]> git.ipfire.org Git - thirdparty/glibc.git/blame - soft-fp/extended.h
* soft-fp/double.h (FP_CMP_UNORD_D): Also define in
[thirdparty/glibc.git] / soft-fp / extended.h
CommitLineData
d876f532
UD
1/* Software floating-point emulation.
2 Definitions for IEEE Extended Precision.
a334319f 3 Copyright (C) 1999 Free Software Foundation, Inc.
d876f532
UD
4 This file is part of the GNU C Library.
5 Contributed by Jakub Jelinek (jj@ultra.linux.cz).
6
7 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
d876f532
UD
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 15 Lesser General Public License for more details.
d876f532 16
41bdb6e2
AJ
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, write to the Free
a334319f
UD
19 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
20 02111-1307 USA. */
d876f532
UD
21
22#if _FP_W_TYPE_SIZE < 32
23#error "Here's a nickel, kid. Go buy yourself a real computer."
24#endif
25
26#if _FP_W_TYPE_SIZE < 64
27#define _FP_FRACTBITS_E (4*_FP_W_TYPE_SIZE)
28#else
29#define _FP_FRACTBITS_E (2*_FP_W_TYPE_SIZE)
30#endif
31
32#define _FP_FRACBITS_E 64
33#define _FP_FRACXBITS_E (_FP_FRACTBITS_E - _FP_FRACBITS_E)
34#define _FP_WFRACBITS_E (_FP_WORKBITS + _FP_FRACBITS_E)
35#define _FP_WFRACXBITS_E (_FP_FRACTBITS_E - _FP_WFRACBITS_E)
36#define _FP_EXPBITS_E 15
37#define _FP_EXPBIAS_E 16383
38#define _FP_EXPMAX_E 32767
39
40#define _FP_QNANBIT_E \
41 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)
42#define _FP_IMPLBIT_E \
43 ((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)
44#define _FP_OVERFLOW_E \
45 ((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))
46
47#if _FP_W_TYPE_SIZE < 64
48
49union _FP_UNION_E
50{
a334319f 51 long double flt;
d876f532
UD
52 struct
53 {
54#if __BYTE_ORDER == __BIG_ENDIAN
55 unsigned long pad1 : _FP_W_TYPE_SIZE;
56 unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
57 unsigned long sign : 1;
58 unsigned long exp : _FP_EXPBITS_E;
59 unsigned long frac1 : _FP_W_TYPE_SIZE;
60 unsigned long frac0 : _FP_W_TYPE_SIZE;
61#else
62 unsigned long frac0 : _FP_W_TYPE_SIZE;
63 unsigned long frac1 : _FP_W_TYPE_SIZE;
64 unsigned exp : _FP_EXPBITS_E;
65 unsigned sign : 1;
66#endif /* not bigendian */
67 } bits __attribute__((packed));
68};
69
70
71#define FP_DECL_E(X) _FP_DECL(4,X)
72
73#define FP_UNPACK_RAW_E(X, val) \
74 do { \
75 union _FP_UNION_E _flo; _flo.flt = (val); \
76 \
77 X##_f[2] = 0; X##_f[3] = 0; \
78 X##_f[0] = _flo.bits.frac0; \
79 X##_f[1] = _flo.bits.frac1; \
80 X##_e = _flo.bits.exp; \
81 X##_s = _flo.bits.sign; \
82 if (!X##_e && (X##_f[1] || X##_f[0]) \
83 && !(X##_f[1] & _FP_IMPLBIT_E)) \
84 { \
85 X##_e++; \
86 FP_SET_EXCEPTION(FP_EX_DENORM); \
87 } \
88 } while (0)
89
90#define FP_UNPACK_RAW_EP(X, val) \
91 do { \
92 union _FP_UNION_E *_flo = \
93 (union _FP_UNION_E *)(val); \
94 \
95 X##_f[2] = 0; X##_f[3] = 0; \
96 X##_f[0] = _flo->bits.frac0; \
97 X##_f[1] = _flo->bits.frac1; \
98 X##_e = _flo->bits.exp; \
99 X##_s = _flo->bits.sign; \
100 if (!X##_e && (X##_f[1] || X##_f[0]) \
101 && !(X##_f[1] & _FP_IMPLBIT_E)) \
102 { \
103 X##_e++; \
104 FP_SET_EXCEPTION(FP_EX_DENORM); \
105 } \
106 } while (0)
107
108#define FP_PACK_RAW_E(val, X) \
109 do { \
110 union _FP_UNION_E _flo; \
111 \
112 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
113 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
114 _flo.bits.frac0 = X##_f[0]; \
115 _flo.bits.frac1 = X##_f[1]; \
116 _flo.bits.exp = X##_e; \
117 _flo.bits.sign = X##_s; \
118 \
119 (val) = _flo.flt; \
120 } while (0)
121
122#define FP_PACK_RAW_EP(val, X) \
123 do { \
124 if (!FP_INHIBIT_RESULTS) \
125 { \
126 union _FP_UNION_E *_flo = \
127 (union _FP_UNION_E *)(val); \
128 \
129 if (X##_e) X##_f[1] |= _FP_IMPLBIT_E; \
130 else X##_f[1] &= ~(_FP_IMPLBIT_E); \
131 _flo->bits.frac0 = X##_f[0]; \
132 _flo->bits.frac1 = X##_f[1]; \
133 _flo->bits.exp = X##_e; \
134 _flo->bits.sign = X##_s; \
135 } \
136 } while (0)
137
138#define FP_UNPACK_E(X,val) \
139 do { \
140 FP_UNPACK_RAW_E(X,val); \
141 _FP_UNPACK_CANONICAL(E,4,X); \
142 } while (0)
143
144#define FP_UNPACK_EP(X,val) \
145 do { \
a334319f 146 FP_UNPACK_RAW_2_P(X,val); \
d876f532
UD
147 _FP_UNPACK_CANONICAL(E,4,X); \
148 } while (0)
149
150#define FP_PACK_E(val,X) \
151 do { \
152 _FP_PACK_CANONICAL(E,4,X); \
153 FP_PACK_RAW_E(val,X); \
154 } while (0)
155
156#define FP_PACK_EP(val,X) \
157 do { \
158 _FP_PACK_CANONICAL(E,4,X); \
159 FP_PACK_RAW_EP(val,X); \
160 } while (0)
161
162#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,4,X)
163#define FP_NEG_E(R,X) _FP_NEG(E,4,R,X)
164#define FP_ADD_E(R,X,Y) _FP_ADD(E,4,R,X,Y)
165#define FP_SUB_E(R,X,Y) _FP_SUB(E,4,R,X,Y)
166#define FP_MUL_E(R,X,Y) _FP_MUL(E,4,R,X,Y)
167#define FP_DIV_E(R,X,Y) _FP_DIV(E,4,R,X,Y)
168#define FP_SQRT_E(R,X) _FP_SQRT(E,4,R,X)
169
170/*
171 * Square root algorithms:
172 * We have just one right now, maybe Newton approximation
173 * should be added for those machines where division is fast.
174 * This has special _E version because standard _4 square
175 * root would not work (it has to start normally with the
176 * second word and not the first), but as we have to do it
177 * anyway, we optimize it by doing most of the calculations
178 * in two UWtype registers instead of four.
179 */
180
181#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
182 do { \
183 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
184 _FP_FRAC_SRL_4(X, (_FP_WORKBITS)); \
185 while (q) \
186 { \
187 T##_f[1] = S##_f[1] + q; \
188 if (T##_f[1] <= X##_f[1]) \
189 { \
190 S##_f[1] = T##_f[1] + q; \
191 X##_f[1] -= T##_f[1]; \
192 R##_f[1] += q; \
193 } \
194 _FP_FRAC_SLL_2(X, 1); \
195 q >>= 1; \
196 } \
197 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
198 while (q) \
199 { \
200 T##_f[0] = S##_f[0] + q; \
201 T##_f[1] = S##_f[1]; \
202 if (T##_f[1] < X##_f[1] || \
203 (T##_f[1] == X##_f[1] && \
204 T##_f[0] <= X##_f[0])) \
205 { \
206 S##_f[0] = T##_f[0] + q; \
207 S##_f[1] += (T##_f[0] > S##_f[0]); \
208 _FP_FRAC_DEC_2(X, T); \
209 R##_f[0] += q; \
210 } \
211 _FP_FRAC_SLL_2(X, 1); \
212 q >>= 1; \
213 } \
214 _FP_FRAC_SLL_4(R, (_FP_WORKBITS)); \
215 if (X##_f[0] | X##_f[1]) \
216 { \
217 if (S##_f[1] < X##_f[1] || \
218 (S##_f[1] == X##_f[1] && \
219 S##_f[0] < X##_f[0])) \
220 R##_f[0] |= _FP_WORK_ROUND; \
221 R##_f[0] |= _FP_WORK_STICKY; \
222 } \
223 } while (0)
224
225#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,4,r,X,Y,un)
226#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,4,r,X,Y)
e7b8c7bc 227#define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,4,r,X,Y)
d876f532
UD
228
229#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,4,r,X,rsz,rsg)
230#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,4,X,r,rs,rt)
231
232#define _FP_FRAC_HIGH_E(X) (X##_f[2])
233#define _FP_FRAC_HIGH_RAW_E(X) (X##_f[1])
234
235#else /* not _FP_W_TYPE_SIZE < 64 */
236union _FP_UNION_E
237{
a334319f 238 long double flt /* __attribute__((mode(TF))) */ ;
d876f532
UD
239 struct {
240#if __BYTE_ORDER == __BIG_ENDIAN
241 unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);
242 unsigned sign : 1;
243 unsigned exp : _FP_EXPBITS_E;
244 unsigned long frac : _FP_W_TYPE_SIZE;
245#else
246 unsigned long frac : _FP_W_TYPE_SIZE;
247 unsigned exp : _FP_EXPBITS_E;
248 unsigned sign : 1;
249#endif
250 } bits;
251};
252
253#define FP_DECL_E(X) _FP_DECL(2,X)
254
255#define FP_UNPACK_RAW_E(X, val) \
256 do { \
257 union _FP_UNION_E _flo; _flo.flt = (val); \
258 \
259 X##_f0 = _flo.bits.frac; \
260 X##_f1 = 0; \
261 X##_e = _flo.bits.exp; \
262 X##_s = _flo.bits.sign; \
263 if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \
264 { \
265 X##_e++; \
266 FP_SET_EXCEPTION(FP_EX_DENORM); \
267 } \
268 } while (0)
269
270#define FP_UNPACK_RAW_EP(X, val) \
271 do { \
272 union _FP_UNION_E *_flo = \
273 (union _FP_UNION_E *)(val); \
274 \
275 X##_f0 = _flo->bits.frac; \
276 X##_f1 = 0; \
277 X##_e = _flo->bits.exp; \
278 X##_s = _flo->bits.sign; \
279 if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E)) \
280 { \
281 X##_e++; \
282 FP_SET_EXCEPTION(FP_EX_DENORM); \
283 } \
284 } while (0)
285
286#define FP_PACK_RAW_E(val, X) \
287 do { \
288 union _FP_UNION_E _flo; \
289 \
290 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
291 else X##_f0 &= ~(_FP_IMPLBIT_E); \
292 _flo.bits.frac = X##_f0; \
293 _flo.bits.exp = X##_e; \
294 _flo.bits.sign = X##_s; \
295 \
296 (val) = _flo.flt; \
297 } while (0)
298
299#define FP_PACK_RAW_EP(fs, val, X) \
300 do { \
301 if (!FP_INHIBIT_RESULTS) \
302 { \
303 union _FP_UNION_E *_flo = \
304 (union _FP_UNION_E *)(val); \
305 \
306 if (X##_e) X##_f0 |= _FP_IMPLBIT_E; \
307 else X##_f0 &= ~(_FP_IMPLBIT_E); \
308 _flo->bits.frac = X##_f0; \
309 _flo->bits.exp = X##_e; \
310 _flo->bits.sign = X##_s; \
311 } \
312 } while (0)
313
314
315#define FP_UNPACK_E(X,val) \
316 do { \
317 FP_UNPACK_RAW_E(X,val); \
318 _FP_UNPACK_CANONICAL(E,2,X); \
319 } while (0)
320
321#define FP_UNPACK_EP(X,val) \
322 do { \
323 FP_UNPACK_RAW_EP(X,val); \
324 _FP_UNPACK_CANONICAL(E,2,X); \
325 } while (0)
326
327#define FP_PACK_E(val,X) \
328 do { \
329 _FP_PACK_CANONICAL(E,2,X); \
330 FP_PACK_RAW_E(val,X); \
331 } while (0)
332
333#define FP_PACK_EP(val,X) \
334 do { \
335 _FP_PACK_CANONICAL(E,2,X); \
336 FP_PACK_RAW_EP(val,X); \
337 } while (0)
338
339#define FP_ISSIGNAN_E(X) _FP_ISSIGNAN(E,2,X)
340#define FP_NEG_E(R,X) _FP_NEG(E,2,R,X)
341#define FP_ADD_E(R,X,Y) _FP_ADD(E,2,R,X,Y)
342#define FP_SUB_E(R,X,Y) _FP_SUB(E,2,R,X,Y)
343#define FP_MUL_E(R,X,Y) _FP_MUL(E,2,R,X,Y)
344#define FP_DIV_E(R,X,Y) _FP_DIV(E,2,R,X,Y)
345#define FP_SQRT_E(R,X) _FP_SQRT(E,2,R,X)
346
347/*
348 * Square root algorithms:
349 * We have just one right now, maybe Newton approximation
350 * should be added for those machines where division is fast.
351 * We optimize it by doing most of the calculations
352 * in one UWtype registers instead of two, although we don't
353 * have to.
354 */
355#define _FP_SQRT_MEAT_E(R, S, T, X, q) \
356 do { \
357 q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
358 _FP_FRAC_SRL_2(X, (_FP_WORKBITS)); \
359 while (q) \
360 { \
361 T##_f0 = S##_f0 + q; \
362 if (T##_f0 <= X##_f0) \
363 { \
364 S##_f0 = T##_f0 + q; \
365 X##_f0 -= T##_f0; \
366 R##_f0 += q; \
367 } \
368 _FP_FRAC_SLL_1(X, 1); \
369 q >>= 1; \
370 } \
371 _FP_FRAC_SLL_2(R, (_FP_WORKBITS)); \
372 if (X##_f0) \
373 { \
374 if (S##_f0 < X##_f0) \
375 R##_f0 |= _FP_WORK_ROUND; \
376 R##_f0 |= _FP_WORK_STICKY; \
377 } \
378 } while (0)
379
380#define FP_CMP_E(r,X,Y,un) _FP_CMP(E,2,r,X,Y,un)
381#define FP_CMP_EQ_E(r,X,Y) _FP_CMP_EQ(E,2,r,X,Y)
1e832e37 382#define FP_CMP_UNORD_E(r,X,Y) _FP_CMP_UNORD(E,2,r,X,Y)
d876f532
UD
383
384#define FP_TO_INT_E(r,X,rsz,rsg) _FP_TO_INT(E,2,r,X,rsz,rsg)
385#define FP_FROM_INT_E(X,r,rs,rt) _FP_FROM_INT(E,2,X,r,rs,rt)
386
387#define _FP_FRAC_HIGH_E(X) (X##_f1)
388#define _FP_FRAC_HIGH_RAW_E(X) (X##_f0)
389
390#endif /* not _FP_W_TYPE_SIZE < 64 */