]> git.ipfire.org Git - thirdparty/glibc.git/blame - soft-fp/op-common.h
soft-fp: Define and use _FP_STATIC_ASSERT.
[thirdparty/glibc.git] / soft-fp / op-common.h
CommitLineData
d876f532 1/* Software floating-point emulation. Common operations.
b168057a 2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
d876f532
UD
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
10 modify it under the terms of the GNU Lesser General Public
11 License as published by the Free Software Foundation; either
12 version 2.1 of the License, or (at your option) any later version.
d876f532 13
638a783c
RM
14 In addition to the permissions in the GNU Lesser General Public
15 License, the Free Software Foundation gives you unlimited
16 permission to link the compiled version of this file into
17 combinations with other programs, and to distribute those
18 combinations without any restriction coming from the use of this
19 file. (The Lesser General Public License restrictions do apply in
20 other respects; for example, they cover modification of the file,
21 and distribution when not linked into a combine executable.)
22
d876f532
UD
23 The GNU C Library is distributed in the hope that it will be useful,
24 but WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 26 Lesser General Public License for more details.
d876f532 27
41bdb6e2 28 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
29 License along with the GNU C Library; if not, see
30 <http://www.gnu.org/licenses/>. */
d876f532 31
a2f8be9c
JM
32#ifndef SOFT_FP_OP_COMMON_H
33#define SOFT_FP_OP_COMMON_H 1
34
b838844b
JM
35#define _FP_DECL(wc, X) \
36 _FP_I_TYPE X##_c __attribute__ ((unused)) _FP_ZERO_INIT; \
37 _FP_I_TYPE X##_s __attribute__ ((unused)) _FP_ZERO_INIT; \
38 _FP_I_TYPE X##_e __attribute__ ((unused)) _FP_ZERO_INIT; \
51ca9e29 39 _FP_FRAC_DECL_##wc (X)
d876f532 40
2848b105 41/* Test whether the qNaN bit denotes a signaling NaN. */
51ca9e29
JM
42#define _FP_FRAC_SNANP(fs, X) \
43 ((_FP_QNANNEGATEDP) \
44 ? (_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs) \
45 : !(_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs))
46#define _FP_FRAC_SNANP_SEMIRAW(fs, X) \
47 ((_FP_QNANNEGATEDP) \
48 ? (_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs) \
49 : !(_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs))
2848b105 50
c4fe3ea7
JM
51/* Finish truly unpacking a native fp value by classifying the kind
52 of fp value and normalizing both the exponent and the fraction. */
d876f532 53
1e145589
JM
54#define _FP_UNPACK_CANONICAL(fs, wc, X) \
55 do \
56 { \
57 switch (X##_e) \
58 { \
59 default: \
51ca9e29
JM
60 _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
61 _FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
1e145589
JM
62 X##_e -= _FP_EXPBIAS_##fs; \
63 X##_c = FP_CLS_NORMAL; \
64 break; \
65 \
66 case 0: \
51ca9e29 67 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 68 X##_c = FP_CLS_ZERO; \
454ac701
JM
69 else if (FP_DENORM_ZERO) \
70 { \
71 X##_c = FP_CLS_ZERO; \
72 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
73 FP_SET_EXCEPTION (FP_EX_DENORM); \
74 } \
1e145589
JM
75 else \
76 { \
c4fe3ea7 77 /* A denormalized number. */ \
9c37ec0b
JM
78 _FP_I_TYPE _FP_UNPACK_CANONICAL_shift; \
79 _FP_FRAC_CLZ_##wc (_FP_UNPACK_CANONICAL_shift, \
80 X); \
81 _FP_UNPACK_CANONICAL_shift -= _FP_FRACXBITS_##fs; \
82 _FP_FRAC_SLL_##wc (X, (_FP_UNPACK_CANONICAL_shift \
83 + _FP_WORKBITS)); \
84 X##_e -= (_FP_EXPBIAS_##fs - 1 \
85 + _FP_UNPACK_CANONICAL_shift); \
1e145589 86 X##_c = FP_CLS_NORMAL; \
51ca9e29 87 FP_SET_EXCEPTION (FP_EX_DENORM); \
1e145589
JM
88 } \
89 break; \
90 \
91 case _FP_EXPMAX_##fs: \
51ca9e29 92 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589
JM
93 X##_c = FP_CLS_INF; \
94 else \
95 { \
96 X##_c = FP_CLS_NAN; \
c4fe3ea7 97 /* Check for signaling NaN. */ \
51ca9e29 98 if (_FP_FRAC_SNANP (fs, X)) \
ff12c11f
JM
99 FP_SET_EXCEPTION (FP_EX_INVALID \
100 | FP_EX_INVALID_SNAN); \
1e145589
JM
101 } \
102 break; \
103 } \
104 } \
105 while (0)
d876f532 106
fe0b1e85
RM
107/* Finish unpacking an fp value in semi-raw mode: the mantissa is
108 shifted by _FP_WORKBITS but the implicit MSB is not inserted and
109 other classification is not done. */
51ca9e29 110#define _FP_UNPACK_SEMIRAW(fs, wc, X) _FP_FRAC_SLL_##wc (X, _FP_WORKBITS)
fe0b1e85 111
454ac701
JM
112/* Check whether a raw or semi-raw input value should be flushed to
113 zero, and flush it to zero if so. */
114#define _FP_CHECK_FLUSH_ZERO(fs, wc, X) \
115 do \
116 { \
117 if (FP_DENORM_ZERO \
118 && X##_e == 0 \
119 && !_FP_FRAC_ZEROP_##wc (X)) \
120 { \
121 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
122 FP_SET_EXCEPTION (FP_EX_DENORM); \
123 } \
124 } \
125 while (0)
126
fe0b1e85
RM
127/* A semi-raw value has overflowed to infinity. Adjust the mantissa
128 and exponent appropriately. */
129#define _FP_OVERFLOW_SEMIRAW(fs, wc, X) \
1e145589 130 do \
fe0b1e85 131 { \
1e145589
JM
132 if (FP_ROUNDMODE == FP_RND_NEAREST \
133 || (FP_ROUNDMODE == FP_RND_PINF && !X##_s) \
134 || (FP_ROUNDMODE == FP_RND_MINF && X##_s)) \
135 { \
136 X##_e = _FP_EXPMAX_##fs; \
51ca9e29 137 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
1e145589
JM
138 } \
139 else \
140 { \
141 X##_e = _FP_EXPMAX_##fs - 1; \
51ca9e29 142 _FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
1e145589 143 } \
51ca9e29
JM
144 FP_SET_EXCEPTION (FP_EX_INEXACT); \
145 FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
fe0b1e85 146 } \
1e145589 147 while (0)
fe0b1e85
RM
148
149/* Check for a semi-raw value being a signaling NaN and raise the
150 invalid exception if so. */
ff12c11f
JM
151#define _FP_CHECK_SIGNAN_SEMIRAW(fs, wc, X) \
152 do \
153 { \
154 if (X##_e == _FP_EXPMAX_##fs \
155 && !_FP_FRAC_ZEROP_##wc (X) \
156 && _FP_FRAC_SNANP_SEMIRAW (fs, X)) \
157 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SNAN); \
158 } \
1e145589 159 while (0)
fe0b1e85
RM
160
161/* Choose a NaN result from an operation on two semi-raw NaN
162 values. */
163#define _FP_CHOOSENAN_SEMIRAW(fs, wc, R, X, Y, OP) \
1e145589
JM
164 do \
165 { \
166 /* _FP_CHOOSENAN expects raw values, so shift as required. */ \
51ca9e29
JM
167 _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
168 _FP_FRAC_SRL_##wc (Y, _FP_WORKBITS); \
169 _FP_CHOOSENAN (fs, wc, R, X, Y, OP); \
170 _FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
1e145589
JM
171 } \
172 while (0)
fe0b1e85 173
2848b105
MR
174/* Make the fractional part a quiet NaN, preserving the payload
175 if possible, otherwise make it the canonical quiet NaN and set
176 the sign bit accordingly. */
1e145589
JM
177#define _FP_SETQNAN(fs, wc, X) \
178 do \
179 { \
180 if (_FP_QNANNEGATEDP) \
181 { \
51ca9e29
JM
182 _FP_FRAC_HIGH_RAW_##fs (X) &= _FP_QNANBIT_##fs - 1; \
183 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589
JM
184 { \
185 X##_s = _FP_NANSIGN_##fs; \
51ca9e29 186 _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
1e145589
JM
187 } \
188 } \
189 else \
51ca9e29 190 _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_QNANBIT_##fs; \
1e145589
JM
191 } \
192 while (0)
193#define _FP_SETQNAN_SEMIRAW(fs, wc, X) \
194 do \
195 { \
196 if (_FP_QNANNEGATEDP) \
197 { \
51ca9e29
JM
198 _FP_FRAC_HIGH_##fs (X) &= _FP_QNANBIT_SH_##fs - 1; \
199 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589
JM
200 { \
201 X##_s = _FP_NANSIGN_##fs; \
51ca9e29
JM
202 _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
203 _FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
1e145589
JM
204 } \
205 } \
206 else \
51ca9e29 207 _FP_FRAC_HIGH_##fs (X) |= _FP_QNANBIT_SH_##fs; \
1e145589
JM
208 } \
209 while (0)
2848b105 210
fe0b1e85
RM
211/* Test whether a biased exponent is normal (not zero or maximum). */
212#define _FP_EXP_NORMAL(fs, wc, X) (((X##_e + 1) & _FP_EXPMAX_##fs) > 1)
213
214/* Prepare to pack an fp value in semi-raw mode: the mantissa is
215 rounded and shifted right, with the rounding possibly increasing
216 the exponent (including changing a finite value to infinity). */
217#define _FP_PACK_SEMIRAW(fs, wc, X) \
1e145589
JM
218 do \
219 { \
ace614b8
JM
220 int _FP_PACK_SEMIRAW_is_tiny \
221 = X##_e == 0 && !_FP_FRAC_ZEROP_##wc (X); \
222 if (_FP_TININESS_AFTER_ROUNDING \
223 && _FP_PACK_SEMIRAW_is_tiny) \
224 { \
225 FP_DECL_##fs (_FP_PACK_SEMIRAW_T); \
226 _FP_FRAC_COPY_##wc (_FP_PACK_SEMIRAW_T, X); \
227 _FP_PACK_SEMIRAW_T##_s = X##_s; \
228 _FP_PACK_SEMIRAW_T##_e = X##_e; \
229 _FP_FRAC_SLL_##wc (_FP_PACK_SEMIRAW_T, 1); \
230 _FP_ROUND (wc, _FP_PACK_SEMIRAW_T); \
231 if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_SEMIRAW_T)) \
232 _FP_PACK_SEMIRAW_is_tiny = 0; \
233 } \
51ca9e29 234 _FP_ROUND (wc, X); \
ace614b8 235 if (_FP_PACK_SEMIRAW_is_tiny) \
1e145589 236 { \
47594329
MS
237 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
238 || (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
51ca9e29 239 FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
1e145589 240 } \
51ca9e29 241 if (_FP_FRAC_HIGH_##fs (X) \
1e145589 242 & (_FP_OVERFLOW_##fs >> 1)) \
ae251b0b 243 { \
51ca9e29 244 _FP_FRAC_HIGH_##fs (X) &= ~(_FP_OVERFLOW_##fs >> 1); \
1e145589
JM
245 X##_e++; \
246 if (X##_e == _FP_EXPMAX_##fs) \
51ca9e29 247 _FP_OVERFLOW_SEMIRAW (fs, wc, X); \
1e145589 248 } \
51ca9e29
JM
249 _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
250 if (X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
1e145589
JM
251 { \
252 if (!_FP_KEEPNANFRACP) \
253 { \
51ca9e29 254 _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
1e145589
JM
255 X##_s = _FP_NANSIGN_##fs; \
256 } \
257 else \
51ca9e29 258 _FP_SETQNAN (fs, wc, X); \
ae251b0b 259 } \
fe0b1e85 260 } \
1e145589 261 while (0)
fe0b1e85 262
c4fe3ea7
JM
263/* Before packing the bits back into the native fp result, take care
264 of such mundane things as rounding and overflow. Also, for some
265 kinds of fp values, the original parts may not have been fully
266 extracted -- but that is ok, we can regenerate them now. */
d876f532 267
1e145589
JM
268#define _FP_PACK_CANONICAL(fs, wc, X) \
269 do \
270 { \
271 switch (X##_c) \
272 { \
273 case FP_CLS_NORMAL: \
274 X##_e += _FP_EXPBIAS_##fs; \
275 if (X##_e > 0) \
276 { \
51ca9e29
JM
277 _FP_ROUND (wc, X); \
278 if (_FP_FRAC_OVERP_##wc (fs, X)) \
1e145589 279 { \
51ca9e29 280 _FP_FRAC_CLEAR_OVERP_##wc (fs, X); \
1e145589
JM
281 X##_e++; \
282 } \
51ca9e29 283 _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
1e145589
JM
284 if (X##_e >= _FP_EXPMAX_##fs) \
285 { \
c4fe3ea7 286 /* Overflow. */ \
1e145589
JM
287 switch (FP_ROUNDMODE) \
288 { \
289 case FP_RND_NEAREST: \
290 X##_c = FP_CLS_INF; \
291 break; \
292 case FP_RND_PINF: \
293 if (!X##_s) \
294 X##_c = FP_CLS_INF; \
295 break; \
296 case FP_RND_MINF: \
297 if (X##_s) \
298 X##_c = FP_CLS_INF; \
299 break; \
300 } \
301 if (X##_c == FP_CLS_INF) \
302 { \
c4fe3ea7 303 /* Overflow to infinity. */ \
1e145589 304 X##_e = _FP_EXPMAX_##fs; \
51ca9e29 305 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
1e145589
JM
306 } \
307 else \
308 { \
c4fe3ea7 309 /* Overflow to maximum normal. */ \
1e145589 310 X##_e = _FP_EXPMAX_##fs - 1; \
51ca9e29 311 _FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
1e145589 312 } \
51ca9e29
JM
313 FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
314 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1e145589
JM
315 } \
316 } \
317 else \
318 { \
c4fe3ea7 319 /* We've got a denormalized number. */ \
ace614b8
JM
320 int _FP_PACK_CANONICAL_is_tiny = 1; \
321 if (_FP_TININESS_AFTER_ROUNDING && X##_e == 0) \
322 { \
323 FP_DECL_##fs (_FP_PACK_CANONICAL_T); \
324 _FP_FRAC_COPY_##wc (_FP_PACK_CANONICAL_T, X); \
325 _FP_PACK_CANONICAL_T##_s = X##_s; \
326 _FP_PACK_CANONICAL_T##_e = X##_e; \
327 _FP_ROUND (wc, _FP_PACK_CANONICAL_T); \
328 if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_CANONICAL_T)) \
329 _FP_PACK_CANONICAL_is_tiny = 0; \
330 } \
1e145589
JM
331 X##_e = -X##_e + 1; \
332 if (X##_e <= _FP_WFRACBITS_##fs) \
333 { \
51ca9e29
JM
334 _FP_FRAC_SRS_##wc (X, X##_e, _FP_WFRACBITS_##fs); \
335 _FP_ROUND (wc, X); \
336 if (_FP_FRAC_HIGH_##fs (X) \
1e145589
JM
337 & (_FP_OVERFLOW_##fs >> 1)) \
338 { \
339 X##_e = 1; \
51ca9e29
JM
340 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
341 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1e145589
JM
342 } \
343 else \
344 { \
345 X##_e = 0; \
51ca9e29 346 _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
1e145589 347 } \
ace614b8
JM
348 if (_FP_PACK_CANONICAL_is_tiny \
349 && ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
350 || (FP_TRAPPING_EXCEPTIONS \
351 & FP_EX_UNDERFLOW))) \
51ca9e29 352 FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
1e145589
JM
353 } \
354 else \
355 { \
c4fe3ea7 356 /* Underflow to zero. */ \
1e145589 357 X##_e = 0; \
51ca9e29 358 if (!_FP_FRAC_ZEROP_##wc (X)) \
1e145589 359 { \
51ca9e29
JM
360 _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
361 _FP_ROUND (wc, X); \
362 _FP_FRAC_LOW_##wc (X) >>= (_FP_WORKBITS); \
1e145589 363 } \
51ca9e29 364 FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
1e145589
JM
365 } \
366 } \
367 break; \
368 \
369 case FP_CLS_ZERO: \
370 X##_e = 0; \
51ca9e29 371 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
1e145589
JM
372 break; \
373 \
374 case FP_CLS_INF: \
375 X##_e = _FP_EXPMAX_##fs; \
51ca9e29 376 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
1e145589
JM
377 break; \
378 \
379 case FP_CLS_NAN: \
380 X##_e = _FP_EXPMAX_##fs; \
381 if (!_FP_KEEPNANFRACP) \
382 { \
51ca9e29 383 _FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
1e145589
JM
384 X##_s = _FP_NANSIGN_##fs; \
385 } \
386 else \
51ca9e29 387 _FP_SETQNAN (fs, wc, X); \
1e145589
JM
388 break; \
389 } \
390 } \
391 while (0)
d876f532
UD
392
393/* This one accepts raw argument and not cooked, returns
c4fe3ea7 394 1 if X is a signaling NaN. */
1e145589
JM
395#define _FP_ISSIGNAN(fs, wc, X) \
396 ({ \
9c37ec0b 397 int _FP_ISSIGNAN_ret = 0; \
1e145589
JM
398 if (X##_e == _FP_EXPMAX_##fs) \
399 { \
51ca9e29
JM
400 if (!_FP_FRAC_ZEROP_##wc (X) \
401 && _FP_FRAC_SNANP (fs, X)) \
9c37ec0b 402 _FP_ISSIGNAN_ret = 1; \
1e145589 403 } \
9c37ec0b 404 _FP_ISSIGNAN_ret; \
1e145589 405 })
d876f532
UD
406
407
408
409
410
fe0b1e85 411/* Addition on semi-raw values. */
1e145589
JM
412#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
413 do \
414 { \
454ac701
JM
415 _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
416 _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
1e145589
JM
417 if (X##_s == Y##_s) \
418 { \
419 /* Addition. */ \
d7423856 420 __label__ add1, add2, add3, add_done; \
1e145589 421 R##_s = X##_s; \
9c37ec0b
JM
422 int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
423 if (_FP_ADD_INTERNAL_ediff > 0) \
1e145589
JM
424 { \
425 R##_e = X##_e; \
426 if (Y##_e == 0) \
427 { \
428 /* Y is zero or denormalized. */ \
51ca9e29 429 if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589 430 { \
51ca9e29
JM
431 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
432 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
433 goto add_done; \
434 } \
435 else \
436 { \
51ca9e29 437 FP_SET_EXCEPTION (FP_EX_DENORM); \
9c37ec0b
JM
438 _FP_ADD_INTERNAL_ediff--; \
439 if (_FP_ADD_INTERNAL_ediff == 0) \
1e145589 440 { \
51ca9e29 441 _FP_FRAC_ADD_##wc (R, X, Y); \
1e145589
JM
442 goto add3; \
443 } \
444 if (X##_e == _FP_EXPMAX_##fs) \
445 { \
51ca9e29
JM
446 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
447 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
448 goto add_done; \
449 } \
450 goto add1; \
451 } \
452 } \
453 else if (X##_e == _FP_EXPMAX_##fs) \
454 { \
455 /* X is NaN or Inf, Y is normal. */ \
51ca9e29
JM
456 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
457 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
458 goto add_done; \
459 } \
460 \
461 /* Insert implicit MSB of Y. */ \
51ca9e29 462 _FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
1e145589
JM
463 \
464 add1: \
9c37ec0b
JM
465 /* Shift the mantissa of Y to the right \
466 _FP_ADD_INTERNAL_EDIFF steps; remember to account \
467 later for the implicit MSB of X. */ \
468 if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
469 _FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
470 _FP_WFRACBITS_##fs); \
51ca9e29
JM
471 else if (!_FP_FRAC_ZEROP_##wc (Y)) \
472 _FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
473 _FP_FRAC_ADD_##wc (R, X, Y); \
1e145589 474 } \
9c37ec0b 475 else if (_FP_ADD_INTERNAL_ediff < 0) \
1e145589 476 { \
9c37ec0b 477 _FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
1e145589
JM
478 R##_e = Y##_e; \
479 if (X##_e == 0) \
480 { \
481 /* X is zero or denormalized. */ \
51ca9e29 482 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 483 { \
51ca9e29
JM
484 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
485 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
486 goto add_done; \
487 } \
488 else \
489 { \
51ca9e29 490 FP_SET_EXCEPTION (FP_EX_DENORM); \
9c37ec0b
JM
491 _FP_ADD_INTERNAL_ediff--; \
492 if (_FP_ADD_INTERNAL_ediff == 0) \
1e145589 493 { \
51ca9e29 494 _FP_FRAC_ADD_##wc (R, Y, X); \
1e145589
JM
495 goto add3; \
496 } \
497 if (Y##_e == _FP_EXPMAX_##fs) \
498 { \
51ca9e29
JM
499 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
500 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
501 goto add_done; \
502 } \
503 goto add2; \
504 } \
505 } \
506 else if (Y##_e == _FP_EXPMAX_##fs) \
507 { \
508 /* Y is NaN or Inf, X is normal. */ \
51ca9e29
JM
509 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
510 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
511 goto add_done; \
512 } \
513 \
514 /* Insert implicit MSB of X. */ \
51ca9e29 515 _FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
1e145589
JM
516 \
517 add2: \
9c37ec0b
JM
518 /* Shift the mantissa of X to the right \
519 _FP_ADD_INTERNAL_EDIFF steps; remember to account \
520 later for the implicit MSB of Y. */ \
521 if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
522 _FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
523 _FP_WFRACBITS_##fs); \
51ca9e29
JM
524 else if (!_FP_FRAC_ZEROP_##wc (X)) \
525 _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
526 _FP_FRAC_ADD_##wc (R, Y, X); \
1e145589
JM
527 } \
528 else \
529 { \
9c37ec0b 530 /* _FP_ADD_INTERNAL_ediff == 0. */ \
51ca9e29 531 if (!_FP_EXP_NORMAL (fs, wc, X)) \
1e145589
JM
532 { \
533 if (X##_e == 0) \
534 { \
535 /* X and Y are zero or denormalized. */ \
536 R##_e = 0; \
51ca9e29 537 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 538 { \
51ca9e29
JM
539 if (!_FP_FRAC_ZEROP_##wc (Y)) \
540 FP_SET_EXCEPTION (FP_EX_DENORM); \
541 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
542 goto add_done; \
543 } \
51ca9e29 544 else if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589 545 { \
51ca9e29
JM
546 FP_SET_EXCEPTION (FP_EX_DENORM); \
547 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
548 goto add_done; \
549 } \
550 else \
551 { \
51ca9e29
JM
552 FP_SET_EXCEPTION (FP_EX_DENORM); \
553 _FP_FRAC_ADD_##wc (R, X, Y); \
554 if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
1e145589
JM
555 { \
556 /* Normalized result. */ \
51ca9e29
JM
557 _FP_FRAC_HIGH_##fs (R) \
558 &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
1e145589
JM
559 R##_e = 1; \
560 } \
561 goto add_done; \
562 } \
563 } \
564 else \
565 { \
566 /* X and Y are NaN or Inf. */ \
51ca9e29
JM
567 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
568 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
1e145589 569 R##_e = _FP_EXPMAX_##fs; \
51ca9e29
JM
570 if (_FP_FRAC_ZEROP_##wc (X)) \
571 _FP_FRAC_COPY_##wc (R, Y); \
572 else if (_FP_FRAC_ZEROP_##wc (Y)) \
573 _FP_FRAC_COPY_##wc (R, X); \
1e145589 574 else \
51ca9e29 575 _FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
1e145589
JM
576 goto add_done; \
577 } \
578 } \
579 /* The exponents of X and Y, both normal, are equal. The \
580 implicit MSBs will always add to increase the \
581 exponent. */ \
51ca9e29 582 _FP_FRAC_ADD_##wc (R, X, Y); \
1e145589 583 R##_e = X##_e + 1; \
51ca9e29 584 _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
1e145589
JM
585 if (R##_e == _FP_EXPMAX_##fs) \
586 /* Overflow to infinity (depending on rounding mode). */ \
51ca9e29 587 _FP_OVERFLOW_SEMIRAW (fs, wc, R); \
1e145589
JM
588 goto add_done; \
589 } \
590 add3: \
51ca9e29 591 if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
1e145589
JM
592 { \
593 /* Overflow. */ \
51ca9e29 594 _FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
1e145589 595 R##_e++; \
51ca9e29 596 _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
1e145589
JM
597 if (R##_e == _FP_EXPMAX_##fs) \
598 /* Overflow to infinity (depending on rounding mode). */ \
51ca9e29 599 _FP_OVERFLOW_SEMIRAW (fs, wc, R); \
1e145589
JM
600 } \
601 add_done: ; \
602 } \
603 else \
604 { \
605 /* Subtraction. */ \
d7423856 606 __label__ sub1, sub2, sub3, norm, sub_done; \
9c37ec0b
JM
607 int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
608 if (_FP_ADD_INTERNAL_ediff > 0) \
1e145589
JM
609 { \
610 R##_e = X##_e; \
611 R##_s = X##_s; \
612 if (Y##_e == 0) \
613 { \
614 /* Y is zero or denormalized. */ \
51ca9e29 615 if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589 616 { \
51ca9e29
JM
617 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
618 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
619 goto sub_done; \
620 } \
621 else \
622 { \
51ca9e29 623 FP_SET_EXCEPTION (FP_EX_DENORM); \
9c37ec0b
JM
624 _FP_ADD_INTERNAL_ediff--; \
625 if (_FP_ADD_INTERNAL_ediff == 0) \
1e145589 626 { \
51ca9e29 627 _FP_FRAC_SUB_##wc (R, X, Y); \
1e145589
JM
628 goto sub3; \
629 } \
630 if (X##_e == _FP_EXPMAX_##fs) \
631 { \
51ca9e29
JM
632 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
633 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
634 goto sub_done; \
635 } \
636 goto sub1; \
637 } \
638 } \
639 else if (X##_e == _FP_EXPMAX_##fs) \
640 { \
641 /* X is NaN or Inf, Y is normal. */ \
51ca9e29
JM
642 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
643 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
644 goto sub_done; \
645 } \
646 \
647 /* Insert implicit MSB of Y. */ \
51ca9e29 648 _FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
1e145589
JM
649 \
650 sub1: \
9c37ec0b
JM
651 /* Shift the mantissa of Y to the right \
652 _FP_ADD_INTERNAL_EDIFF steps; remember to account \
653 later for the implicit MSB of X. */ \
654 if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
655 _FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
656 _FP_WFRACBITS_##fs); \
51ca9e29
JM
657 else if (!_FP_FRAC_ZEROP_##wc (Y)) \
658 _FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
659 _FP_FRAC_SUB_##wc (R, X, Y); \
1e145589 660 } \
9c37ec0b 661 else if (_FP_ADD_INTERNAL_ediff < 0) \
1e145589 662 { \
9c37ec0b 663 _FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
1e145589
JM
664 R##_e = Y##_e; \
665 R##_s = Y##_s; \
666 if (X##_e == 0) \
667 { \
668 /* X is zero or denormalized. */ \
51ca9e29 669 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 670 { \
51ca9e29
JM
671 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
672 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
673 goto sub_done; \
674 } \
675 else \
676 { \
51ca9e29 677 FP_SET_EXCEPTION (FP_EX_DENORM); \
9c37ec0b
JM
678 _FP_ADD_INTERNAL_ediff--; \
679 if (_FP_ADD_INTERNAL_ediff == 0) \
1e145589 680 { \
51ca9e29 681 _FP_FRAC_SUB_##wc (R, Y, X); \
1e145589
JM
682 goto sub3; \
683 } \
684 if (Y##_e == _FP_EXPMAX_##fs) \
685 { \
51ca9e29
JM
686 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
687 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
688 goto sub_done; \
689 } \
690 goto sub2; \
691 } \
692 } \
693 else if (Y##_e == _FP_EXPMAX_##fs) \
694 { \
695 /* Y is NaN or Inf, X is normal. */ \
51ca9e29
JM
696 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
697 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
698 goto sub_done; \
699 } \
700 \
701 /* Insert implicit MSB of X. */ \
51ca9e29 702 _FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
1e145589
JM
703 \
704 sub2: \
9c37ec0b
JM
705 /* Shift the mantissa of X to the right \
706 _FP_ADD_INTERNAL_EDIFF steps; remember to account \
707 later for the implicit MSB of Y. */ \
708 if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
709 _FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
710 _FP_WFRACBITS_##fs); \
51ca9e29
JM
711 else if (!_FP_FRAC_ZEROP_##wc (X)) \
712 _FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
713 _FP_FRAC_SUB_##wc (R, Y, X); \
1e145589
JM
714 } \
715 else \
716 { \
717 /* ediff == 0. */ \
51ca9e29 718 if (!_FP_EXP_NORMAL (fs, wc, X)) \
1e145589
JM
719 { \
720 if (X##_e == 0) \
721 { \
722 /* X and Y are zero or denormalized. */ \
723 R##_e = 0; \
51ca9e29 724 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 725 { \
51ca9e29
JM
726 _FP_FRAC_COPY_##wc (R, Y); \
727 if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589
JM
728 R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
729 else \
730 { \
51ca9e29 731 FP_SET_EXCEPTION (FP_EX_DENORM); \
1e145589
JM
732 R##_s = Y##_s; \
733 } \
734 goto sub_done; \
735 } \
51ca9e29 736 else if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589 737 { \
51ca9e29
JM
738 FP_SET_EXCEPTION (FP_EX_DENORM); \
739 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
740 R##_s = X##_s; \
741 goto sub_done; \
742 } \
743 else \
744 { \
51ca9e29
JM
745 FP_SET_EXCEPTION (FP_EX_DENORM); \
746 _FP_FRAC_SUB_##wc (R, X, Y); \
1e145589 747 R##_s = X##_s; \
51ca9e29 748 if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
1e145589
JM
749 { \
750 /* |X| < |Y|, negate result. */ \
51ca9e29 751 _FP_FRAC_SUB_##wc (R, Y, X); \
1e145589
JM
752 R##_s = Y##_s; \
753 } \
51ca9e29 754 else if (_FP_FRAC_ZEROP_##wc (R)) \
1e145589
JM
755 R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
756 goto sub_done; \
757 } \
758 } \
759 else \
760 { \
761 /* X and Y are NaN or Inf, of opposite signs. */ \
51ca9e29
JM
762 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
763 _FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
1e145589 764 R##_e = _FP_EXPMAX_##fs; \
51ca9e29 765 if (_FP_FRAC_ZEROP_##wc (X)) \
1e145589 766 { \
51ca9e29 767 if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589
JM
768 { \
769 /* Inf - Inf. */ \
770 R##_s = _FP_NANSIGN_##fs; \
51ca9e29
JM
771 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
772 _FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
ff12c11f
JM
773 FP_SET_EXCEPTION (FP_EX_INVALID \
774 | FP_EX_INVALID_ISI); \
1e145589
JM
775 } \
776 else \
777 { \
778 /* Inf - NaN. */ \
779 R##_s = Y##_s; \
51ca9e29 780 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
781 } \
782 } \
783 else \
784 { \
51ca9e29 785 if (_FP_FRAC_ZEROP_##wc (Y)) \
1e145589
JM
786 { \
787 /* NaN - Inf. */ \
788 R##_s = X##_s; \
51ca9e29 789 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
790 } \
791 else \
792 { \
793 /* NaN - NaN. */ \
51ca9e29 794 _FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
1e145589
JM
795 } \
796 } \
797 goto sub_done; \
798 } \
799 } \
800 /* The exponents of X and Y, both normal, are equal. The \
801 implicit MSBs cancel. */ \
802 R##_e = X##_e; \
51ca9e29 803 _FP_FRAC_SUB_##wc (R, X, Y); \
1e145589 804 R##_s = X##_s; \
51ca9e29 805 if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
1e145589
JM
806 { \
807 /* |X| < |Y|, negate result. */ \
51ca9e29 808 _FP_FRAC_SUB_##wc (R, Y, X); \
1e145589
JM
809 R##_s = Y##_s; \
810 } \
51ca9e29 811 else if (_FP_FRAC_ZEROP_##wc (R)) \
1e145589
JM
812 { \
813 R##_e = 0; \
814 R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
815 goto sub_done; \
816 } \
817 goto norm; \
818 } \
819 sub3: \
51ca9e29 820 if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
1e145589 821 { \
9c37ec0b 822 int _FP_ADD_INTERNAL_diff; \
1e145589
JM
823 /* Carry into most significant bit of larger one of X and Y, \
824 canceling it; renormalize. */ \
51ca9e29 825 _FP_FRAC_HIGH_##fs (R) &= _FP_IMPLBIT_SH_##fs - 1; \
1e145589 826 norm: \
9c37ec0b
JM
827 _FP_FRAC_CLZ_##wc (_FP_ADD_INTERNAL_diff, R); \
828 _FP_ADD_INTERNAL_diff -= _FP_WFRACXBITS_##fs; \
829 _FP_FRAC_SLL_##wc (R, _FP_ADD_INTERNAL_diff); \
830 if (R##_e <= _FP_ADD_INTERNAL_diff) \
1e145589
JM
831 { \
832 /* R is denormalized. */ \
9c37ec0b
JM
833 _FP_ADD_INTERNAL_diff \
834 = _FP_ADD_INTERNAL_diff - R##_e + 1; \
835 _FP_FRAC_SRS_##wc (R, _FP_ADD_INTERNAL_diff, \
836 _FP_WFRACBITS_##fs); \
1e145589
JM
837 R##_e = 0; \
838 } \
839 else \
840 { \
9c37ec0b 841 R##_e -= _FP_ADD_INTERNAL_diff; \
51ca9e29 842 _FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
1e145589
JM
843 } \
844 } \
845 sub_done: ; \
846 } \
847 } \
848 while (0)
d876f532 849
51ca9e29 850#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL (fs, wc, R, X, Y, '+')
1e145589
JM
851#define _FP_SUB(fs, wc, R, X, Y) \
852 do \
853 { \
51ca9e29 854 if (!(Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
1e145589 855 Y##_s ^= 1; \
51ca9e29 856 _FP_ADD_INTERNAL (fs, wc, R, X, Y, '-'); \
1e145589
JM
857 } \
858 while (0)
d876f532
UD
859
860
c4fe3ea7 861/* Main negation routine. The input value is raw. */
d876f532 862
1e145589
JM
863#define _FP_NEG(fs, wc, R, X) \
864 do \
865 { \
51ca9e29 866 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
867 R##_e = X##_e; \
868 R##_s = 1 ^ X##_s; \
869 } \
870 while (0)
d876f532
UD
871
872
c4fe3ea7 873/* Main multiplication routine. The input values should be cooked. */
d876f532 874
1e145589
JM
875#define _FP_MUL(fs, wc, R, X, Y) \
876 do \
877 { \
878 R##_s = X##_s ^ Y##_s; \
879 R##_e = X##_e + Y##_e + 1; \
51ca9e29 880 switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
1e145589 881 { \
51ca9e29 882 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
1e145589 883 R##_c = FP_CLS_NORMAL; \
77f01ab5 884 \
51ca9e29 885 _FP_MUL_MEAT_##fs (R, X, Y); \
77f01ab5 886 \
51ca9e29
JM
887 if (_FP_FRAC_OVERP_##wc (fs, R)) \
888 _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
1e145589
JM
889 else \
890 R##_e--; \
891 break; \
77f01ab5 892 \
51ca9e29
JM
893 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
894 _FP_CHOOSENAN (fs, wc, R, X, Y, '*'); \
1e145589 895 break; \
77f01ab5 896 \
51ca9e29
JM
897 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
898 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
899 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
1e145589 900 R##_s = X##_s; \
77f01ab5 901 \
51ca9e29
JM
902 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
903 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
904 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
905 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
906 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
907 R##_c = X##_c; \
908 break; \
77f01ab5 909 \
51ca9e29
JM
910 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
911 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
912 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
1e145589 913 R##_s = Y##_s; \
77f01ab5 914 \
51ca9e29
JM
915 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
916 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
917 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
918 R##_c = Y##_c; \
919 break; \
77f01ab5 920 \
51ca9e29
JM
921 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
922 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
1e145589
JM
923 R##_s = _FP_NANSIGN_##fs; \
924 R##_c = FP_CLS_NAN; \
51ca9e29 925 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
ff12c11f 926 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_IMZ); \
1e145589 927 break; \
77f01ab5 928 \
1e145589 929 default: \
068a6274 930 _FP_UNREACHABLE; \
1e145589
JM
931 } \
932 } \
933 while (0)
934
935
936/* Fused multiply-add. The input values should be cooked. */
937
938#define _FP_FMA(fs, wc, dwc, R, X, Y, Z) \
939 do \
940 { \
d7423856 941 __label__ done_fma; \
9c37ec0b
JM
942 FP_DECL_##fs (_FP_FMA_T); \
943 _FP_FMA_T##_s = X##_s ^ Y##_s; \
944 _FP_FMA_T##_e = X##_e + Y##_e + 1; \
51ca9e29 945 switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
1e145589 946 { \
51ca9e29 947 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
1e145589
JM
948 switch (Z##_c) \
949 { \
950 case FP_CLS_INF: \
951 case FP_CLS_NAN: \
952 R##_s = Z##_s; \
51ca9e29 953 _FP_FRAC_COPY_##wc (R, Z); \
1e145589
JM
954 R##_c = Z##_c; \
955 break; \
956 \
957 case FP_CLS_ZERO: \
958 R##_c = FP_CLS_NORMAL; \
9c37ec0b
JM
959 R##_s = _FP_FMA_T##_s; \
960 R##_e = _FP_FMA_T##_e; \
1e145589 961 \
51ca9e29 962 _FP_MUL_MEAT_##fs (R, X, Y); \
1e145589 963 \
51ca9e29
JM
964 if (_FP_FRAC_OVERP_##wc (fs, R)) \
965 _FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
1e145589
JM
966 else \
967 R##_e--; \
968 break; \
969 \
970 case FP_CLS_NORMAL:; \
9c37ec0b
JM
971 _FP_FRAC_DECL_##dwc (_FP_FMA_TD); \
972 _FP_FRAC_DECL_##dwc (_FP_FMA_ZD); \
973 _FP_FRAC_DECL_##dwc (_FP_FMA_RD); \
974 _FP_MUL_MEAT_DW_##fs (_FP_FMA_TD, X, Y); \
975 R##_e = _FP_FMA_T##_e; \
976 int _FP_FMA_tsh \
977 = _FP_FRAC_HIGHBIT_DW_##dwc (fs, _FP_FMA_TD) == 0; \
978 _FP_FMA_T##_e -= _FP_FMA_tsh; \
979 int _FP_FMA_ediff = _FP_FMA_T##_e - Z##_e; \
980 if (_FP_FMA_ediff >= 0) \
1e145589 981 { \
9c37ec0b
JM
982 int _FP_FMA_shift \
983 = _FP_WFRACBITS_##fs - _FP_FMA_tsh - _FP_FMA_ediff; \
984 if (_FP_FMA_shift <= -_FP_WFRACBITS_##fs) \
985 _FP_FRAC_SET_##dwc (_FP_FMA_ZD, _FP_MINFRAC_##dwc); \
1e145589
JM
986 else \
987 { \
9c37ec0b
JM
988 _FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
989 if (_FP_FMA_shift < 0) \
990 _FP_FRAC_SRS_##dwc (_FP_FMA_ZD, -_FP_FMA_shift, \
51ca9e29 991 _FP_WFRACBITS_DW_##fs); \
9c37ec0b
JM
992 else if (_FP_FMA_shift > 0) \
993 _FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_FMA_shift); \
1e145589 994 } \
9c37ec0b
JM
995 R##_s = _FP_FMA_T##_s; \
996 if (_FP_FMA_T##_s == Z##_s) \
997 _FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
998 _FP_FMA_ZD); \
1e145589
JM
999 else \
1000 { \
9c37ec0b
JM
1001 _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
1002 _FP_FMA_ZD); \
1003 if (_FP_FRAC_NEGP_##dwc (_FP_FMA_RD)) \
1e145589
JM
1004 { \
1005 R##_s = Z##_s; \
9c37ec0b
JM
1006 _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
1007 _FP_FMA_TD); \
1e145589
JM
1008 } \
1009 } \
1010 } \
1011 else \
1012 { \
1013 R##_e = Z##_e; \
1014 R##_s = Z##_s; \
9c37ec0b
JM
1015 _FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
1016 _FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_WFRACBITS_##fs); \
1017 int _FP_FMA_shift = -_FP_FMA_ediff - _FP_FMA_tsh; \
1018 if (_FP_FMA_shift >= _FP_WFRACBITS_DW_##fs) \
1019 _FP_FRAC_SET_##dwc (_FP_FMA_TD, _FP_MINFRAC_##dwc); \
1020 else if (_FP_FMA_shift > 0) \
1021 _FP_FRAC_SRS_##dwc (_FP_FMA_TD, _FP_FMA_shift, \
51ca9e29 1022 _FP_WFRACBITS_DW_##fs); \
9c37ec0b
JM
1023 if (Z##_s == _FP_FMA_T##_s) \
1024 _FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
1025 _FP_FMA_TD); \
1e145589 1026 else \
9c37ec0b
JM
1027 _FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
1028 _FP_FMA_TD); \
1e145589 1029 } \
9c37ec0b 1030 if (_FP_FRAC_ZEROP_##dwc (_FP_FMA_RD)) \
1e145589 1031 { \
9c37ec0b 1032 if (_FP_FMA_T##_s == Z##_s) \
1e145589
JM
1033 R##_s = Z##_s; \
1034 else \
1035 R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
51ca9e29 1036 _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
1e145589
JM
1037 R##_c = FP_CLS_ZERO; \
1038 } \
1039 else \
1040 { \
9c37ec0b
JM
1041 int _FP_FMA_rlz; \
1042 _FP_FRAC_CLZ_##dwc (_FP_FMA_rlz, _FP_FMA_RD); \
1043 _FP_FMA_rlz -= _FP_WFRACXBITS_DW_##fs; \
1044 R##_e -= _FP_FMA_rlz; \
1045 int _FP_FMA_shift = _FP_WFRACBITS_##fs - _FP_FMA_rlz; \
1046 if (_FP_FMA_shift > 0) \
1047 _FP_FRAC_SRS_##dwc (_FP_FMA_RD, _FP_FMA_shift, \
51ca9e29 1048 _FP_WFRACBITS_DW_##fs); \
9c37ec0b
JM
1049 else if (_FP_FMA_shift < 0) \
1050 _FP_FRAC_SLL_##dwc (_FP_FMA_RD, -_FP_FMA_shift); \
1051 _FP_FRAC_COPY_##wc##_##dwc (R, _FP_FMA_RD); \
1e145589
JM
1052 R##_c = FP_CLS_NORMAL; \
1053 } \
1054 break; \
1055 } \
1056 goto done_fma; \
1057 \
51ca9e29 1058 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
9c37ec0b 1059 _FP_CHOOSENAN (fs, wc, _FP_FMA_T, X, Y, '*'); \
1e145589
JM
1060 break; \
1061 \
51ca9e29
JM
1062 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
1063 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
1064 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
9c37ec0b 1065 _FP_FMA_T##_s = X##_s; \
1e145589 1066 \
51ca9e29
JM
1067 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
1068 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
1069 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
1070 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
9c37ec0b
JM
1071 _FP_FRAC_COPY_##wc (_FP_FMA_T, X); \
1072 _FP_FMA_T##_c = X##_c; \
1e145589
JM
1073 break; \
1074 \
51ca9e29
JM
1075 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
1076 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
1077 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
9c37ec0b 1078 _FP_FMA_T##_s = Y##_s; \
1e145589 1079 \
51ca9e29
JM
1080 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
1081 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
9c37ec0b
JM
1082 _FP_FRAC_COPY_##wc (_FP_FMA_T, Y); \
1083 _FP_FMA_T##_c = Y##_c; \
1e145589
JM
1084 break; \
1085 \
51ca9e29
JM
1086 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
1087 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
9c37ec0b
JM
1088 _FP_FMA_T##_s = _FP_NANSIGN_##fs; \
1089 _FP_FMA_T##_c = FP_CLS_NAN; \
1090 _FP_FRAC_SET_##wc (_FP_FMA_T, _FP_NANFRAC_##fs); \
ff12c11f 1091 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_IMZ_FMA); \
1e145589
JM
1092 break; \
1093 \
1094 default: \
068a6274 1095 _FP_UNREACHABLE; \
1e145589
JM
1096 } \
1097 \
1098 /* T = X * Y is zero, infinity or NaN. */ \
9c37ec0b 1099 switch (_FP_CLS_COMBINE (_FP_FMA_T##_c, Z##_c)) \
1e145589 1100 { \
51ca9e29 1101 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
9c37ec0b 1102 _FP_CHOOSENAN (fs, wc, R, _FP_FMA_T, Z, '+'); \
1e145589
JM
1103 break; \
1104 \
51ca9e29
JM
1105 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
1106 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
1107 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
1108 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
1109 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
9c37ec0b
JM
1110 R##_s = _FP_FMA_T##_s; \
1111 _FP_FRAC_COPY_##wc (R, _FP_FMA_T); \
1112 R##_c = _FP_FMA_T##_c; \
1e145589
JM
1113 break; \
1114 \
51ca9e29
JM
1115 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
1116 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
1117 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
1118 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
1e145589 1119 R##_s = Z##_s; \
51ca9e29 1120 _FP_FRAC_COPY_##wc (R, Z); \
1e145589 1121 R##_c = Z##_c; \
1c7a4a51 1122 R##_e = Z##_e; \
1e145589
JM
1123 break; \
1124 \
51ca9e29 1125 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
9c37ec0b 1126 if (_FP_FMA_T##_s == Z##_s) \
1e145589
JM
1127 { \
1128 R##_s = Z##_s; \
51ca9e29 1129 _FP_FRAC_COPY_##wc (R, Z); \
1e145589
JM
1130 R##_c = Z##_c; \
1131 } \
1132 else \
1133 { \
1134 R##_s = _FP_NANSIGN_##fs; \
1135 R##_c = FP_CLS_NAN; \
51ca9e29 1136 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
ff12c11f 1137 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_ISI); \
1e145589
JM
1138 } \
1139 break; \
1140 \
51ca9e29 1141 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
9c37ec0b 1142 if (_FP_FMA_T##_s == Z##_s) \
1e145589
JM
1143 R##_s = Z##_s; \
1144 else \
1145 R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
51ca9e29 1146 _FP_FRAC_COPY_##wc (R, Z); \
1e145589
JM
1147 R##_c = Z##_c; \
1148 break; \
1149 \
1150 default: \
068a6274 1151 _FP_UNREACHABLE; \
1e145589
JM
1152 } \
1153 done_fma: ; \
1154 } \
1155 while (0)
1156
1157
c4fe3ea7 1158/* Main division routine. The input values should be cooked. */
1e145589
JM
1159
1160#define _FP_DIV(fs, wc, R, X, Y) \
1161 do \
1162 { \
1163 R##_s = X##_s ^ Y##_s; \
1164 R##_e = X##_e - Y##_e; \
51ca9e29 1165 switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
1e145589 1166 { \
51ca9e29 1167 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
1e145589 1168 R##_c = FP_CLS_NORMAL; \
77f01ab5 1169 \
51ca9e29 1170 _FP_DIV_MEAT_##fs (R, X, Y); \
1e145589 1171 break; \
77f01ab5 1172 \
51ca9e29
JM
1173 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
1174 _FP_CHOOSENAN (fs, wc, R, X, Y, '/'); \
1e145589 1175 break; \
77f01ab5 1176 \
51ca9e29
JM
1177 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
1178 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
1179 case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
1e145589 1180 R##_s = X##_s; \
51ca9e29 1181 _FP_FRAC_COPY_##wc (R, X); \
1e145589
JM
1182 R##_c = X##_c; \
1183 break; \
77f01ab5 1184 \
51ca9e29
JM
1185 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
1186 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
1187 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
1e145589 1188 R##_s = Y##_s; \
51ca9e29 1189 _FP_FRAC_COPY_##wc (R, Y); \
1e145589
JM
1190 R##_c = Y##_c; \
1191 break; \
77f01ab5 1192 \
51ca9e29
JM
1193 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
1194 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
1195 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
1e145589
JM
1196 R##_c = FP_CLS_ZERO; \
1197 break; \
77f01ab5 1198 \
51ca9e29
JM
1199 case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
1200 FP_SET_EXCEPTION (FP_EX_DIVZERO); \
1201 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
1202 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
1e145589
JM
1203 R##_c = FP_CLS_INF; \
1204 break; \
77f01ab5 1205 \
51ca9e29
JM
1206 case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
1207 case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
1e145589
JM
1208 R##_s = _FP_NANSIGN_##fs; \
1209 R##_c = FP_CLS_NAN; \
51ca9e29 1210 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
ff12c11f
JM
1211 FP_SET_EXCEPTION (FP_EX_INVALID \
1212 | (X##_c == FP_CLS_INF \
1213 ? FP_EX_INVALID_IDI \
1214 : FP_EX_INVALID_ZDZ)); \
1e145589 1215 break; \
77f01ab5 1216 \
1e145589 1217 default: \
068a6274 1218 _FP_UNREACHABLE; \
1e145589
JM
1219 } \
1220 } \
1221 while (0)
d876f532
UD
1222
1223
73e28d9c
JM
1224/* Helper for comparisons. EX is 0 not to raise exceptions, 1 to
1225 raise exceptions for signaling NaN operands, 2 to raise exceptions
ff12c11f
JM
1226 for all NaN operands. Conditionals are organized to allow the
1227 compiler to optimize away code based on the value of EX. */
73e28d9c 1228
ff12c11f
JM
1229#define _FP_CMP_CHECK_NAN(fs, wc, X, Y, ex) \
1230 do \
1231 { \
1232 /* The arguments are unordered, which may or may not result in \
1233 an exception. */ \
1234 if (ex) \
1235 { \
1236 /* At least some cases of unordered arguments result in \
1237 exceptions; check whether this is one. */ \
1238 if (FP_EX_INVALID_SNAN || FP_EX_INVALID_VC) \
1239 { \
1240 /* Check separately for each case of "invalid" \
1241 exceptions. */ \
1242 if ((ex) == 2) \
1243 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_VC); \
1244 if (_FP_ISSIGNAN (fs, wc, X) \
1245 || _FP_ISSIGNAN (fs, wc, Y)) \
1246 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SNAN); \
1247 } \
1248 /* Otherwise, we only need to check whether to raise an \
1249 exception, not which case or cases it is. */ \
1250 else if ((ex) == 2 \
1251 || _FP_ISSIGNAN (fs, wc, X) \
1252 || _FP_ISSIGNAN (fs, wc, Y)) \
1253 FP_SET_EXCEPTION (FP_EX_INVALID); \
1254 } \
1255 } \
73e28d9c
JM
1256 while (0)
1257
61f006c1
JM
1258/* Helper for comparisons. If denormal operands would raise an
1259 exception, check for them, and flush to zero as appropriate
1260 (otherwise, we need only check and flush to zero if it might affect
1261 the result, which is done later with _FP_CMP_CHECK_FLUSH_ZERO). */
1262#define _FP_CMP_CHECK_DENORM(fs, wc, X, Y) \
1263 do \
1264 { \
1265 if (FP_EX_DENORM != 0) \
1266 { \
1267 /* We must ensure the correct exceptions are raised for \
1268 denormal operands, even though this may not affect the \
1269 result of the comparison. */ \
1270 if (FP_DENORM_ZERO) \
1271 { \
1272 _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
1273 _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
1274 } \
1275 else \
1276 { \
1277 if ((X##_e == 0 && !_FP_FRAC_ZEROP_##wc (X)) \
1278 || (Y##_e == 0 && !_FP_FRAC_ZEROP_##wc (Y))) \
1279 FP_SET_EXCEPTION (FP_EX_DENORM); \
1280 } \
1281 } \
1282 } \
1283 while (0)
1284
1285/* Helper for comparisons. Check for flushing denormals for zero if
1286 we didn't need to check earlier for any denormal operands. */
1287#define _FP_CMP_CHECK_FLUSH_ZERO(fs, wc, X, Y) \
1288 do \
1289 { \
1290 if (FP_EX_DENORM == 0) \
1291 { \
1292 _FP_CHECK_FLUSH_ZERO (fs, wc, X); \
1293 _FP_CHECK_FLUSH_ZERO (fs, wc, Y); \
1294 } \
1295 } \
1296 while (0)
1297
c4fe3ea7 1298/* Main differential comparison routine. The inputs should be raw not
73e28d9c
JM
1299 cooked. The return is -1, 0, 1 for normal values, UN
1300 otherwise. */
d876f532 1301
73e28d9c 1302#define _FP_CMP(fs, wc, ret, X, Y, un, ex) \
1e145589
JM
1303 do \
1304 { \
61f006c1 1305 _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
c4fe3ea7 1306 /* NANs are unordered. */ \
51ca9e29
JM
1307 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
1308 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
1e145589 1309 { \
5c0508a3
JM
1310 (ret) = (un); \
1311 _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
1e145589
JM
1312 } \
1313 else \
1314 { \
9c37ec0b
JM
1315 int _FP_CMP_is_zero_x; \
1316 int _FP_CMP_is_zero_y; \
d876f532 1317 \
61f006c1 1318 _FP_CMP_CHECK_FLUSH_ZERO (fs, wc, X, Y); \
454ac701 1319 \
9c37ec0b
JM
1320 _FP_CMP_is_zero_x \
1321 = (!X##_e && _FP_FRAC_ZEROP_##wc (X)) ? 1 : 0; \
1322 _FP_CMP_is_zero_y \
1323 = (!Y##_e && _FP_FRAC_ZEROP_##wc (Y)) ? 1 : 0; \
d876f532 1324 \
9c37ec0b 1325 if (_FP_CMP_is_zero_x && _FP_CMP_is_zero_y) \
5c0508a3 1326 (ret) = 0; \
9c37ec0b 1327 else if (_FP_CMP_is_zero_x) \
5c0508a3 1328 (ret) = Y##_s ? 1 : -1; \
9c37ec0b 1329 else if (_FP_CMP_is_zero_y) \
5c0508a3 1330 (ret) = X##_s ? -1 : 1; \
1e145589 1331 else if (X##_s != Y##_s) \
5c0508a3 1332 (ret) = X##_s ? -1 : 1; \
1e145589 1333 else if (X##_e > Y##_e) \
5c0508a3 1334 (ret) = X##_s ? -1 : 1; \
1e145589 1335 else if (X##_e < Y##_e) \
5c0508a3 1336 (ret) = X##_s ? 1 : -1; \
51ca9e29 1337 else if (_FP_FRAC_GT_##wc (X, Y)) \
5c0508a3 1338 (ret) = X##_s ? -1 : 1; \
51ca9e29 1339 else if (_FP_FRAC_GT_##wc (Y, X)) \
5c0508a3 1340 (ret) = X##_s ? 1 : -1; \
1e145589 1341 else \
5c0508a3 1342 (ret) = 0; \
1e145589
JM
1343 } \
1344 } \
1345 while (0)
d876f532
UD
1346
1347
1348/* Simplification for strict equality. */
1349
73e28d9c 1350#define _FP_CMP_EQ(fs, wc, ret, X, Y, ex) \
1e145589
JM
1351 do \
1352 { \
61f006c1 1353 _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
c4fe3ea7 1354 /* NANs are unordered. */ \
51ca9e29
JM
1355 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
1356 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
1e145589 1357 { \
5c0508a3
JM
1358 (ret) = 1; \
1359 _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
1e145589
JM
1360 } \
1361 else \
1362 { \
61f006c1 1363 _FP_CMP_CHECK_FLUSH_ZERO (fs, wc, X, Y); \
454ac701 1364 \
5c0508a3
JM
1365 (ret) = !(X##_e == Y##_e \
1366 && _FP_FRAC_EQ_##wc (X, Y) \
1367 && (X##_s == Y##_s \
1368 || (!X##_e && _FP_FRAC_ZEROP_##wc (X)))); \
1e145589
JM
1369 } \
1370 } \
1371 while (0)
d876f532 1372
e7b8c7bc
RM
1373/* Version to test unordered. */
1374
73e28d9c 1375#define _FP_CMP_UNORD(fs, wc, ret, X, Y, ex) \
1e145589
JM
1376 do \
1377 { \
61f006c1 1378 _FP_CMP_CHECK_DENORM (fs, wc, X, Y); \
5c0508a3
JM
1379 (ret) = ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
1380 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))); \
73e28d9c 1381 if (ret) \
5c0508a3 1382 _FP_CMP_CHECK_NAN (fs, wc, X, Y, (ex)); \
1e145589
JM
1383 } \
1384 while (0)
e7b8c7bc 1385
c4fe3ea7 1386/* Main square root routine. The input value should be cooked. */
d876f532 1387
ff12c11f
JM
1388#define _FP_SQRT(fs, wc, R, X) \
1389 do \
1390 { \
1391 _FP_FRAC_DECL_##wc (_FP_SQRT_T); \
1392 _FP_FRAC_DECL_##wc (_FP_SQRT_S); \
1393 _FP_W_TYPE _FP_SQRT_q; \
1394 switch (X##_c) \
1395 { \
1396 case FP_CLS_NAN: \
1397 _FP_FRAC_COPY_##wc (R, X); \
1398 R##_s = X##_s; \
1399 R##_c = FP_CLS_NAN; \
1400 break; \
1401 case FP_CLS_INF: \
1402 if (X##_s) \
1403 { \
1404 R##_s = _FP_NANSIGN_##fs; \
1405 R##_c = FP_CLS_NAN; /* NAN */ \
1406 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
1407 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SQRT); \
1408 } \
1409 else \
1410 { \
1411 R##_s = 0; \
1412 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
1413 } \
1414 break; \
1415 case FP_CLS_ZERO: \
1416 R##_s = X##_s; \
1417 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
1418 break; \
1419 case FP_CLS_NORMAL: \
1420 R##_s = 0; \
1421 if (X##_s) \
1422 { \
1423 R##_c = FP_CLS_NAN; /* NAN */ \
1424 R##_s = _FP_NANSIGN_##fs; \
1425 _FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
1426 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_SQRT); \
1427 break; \
1428 } \
1429 R##_c = FP_CLS_NORMAL; \
1430 if (X##_e & 1) \
1431 _FP_FRAC_SLL_##wc (X, 1); \
1432 R##_e = X##_e >> 1; \
1433 _FP_FRAC_SET_##wc (_FP_SQRT_S, _FP_ZEROFRAC_##wc); \
1434 _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
1435 _FP_SQRT_q = _FP_OVERFLOW_##fs >> 1; \
1436 _FP_SQRT_MEAT_##wc (R, _FP_SQRT_S, _FP_SQRT_T, X, \
1437 _FP_SQRT_q); \
1438 } \
1439 } \
1e145589 1440 while (0)
d876f532 1441
c4fe3ea7 1442/* Convert from FP to integer. Input is raw. */
d876f532
UD
1443
1444/* RSIGNED can have following values:
c4fe3ea7
JM
1445 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
1446 the result is either 0 or (2^rsize)-1 depending on the sign in such
1447 case.
1448 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
1449 NV is set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
1450 depending on the sign in such case.
a736ec37
JM
1451 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
1452 NV is set plus the result is reduced modulo 2^rsize.
c4fe3ea7
JM
1453 -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
1454 set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
1455 depending on the sign in such case. */
fe0b1e85 1456#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
1e145589 1457 do \
fe0b1e85 1458 { \
1e145589 1459 if (X##_e < _FP_EXPBIAS_##fs) \
fe0b1e85 1460 { \
5c0508a3 1461 (r) = 0; \
1e145589 1462 if (X##_e == 0) \
fe0b1e85 1463 { \
51ca9e29 1464 if (!_FP_FRAC_ZEROP_##wc (X)) \
1e145589 1465 { \
454ac701
JM
1466 if (!FP_DENORM_ZERO) \
1467 FP_SET_EXCEPTION (FP_EX_INEXACT); \
51ca9e29 1468 FP_SET_EXCEPTION (FP_EX_DENORM); \
1e145589 1469 } \
fe0b1e85 1470 } \
1e145589 1471 else \
51ca9e29 1472 FP_SET_EXCEPTION (FP_EX_INEXACT); \
fe0b1e85 1473 } \
5c0508a3 1474 else if ((rsigned) == 2 \
a736ec37
JM
1475 && (X##_e \
1476 >= ((_FP_EXPMAX_##fs \
5c0508a3 1477 < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1) \
a736ec37 1478 ? _FP_EXPMAX_##fs \
5c0508a3 1479 : _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1))) \
a736ec37
JM
1480 { \
1481 /* Overflow resulting in 0. */ \
5c0508a3 1482 (r) = 0; \
a736ec37
JM
1483 FP_SET_EXCEPTION (FP_EX_INVALID \
1484 | FP_EX_INVALID_CVI \
1485 | ((FP_EX_INVALID_SNAN \
1486 && _FP_ISSIGNAN (fs, wc, X)) \
1487 ? FP_EX_INVALID_SNAN \
1488 : 0)); \
1489 } \
5c0508a3
JM
1490 else if ((rsigned) != 2 \
1491 && (X##_e >= (_FP_EXPMAX_##fs < _FP_EXPBIAS_##fs + (rsize) \
a736ec37 1492 ? _FP_EXPMAX_##fs \
5c0508a3
JM
1493 : (_FP_EXPBIAS_##fs + (rsize) \
1494 - ((rsigned) > 0 || X##_s))) \
1495 || (!(rsigned) && X##_s))) \
fe0b1e85 1496 { \
1e145589
JM
1497 /* Overflow or converting to the most negative integer. */ \
1498 if (rsigned) \
1499 { \
5c0508a3
JM
1500 (r) = 1; \
1501 (r) <<= (rsize) - 1; \
1502 (r) -= 1 - X##_s; \
4e8afe69
JM
1503 } \
1504 else \
1505 { \
5c0508a3 1506 (r) = 0; \
4e8afe69 1507 if (!X##_s) \
5c0508a3 1508 (r) = ~(r); \
4e8afe69 1509 } \
a334319f 1510 \
5c0508a3
JM
1511 if (_FP_EXPBIAS_##fs + (rsize) - 1 < _FP_EXPMAX_##fs \
1512 && (rsigned) \
0022e688 1513 && X##_s \
5c0508a3 1514 && X##_e == _FP_EXPBIAS_##fs + (rsize) - 1) \
1e145589
JM
1515 { \
1516 /* Possibly converting to most negative integer; check the \
1517 mantissa. */ \
9c37ec0b 1518 int _FP_TO_INT_inexact = 0; \
5c0508a3 1519 (void) ((_FP_FRACBITS_##fs > (rsize)) \
51ca9e29 1520 ? ({ \
9c37ec0b 1521 _FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
5c0508a3 1522 _FP_FRACBITS_##fs - (rsize), \
51ca9e29
JM
1523 _FP_FRACBITS_##fs); \
1524 0; \
1525 }) \
1526 : 0); \
1527 if (!_FP_FRAC_ZEROP_##wc (X)) \
ff12c11f 1528 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
9c37ec0b 1529 else if (_FP_TO_INT_inexact) \
51ca9e29 1530 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1e145589
JM
1531 } \
1532 else \
ff12c11f
JM
1533 FP_SET_EXCEPTION (FP_EX_INVALID \
1534 | FP_EX_INVALID_CVI \
1535 | ((FP_EX_INVALID_SNAN \
1536 && _FP_ISSIGNAN (fs, wc, X)) \
1537 ? FP_EX_INVALID_SNAN \
1538 : 0)); \
fe0b1e85
RM
1539 } \
1540 else \
1e145589 1541 { \
a736ec37 1542 int _FP_TO_INT_inexact = 0; \
51ca9e29 1543 _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
1e145589
JM
1544 if (X##_e >= _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1) \
1545 { \
5c0508a3
JM
1546 _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
1547 (r) <<= X##_e - _FP_EXPBIAS_##fs - _FP_FRACBITS_##fs + 1; \
1e145589
JM
1548 } \
1549 else \
1550 { \
9c37ec0b 1551 _FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
51ca9e29
JM
1552 (_FP_FRACBITS_##fs + _FP_EXPBIAS_##fs - 1 \
1553 - X##_e), \
1554 _FP_FRACBITS_##fs); \
5c0508a3 1555 _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
1e145589 1556 } \
5c0508a3
JM
1557 if ((rsigned) && X##_s) \
1558 (r) = -(r); \
1559 if ((rsigned) == 2 && X##_e >= _FP_EXPBIAS_##fs + (rsize) - 1) \
a736ec37
JM
1560 { \
1561 /* Overflow or converting to the most negative integer. */ \
5c0508a3 1562 if (X##_e > _FP_EXPBIAS_##fs + (rsize) - 1 \
a736ec37 1563 || !X##_s \
5c0508a3 1564 || (r) != (((typeof (r)) 1) << ((rsize) - 1))) \
a736ec37
JM
1565 { \
1566 _FP_TO_INT_inexact = 0; \
1567 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
1568 } \
1569 } \
1570 if (_FP_TO_INT_inexact) \
1571 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1e145589 1572 } \
fe0b1e85 1573 } \
1e145589
JM
1574 while (0)
1575
2004e7fb
JM
1576/* Convert from floating point to integer, rounding according to the
1577 current rounding direction. Input is raw. RSIGNED is as for
1578 _FP_TO_INT. */
1579#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
1580 do \
1581 { \
d7423856 1582 __label__ _FP_TO_INT_ROUND_done; \
2004e7fb
JM
1583 if (X##_e < _FP_EXPBIAS_##fs) \
1584 { \
1585 int _FP_TO_INT_ROUND_rounds_away = 0; \
1586 if (X##_e == 0) \
1587 { \
1588 if (_FP_FRAC_ZEROP_##wc (X)) \
1589 { \
1590 (r) = 0; \
1591 goto _FP_TO_INT_ROUND_done; \
1592 } \
1593 else \
1594 { \
1595 FP_SET_EXCEPTION (FP_EX_DENORM); \
1596 if (FP_DENORM_ZERO) \
1597 { \
1598 (r) = 0; \
1599 goto _FP_TO_INT_ROUND_done; \
1600 } \
1601 } \
1602 } \
1603 /* The result is 0, 1 or -1 depending on the rounding mode; \
1604 -1 may cause overflow in the unsigned case. */ \
1605 switch (FP_ROUNDMODE) \
1606 { \
1607 case FP_RND_NEAREST: \
1608 _FP_TO_INT_ROUND_rounds_away \
1609 = (X##_e == _FP_EXPBIAS_##fs - 1 \
1610 && !_FP_FRAC_ZEROP_##wc (X)); \
1611 break; \
1612 case FP_RND_ZERO: \
1613 /* _FP_TO_INT_ROUND_rounds_away is already 0. */ \
1614 break; \
1615 case FP_RND_PINF: \
1616 _FP_TO_INT_ROUND_rounds_away = !X##_s; \
1617 break; \
1618 case FP_RND_MINF: \
1619 _FP_TO_INT_ROUND_rounds_away = X##_s; \
1620 break; \
1621 } \
1622 if ((rsigned) == 0 && _FP_TO_INT_ROUND_rounds_away && X##_s) \
1623 { \
1624 /* Result of -1 for an unsigned conversion. */ \
1625 (r) = 0; \
1626 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
1627 } \
1628 else if ((rsize) == 1 && (rsigned) > 0 \
1629 && _FP_TO_INT_ROUND_rounds_away && !X##_s) \
1630 { \
1631 /* Converting to a 1-bit signed bit-field, which cannot \
1632 represent +1. */ \
1633 (r) = ((rsigned) == 2 ? -1 : 0); \
1634 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
1635 } \
1636 else \
1637 { \
1638 (r) = (_FP_TO_INT_ROUND_rounds_away \
1639 ? (X##_s ? -1 : 1) \
1640 : 0); \
1641 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1642 } \
1643 } \
1644 else if ((rsigned) == 2 \
1645 && (X##_e \
1646 >= ((_FP_EXPMAX_##fs \
1647 < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1) \
1648 ? _FP_EXPMAX_##fs \
1649 : _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs + (rsize) - 1))) \
1650 { \
1651 /* Overflow resulting in 0. */ \
1652 (r) = 0; \
1653 FP_SET_EXCEPTION (FP_EX_INVALID \
1654 | FP_EX_INVALID_CVI \
1655 | ((FP_EX_INVALID_SNAN \
1656 && _FP_ISSIGNAN (fs, wc, X)) \
1657 ? FP_EX_INVALID_SNAN \
1658 : 0)); \
1659 } \
1660 else if ((rsigned) != 2 \
1661 && (X##_e >= (_FP_EXPMAX_##fs < _FP_EXPBIAS_##fs + (rsize) \
1662 ? _FP_EXPMAX_##fs \
1663 : (_FP_EXPBIAS_##fs + (rsize) \
1664 - ((rsigned) > 0 && !X##_s))) \
1665 || ((rsigned) == 0 && X##_s))) \
1666 { \
1667 /* Definite overflow (does not require rounding to tell). */ \
1668 if ((rsigned) != 0) \
1669 { \
1670 (r) = 1; \
1671 (r) <<= (rsize) - 1; \
1672 (r) -= 1 - X##_s; \
1673 } \
1674 else \
1675 { \
1676 (r) = 0; \
1677 if (!X##_s) \
1678 (r) = ~(r); \
1679 } \
1680 \
1681 FP_SET_EXCEPTION (FP_EX_INVALID \
1682 | FP_EX_INVALID_CVI \
1683 | ((FP_EX_INVALID_SNAN \
1684 && _FP_ISSIGNAN (fs, wc, X)) \
1685 ? FP_EX_INVALID_SNAN \
1686 : 0)); \
1687 } \
1688 else \
1689 { \
1690 /* The value is finite, with magnitude at least 1. If \
1691 the conversion is unsigned, the value is positive. \
1692 If RSIGNED is not 2, the value does not definitely \
1693 overflow by virtue of its exponent, but may still turn \
1694 out to overflow after rounding; if RSIGNED is 2, the \
1695 exponent may be such that the value definitely overflows, \
1696 but at least one mantissa bit will not be shifted out. */ \
1697 int _FP_TO_INT_ROUND_inexact = 0; \
1698 _FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
1699 if (X##_e >= _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1) \
1700 { \
1701 /* The value is an integer, no rounding needed. */ \
1702 _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
1703 (r) <<= X##_e - _FP_EXPBIAS_##fs - _FP_FRACBITS_##fs + 1; \
1704 } \
1705 else \
1706 { \
1707 /* May need to shift in order to round (unless there \
1708 are exactly _FP_WORKBITS fractional bits already). */ \
1709 int _FP_TO_INT_ROUND_rshift \
1710 = (_FP_FRACBITS_##fs + _FP_EXPBIAS_##fs \
1711 - 1 - _FP_WORKBITS - X##_e); \
1712 if (_FP_TO_INT_ROUND_rshift > 0) \
1713 _FP_FRAC_SRS_##wc (X, _FP_TO_INT_ROUND_rshift, \
1714 _FP_WFRACBITS_##fs); \
1715 else if (_FP_TO_INT_ROUND_rshift < 0) \
1716 _FP_FRAC_SLL_##wc (X, -_FP_TO_INT_ROUND_rshift); \
1717 /* Round like _FP_ROUND, but setting \
1718 _FP_TO_INT_ROUND_inexact instead of directly setting \
1719 the "inexact" exception, since it may turn out we \
1720 should set "invalid" instead. */ \
1721 if (_FP_FRAC_LOW_##wc (X) & 7) \
1722 { \
1723 _FP_TO_INT_ROUND_inexact = 1; \
1724 switch (FP_ROUNDMODE) \
1725 { \
1726 case FP_RND_NEAREST: \
1727 _FP_ROUND_NEAREST (wc, X); \
1728 break; \
1729 case FP_RND_ZERO: \
1730 _FP_ROUND_ZERO (wc, X); \
1731 break; \
1732 case FP_RND_PINF: \
1733 _FP_ROUND_PINF (wc, X); \
1734 break; \
1735 case FP_RND_MINF: \
1736 _FP_ROUND_MINF (wc, X); \
1737 break; \
1738 } \
1739 } \
1740 _FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
1741 _FP_FRAC_ASSEMBLE_##wc ((r), X, (rsize)); \
1742 } \
1743 if ((rsigned) != 0 && X##_s) \
1744 (r) = -(r); \
1745 /* An exponent of RSIZE - 1 always needs testing for \
1746 overflow (either directly overflowing, or overflowing \
1747 when rounding up results in 2^RSIZE). An exponent of \
1748 RSIZE - 2 can overflow for positive values when rounding \
1749 up to 2^(RSIZE-1), but cannot overflow for negative \
1750 values. Smaller exponents cannot overflow. */ \
1751 if (X##_e >= (_FP_EXPBIAS_##fs + (rsize) - 1 \
1752 - ((rsigned) > 0 && !X##_s))) \
1753 { \
1754 if (X##_e > _FP_EXPBIAS_##fs + (rsize) - 1 \
1755 || (X##_e == _FP_EXPBIAS_##fs + (rsize) - 1 \
1756 && (X##_s \
1757 ? (r) != (((typeof (r)) 1) << ((rsize) - 1)) \
1758 : ((rsigned) > 0 || (r) == 0))) \
1759 || ((rsigned) > 0 \
1760 && !X##_s \
1761 && X##_e == _FP_EXPBIAS_##fs + (rsize) - 2 \
1762 && (r) == (((typeof (r)) 1) << ((rsize) - 1)))) \
1763 { \
1764 if ((rsigned) != 2) \
1765 { \
1766 if ((rsigned) != 0) \
1767 { \
1768 (r) = 1; \
1769 (r) <<= (rsize) - 1; \
1770 (r) -= 1 - X##_s; \
1771 } \
1772 else \
1773 { \
1774 (r) = 0; \
1775 (r) = ~(r); \
1776 } \
1777 } \
1778 _FP_TO_INT_ROUND_inexact = 0; \
1779 FP_SET_EXCEPTION (FP_EX_INVALID | FP_EX_INVALID_CVI); \
1780 } \
1781 } \
1782 if (_FP_TO_INT_ROUND_inexact) \
1783 FP_SET_EXCEPTION (FP_EX_INEXACT); \
1784 } \
1785 _FP_TO_INT_ROUND_done: ; \
1786 } \
1787 while (0)
1788
1e145589
JM
1789/* Convert integer to fp. Output is raw. RTYPE is unsigned even if
1790 input is signed. */
1791#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
1792 do \
fe0b1e85 1793 { \
d7423856 1794 __label__ pack_semiraw; \
1e145589 1795 if (r) \
fe0b1e85 1796 { \
9c37ec0b 1797 rtype _FP_FROM_INT_ur; \
1e145589 1798 \
5c0508a3
JM
1799 if ((X##_s = ((r) < 0))) \
1800 (r) = -(rtype) (r); \
1e145589 1801 \
5c0508a3 1802 _FP_FROM_INT_ur = (rtype) (r); \
7d67a196
JM
1803 _FP_STATIC_ASSERT ((rsize) <= 2 * _FP_W_TYPE_SIZE, \
1804 "rsize too large"); \
5c0508a3 1805 (void) (((rsize) <= _FP_W_TYPE_SIZE) \
51ca9e29 1806 ? ({ \
9c37ec0b
JM
1807 int _FP_FROM_INT_lz; \
1808 __FP_CLZ (_FP_FROM_INT_lz, \
1809 (_FP_W_TYPE) _FP_FROM_INT_ur); \
1810 X##_e = (_FP_EXPBIAS_##fs + _FP_W_TYPE_SIZE - 1 \
1811 - _FP_FROM_INT_lz); \
51ca9e29 1812 }) \
7d67a196
JM
1813 : ({ \
1814 int _FP_FROM_INT_lz; \
1815 __FP_CLZ_2 (_FP_FROM_INT_lz, \
1816 (_FP_W_TYPE) (_FP_FROM_INT_ur \
1817 >> _FP_W_TYPE_SIZE), \
1818 (_FP_W_TYPE) _FP_FROM_INT_ur); \
1819 X##_e = (_FP_EXPBIAS_##fs + 2 * _FP_W_TYPE_SIZE - 1 \
1820 - _FP_FROM_INT_lz); \
1821 })); \
1e145589 1822 \
5c0508a3 1823 if ((rsize) - 1 + _FP_EXPBIAS_##fs >= _FP_EXPMAX_##fs \
1e145589
JM
1824 && X##_e >= _FP_EXPMAX_##fs) \
1825 { \
1826 /* Exponent too big; overflow to infinity. (May also \
1827 happen after rounding below.) */ \
51ca9e29 1828 _FP_OVERFLOW_SEMIRAW (fs, wc, X); \
1e145589
JM
1829 goto pack_semiraw; \
1830 } \
1831 \
5c0508a3 1832 if ((rsize) <= _FP_FRACBITS_##fs \
1e145589
JM
1833 || X##_e < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs) \
1834 { \
1835 /* Exactly representable; shift left. */ \
5c0508a3 1836 _FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, (rsize)); \
1e145589 1837 if (_FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1 - X##_e > 0) \
51ca9e29
JM
1838 _FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
1839 + _FP_FRACBITS_##fs - 1 - X##_e)); \
1e145589
JM
1840 } \
1841 else \
1842 { \
1843 /* More bits in integer than in floating type; need to \
1844 round. */ \
1845 if (_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 < X##_e) \
9c37ec0b
JM
1846 _FP_FROM_INT_ur \
1847 = ((_FP_FROM_INT_ur >> (X##_e - _FP_EXPBIAS_##fs \
1848 - _FP_WFRACBITS_##fs + 1)) \
1849 | ((_FP_FROM_INT_ur \
5c0508a3
JM
1850 << ((rsize) - (X##_e - _FP_EXPBIAS_##fs \
1851 - _FP_WFRACBITS_##fs + 1))) \
9c37ec0b 1852 != 0)); \
5c0508a3 1853 _FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, (rsize)); \
1e145589 1854 if ((_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 - X##_e) > 0) \
51ca9e29
JM
1855 _FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
1856 + _FP_WFRACBITS_##fs - 1 - X##_e)); \
1857 _FP_FRAC_HIGH_##fs (X) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
1e145589 1858 pack_semiraw: \
51ca9e29 1859 _FP_PACK_SEMIRAW (fs, wc, X); \
1e145589 1860 } \
fe0b1e85
RM
1861 } \
1862 else \
1863 { \
1e145589
JM
1864 X##_s = 0; \
1865 X##_e = 0; \
51ca9e29 1866 _FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
fe0b1e85 1867 } \
fe0b1e85 1868 } \
1e145589 1869 while (0)
d876f532 1870
0ecb606c 1871
fe0b1e85 1872/* Extend from a narrower floating-point format to a wider one. Input
639e42eb
JM
1873 and output are raw. If CHECK_NAN, then signaling NaNs are
1874 converted to quiet with the "invalid" exception raised; otherwise
1875 signaling NaNs remain signaling with no exception. */
1876#define _FP_EXTEND_CNAN(dfs, sfs, dwc, swc, D, S, check_nan) \
1e145589
JM
1877 do \
1878 { \
7d67a196
JM
1879 _FP_STATIC_ASSERT (_FP_FRACBITS_##dfs >= _FP_FRACBITS_##sfs, \
1880 "destination mantissa narrower than source"); \
1881 _FP_STATIC_ASSERT ((_FP_EXPMAX_##dfs - _FP_EXPBIAS_##dfs \
1882 >= _FP_EXPMAX_##sfs - _FP_EXPBIAS_##sfs), \
1883 "destination max exponent smaller" \
1884 " than source"); \
1885 _FP_STATIC_ASSERT (((_FP_EXPBIAS_##dfs \
1886 >= (_FP_EXPBIAS_##sfs \
1887 + _FP_FRACBITS_##sfs - 1)) \
1888 || (_FP_EXPBIAS_##dfs == _FP_EXPBIAS_##sfs)), \
1889 "source subnormals do not all become normal," \
1890 " but bias not the same"); \
1e145589 1891 D##_s = S##_s; \
51ca9e29
JM
1892 _FP_FRAC_COPY_##dwc##_##swc (D, S); \
1893 if (_FP_EXP_NORMAL (sfs, swc, S)) \
1e145589
JM
1894 { \
1895 D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
51ca9e29 1896 _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs - _FP_FRACBITS_##sfs)); \
1e145589
JM
1897 } \
1898 else \
1899 { \
1900 if (S##_e == 0) \
1901 { \
454ac701 1902 _FP_CHECK_FLUSH_ZERO (sfs, swc, S); \
51ca9e29 1903 if (_FP_FRAC_ZEROP_##swc (S)) \
1e145589
JM
1904 D##_e = 0; \
1905 else if (_FP_EXPBIAS_##dfs \
1906 < _FP_EXPBIAS_##sfs + _FP_FRACBITS_##sfs - 1) \
1907 { \
51ca9e29
JM
1908 FP_SET_EXCEPTION (FP_EX_DENORM); \
1909 _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
1910 - _FP_FRACBITS_##sfs)); \
1e145589 1911 D##_e = 0; \
43059f42
JM
1912 if (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW) \
1913 FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
1e145589
JM
1914 } \
1915 else \
1916 { \
9c37ec0b 1917 int FP_EXTEND_lz; \
51ca9e29 1918 FP_SET_EXCEPTION (FP_EX_DENORM); \
9c37ec0b 1919 _FP_FRAC_CLZ_##swc (FP_EXTEND_lz, S); \
51ca9e29 1920 _FP_FRAC_SLL_##dwc (D, \
9c37ec0b 1921 FP_EXTEND_lz + _FP_FRACBITS_##dfs \
51ca9e29 1922 - _FP_FRACTBITS_##sfs); \
1e145589 1923 D##_e = (_FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs + 1 \
9c37ec0b 1924 + _FP_FRACXBITS_##sfs - FP_EXTEND_lz); \
1e145589
JM
1925 } \
1926 } \
1927 else \
1928 { \
1929 D##_e = _FP_EXPMAX_##dfs; \
51ca9e29 1930 if (!_FP_FRAC_ZEROP_##swc (S)) \
1e145589 1931 { \
639e42eb 1932 if (check_nan && _FP_FRAC_SNANP (sfs, S)) \
ff12c11f
JM
1933 FP_SET_EXCEPTION (FP_EX_INVALID \
1934 | FP_EX_INVALID_SNAN); \
51ca9e29
JM
1935 _FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
1936 - _FP_FRACBITS_##sfs)); \
639e42eb
JM
1937 if (check_nan) \
1938 _FP_SETQNAN (dfs, dwc, D); \
1e145589
JM
1939 } \
1940 } \
1941 } \
1942 } \
1943 while (0)
fe0b1e85 1944
639e42eb
JM
1945#define FP_EXTEND(dfs, sfs, dwc, swc, D, S) \
1946 _FP_EXTEND_CNAN (dfs, sfs, dwc, swc, D, S, 1)
1947
fe0b1e85
RM
1948/* Truncate from a wider floating-point format to a narrower one.
1949 Input and output are semi-raw. */
51ca9e29 1950#define FP_TRUNC(dfs, sfs, dwc, swc, D, S) \
1e145589
JM
1951 do \
1952 { \
7d67a196
JM
1953 _FP_STATIC_ASSERT (_FP_FRACBITS_##sfs >= _FP_FRACBITS_##dfs, \
1954 "destination mantissa wider than source"); \
1955 _FP_STATIC_ASSERT (((_FP_EXPBIAS_##sfs \
1956 >= (_FP_EXPBIAS_##dfs \
1957 + _FP_FRACBITS_##dfs - 1)) \
1958 || _FP_EXPBIAS_##sfs == _FP_EXPBIAS_##dfs), \
1959 "source subnormals do not all become same," \
1960 " but bias not the same"); \
1e145589 1961 D##_s = S##_s; \
51ca9e29 1962 if (_FP_EXP_NORMAL (sfs, swc, S)) \
1e145589
JM
1963 { \
1964 D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
1965 if (D##_e >= _FP_EXPMAX_##dfs) \
51ca9e29 1966 _FP_OVERFLOW_SEMIRAW (dfs, dwc, D); \
1e145589
JM
1967 else \
1968 { \
1969 if (D##_e <= 0) \
1970 { \
1971 if (D##_e < 1 - _FP_FRACBITS_##dfs) \
1972 { \
51ca9e29
JM
1973 _FP_FRAC_SET_##swc (S, _FP_ZEROFRAC_##swc); \
1974 _FP_FRAC_LOW_##swc (S) |= 1; \
1e145589
JM
1975 } \
1976 else \
1977 { \
51ca9e29
JM
1978 _FP_FRAC_HIGH_##sfs (S) |= _FP_IMPLBIT_SH_##sfs; \
1979 _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
1980 - _FP_WFRACBITS_##dfs \
1981 + 1 - D##_e), \
1982 _FP_WFRACBITS_##sfs); \
1e145589
JM
1983 } \
1984 D##_e = 0; \
1985 } \
1986 else \
51ca9e29
JM
1987 _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
1988 - _FP_WFRACBITS_##dfs), \
1989 _FP_WFRACBITS_##sfs); \
1990 _FP_FRAC_COPY_##dwc##_##swc (D, S); \
1e145589
JM
1991 } \
1992 } \
1993 else \
1994 { \
1995 if (S##_e == 0) \
1996 { \
454ac701 1997 _FP_CHECK_FLUSH_ZERO (sfs, swc, S); \
1e145589 1998 D##_e = 0; \
51ca9e29
JM
1999 if (_FP_FRAC_ZEROP_##swc (S)) \
2000 _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
1e145589
JM
2001 else \
2002 { \
51ca9e29 2003 FP_SET_EXCEPTION (FP_EX_DENORM); \
1e145589
JM
2004 if (_FP_EXPBIAS_##sfs \
2005 < _FP_EXPBIAS_##dfs + _FP_FRACBITS_##dfs - 1) \
2006 { \
51ca9e29
JM
2007 _FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
2008 - _FP_WFRACBITS_##dfs), \
2009 _FP_WFRACBITS_##sfs); \
2010 _FP_FRAC_COPY_##dwc##_##swc (D, S); \
1e145589
JM
2011 } \
2012 else \
2013 { \
51ca9e29
JM
2014 _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
2015 _FP_FRAC_LOW_##dwc (D) |= 1; \
1e145589
JM
2016 } \
2017 } \
2018 } \
2019 else \
2020 { \
2021 D##_e = _FP_EXPMAX_##dfs; \
51ca9e29
JM
2022 if (_FP_FRAC_ZEROP_##swc (S)) \
2023 _FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
1e145589
JM
2024 else \
2025 { \
51ca9e29
JM
2026 _FP_CHECK_SIGNAN_SEMIRAW (sfs, swc, S); \
2027 _FP_FRAC_SRL_##swc (S, (_FP_WFRACBITS_##sfs \
2028 - _FP_WFRACBITS_##dfs)); \
2029 _FP_FRAC_COPY_##dwc##_##swc (D, S); \
1e145589 2030 /* Semi-raw NaN must have all workbits cleared. */ \
51ca9e29 2031 _FP_FRAC_LOW_##dwc (D) \
1e145589 2032 &= ~(_FP_W_TYPE) ((1 << _FP_WORKBITS) - 1); \
51ca9e29 2033 _FP_SETQNAN_SEMIRAW (dfs, dwc, D); \
1e145589
JM
2034 } \
2035 } \
2036 } \
2037 } \
2038 while (0)
d876f532 2039
c4fe3ea7 2040/* Helper primitives. */
d876f532
UD
2041
2042/* Count leading zeros in a word. */
2043
2044#ifndef __FP_CLZ
0d86378f 2045/* GCC 3.4 and later provide the builtins for us. */
1e145589
JM
2046# define __FP_CLZ(r, x) \
2047 do \
2048 { \
7d67a196
JM
2049 _FP_STATIC_ASSERT ((sizeof (_FP_W_TYPE) == sizeof (unsigned int) \
2050 || (sizeof (_FP_W_TYPE) \
2051 == sizeof (unsigned long)) \
2052 || (sizeof (_FP_W_TYPE) \
2053 == sizeof (unsigned long long))), \
2054 "_FP_W_TYPE size unsupported for clz"); \
1e145589 2055 if (sizeof (_FP_W_TYPE) == sizeof (unsigned int)) \
5c0508a3 2056 (r) = __builtin_clz (x); \
1e145589 2057 else if (sizeof (_FP_W_TYPE) == sizeof (unsigned long)) \
5c0508a3 2058 (r) = __builtin_clzl (x); \
7d67a196 2059 else /* sizeof (_FP_W_TYPE) == sizeof (unsigned long long). */ \
5c0508a3 2060 (r) = __builtin_clzll (x); \
1e145589
JM
2061 } \
2062 while (0)
d876f532
UD
2063#endif /* ndef __FP_CLZ */
2064
2065#define _FP_DIV_HELP_imm(q, r, n, d) \
1e145589
JM
2066 do \
2067 { \
5c0508a3 2068 (q) = (n) / (d), (r) = (n) % (d); \
1e145589
JM
2069 } \
2070 while (0)
d876f532 2071
1a8aaf91
UD
2072
2073/* A restoring bit-by-bit division primitive. */
2074
2075#define _FP_DIV_MEAT_N_loop(fs, wc, R, X, Y) \
1e145589
JM
2076 do \
2077 { \
9c37ec0b
JM
2078 int _FP_DIV_MEAT_N_loop_count = _FP_WFRACBITS_##fs; \
2079 _FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_u); \
2080 _FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_v); \
2081 _FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_u, X); \
2082 _FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_v, Y); \
1e145589 2083 _FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
9c37ec0b
JM
2084 /* Normalize _FP_DIV_MEAT_N_LOOP_U and _FP_DIV_MEAT_N_LOOP_V. */ \
2085 _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, _FP_WFRACXBITS_##fs); \
2086 _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_v, _FP_WFRACXBITS_##fs); \
1e145589
JM
2087 /* First round. Since the operands are normalized, either the \
2088 first or second bit will be set in the fraction. Produce a \
2089 normalized result by checking which and adjusting the loop \
2090 count and exponent accordingly. */ \
9c37ec0b 2091 if (_FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, _FP_DIV_MEAT_N_loop_v)) \
1a8aaf91 2092 { \
9c37ec0b
JM
2093 _FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
2094 _FP_DIV_MEAT_N_loop_u, \
2095 _FP_DIV_MEAT_N_loop_v); \
1a8aaf91 2096 _FP_FRAC_LOW_##wc (R) |= 1; \
9c37ec0b 2097 _FP_DIV_MEAT_N_loop_count--; \
1a8aaf91 2098 } \
1e145589
JM
2099 else \
2100 R##_e--; \
2101 /* Subsequent rounds. */ \
2102 do \
2103 { \
9c37ec0b
JM
2104 int _FP_DIV_MEAT_N_loop_msb \
2105 = (_FP_WS_TYPE) _FP_FRAC_HIGH_##wc (_FP_DIV_MEAT_N_loop_u) < 0; \
2106 _FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, 1); \
1e145589 2107 _FP_FRAC_SLL_##wc (R, 1); \
9c37ec0b
JM
2108 if (_FP_DIV_MEAT_N_loop_msb \
2109 || _FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, \
2110 _FP_DIV_MEAT_N_loop_v)) \
1e145589 2111 { \
9c37ec0b
JM
2112 _FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
2113 _FP_DIV_MEAT_N_loop_u, \
2114 _FP_DIV_MEAT_N_loop_v); \
1e145589
JM
2115 _FP_FRAC_LOW_##wc (R) |= 1; \
2116 } \
2117 } \
9c37ec0b
JM
2118 while (--_FP_DIV_MEAT_N_loop_count > 0); \
2119 /* If there's anything left in _FP_DIV_MEAT_N_LOOP_U, the result \
2120 is inexact. */ \
2121 _FP_FRAC_LOW_##wc (R) \
2122 |= !_FP_FRAC_ZEROP_##wc (_FP_DIV_MEAT_N_loop_u); \
1e145589
JM
2123 } \
2124 while (0)
1a8aaf91
UD
2125
2126#define _FP_DIV_MEAT_1_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 1, R, X, Y)
2127#define _FP_DIV_MEAT_2_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 2, R, X, Y)
2128#define _FP_DIV_MEAT_4_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 4, R, X, Y)
a2f8be9c
JM
2129
2130#endif /* !SOFT_FP_OP_COMMON_H */