
RM
3914 {
3915 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3916 regs->start[mcnt] = regs->end[mcnt] = -1;
3917 else
3918 {
3919 regs->start[mcnt]
3920 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3921 regs->end[mcnt]
3922 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3923 }
3924 }
91c7b85d 3925
2b83a2a4
RM
3926 /* If the regs structure we return has more elements than
3927 were in the pattern, set the extra elements to -1. If
3928 we (re)allocated the registers, this is the case,
3929 because we always allocate enough to have at least one
3930 -1 at the end. */
cccda09f 3931 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
2b83a2a4
RM
3932 regs->start[mcnt] = regs->end[mcnt] = -1;
3933 } /* regs && !bufp->no_sub */
3934
3935 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3936 nfailure_points_pushed, nfailure_points_popped,
3937 nfailure_points_pushed - nfailure_points_popped);
3938 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3939
91c7b85d
RM
3940 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3941 ? string1
2b83a2a4
RM
3942 : string2 - size1);
3943
3944 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3945
3946 FREE_VARIABLES ();
3947 return mcnt;
3948 }
3949
3950 /* Otherwise match next pattern command. */
3951 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3952 {
3953 /* Ignore these. Used to ignore the n of succeed_n's which
3954 currently have n == 0. */
3955 case no_op:
3956 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3957 break;
3958
3959 case succeed:
3960 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3961 goto succeed_label;
3962
3963 /* Match the next n pattern characters exactly. The following
3964 byte in the pattern defines n, and the n bytes after that
3965 are the characters to match. */
3966 case exactn:
3967 mcnt = *p++;
3968 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3969
3970 /* This is written out as an if-else so we don't waste time
3971 testing `translate' inside the loop. */
3972 if (translate)
3973 {
3974 do
3975 {
3976 PREFETCH ();
03a75825
RM
3977 if ((unsigned char) translate[(unsigned char) *d++]
3978 != (unsigned char) *p++)
2b83a2a4
RM
3979 goto fail;
3980 }
3981 while (--mcnt);
3982 }
3983 else
3984 {
3985 do
3986 {
3987 PREFETCH ();
3988 if (*d++ != (char) *p++) goto fail;
3989 }
3990 while (--mcnt);
3991 }
3992 SET_REGS_MATCHED ();
3993 break;
3994
3995
3996 /* Match any character except possibly a newline or a null. */
3997 case anychar:
3998 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3999
4000 PREFETCH ();
4001
4002 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4003 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4004 goto fail;
4005
4006 SET_REGS_MATCHED ();
4007 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4008 d++;
4009 break;
4010
4011
4012 case charset:
4013 case charset_not:
4014 {
4015 register unsigned char c;
4016 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4017
4018 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4019
4020 PREFETCH ();
4021 c = TRANSLATE (*d); /* The character to match. */
4022
4023 /* Cast to `unsigned' instead of `unsigned char' in case the
4024 bit list is a full 32 bytes long. */
4025 if (c < (unsigned) (*p * BYTEWIDTH)
4026 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4027 not = !not;
4028
4029 p += 1 + *p;
4030
4031 if (!not) goto fail;
91c7b85d 4032
2b83a2a4
RM
4033 SET_REGS_MATCHED ();
4034 d++;
4035 break;
4036 }
4037
4038
4039 /* The beginning of a group is represented by start_memory.
4040 The arguments are the register number in the next byte, and the
4041 number of groups inner to this one in the next. The text
4042 matched within the group is recorded (in the internal
4043 registers data structure) under the register number. */
4044 case start_memory:
4045 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4046
4047 /* Find out if this group can match the empty string. */
4048 p1 = p; /* To send to group_match_null_string_p. */
91c7b85d 4049
2b83a2a4 4050 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
91c7b85d 4051 REG_MATCH_NULL_STRING_P (reg_info[*p])
2b83a2a4
RM
4052 = group_match_null_string_p (&p1, pend, reg_info);
4053
4054 /* Save the position in the string where we were the last time
4055 we were at this open-group operator in case the group is
4056 operated upon by a repetition operator, e.g., with `(a*)*b'
4057 against `ab'; then we want to ignore where we are now in
4058 the string in case this attempt to match fails. */
4059 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4060 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4061 : regstart[*p];
91c7b85d 4062 DEBUG_PRINT2 (" old_regstart: %d\n",
2b83a2a4
RM
4063 POINTER_TO_OFFSET (old_regstart[*p]));
4064
4065 regstart[*p] = d;
4066 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4067
4068 IS_ACTIVE (reg_info[*p]) = 1;
4069 MATCHED_SOMETHING (reg_info[*p]) = 0;
4070
4071 /* Clear this whenever we change the register activity status. */
4072 set_regs_matched_done = 0;
91c7b85d 4073
2b83a2a4
RM
4074 /* This is the new highest active register. */
4075 highest_active_reg = *p;
91c7b85d 4076
2b83a2a4
RM
4077 /* If nothing was active before, this is the new lowest active
4078 register. */
4079 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4080 lowest_active_reg = *p;
4081
4082 /* Move past the register number and inner group count. */
4083 p += 2;
4084 just_past_start_mem = p;
4085
4086 break;
4087
4088
4089 /* The stop_memory opcode represents the end of a group. Its
4090 arguments are the same as start_memory's: the register
4091 number, and the number of inner groups. */
4092 case stop_memory:
4093 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
91c7b85d 4094
2b83a2a4
RM
4095 /* We need to save the string position the last time we were at
4096 this close-group operator in case the group is operated
4097 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4098 against `aba'; then we want to ignore where we are now in
4099 the string in case this attempt to match fails. */
4100 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4101 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4102 : regend[*p];
91c7b85d 4103 DEBUG_PRINT2 (" old_regend: %d\n",
2b83a2a4
RM
4104 POINTER_TO_OFFSET (old_regend[*p]));
4105
4106 regend[*p] = d;
4107 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4108
4109 /* This register isn't active anymore. */
4110 IS_ACTIVE (reg_info[*p]) = 0;
4111
4112 /* Clear this whenever we change the register activity status. */
4113 set_regs_matched_done = 0;
4114
4115 /* If this was the only register active, nothing is active
4116 anymore. */
4117 if (lowest_active_reg == highest_active_reg)
4118 {
4119 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4120 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4121 }
4122 else
4123 { /* We must scan for the new highest active register, since
4124 it isn't necessarily one less than now: consider
4125 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4126 new highest active register is 1. */
4127 unsigned char r = *p - 1;
4128 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4129 r--;
91c7b85d 4130
2b83a2a4
RM
4131 /* If we end up at register zero, that means that we saved
4132 the registers as the result of an `on_failure_jump', not
4133 a `start_memory', and we jumped to past the innermost
4134 `stop_memory'. For example, in ((.)*) we save
4135 registers 1 and 2 as a result of the *, but when we pop
4136 back to the second ), we are at the stop_memory 1.
4137 Thus, nothing is active. */
4138 if (r == 0)
4139 {
4140 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4141 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4142 }
4143 else
4144 highest_active_reg = r;
4145 }
91c7b85d 4146
2b83a2a4
RM
4147 /* If just failed to match something this time around with a
4148 group that's operated on by a repetition operator, try to
4149 force exit from the ``loop'', and restore the register
4150 information for this group that we had before trying this
4151 last match. */
4152 if ((!MATCHED_SOMETHING (reg_info[*p])
4153 || just_past_start_mem == p - 1)
91c7b85d 4154 && (p + 2) < pend)
2b83a2a4
RM
4155 {
4156 boolean is_a_jump_n = false;
91c7b85d 4157
2b83a2a4
RM
4158 p1 = p + 2;
4159 mcnt = 0;
4160 switch ((re_opcode_t) *p1++)
4161 {
4162 case jump_n:
4163 is_a_jump_n = true;
4164 case pop_failure_jump:
4165 case maybe_pop_jump:
4166 case jump:
4167 case dummy_failure_jump:
4168 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4169 if (is_a_jump_n)
4170 p1 += 2;
4171 break;
91c7b85d 4172
2b83a2a4
RM
4173 default:
4174 /* do nothing */ ;
4175 }
4176 p1 += mcnt;
91c7b85d 4177
2b83a2a4
RM
4178 /* If the next operation is a jump backwards in the pattern
4179 to an on_failure_jump right before the start_memory
4180 corresponding to this stop_memory, exit from the loop
4181 by forcing a failure after pushing on the stack the
4182 on_failure_jump's jump in the pattern, and d. */
4183 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4184 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4185 {
4186 /* If this group ever matched anything, then restore
4187 what its registers were before trying this last
4188 failed match, e.g., with `(a*)*b' against `ab' for
4189 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4190 against `aba' for regend[3].
91c7b85d 4191
2b83a2a4
RM
4192 Also restore the registers for inner groups for,
4193 e.g., `((a*)(b*))*' against `aba' (register 3 would
4194 otherwise get trashed). */
91c7b85d 4195
2b83a2a4
RM
4196 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4197 {
91c7b85d
RM
4198 unsigned r;
4199
2b83a2a4 4200 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
91c7b85d 4201
2b83a2a4 4202 /* Restore this and inner groups' (if any) registers. */
cccda09f
UD
4203 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4204 r++)
2b83a2a4
RM
4205 {
4206 regstart[r] = old_regstart[r];
4207
4208 /* xx why this test? */
4209 if (old_regend[r] >= regstart[r])
4210 regend[r] = old_regend[r];
91c7b85d 4211 }
2b83a2a4
RM
4212 }
4213 p1++;
4214 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4215 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4216
4217 goto fail;
4218 }
4219 }
91c7b85d 4220
2b83a2a4
RM
4221 /* Move past the register number and the inner group count. */
4222 p += 2;
4223 break;
4224
4225
4226 /* \<digit> has been turned into a `duplicate' command which is
4227 followed by the numeric value of <digit> as the register number. */
4228 case duplicate:
4229 {
4230 register const char *d2, *dend2;
4231 int regno = *p++; /* Get which register to match against. */
4232 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4233
4234 /* Can't back reference a group which we've never matched. */
4235 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4236 goto fail;
91c7b85d 4237
2b83a2a4
RM
4238 /* Where in input to try to start matching. */
4239 d2 = regstart[regno];
91c7b85d 4240
2b83a2a4
RM
4241 /* Where to stop matching; if both the place to start and
4242 the place to stop matching are in the same string, then
4243 set to the place to stop, otherwise, for now have to use
4244 the end of the first string. */
4245
91c7b85d 4246 dend2 = ((FIRST_STRING_P (regstart[regno])
2b83a2a4
RM
4247 == FIRST_STRING_P (regend[regno]))
4248 ? regend[regno] : end_match_1);
4249 for (;;)
4250 {
4251 /* If necessary, advance to next segment in register
4252 contents. */
4253 while (d2 == dend2)
4254 {
4255 if (dend2 == end_match_2) break;
4256 if (dend2 == regend[regno]) break;
4257
4258 /* End of string1 => advance to string2. */
4259 d2 = string2;
4260 dend2 = regend[regno];
4261 }
4262 /* At end of register contents => success */
4263 if (d2 == dend2) break;
4264
4265 /* If necessary, advance to next segment in data. */
4266 PREFETCH ();
4267
4268 /* How many characters left in this segment to match. */
4269 mcnt = dend - d;
91c7b85d 4270
2b83a2a4
RM
4271 /* Want how many consecutive characters we can match in
4272 one shot, so, if necessary, adjust the count. */
4273 if (mcnt > dend2 - d2)
4274 mcnt = dend2 - d2;
91c7b85d 4275
2b83a2a4
RM
4276 /* Compare that many; failure if mismatch, else move
4277 past them. */
91c7b85d
RM
4278 if (translate
4279 ? bcmp_translate (d, d2, mcnt, translate)
2b83a2a4
RM
4280 : bcmp (d, d2, mcnt))
4281 goto fail;
4282 d += mcnt, d2 += mcnt;
4283
4284 /* Do this because we've match some characters. */
4285 SET_REGS_MATCHED ();
4286 }
4287 }
4288 break;
4289
4290
4291 /* begline matches the empty string at the beginning of the string
4292 (unless `not_bol' is set in `bufp'), and, if
4293 `newline_anchor' is set, after newlines. */
4294 case begline:
4295 DEBUG_PRINT1 ("EXECUTING begline.\n");
91c7b85d 4296
2b83a2a4
RM
4297 if (AT_STRINGS_BEG (d))
4298 {
4299 if (!bufp->not_bol) break;
4300 }
4301 else if (d[-1] == '\n' && bufp->newline_anchor)
4302 {
4303 break;
4304 }
4305 /* In all other cases, we fail. */
4306 goto fail;
4307
4308
4309 /* endline is the dual of begline. */
4310 case endline:
4311 DEBUG_PRINT1 ("EXECUTING endline.\n");
4312
4313 if (AT_STRINGS_END (d))
4314 {
4315 if (!bufp->not_eol) break;
4316 }
91c7b85d 4317
2b83a2a4
RM
4318 /* We have to ``prefetch'' the next character. */
4319 else if ((d == end1 ? *string2 : *d) == '\n'
4320 && bufp->newline_anchor)
4321 {
4322 break;
4323 }
4324 goto fail;
4325
4326
4327 /* Match at the very beginning of the data. */
4328 case begbuf:
4329 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4330 if (AT_STRINGS_BEG (d))
4331 break;
4332 goto fail;
4333
4334
4335 /* Match at the very end of the data. */
4336 case endbuf:
4337 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4338 if (AT_STRINGS_END (d))
4339 break;
4340 goto fail;
4341
4342
4343 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4344 pushes NULL as the value for the string on the stack. Then
4345 `pop_failure_point' will keep the current value for the
4346 string, instead of restoring it. To see why, consider
4347 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4348 then the . fails against the \n. But the next thing we want
4349 to do is match the \n against the \n; if we restored the
4350 string value, we would be back at the foo.
91c7b85d 4351
2b83a2a4
RM
4352 Because this is used only in specific cases, we don't need to
4353 check all the things that `on_failure_jump' does, to make
4354 sure the right things get saved on the stack. Hence we don't
4355 share its code. The only reason to push anything on the
4356 stack at all is that otherwise we would have to change
4357 `anychar's code to do something besides goto fail in this
4358 case; that seems worse than this. */
4359 case on_failure_keep_string_jump:
4360 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
91c7b85d 4361
2b83a2a4
RM
4362 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4363 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4364
4365 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4366 break;
4367
4368
4369 /* Uses of on_failure_jump:
91c7b85d 4370
2b83a2a4
RM
4371 Each alternative starts with an on_failure_jump that points
4372 to the beginning of the next alternative. Each alternative
4373 except the last ends with a jump that in effect jumps past
4374 the rest of the alternatives. (They really jump to the
4375 ending jump of the following alternative, because tensioning
4376 these jumps is a hassle.)
4377
4378 Repeats start with an on_failure_jump that points past both
4379 the repetition text and either the following jump or
4380 pop_failure_jump back to this on_failure_jump. */
4381 case on_failure_jump:
4382 on_failure:
4383 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4384
4385 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4386 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4387
4388 /* If this on_failure_jump comes right before a group (i.e.,
4389 the original * applied to a group), save the information
4390 for that group and all inner ones, so that if we fail back
4391 to this point, the group's information will be correct.
4392 For example, in \(a*\)*\1, we need the preceding group,
8e3cc80f 4393 and in \(zz\(a*\)b*\)\2, we need the inner group. */
2b83a2a4
RM
4394
4395 /* We can't use `p' to check ahead because we push
4396 a failure point to `p + mcnt' after we do this. */
4397 p1 = p;
4398
4399 /* We need to skip no_op's before we look for the
4400 start_memory in case this on_failure_jump is happening as
4401 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4402 against aba. */
4403 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4404 p1++;
4405
4406 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4407 {
4408 /* We have a new highest active register now. This will
4409 get reset at the start_memory we are about to get to,
4410 but we will have saved all the registers relevant to
4411 this repetition op, as described above. */
4412 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4413 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4414 lowest_active_reg = *(p1 + 1);
4415 }
4416
4417 DEBUG_PRINT1 (":\n");
4418 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4419 break;
4420
4421
4422 /* A smart repeat ends with `maybe_pop_jump'.
4423 We change it to either `pop_failure_jump' or `jump'. */
4424 case maybe_pop_jump:
4425 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4426 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4427 {
4428 register unsigned char *p2 = p;
4429
4430 /* Compare the beginning of the repeat with what in the
4431 pattern follows its end. If we can establish that there
4432 is nothing that they would both match, i.e., that we
4433 would have to backtrack because of (as in, e.g., `a*a')
4434 then we can change to pop_failure_jump, because we'll
4435 never have to backtrack.
91c7b85d 4436
2b83a2a4
RM
4437 This is not true in the case of alternatives: in
4438 `(a|ab)*' we do need to backtrack to the `ab' alternative
4439 (e.g., if the string was `ab'). But instead of trying to
4440 detect that here, the alternative has put on a dummy
4441 failure point which is what we will end up popping. */
4442
4443 /* Skip over open/close-group commands.
4444 If what follows this loop is a ...+ construct,
4445 look at what begins its body, since we will have to
4446 match at least one of that. */
4447 while (1)
4448 {
4449 if (p2 + 2 < pend
4450 && ((re_opcode_t) *p2 == stop_memory
4451 || (re_opcode_t) *p2 == start_memory))
4452 p2 += 3;
4453 else if (p2 + 6 < pend
4454 && (re_opcode_t) *p2 == dummy_failure_jump)
4455 p2 += 6;
4456 else
4457 break;
4458 }
4459
4460 p1 = p + mcnt;
4461 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
91c7b85d 4462 to the `maybe_finalize_jump' of this case. Examine what
2b83a2a4
RM
4463 follows. */
4464
4465 /* If we're at the end of the pattern, we can change. */
4466 if (p2 == pend)
4467 {
4468 /* Consider what happens when matching ":\(.*\)"
4469 against ":/". I don't really understand this code
4470 yet. */
4471 p[-3] = (unsigned char) pop_failure_jump;
4472 DEBUG_PRINT1
4473 (" End of pattern: change to `pop_failure_jump'.\n");
4474 }
4475
4476 else if ((re_opcode_t) *p2 == exactn
4477 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4478 {
4479 register unsigned char c
4480 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4481
4482 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4483 {
4484 p[-3] = (unsigned char) pop_failure_jump;
4485 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4486 c, p1[5]);
4487 }
91c7b85d 4488
2b83a2a4
RM
4489 else if ((re_opcode_t) p1[3] == charset
4490 || (re_opcode_t) p1[3] == charset_not)
4491 {
4492 int not = (re_opcode_t) p1[3] == charset_not;
91c7b85d 4493
2b83a2a4
RM
4494 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4495 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4496 not = !not;
4497
4498 /* `not' is equal to 1 if c would match, which means
4499 that we can't change to pop_failure_jump. */
4500 if (!not)
4501 {
4502 p[-3] = (unsigned char) pop_failure_jump;
4503 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4504 }
4505 }
4506 }
4507 else if ((re_opcode_t) *p2 == charset)
4508 {
4509#ifdef DEBUG
4510 register unsigned char c
4511 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4512#endif
4513
4514 if ((re_opcode_t) p1[3] == exactn
aa1075ea
RM
4515 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4516 && (p2[2 + p1[5] / BYTEWIDTH]
4517 & (1 << (p1[5] % BYTEWIDTH)))))
2b83a2a4
RM
4518 {
4519 p[-3] = (unsigned char) pop_failure_jump;
4520 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4521 c, p1[5]);
4522 }
91c7b85d 4523
2b83a2a4
RM
4524 else if ((re_opcode_t) p1[3] == charset_not)
4525 {
4526 int idx;
4527 /* We win if the charset_not inside the loop
4528 lists every character listed in the charset after. */
4529 for (idx = 0; idx < (int) p2[1]; idx++)
4530 if (! (p2[2 + idx] == 0
4531 || (idx < (int) p1[4]
4532 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4533 break;
4534
4535 if (idx == p2[1])
4536 {
4537 p[-3] = (unsigned char) pop_failure_jump;
4538 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4539 }
4540 }
4541 else if ((re_opcode_t) p1[3] == charset)
4542 {
4543 int idx;
4544 /* We win if the charset inside the loop
4545 has no overlap with the one after the loop. */
4546 for (idx = 0;
4547 idx < (int) p2[1] && idx < (int) p1[4];
4548 idx++)
4549 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4550 break;
4551
4552 if (idx == p2[1] || idx == p1[4])
4553 {
4554 p[-3] = (unsigned char) pop_failure_jump;
4555 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4556 }
4557 }
4558 }
4559 }
4560 p -= 2; /* Point at relative address again. */
4561 if ((re_opcode_t) p[-1] != pop_failure_jump)
4562 {
4563 p[-1] = (unsigned char) jump;
4564 DEBUG_PRINT1 (" Match => jump.\n");
4565 goto unconditional_jump;
4566 }
4567 /* Note fall through. */
4568
4569
4570 /* The end of a simple repeat has a pop_failure_jump back to
4571 its matching on_failure_jump, where the latter will push a
4572 failure point. The pop_failure_jump takes off failure
4573 points put on by this pop_failure_jump's matching
4574 on_failure_jump; we got through the pattern to here from the
4575 matching on_failure_jump, so didn't fail. */
4576 case pop_failure_jump:
4577 {
4578 /* We need to pass separate storage for the lowest and
4579 highest registers, even though we don't care about the
4580 actual values. Otherwise, we will restore only one
4581 register from the stack, since lowest will == highest in
4582 `pop_failure_point'. */
4583 unsigned dummy_low_reg, dummy_high_reg;
4584 unsigned char *pdummy;
4585 const char *sdummy;
4586
4587 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4588 POP_FAILURE_POINT (sdummy, pdummy,
4589 dummy_low_reg, dummy_high_reg,
4590 reg_dummy, reg_dummy, reg_info_dummy);
4591 }
4592 /* Note fall through. */
4593
91c7b85d 4594
2b83a2a4
RM
4595 /* Unconditionally jump (without popping any failure points). */
4596 case jump:
4597 unconditional_jump:
4598 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4599 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4600 p += mcnt; /* Do the jump. */
4601 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4602 break;
4603
91c7b85d 4604
2b83a2a4
RM
4605 /* We need this opcode so we can detect where alternatives end
4606 in `group_match_null_string_p' et al. */
4607 case jump_past_alt:
4608 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4609 goto unconditional_jump;
4610
4611
4612 /* Normally, the on_failure_jump pushes a failure point, which
4613 then gets popped at pop_failure_jump. We will end up at
4614 pop_failure_jump, also, and with a pattern of, say, `a+', we
4615 are skipping over the on_failure_jump, so we have to push
4616 something meaningless for pop_failure_jump to pop. */
4617 case dummy_failure_jump:
4618 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4619 /* It doesn't matter what we push for the string here. What
4620 the code at `fail' tests is the value for the pattern. */
4621 PUSH_FAILURE_POINT (0, 0, -2);
4622 goto unconditional_jump;
4623
4624
4625 /* At the end of an alternative, we need to push a dummy failure
4626 point in case we are followed by a `pop_failure_jump', because
4627 we don't want the failure point for the alternative to be
4628 popped. For example, matching `(a|ab)*' against `aab'
4629 requires that we match the `ab' alternative. */
4630 case push_dummy_failure:
4631 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4632 /* See comments just above at `dummy_failure_jump' about the
4633 two zeroes. */
4634 PUSH_FAILURE_POINT (0, 0, -2);
4635 break;
4636
4637 /* Have to succeed matching what follows at least n times.
4638 After that, handle like `on_failure_jump'. */
91c7b85d 4639 case succeed_n:
2b83a2a4
RM
4640 EXTRACT_NUMBER (mcnt, p + 2);
4641 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4642
4643 assert (mcnt >= 0);
4644 /* Originally, this is how many times we HAVE to succeed. */
4645 if (mcnt > 0)
4646 {
4647 mcnt--;
4648 p += 2;
4649 STORE_NUMBER_AND_INCR (p, mcnt);
4650 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4651 }
4652 else if (mcnt == 0)
4653 {
4654 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4655 p[2] = (unsigned char) no_op;
4656 p[3] = (unsigned char) no_op;
4657 goto on_failure;
4658 }
4659 break;
91c7b85d
RM
4660
4661 case jump_n:
2b83a2a4
RM
4662 EXTRACT_NUMBER (mcnt, p + 2);
4663 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4664
4665 /* Originally, this is how many times we CAN jump. */
4666 if (mcnt)
4667 {
4668 mcnt--;
4669 STORE_NUMBER (p + 2, mcnt);
91c7b85d 4670 goto unconditional_jump;
2b83a2a4
RM
4671 }
4672 /* If don't have to jump any more, skip over the rest of command. */
91c7b85d
RM
4673 else
4674 p += 4;
2b83a2a4 4675 break;
91c7b85d 4676
2b83a2a4
RM
4677 case set_number_at:
4678 {
4679 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4680
4681 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4682 p1 = p + mcnt;
4683 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4684 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4685 STORE_NUMBER (p1, mcnt);
4686 break;
4687 }
4688
102800e0
RM
4689#if 0
4690 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4691 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4692 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4693 macro and introducing temporary variables works around the bug. */
4694
4695 case wordbound:
4696 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4697 if (AT_WORD_BOUNDARY (d))
2b83a2a4 4698 break;
102800e0 4699 goto fail;
2b83a2a4
RM
4700
4701 case notwordbound:
102800e0 4702 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
2b83a2a4
RM
4703 if (AT_WORD_BOUNDARY (d))
4704 goto fail;
102800e0
RM
4705 break;
4706#else
4707 case wordbound:
4708 {
4709 boolean prevchar, thischar;
4710
4711 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4712 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4713 break;
4714
4715 prevchar = WORDCHAR_P (d - 1);
4716 thischar = WORDCHAR_P (d);
4717 if (prevchar != thischar)
4718 break;
4719 goto fail;
4720 }
4721
4722 case notwordbound:
4723 {
4724 boolean prevchar, thischar;
4725
4726 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4727 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4728 goto fail;
4729
4730 prevchar = WORDCHAR_P (d - 1);
4731 thischar = WORDCHAR_P (d);
4732 if (prevchar != thischar)
4733 goto fail;
4734 break;
4735 }
4736#endif
2b83a2a4
RM
4737
4738 case wordbeg:
4739 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4740 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4741 break;
4742 goto fail;
4743
4744 case wordend:
4745 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4746 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4747 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4748 break;
4749 goto fail;
4750
4751#ifdef emacs
4752 case before_dot:
4753 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4754 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4755 goto fail;
4756 break;
91c7b85d 4757
2b83a2a4
RM
4758 case at_dot:
4759 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4760 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4761 goto fail;
4762 break;
91c7b85d 4763
2b83a2a4
RM
4764 case after_dot:
4765 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4766 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4767 goto fail;
4768 break;
2b83a2a4
RM
4769
4770 case syntaxspec:
4771 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4772 mcnt = *p++;
4773 goto matchsyntax;
4774
4775 case wordchar:
4776 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4777 mcnt = (int) Sword;
4778 matchsyntax:
4779 PREFETCH ();
4780 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4781 d++;
4782 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4783 goto fail;
4784 SET_REGS_MATCHED ();
4785 break;
4786
4787 case notsyntaxspec:
4788 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4789 mcnt = *p++;
4790 goto matchnotsyntax;
4791
4792 case notwordchar:
4793 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4794 mcnt = (int) Sword;
4795 matchnotsyntax:
4796 PREFETCH ();
4797 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4798 d++;
4799 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4800 goto fail;
4801 SET_REGS_MATCHED ();
4802 break;
4803
4804#else /* not emacs */
4805 case wordchar:
4806 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4807 PREFETCH ();
4808 if (!WORDCHAR_P (d))
4809 goto fail;
4810 SET_REGS_MATCHED ();
4811 d++;
4812 break;
91c7b85d 4813
2b83a2a4
RM
4814 case notwordchar:
4815 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4816 PREFETCH ();
4817 if (WORDCHAR_P (d))
4818 goto fail;
4819 SET_REGS_MATCHED ();
4820 d++;
4821 break;
4822#endif /* not emacs */
91c7b85d 4823
2b83a2a4
RM
4824 default:
4825 abort ();
4826 }
4827 continue; /* Successfully executed one pattern command; keep going. */
4828
4829
4830 /* We goto here if a matching operation fails. */
4831 fail:
4832 if (!FAIL_STACK_EMPTY ())
4833 { /* A restart point is known. Restore to that state. */
4834 DEBUG_PRINT1 ("\nFAIL:\n");
4835 POP_FAILURE_POINT (d, p,
4836 lowest_active_reg, highest_active_reg,
4837 regstart, regend, reg_info);
4838
4839 /* If this failure point is a dummy, try the next one. */
4840 if (!p)
4841 goto fail;
4842
4843 /* If we failed to the end of the pattern, don't examine *p. */
4844 assert (p <= pend);
4845 if (p < pend)
4846 {
4847 boolean is_a_jump_n = false;
91c7b85d 4848
2b83a2a4
RM
4849 /* If failed to a backwards jump that's part of a repetition
4850 loop, need to pop this failure point and use the next one. */
4851 switch ((re_opcode_t) *p)
4852 {
4853 case jump_n:
4854 is_a_jump_n = true;
4855 case maybe_pop_jump:
4856 case pop_failure_jump:
4857 case jump:
4858 p1 = p + 1;
4859 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
91c7b85d 4860 p1 += mcnt;
2b83a2a4
RM
4861
4862 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4863 || (!is_a_jump_n
4864 && (re_opcode_t) *p1 == on_failure_jump))
4865 goto fail;
4866 break;
4867 default:
4868 /* do nothing */ ;
4869 }
4870 }
4871
4872 if (d >= string1 && d <= end1)
4873 dend = end_match_1;
4874 }
4875 else
4876 break; /* Matching at this starting point really fails. */
4877 } /* for (;;) */
4878
4879 if (best_regs_set)
4880 goto restore_best_regs;
4881
4882 FREE_VARIABLES ();
4883
4884 return -1; /* Failure to match. */
4885} /* re_match_2 */
4886\f
4887/* Subroutine definitions for re_match_2. */
4888
4889
4890/* We are passed P pointing to a register number after a start_memory.
91c7b85d 4891
2b83a2a4
RM
4892 Return true if the pattern up to the corresponding stop_memory can
4893 match the empty string, and false otherwise.
91c7b85d 4894
2b83a2a4
RM
4895 If we find the matching stop_memory, sets P to point to one past its number.
4896 Otherwise, sets P to an undefined byte less than or equal to END.
4897
4898 We don't handle duplicates properly (yet). */
4899
4900static boolean
4901group_match_null_string_p (p, end, reg_info)
4902 unsigned char **p, *end;
4903 register_info_type *reg_info;
4904{
4905 int mcnt;
4906 /* Point to after the args to the start_memory. */
4907 unsigned char *p1 = *p + 2;
91c7b85d 4908
2b83a2a4
RM
4909 while (p1 < end)
4910 {
4911 /* Skip over opcodes that can match nothing, and return true or
4912 false, as appropriate, when we get to one that can't, or to the
4913 matching stop_memory. */
91c7b85d 4914
2b83a2a4
RM
4915 switch ((re_opcode_t) *p1)
4916 {
4917 /* Could be either a loop or a series of alternatives. */
4918 case on_failure_jump:
4919 p1++;
4920 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
91c7b85d 4921
2b83a2a4
RM
4922 /* If the next operation is not a jump backwards in the
4923 pattern. */
4924
4925 if (mcnt >= 0)
4926 {
4927 /* Go through the on_failure_jumps of the alternatives,
4928 seeing if any of the alternatives cannot match nothing.
4929 The last alternative starts with only a jump,
4930 whereas the rest start with on_failure_jump and end
4931 with a jump, e.g., here is the pattern for `a|b|c':
4932
4933 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4934 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
91c7b85d 4935 /exactn/1/c
2b83a2a4
RM
4936
4937 So, we have to first go through the first (n-1)
4938 alternatives and then deal with the last one separately. */
4939
4940
4941 /* Deal with the first (n-1) alternatives, which start
4942 with an on_failure_jump (see above) that jumps to right
4943 past a jump_past_alt. */
4944
4945 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4946 {
4947 /* `mcnt' holds how many bytes long the alternative
4948 is, including the ending `jump_past_alt' and
4949 its number. */
4950
91c7b85d 4951 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
2b83a2a4
RM
4952 reg_info))
4953 return false;
4954
4955 /* Move to right after this alternative, including the
4956 jump_past_alt. */
91c7b85d 4957 p1 += mcnt;
2b83a2a4
RM
4958
4959 /* Break if it's the beginning of an n-th alternative
4960 that doesn't begin with an on_failure_jump. */
4961 if ((re_opcode_t) *p1 != on_failure_jump)
4962 break;
91c7b85d 4963
2b83a2a4
RM
4964 /* Still have to check that it's not an n-th
4965 alternative that starts with an on_failure_jump. */
4966 p1++;
4967 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4968 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4969 {
4970 /* Get to the beginning of the n-th alternative. */
4971 p1 -= 3;
4972 break;
4973 }
4974 }
4975
4976 /* Deal with the last alternative: go back and get number
4977 of the `jump_past_alt' just before it. `mcnt' contains
4978 the length of the alternative. */
4979 EXTRACT_NUMBER (mcnt, p1 - 2);
4980
4981 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4982 return false;
4983
4984 p1 += mcnt; /* Get past the n-th alternative. */
4985 } /* if mcnt > 0 */
4986 break;
4987
91c7b85d 4988
2b83a2a4
RM
4989 case stop_memory:
4990 assert (p1[1] == **p);
4991 *p = p1 + 2;
4992 return true;
4993
91c7b85d
RM
4994
4995 default:
2b83a2a4
RM
4996 if (!common_op_match_null_string_p (&p1, end, reg_info))
4997 return false;
4998 }
4999 } /* while p1 < end */
5000
5001 return false;
5002} /* group_match_null_string_p */
5003
5004
5005/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5006 It expects P to be the first byte of a single alternative and END one
5007 byte past the last. The alternative can contain groups. */
91c7b85d 5008
2b83a2a4
RM
5009static boolean
5010alt_match_null_string_p (p, end, reg_info)
5011 unsigned char *p, *end;
5012 register_info_type *reg_info;
5013{
5014 int mcnt;
5015 unsigned char *p1 = p;
91c7b85d 5016
2b83a2a4
RM
5017 while (p1 < end)
5018 {
91c7b85d 5019 /* Skip over opcodes that can match nothing, and break when we get
2b83a2a4 5020 to one that can't. */
91c7b85d 5021
2b83a2a4
RM
5022 switch ((re_opcode_t) *p1)
5023 {
5024 /* It's a loop. */
5025 case on_failure_jump:
5026 p1++;
5027 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5028 p1 += mcnt;
5029 break;
91c7b85d
RM
5030
5031 default:
2b83a2a4
RM
5032 if (!common_op_match_null_string_p (&p1, end, reg_info))
5033 return false;
5034 }
5035 } /* while p1 < end */
5036
5037 return true;
5038} /* alt_match_null_string_p */
5039
5040
5041/* Deals with the ops common to group_match_null_string_p and
91c7b85d
RM
5042 alt_match_null_string_p.
5043
2b83a2a4
RM
5044 Sets P to one after the op and its arguments, if any. */
5045
5046static boolean
5047common_op_match_null_string_p (p, end, reg_info)
5048 unsigned char **p, *end;
5049 register_info_type *reg_info;
5050{
5051 int mcnt;
5052 boolean ret;
5053 int reg_no;
5054 unsigned char *p1 = *p;
5055
5056 switch ((re_opcode_t) *p1++)
5057 {
5058 case no_op:
5059 case begline:
5060 case endline:
5061 case begbuf:
5062 case endbuf:
5063 case wordbeg:
5064 case wordend:
5065 case wordbound:
5066 case notwordbound:
5067#ifdef emacs
5068 case before_dot:
5069 case at_dot:
5070 case after_dot:
5071#endif
5072 break;
5073
5074 case start_memory:
5075 reg_no = *p1;
5076 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5077 ret = group_match_null_string_p (&p1, end, reg_info);
91c7b85d 5078
2b83a2a4
RM
5079 /* Have to set this here in case we're checking a group which
5080 contains a group and a back reference to it. */
5081
5082 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5083 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5084
5085 if (!ret)
5086 return false;
5087 break;
91c7b85d 5088
2b83a2a4
RM
5089 /* If this is an optimized succeed_n for zero times, make the jump. */
5090 case jump:
5091 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5092 if (mcnt >= 0)
5093 p1 += mcnt;
5094 else
5095 return false;
5096 break;
5097
5098 case succeed_n:
5099 /* Get to the number of times to succeed. */
91c7b85d 5100 p1 += 2;
2b83a2a4
RM
5101 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5102
5103 if (mcnt == 0)
5104 {
5105 p1 -= 4;
5106 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5107 p1 += mcnt;
5108 }
5109 else
5110 return false;
5111 break;
5112
91c7b85d 5113 case duplicate:
2b83a2a4
RM
5114 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5115 return false;
5116 break;
5117
5118 case set_number_at:
5119 p1 += 4;
5120
5121 default:
5122 /* All other opcodes mean we cannot match the empty string. */
5123 return false;
5124 }
5125
5126 *p = p1;
5127 return true;
5128} /* common_op_match_null_string_p */
5129
5130
5131/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5132 bytes; nonzero otherwise. */
91c7b85d 5133
2b83a2a4
RM
5134static int
5135bcmp_translate (s1, s2, len, translate)
5136 unsigned char *s1, *s2;
5137 register int len;
03a75825 5138 RE_TRANSLATE_TYPE translate;
2b83a2a4
RM
5139{
5140 register unsigned char *p1 = s1, *p2 = s2;
5141 while (len)
5142 {
5143 if (translate[*p1++] != translate[*p2++]) return 1;
5144 len--;
5145 }
5146 return 0;
5147}
5148\f
5149/* Entry points for GNU code. */
5150
5151/* re_compile_pattern is the GNU regular expression compiler: it
5152 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5153 Returns 0 if the pattern was valid, otherwise an error string.
91c7b85d 5154
2b83a2a4
RM
5155 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5156 are set in BUFP on entry.
91c7b85d 5157
2b83a2a4
RM
5158 We call regex_compile to do the actual compilation. */
5159
5160const char *
5161re_compile_pattern (pattern, length, bufp)
5162 const char *pattern;
5163 int length;
5164 struct re_pattern_buffer *bufp;
5165{
5166 reg_errcode_t ret;
91c7b85d 5167
2b83a2a4
RM
5168 /* GNU code is written to assume at least RE_NREGS registers will be set
5169 (and at least one extra will be -1). */
5170 bufp->regs_allocated = REGS_UNALLOCATED;
91c7b85d 5171
2b83a2a4
RM
5172 /* And GNU code determines whether or not to get register information
5173 by passing null for the REGS argument to re_match, etc., not by
5174 setting no_sub. */
5175 bufp->no_sub = 0;
91c7b85d 5176
2b83a2a4
RM
5177 /* Match anchors at newline. */
5178 bufp->newline_anchor = 1;
91c7b85d 5179
2b83a2a4
RM
5180 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5181
5182 if (!ret)
5183 return NULL;
5184 return gettext (re_error_msgid[(int) ret]);
91c7b85d 5185}
2b83a2a4
RM
5186\f
5187/* Entry points compatible with 4.2 BSD regex library. We don't define
5188 them unless specifically requested. */
5189
dc997231 5190#if defined (_REGEX_RE_COMP) || defined (_LIBC)
2b83a2a4
RM
5191
5192/* BSD has one and only one pattern buffer. */
5193static struct re_pattern_buffer re_comp_buf;
5194
18c75117 5195char * weak_function
2b83a2a4
RM
5196re_comp (s)
5197 const char *s;
5198{
5199 reg_errcode_t ret;
91c7b85d 5200
2b83a2a4
RM
5201 if (!s)
5202 {
5203 if (!re_comp_buf.buffer)
5204 return gettext ("No previous regular expression");
5205 return 0;
5206 }
5207
5208 if (!re_comp_buf.buffer)
5209 {
5210 re_comp_buf.buffer = (unsigned char *) malloc (200);
5211 if (re_comp_buf.buffer == NULL)
5212 return gettext (re_error_msgid[(int) REG_ESPACE]);
5213 re_comp_buf.allocated = 200;
5214
5215 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5216 if (re_comp_buf.fastmap == NULL)
5217 return gettext (re_error_msgid[(int) REG_ESPACE]);
5218 }
5219
5220 /* Since `re_exec' always passes NULL for the `regs' argument, we
5221 don't need to initialize the pattern buffer fields which affect it. */
5222
5223 /* Match anchors at newlines. */
5224 re_comp_buf.newline_anchor = 1;
5225
5226 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
91c7b85d 5227
2b83a2a4
RM
5228 if (!ret)
5229 return NULL;
5230
5231 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5232 return (char *) gettext (re_error_msgid[(int) ret]);
5233}
5234
5235
18c75117 5236int weak_function
2b83a2a4
RM
5237re_exec (s)
5238 const char *s;
5239{
5240 const int len = strlen (s);
5241 return
5242 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5243}
dc997231 5244
2b83a2a4
RM
5245#endif /* _REGEX_RE_COMP */
5246\f
5247/* POSIX.2 functions. Don't define these for Emacs. */
5248
5249#ifndef emacs
5250
5251/* regcomp takes a regular expression as a string and compiles it.
5252
5253 PREG is a regex_t *. We do not expect any fields to be initialized,
5254 since POSIX says we shouldn't. Thus, we set
5255
5256 `buffer' to the compiled pattern;
5257 `used' to the length of the compiled pattern;
5258 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5259 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5260 RE_SYNTAX_POSIX_BASIC;
5261 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5262 `fastmap' and `fastmap_accurate' to zero;
5263 `re_nsub' to the number of subexpressions in PATTERN.
5264
5265 PATTERN is the address of the pattern string.
5266
5267 CFLAGS is a series of bits which affect compilation.
5268
5269 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5270 use POSIX basic syntax.
5271
5272 If REG_NEWLINE is set, then . and [^...] don't match newline.
5273 Also, regexec will try a match beginning after every newline.
5274
5275 If REG_ICASE is set, then we considers upper- and lowercase
5276 versions of letters to be equivalent when matching.
5277
5278 If REG_NOSUB is set, then when PREG is passed to regexec, that
5279 routine will report only success or failure, and nothing about the
5280 registers.
5281
5282 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5283 the return codes and their meanings.) */
5284
5285int
5286regcomp (preg, pattern, cflags)
5287 regex_t *preg;
91c7b85d 5288 const char *pattern;
2b83a2a4
RM
5289 int cflags;
5290{
5291 reg_errcode_t ret;
5292 unsigned syntax
5293 = (cflags & REG_EXTENDED) ?
5294 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5295
5296 /* regex_compile will allocate the space for the compiled pattern. */
5297 preg->buffer = 0;
5298 preg->allocated = 0;
5299 preg->used = 0;
91c7b85d 5300
2b83a2a4
RM
5301 /* Don't bother to use a fastmap when searching. This simplifies the
5302 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5303 characters after newlines into the fastmap. This way, we just try
5304 every character. */
5305 preg->fastmap = 0;
91c7b85d 5306
2b83a2a4
RM
5307 if (cflags & REG_ICASE)
5308 {
5309 unsigned i;
91c7b85d 5310
03a75825
RM
5311 preg->translate
5312 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5313 * sizeof (*(RE_TRANSLATE_TYPE)0));
2b83a2a4
RM
5314 if (preg->translate == NULL)
5315 return (int) REG_ESPACE;
5316
5317 /* Map uppercase characters to corresponding lowercase ones. */
5318 for (i = 0; i < CHAR_SET_SIZE; i++)
5319 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5320 }
5321 else
5322 preg->translate = NULL;
5323
5324 /* If REG_NEWLINE is set, newlines are treated differently. */
5325 if (cflags & REG_NEWLINE)
5326 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5327 syntax &= ~RE_DOT_NEWLINE;
5328 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5329 /* It also changes the matching behavior. */
5330 preg->newline_anchor = 1;
5331 }
5332 else
5333 preg->newline_anchor = 0;
5334
5335 preg->no_sub = !!(cflags & REG_NOSUB);
5336
91c7b85d 5337 /* POSIX says a null character in the pattern terminates it, so we
2b83a2a4
RM
5338 can use strlen here in compiling the pattern. */
5339 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
91c7b85d 5340
2b83a2a4
RM
5341 /* POSIX doesn't distinguish between an unmatched open-group and an
5342 unmatched close-group: both are REG_EPAREN. */
5343 if (ret == REG_ERPAREN) ret = REG_EPAREN;
91c7b85d 5344
2b83a2a4
RM
5345 return (int) ret;
5346}
5347
5348
5349/* regexec searches for a given pattern, specified by PREG, in the
5350 string STRING.
91c7b85d 5351
2b83a2a4
RM
5352 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5353 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5354 least NMATCH elements, and we set them to the offsets of the
5355 corresponding matched substrings.
91c7b85d 5356
2b83a2a4
RM
5357 EFLAGS specifies `execution flags' which affect matching: if
5358 REG_NOTBOL is set, then ^ does not match at the beginning of the
5359 string; if REG_NOTEOL is set, then $ does not match at the end.
91c7b85d 5360
2b83a2a4
RM
5361 We return 0 if we find a match and REG_NOMATCH if not. */
5362
5363int
5364regexec (preg, string, nmatch, pmatch, eflags)
5365 const regex_t *preg;
91c7b85d
RM
5366 const char *string;
5367 size_t nmatch;
5368 regmatch_t pmatch[];
2b83a2a4
RM
5369 int eflags;
5370{
5371 int ret;
5372 struct re_registers regs;
5373 regex_t private_preg;
5374 int len = strlen (string);
5375 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5376
5377 private_preg = *preg;
91c7b85d 5378
2b83a2a4
RM
5379 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5380 private_preg.not_eol = !!(eflags & REG_NOTEOL);
91c7b85d 5381
2b83a2a4
RM
5382 /* The user has told us exactly how many registers to return
5383 information about, via `nmatch'. We have to pass that on to the
5384 matching routines. */
5385 private_preg.regs_allocated = REGS_FIXED;
91c7b85d 5386
2b83a2a4
RM
5387 if (want_reg_info)
5388 {
5389 regs.num_regs = nmatch;
5390 regs.start = TALLOC (nmatch, regoff_t);
5391 regs.end = TALLOC (nmatch, regoff_t);
5392 if (regs.start == NULL || regs.end == NULL)
5393 return (int) REG_NOMATCH;
5394 }
5395
5396 /* Perform the searching operation. */
5397 ret = re_search (&private_preg, string, len,
5398 /* start: */ 0, /* range: */ len,
5399 want_reg_info ? &regs : (struct re_registers *) 0);
91c7b85d 5400
2b83a2a4
RM
5401 /* Copy the register information to the POSIX structure. */
5402 if (want_reg_info)
5403 {
5404 if (ret >= 0)
5405 {
5406 unsigned r;
5407
5408 for (r = 0; r < nmatch; r++)
5409 {
5410 pmatch[r].rm_so = regs.start[r];
5411 pmatch[r].rm_eo = regs.end[r];
5412 }
5413 }
5414
5415 /* If we needed the temporary register info, free the space now. */
5416 free (regs.start);
5417 free (regs.end);
5418 }
5419
5420 /* We want zero return to mean success, unlike `re_search'. */
5421 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5422}
5423
5424
5425/* Returns a message corresponding to an error code, ERRCODE, returned
5426 from either regcomp or regexec. We don't use PREG here. */
5427
5428size_t
5429regerror (errcode, preg, errbuf, errbuf_size)
5430 int errcode;
5431 const regex_t *preg;
5432 char *errbuf;
5433 size_t errbuf_size;
5434{
5435 const char *msg;
5436 size_t msg_size;
5437
5438 if (errcode < 0
ba1ffaa1
UD
5439 || errcode >= (int) (sizeof (re_error_msgid)
5440 / sizeof (re_error_msgid[0])))
91c7b85d 5441 /* Only error codes returned by the rest of the code should be passed
2b83a2a4
RM
5442 to this routine. If we are given anything else, or if other regex
5443 code generates an invalid error code, then the program has a bug.
5444 Dump core so we can fix it. */
5445 abort ();
5446
5447 msg = gettext (re_error_msgid[errcode]);
5448
5449 msg_size = strlen (msg) + 1; /* Includes the null. */
91c7b85d 5450
2b83a2a4
RM
5451 if (errbuf_size != 0)
5452 {
5453 if (msg_size > errbuf_size)
5454 {
5455 strncpy (errbuf, msg, errbuf_size - 1);
5456 errbuf[errbuf_size - 1] = 0;
5457 }
5458 else
5459 strcpy (errbuf, msg);
5460 }
5461
5462 return msg_size;
5463}
5464
5465
5466/* Free dynamically allocated space used by PREG. */
5467
5468void
5469regfree (preg)
5470 regex_t *preg;
5471{
5472 if (preg->buffer != NULL)
5473 free (preg->buffer);
5474 preg->buffer = NULL;
91c7b85d 5475
2b83a2a4
RM
5476 preg->allocated = 0;
5477 preg->used = 0;
5478
5479 if (preg->fastmap != NULL)
5480 free (preg->fastmap);
5481 preg->fastmap = NULL;
5482 preg->fastmap_accurate = 0;
5483
5484 if (preg->translate != NULL)
5485 free (preg->translate);
5486 preg->translate = NULL;
5487}
5488
5489#endif /* not emacs */