]> git.ipfire.org Git - thirdparty/openssl.git/blame - providers/implementations/ciphers/cipher_aes_cbc_hmac_sha256_hw.c
Add missing inclusion of "internal/deprecated.h"
[thirdparty/openssl.git] / providers / implementations / ciphers / cipher_aes_cbc_hmac_sha256_hw.c
CommitLineData
0d2bfe52
SL
1/*
2 * Copyright 2011-2019 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
0081ce9b
RL
10/*
11 * AES low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15#include "internal/deprecated.h"
16
0d2bfe52
SL
17#include "cipher_aes_cbc_hmac_sha.h"
18
19#ifndef AES_CBC_HMAC_SHA_CAPABLE
20int cipher_capable_aes_cbc_hmac_sha256(void)
21{
22 return 0;
23}
24#else
25
26# include "crypto/rand.h"
27# include "crypto/evp.h"
28# include "internal/constant_time.h"
29
30void sha256_block_data_order(void *c, const void *p, size_t len);
31int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
32 const AES_KEY *key, unsigned char iv[16],
33 SHA256_CTX *ctx, const void *in0);
34
35int cipher_capable_aes_cbc_hmac_sha256(void)
36{
37 return AESNI_CBC_HMAC_SHA_CAPABLE
38 && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL);
39}
40
41static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx,
42 const unsigned char *key,
43 size_t keylen)
44{
45 int ret;
46 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
47 PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
48
49 if (ctx->base.enc)
50 ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
51 else
52 ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
53
54 SHA256_Init(&sctx->head); /* handy when benchmarking */
55 sctx->tail = sctx->head;
56 sctx->md = sctx->head;
57
58 ctx->payload_length = NO_PAYLOAD_LENGTH;
59
60 return ret < 0 ? 0 : 1;
61}
62
63void sha256_block_data_order(void *c, const void *p, size_t len);
64
65static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
66{
67 const unsigned char *ptr = data;
68 size_t res;
69
70 if ((res = c->num)) {
71 res = SHA256_CBLOCK - res;
72 if (len < res)
73 res = len;
74 SHA256_Update(c, ptr, res);
75 ptr += res;
76 len -= res;
77 }
78
79 res = len % SHA256_CBLOCK;
80 len -= res;
81
82 if (len) {
83 sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
84
85 ptr += len;
86 c->Nh += len >> 29;
87 c->Nl += len <<= 3;
88 if (c->Nl < (unsigned int)len)
89 c->Nh++;
90 }
91
92 if (res)
93 SHA256_Update(c, ptr, res);
94}
95
96# if !defined(OPENSSL_NO_MULTIBLOCK)
97
98typedef struct {
99 unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
100} SHA256_MB_CTX;
101
102typedef struct {
103 const unsigned char *ptr;
104 int blocks;
105} HASH_DESC;
106
107typedef struct {
108 const unsigned char *inp;
109 unsigned char *out;
110 int blocks;
111 u64 iv[2];
112} CIPH_DESC;
113
114void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
115void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
116
117static size_t tls1_multi_block_encrypt(void *vctx,
118 unsigned char *out,
119 const unsigned char *inp,
120 size_t inp_len, int n4x)
121{ /* n4x is 1 or 2 */
122 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
123 PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
124 HASH_DESC hash_d[8], edges[8];
125 CIPH_DESC ciph_d[8];
126 unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
127 union {
128 u64 q[16];
129 u32 d[32];
130 u8 c[128];
131 } blocks[8];
132 SHA256_MB_CTX *mctx;
133 unsigned int frag, last, packlen, i;
134 unsigned int x4 = 4 * n4x, minblocks, processed = 0;
135 size_t ret = 0;
136 u8 *IVs;
137# if defined(BSWAP8)
138 u64 seqnum;
139# endif
140
141 /* ask for IVs in bulk */
142 if (rand_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4) <= 0)
143 return 0;
144
145 mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
146
147 frag = (unsigned int)inp_len >> (1 + n4x);
148 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
149 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
150 frag++;
151 last -= x4 - 1;
152 }
153
154 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
155
156 /* populate descriptors with pointers and IVs */
157 hash_d[0].ptr = inp;
158 ciph_d[0].inp = inp;
159 /* 5+16 is place for header and explicit IV */
160 ciph_d[0].out = out + 5 + 16;
161 memcpy(ciph_d[0].out - 16, IVs, 16);
162 memcpy(ciph_d[0].iv, IVs, 16);
163 IVs += 16;
164
165 for (i = 1; i < x4; i++) {
166 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
167 ciph_d[i].out = ciph_d[i - 1].out + packlen;
168 memcpy(ciph_d[i].out - 16, IVs, 16);
169 memcpy(ciph_d[i].iv, IVs, 16);
170 IVs += 16;
171 }
172
173# if defined(BSWAP8)
174 memcpy(blocks[0].c, sctx->md.data, 8);
175 seqnum = BSWAP8(blocks[0].q[0]);
176# endif
177
178 for (i = 0; i < x4; i++) {
179 unsigned int len = (i == (x4 - 1) ? last : frag);
180# if !defined(BSWAP8)
181 unsigned int carry, j;
182# endif
183
184 mctx->A[i] = sctx->md.h[0];
185 mctx->B[i] = sctx->md.h[1];
186 mctx->C[i] = sctx->md.h[2];
187 mctx->D[i] = sctx->md.h[3];
188 mctx->E[i] = sctx->md.h[4];
189 mctx->F[i] = sctx->md.h[5];
190 mctx->G[i] = sctx->md.h[6];
191 mctx->H[i] = sctx->md.h[7];
192
193 /* fix seqnum */
194# if defined(BSWAP8)
195 blocks[i].q[0] = BSWAP8(seqnum + i);
196# else
197 for (carry = i, j = 8; j--;) {
198 blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
199 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
200 }
201# endif
202 blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
203 blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
204 blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
205 /* fix length */
206 blocks[i].c[11] = (u8)(len >> 8);
207 blocks[i].c[12] = (u8)(len);
208
209 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
210 hash_d[i].ptr += 64 - 13;
211 hash_d[i].blocks = (len - (64 - 13)) / 64;
212
213 edges[i].ptr = blocks[i].c;
214 edges[i].blocks = 1;
215 }
216
217 /* hash 13-byte headers and first 64-13 bytes of inputs */
218 sha256_multi_block(mctx, edges, n4x);
219 /* hash bulk inputs */
220# define MAXCHUNKSIZE 2048
221# if MAXCHUNKSIZE%64
222# error "MAXCHUNKSIZE is not divisible by 64"
223# elif MAXCHUNKSIZE
224 /*
225 * goal is to minimize pressure on L1 cache by moving in shorter steps,
226 * so that hashed data is still in the cache by the time we encrypt it
227 */
228 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
229 if (minblocks > MAXCHUNKSIZE / 64) {
230 for (i = 0; i < x4; i++) {
231 edges[i].ptr = hash_d[i].ptr;
232 edges[i].blocks = MAXCHUNKSIZE / 64;
233 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
234 }
235 do {
236 sha256_multi_block(mctx, edges, n4x);
237 aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
238
239 for (i = 0; i < x4; i++) {
240 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
241 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
242 edges[i].blocks = MAXCHUNKSIZE / 64;
243 ciph_d[i].inp += MAXCHUNKSIZE;
244 ciph_d[i].out += MAXCHUNKSIZE;
245 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
246 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
247 }
248 processed += MAXCHUNKSIZE;
249 minblocks -= MAXCHUNKSIZE / 64;
250 } while (minblocks > MAXCHUNKSIZE / 64);
251 }
252# endif
253# undef MAXCHUNKSIZE
254 sha256_multi_block(mctx, hash_d, n4x);
255
256 memset(blocks, 0, sizeof(blocks));
257 for (i = 0; i < x4; i++) {
258 unsigned int len = (i == (x4 - 1) ? last : frag),
259 off = hash_d[i].blocks * 64;
260 const unsigned char *ptr = hash_d[i].ptr + off;
261
262 off = (len - processed) - (64 - 13) - off; /* remainder actually */
263 memcpy(blocks[i].c, ptr, off);
264 blocks[i].c[off] = 0x80;
265 len += 64 + 13; /* 64 is HMAC header */
266 len *= 8; /* convert to bits */
267 if (off < (64 - 8)) {
268# ifdef BSWAP4
269 blocks[i].d[15] = BSWAP4(len);
270# else
271 PUTU32(blocks[i].c + 60, len);
272# endif
273 edges[i].blocks = 1;
274 } else {
275# ifdef BSWAP4
276 blocks[i].d[31] = BSWAP4(len);
277# else
278 PUTU32(blocks[i].c + 124, len);
279# endif
280 edges[i].blocks = 2;
281 }
282 edges[i].ptr = blocks[i].c;
283 }
284
285 /* hash input tails and finalize */
286 sha256_multi_block(mctx, edges, n4x);
287
288 memset(blocks, 0, sizeof(blocks));
289 for (i = 0; i < x4; i++) {
290# ifdef BSWAP4
291 blocks[i].d[0] = BSWAP4(mctx->A[i]);
292 mctx->A[i] = sctx->tail.h[0];
293 blocks[i].d[1] = BSWAP4(mctx->B[i]);
294 mctx->B[i] = sctx->tail.h[1];
295 blocks[i].d[2] = BSWAP4(mctx->C[i]);
296 mctx->C[i] = sctx->tail.h[2];
297 blocks[i].d[3] = BSWAP4(mctx->D[i]);
298 mctx->D[i] = sctx->tail.h[3];
299 blocks[i].d[4] = BSWAP4(mctx->E[i]);
300 mctx->E[i] = sctx->tail.h[4];
301 blocks[i].d[5] = BSWAP4(mctx->F[i]);
302 mctx->F[i] = sctx->tail.h[5];
303 blocks[i].d[6] = BSWAP4(mctx->G[i]);
304 mctx->G[i] = sctx->tail.h[6];
305 blocks[i].d[7] = BSWAP4(mctx->H[i]);
306 mctx->H[i] = sctx->tail.h[7];
307 blocks[i].c[32] = 0x80;
308 blocks[i].d[15] = BSWAP4((64 + 32) * 8);
309# else
310 PUTU32(blocks[i].c + 0, mctx->A[i]);
311 mctx->A[i] = sctx->tail.h[0];
312 PUTU32(blocks[i].c + 4, mctx->B[i]);
313 mctx->B[i] = sctx->tail.h[1];
314 PUTU32(blocks[i].c + 8, mctx->C[i]);
315 mctx->C[i] = sctx->tail.h[2];
316 PUTU32(blocks[i].c + 12, mctx->D[i]);
317 mctx->D[i] = sctx->tail.h[3];
318 PUTU32(blocks[i].c + 16, mctx->E[i]);
319 mctx->E[i] = sctx->tail.h[4];
320 PUTU32(blocks[i].c + 20, mctx->F[i]);
321 mctx->F[i] = sctx->tail.h[5];
322 PUTU32(blocks[i].c + 24, mctx->G[i]);
323 mctx->G[i] = sctx->tail.h[6];
324 PUTU32(blocks[i].c + 28, mctx->H[i]);
325 mctx->H[i] = sctx->tail.h[7];
326 blocks[i].c[32] = 0x80;
327 PUTU32(blocks[i].c + 60, (64 + 32) * 8);
328# endif /* BSWAP */
329 edges[i].ptr = blocks[i].c;
330 edges[i].blocks = 1;
331 }
332
333 /* finalize MACs */
334 sha256_multi_block(mctx, edges, n4x);
335
336 for (i = 0; i < x4; i++) {
337 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
338 unsigned char *out0 = out;
339
340 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
341 ciph_d[i].inp = ciph_d[i].out;
342
343 out += 5 + 16 + len;
344
345 /* write MAC */
346 PUTU32(out + 0, mctx->A[i]);
347 PUTU32(out + 4, mctx->B[i]);
348 PUTU32(out + 8, mctx->C[i]);
349 PUTU32(out + 12, mctx->D[i]);
350 PUTU32(out + 16, mctx->E[i]);
351 PUTU32(out + 20, mctx->F[i]);
352 PUTU32(out + 24, mctx->G[i]);
353 PUTU32(out + 28, mctx->H[i]);
354 out += 32;
355 len += 32;
356
357 /* pad */
358 pad = 15 - len % 16;
359 for (j = 0; j <= pad; j++)
360 *(out++) = pad;
361 len += pad + 1;
362
363 ciph_d[i].blocks = (len - processed) / 16;
364 len += 16; /* account for explicit iv */
365
366 /* arrange header */
367 out0[0] = ((u8 *)sctx->md.data)[8];
368 out0[1] = ((u8 *)sctx->md.data)[9];
369 out0[2] = ((u8 *)sctx->md.data)[10];
370 out0[3] = (u8)(len >> 8);
371 out0[4] = (u8)(len);
372
373 ret += len + 5;
374 inp += frag;
375 }
376
377 aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
378
379 OPENSSL_cleanse(blocks, sizeof(blocks));
380 OPENSSL_cleanse(mctx, sizeof(*mctx));
381
382 ctx->multiblock_encrypt_len = ret;
383 return ret;
384}
385# endif /* !OPENSSL_NO_MULTIBLOCK */
386
387static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx,
388 unsigned char *out,
389 const unsigned char *in, size_t len)
390{
391 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
392 PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
393 unsigned int l;
394 size_t plen = ctx->payload_length;
395 size_t iv = 0; /* explicit IV in TLS 1.1 and * later */
396 size_t aes_off = 0, blocks;
397 size_t sha_off = SHA256_CBLOCK - sctx->md.num;
398
399 ctx->payload_length = NO_PAYLOAD_LENGTH;
400
401 if (len % AES_BLOCK_SIZE)
402 return 0;
403
404 if (ctx->base.enc) {
405 if (plen == NO_PAYLOAD_LENGTH)
406 plen = len;
407 else if (len !=
408 ((plen + SHA256_DIGEST_LENGTH +
409 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
410 return 0;
411 else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
412 iv = AES_BLOCK_SIZE;
413
414 /*
415 * Assembly stitch handles AVX-capable processors, but its
416 * performance is not optimal on AMD Jaguar, ~40% worse, for
417 * unknown reasons. Incidentally processor in question supports
418 * AVX, but not AMD-specific XOP extension, which can be used
419 * to identify it and avoid stitch invocation. So that after we
420 * establish that current CPU supports AVX, we even see if it's
421 * either even XOP-capable Bulldozer-based or GenuineIntel one.
422 * But SHAEXT-capable go ahead...
423 */
424 if (((OPENSSL_ia32cap_P[2] & (1 << 29)) || /* SHAEXT? */
425 ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
426 ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32))) /* XOP? */
427 | (OPENSSL_ia32cap_P[0] & (1 << 30))))) && /* "Intel CPU"? */
428 plen > (sha_off + iv) &&
429 (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
430 sha256_update(&sctx->md, in + iv, sha_off);
431
432 (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks,
433 ctx->base.iv,
434 &sctx->md, in + iv + sha_off);
435 blocks *= SHA256_CBLOCK;
436 aes_off += blocks;
437 sha_off += blocks;
438 sctx->md.Nh += blocks >> 29;
439 sctx->md.Nl += blocks <<= 3;
440 if (sctx->md.Nl < (unsigned int)blocks)
441 sctx->md.Nh++;
442 } else {
443 sha_off = 0;
444 }
445 sha_off += iv;
446 sha256_update(&sctx->md, in + sha_off, plen - sha_off);
447
448 if (plen != len) { /* "TLS" mode of operation */
449 if (in != out)
450 memcpy(out + aes_off, in + aes_off, plen - aes_off);
451
452 /* calculate HMAC and append it to payload */
453 SHA256_Final(out + plen, &sctx->md);
454 sctx->md = sctx->tail;
455 sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH);
456 SHA256_Final(out + plen, &sctx->md);
457
458 /* pad the payload|hmac */
459 plen += SHA256_DIGEST_LENGTH;
460 for (l = len - plen - 1; plen < len; plen++)
461 out[plen] = l;
462 /* encrypt HMAC|padding at once */
463 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
464 &ctx->ks, ctx->base.iv, 1);
465 } else {
466 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
467 &ctx->ks, ctx->base.iv, 1);
468 }
469 } else {
470 union {
471 unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
472 unsigned char c[64 + SHA256_DIGEST_LENGTH];
473 } mac, *pmac;
474
475 /* arrange cache line alignment */
476 pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
477
478 /* decrypt HMAC|padding at once */
479 aesni_cbc_encrypt(in, out, len, &ctx->ks,
480 ctx->base.iv, 0);
481
482 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
483 size_t inp_len, mask, j, i;
484 unsigned int res, maxpad, pad, bitlen;
485 int ret = 1;
486 union {
487 unsigned int u[SHA_LBLOCK];
488 unsigned char c[SHA256_CBLOCK];
489 } *data = (void *)sctx->md.data;
490
491 if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
492 >= TLS1_1_VERSION)
493 iv = AES_BLOCK_SIZE;
494
495 if (len < (iv + SHA256_DIGEST_LENGTH + 1))
496 return 0;
497
498 /* omit explicit iv */
499 out += iv;
500 len -= iv;
501
502 /* figure out payload length */
503 pad = out[len - 1];
504 maxpad = len - (SHA256_DIGEST_LENGTH + 1);
505 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
506 maxpad &= 255;
507
508 mask = constant_time_ge(maxpad, pad);
509 ret &= mask;
510 /*
511 * If pad is invalid then we will fail the above test but we must
512 * continue anyway because we are in constant time code. However,
513 * we'll use the maxpad value instead of the supplied pad to make
514 * sure we perform well defined pointer arithmetic.
515 */
516 pad = constant_time_select(mask, pad, maxpad);
517
518 inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
519
520 ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
521 ctx->aux.tls_aad[plen - 1] = inp_len;
522
523 /* calculate HMAC */
524 sctx->md = sctx->head;
525 sha256_update(&sctx->md, ctx->aux.tls_aad, plen);
526
527 /* code with lucky-13 fix */
528 len -= SHA256_DIGEST_LENGTH; /* amend mac */
529 if (len >= (256 + SHA256_CBLOCK)) {
530 j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
531 j += SHA256_CBLOCK - sctx->md.num;
532 sha256_update(&sctx->md, out, j);
533 out += j;
534 len -= j;
535 inp_len -= j;
536 }
537
538 /* but pretend as if we hashed padded payload */
539 bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
540# ifdef BSWAP4
541 bitlen = BSWAP4(bitlen);
542# else
543 mac.c[0] = 0;
544 mac.c[1] = (unsigned char)(bitlen >> 16);
545 mac.c[2] = (unsigned char)(bitlen >> 8);
546 mac.c[3] = (unsigned char)bitlen;
547 bitlen = mac.u[0];
548# endif /* BSWAP */
549
550 pmac->u[0] = 0;
551 pmac->u[1] = 0;
552 pmac->u[2] = 0;
553 pmac->u[3] = 0;
554 pmac->u[4] = 0;
555 pmac->u[5] = 0;
556 pmac->u[6] = 0;
557 pmac->u[7] = 0;
558
559 for (res = sctx->md.num, j = 0; j < len; j++) {
560 size_t c = out[j];
561 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
562 c &= mask;
563 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
564 data->c[res++] = (unsigned char)c;
565
566 if (res != SHA256_CBLOCK)
567 continue;
568
569 /* j is not incremented yet */
570 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
571 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
572 sha256_block_data_order(&sctx->md, data, 1);
573 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
574 pmac->u[0] |= sctx->md.h[0] & mask;
575 pmac->u[1] |= sctx->md.h[1] & mask;
576 pmac->u[2] |= sctx->md.h[2] & mask;
577 pmac->u[3] |= sctx->md.h[3] & mask;
578 pmac->u[4] |= sctx->md.h[4] & mask;
579 pmac->u[5] |= sctx->md.h[5] & mask;
580 pmac->u[6] |= sctx->md.h[6] & mask;
581 pmac->u[7] |= sctx->md.h[7] & mask;
582 res = 0;
583 }
584
585 for (i = res; i < SHA256_CBLOCK; i++, j++)
586 data->c[i] = 0;
587
588 if (res > SHA256_CBLOCK - 8) {
589 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
590 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
591 sha256_block_data_order(&sctx->md, data, 1);
592 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
593 pmac->u[0] |= sctx->md.h[0] & mask;
594 pmac->u[1] |= sctx->md.h[1] & mask;
595 pmac->u[2] |= sctx->md.h[2] & mask;
596 pmac->u[3] |= sctx->md.h[3] & mask;
597 pmac->u[4] |= sctx->md.h[4] & mask;
598 pmac->u[5] |= sctx->md.h[5] & mask;
599 pmac->u[6] |= sctx->md.h[6] & mask;
600 pmac->u[7] |= sctx->md.h[7] & mask;
601
602 memset(data, 0, SHA256_CBLOCK);
603 j += 64;
604 }
605 data->u[SHA_LBLOCK - 1] = bitlen;
606 sha256_block_data_order(&sctx->md, data, 1);
607 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
608 pmac->u[0] |= sctx->md.h[0] & mask;
609 pmac->u[1] |= sctx->md.h[1] & mask;
610 pmac->u[2] |= sctx->md.h[2] & mask;
611 pmac->u[3] |= sctx->md.h[3] & mask;
612 pmac->u[4] |= sctx->md.h[4] & mask;
613 pmac->u[5] |= sctx->md.h[5] & mask;
614 pmac->u[6] |= sctx->md.h[6] & mask;
615 pmac->u[7] |= sctx->md.h[7] & mask;
616
617# ifdef BSWAP4
618 pmac->u[0] = BSWAP4(pmac->u[0]);
619 pmac->u[1] = BSWAP4(pmac->u[1]);
620 pmac->u[2] = BSWAP4(pmac->u[2]);
621 pmac->u[3] = BSWAP4(pmac->u[3]);
622 pmac->u[4] = BSWAP4(pmac->u[4]);
623 pmac->u[5] = BSWAP4(pmac->u[5]);
624 pmac->u[6] = BSWAP4(pmac->u[6]);
625 pmac->u[7] = BSWAP4(pmac->u[7]);
626# else
627 for (i = 0; i < 8; i++) {
628 res = pmac->u[i];
629 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
630 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
631 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
632 pmac->c[4 * i + 3] = (unsigned char)res;
633 }
634# endif /* BSWAP */
635 len += SHA256_DIGEST_LENGTH;
636 sctx->md = sctx->tail;
637 sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH);
638 SHA256_Final(pmac->c, &sctx->md);
639
640 /* verify HMAC */
641 out += inp_len;
642 len -= inp_len;
643 /* code containing lucky-13 fix */
644 {
645 unsigned char *p =
646 out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
647 size_t off = out - p;
648 unsigned int c, cmask;
649
650 maxpad += SHA256_DIGEST_LENGTH;
651 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
652 c = p[j];
653 cmask =
654 ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
655 (sizeof(int) * 8 - 1);
656 res |= (c ^ pad) & ~cmask; /* ... and padding */
657 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
658 res |= (c ^ pmac->c[i]) & cmask;
659 i += 1 & cmask;
660 }
661 maxpad -= SHA256_DIGEST_LENGTH;
662
663 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
664 ret &= (int)~res;
665 }
666 return ret;
667 } else {
668 sha256_update(&sctx->md, out, len);
669 }
670 }
671
672 return 1;
673}
674
675/* EVP_CTRL_AEAD_SET_MAC_KEY */
676static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx,
677 const unsigned char *mackey,
678 size_t len)
679{
680 PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
681 unsigned int i;
682 unsigned char hmac_key[64];
683
684 memset(hmac_key, 0, sizeof(hmac_key));
685
686 if (len > sizeof(hmac_key)) {
687 SHA256_Init(&ctx->head);
688 sha256_update(&ctx->head, mackey, len);
689 SHA256_Final(hmac_key, &ctx->head);
690 } else {
691 memcpy(hmac_key, mackey, len);
692 }
693
694 for (i = 0; i < sizeof(hmac_key); i++)
695 hmac_key[i] ^= 0x36; /* ipad */
696 SHA256_Init(&ctx->head);
697 sha256_update(&ctx->head, hmac_key, sizeof(hmac_key));
698
699 for (i = 0; i < sizeof(hmac_key); i++)
700 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
701 SHA256_Init(&ctx->tail);
702 sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key));
703
704 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
705}
706
707/* EVP_CTRL_AEAD_TLS1_AAD */
708static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx,
709 unsigned char *aad_rec, int aad_len)
710{
711 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
712 PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
713 unsigned char *p = aad_rec;
714 unsigned int len;
715
716 if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
717 return -1;
718
719 len = p[aad_len - 2] << 8 | p[aad_len - 1];
720
721 if (ctx->base.enc) {
722 ctx->payload_length = len;
723 if ((ctx->aux.tls_ver =
724 p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
725 if (len < AES_BLOCK_SIZE)
726 return 0;
727 len -= AES_BLOCK_SIZE;
728 p[aad_len] = len >> 8;
729 p[aad_len - 1] = len;
730 }
731 sctx->md = sctx->head;
732 sha256_update(&sctx->md, p, aad_len);
733 ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH +
734 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
735 - len);
736 return 1;
737 } else {
738 memcpy(ctx->aux.tls_aad, p, aad_len);
739 ctx->payload_length = aad_len;
740 ctx->tls_aad_pad = SHA256_DIGEST_LENGTH;
741 return 1;
742 }
743}
744
745# if !defined(OPENSSL_NO_MULTIBLOCK)
746/* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
747static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize(
748 void *vctx)
749{
750 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
751
752 OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
753 return (int)(5 + 16
754 + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16));
755}
756
757/* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
758static int aesni_cbc_hmac_sha256_tls1_multiblock_aad(
759 void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
760{
761 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
762 PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
763 unsigned int n4x = 1, x4;
764 unsigned int frag, last, packlen, inp_len;
765
766 inp_len = param->inp[11] << 8 | param->inp[12];
767
768 if (ctx->base.enc) {
769 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
770 return -1;
771
772 if (inp_len) {
773 if (inp_len < 4096)
774 return 0; /* too short */
775
776 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
777 n4x = 2; /* AVX2 */
778 } else if ((n4x = param->interleave / 4) && n4x <= 2)
779 inp_len = param->len;
780 else
781 return -1;
782
783 sctx->md = sctx->head;
784 sha256_update(&sctx->md, param->inp, 13);
785
786 x4 = 4 * n4x;
787 n4x += 1;
788
789 frag = inp_len >> n4x;
790 last = inp_len + frag - (frag << n4x);
791 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
792 frag++;
793 last -= x4 - 1;
794 }
795
796 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
797 packlen = (packlen << n4x) - packlen;
798 packlen += 5 + 16 + ((last + 32 + 16) & -16);
799
800 param->interleave = x4;
801 /* The returned values used by get need to be stored */
802 ctx->multiblock_interleave = x4;
803 ctx->multiblock_aad_packlen = packlen;
804 return 1;
805 }
806 return -1; /* not yet */
807}
808
809/* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
810static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt(
811 void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
812{
813 return (int)tls1_multi_block_encrypt(ctx, param->out,
814 param->inp, param->len,
815 param->interleave / 4);
816}
817#endif
818
819static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = {
820 {
821 aesni_cbc_hmac_sha256_init_key,
822 aesni_cbc_hmac_sha256_cipher
823 },
824 aesni_cbc_hmac_sha256_set_mac_key,
825 aesni_cbc_hmac_sha256_set_tls1_aad,
826# if !defined(OPENSSL_NO_MULTIBLOCK)
827 aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize,
828 aesni_cbc_hmac_sha256_tls1_multiblock_aad,
829 aesni_cbc_hmac_sha256_tls1_multiblock_encrypt
830# endif
831};
832
833const PROV_CIPHER_HW_AES_HMAC_SHA *PROV_CIPHER_HW_aes_cbc_hmac_sha256(void)
834{
835 return &cipher_hw_aes_hmac_sha256;
836}
837
838#endif /* AES_CBC_HMAC_SHA_CAPABLE */