]> git.ipfire.org Git - thirdparty/openssl.git/blame - ssl/s3_cbc.c
Fix a warning about missing prototype on arm
[thirdparty/openssl.git] / ssl / s3_cbc.c
CommitLineData
820988a0
BL
1/* ssl/s3_cbc.c */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
9a9b0c04 56#include "../crypto/constant_time_locl.h"
820988a0
BL
57#include "ssl_locl.h"
58
59#include <openssl/md5.h>
60#include <openssl/sha.h>
61
ae5c8664
MC
62/*
63 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
64 * length field. (SHA-384/512 have 128-bit length.)
65 */
820988a0
BL
66#define MAX_HASH_BIT_COUNT_BYTES 16
67
ae5c8664
MC
68/*
69 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
820988a0 70 * Currently SHA-384/512 has a 128-byte block size and that's the largest
ae5c8664
MC
71 * supported by TLS.)
72 */
820988a0
BL
73#define MAX_HASH_BLOCK_SIZE 128
74
6977c7e2
TH
75/*-
76 * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
820988a0
BL
77 * record in |rec| by updating |rec->length| in constant time.
78 *
79 * block_size: the block size of the cipher used to encrypt the record.
80 * returns:
81 * 0: (in non-constant time) if the record is publicly invalid.
82 * 1: if the padding was valid
ae5c8664 83 * -1: otherwise.
6977c7e2 84 */
ae5c8664
MC
85int ssl3_cbc_remove_padding(const SSL *s,
86 SSL3_RECORD *rec,
87 unsigned block_size, unsigned mac_size)
88{
89 unsigned padding_length, good;
90 const unsigned overhead = 1 /* padding length byte */ + mac_size;
91
92 /*
93 * These lengths are all public so we can test them in non-constant time.
94 */
95 if (overhead > rec->length)
96 return 0;
97
98 padding_length = rec->data[rec->length - 1];
99 good = constant_time_ge(rec->length, padding_length + overhead);
100 /* SSLv3 requires that the padding is minimal. */
101 good &= constant_time_ge(block_size, padding_length + 1);
102 padding_length = good & (padding_length + 1);
103 rec->length -= padding_length;
104 rec->type |= padding_length << 8; /* kludge: pass padding length */
105 return constant_time_select_int(good, 1, -1);
106}
107
108/*-
6977c7e2 109 * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
820988a0
BL
110 * record in |rec| in constant time and returns 1 if the padding is valid and
111 * -1 otherwise. It also removes any explicit IV from the start of the record
112 * without leaking any timing about whether there was enough space after the
113 * padding was removed.
114 *
115 * block_size: the block size of the cipher used to encrypt the record.
116 * returns:
117 * 0: (in non-constant time) if the record is publicly invalid.
118 * 1: if the padding was valid
ae5c8664 119 * -1: otherwise.
6977c7e2 120 */
ae5c8664
MC
121int tls1_cbc_remove_padding(const SSL *s,
122 SSL3_RECORD *rec,
123 unsigned block_size, unsigned mac_size)
124{
125 unsigned padding_length, good, to_check, i;
126 const unsigned overhead = 1 /* padding length byte */ + mac_size;
127 /* Check if version requires explicit IV */
128 if (SSL_USE_EXPLICIT_IV(s)) {
129 /*
130 * These lengths are all public so we can test them in non-constant
131 * time.
132 */
133 if (overhead + block_size > rec->length)
134 return 0;
135 /* We can now safely skip explicit IV */
136 rec->data += block_size;
137 rec->input += block_size;
138 rec->length -= block_size;
139 } else if (overhead > rec->length)
140 return 0;
141
142 padding_length = rec->data[rec->length - 1];
143
144 /*
145 * NB: if compression is in operation the first packet may not be of even
146 * length so the padding bug check cannot be performed. This bug
147 * workaround has been around since SSLeay so hopefully it is either
148 * fixed now or no buggy implementation supports compression [steve]
149 */
150 if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
151 /* First packet is even in size, so check */
05627d57 152 if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
ae5c8664
MC
153 !(padding_length & 1)) {
154 s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
155 }
156 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
157 padding_length--;
158 }
159 }
160
161 if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
162 /* padding is already verified */
163 rec->length -= padding_length + 1;
164 return 1;
165 }
166
167 good = constant_time_ge(rec->length, overhead + padding_length);
168 /*
169 * The padding consists of a length byte at the end of the record and
170 * then that many bytes of padding, all with the same value as the length
171 * byte. Thus, with the length byte included, there are i+1 bytes of
172 * padding. We can't check just |padding_length+1| bytes because that
173 * leaks decrypted information. Therefore we always have to check the
174 * maximum amount of padding possible. (Again, the length of the record
175 * is public information so we can use it.)
176 */
177 to_check = 255; /* maximum amount of padding. */
178 if (to_check > rec->length - 1)
179 to_check = rec->length - 1;
180
181 for (i = 0; i < to_check; i++) {
182 unsigned char mask = constant_time_ge_8(padding_length, i);
183 unsigned char b = rec->data[rec->length - 1 - i];
184 /*
185 * The final |padding_length+1| bytes should all have the value
186 * |padding_length|. Therefore the XOR should be zero.
187 */
188 good &= ~(mask & (padding_length ^ b));
189 }
190
191 /*
192 * If any of the final |padding_length+1| bytes had the wrong value, one
193 * or more of the lower eight bits of |good| will be cleared.
194 */
195 good = constant_time_eq(0xff, good & 0xff);
196 padding_length = good & (padding_length + 1);
197 rec->length -= padding_length;
198 rec->type |= padding_length << 8; /* kludge: pass padding length */
199
200 return constant_time_select_int(good, 1, -1);
201}
820988a0 202
6977c7e2
TH
203/*-
204 * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
820988a0
BL
205 * constant time (independent of the concrete value of rec->length, which may
206 * vary within a 256-byte window).
207 *
208 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
209 * this function.
210 *
211 * On entry:
212 * rec->orig_len >= md_size
213 * md_size <= EVP_MAX_MD_SIZE
214 *
215 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
216 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
919eab8a
AP
217 * a single or pair of cache-lines, then the variable memory accesses don't
218 * actually affect the timing. CPUs with smaller cache-lines [if any] are
219 * not multi-core and are not considered vulnerable to cache-timing attacks.
820988a0 220 */
919eab8a
AP
221#define CBC_MAC_ROTATE_IN_PLACE
222
ae5c8664
MC
223void ssl3_cbc_copy_mac(unsigned char *out,
224 const SSL3_RECORD *rec,
225 unsigned md_size, unsigned orig_len)
226{
820988a0 227#if defined(CBC_MAC_ROTATE_IN_PLACE)
ae5c8664
MC
228 unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
229 unsigned char *rotated_mac;
820988a0 230#else
ae5c8664 231 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
820988a0
BL
232#endif
233
ae5c8664
MC
234 /*
235 * mac_end is the index of |rec->data| just after the end of the MAC.
236 */
237 unsigned mac_end = rec->length;
238 unsigned mac_start = mac_end - md_size;
239 /*
240 * scan_start contains the number of bytes that we can ignore because the
241 * MAC's position can only vary by 255 bytes.
242 */
243 unsigned scan_start = 0;
244 unsigned i, j;
245 unsigned div_spoiler;
246 unsigned rotate_offset;
247
248 OPENSSL_assert(orig_len >= md_size);
249 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
820988a0
BL
250
251#if defined(CBC_MAC_ROTATE_IN_PLACE)
ae5c8664 252 rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
820988a0
BL
253#endif
254
ae5c8664
MC
255 /* This information is public so it's safe to branch based on it. */
256 if (orig_len > md_size + 255 + 1)
257 scan_start = orig_len - (md_size + 255 + 1);
258 /*
259 * div_spoiler contains a multiple of md_size that is used to cause the
260 * modulo operation to be constant time. Without this, the time varies
261 * based on the amount of padding when running on Intel chips at least.
262 * The aim of right-shifting md_size is so that the compiler doesn't
263 * figure out that it can remove div_spoiler as that would require it to
264 * prove that md_size is always even, which I hope is beyond it.
265 */
266 div_spoiler = md_size >> 1;
267 div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
268 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
269
270 memset(rotated_mac, 0, md_size);
271 for (i = scan_start, j = 0; i < orig_len; i++) {
272 unsigned char mac_started = constant_time_ge_8(i, mac_start);
273 unsigned char mac_ended = constant_time_ge_8(i, mac_end);
274 unsigned char b = rec->data[i];
275 rotated_mac[j++] |= b & mac_started & ~mac_ended;
276 j &= constant_time_lt(j, md_size);
277 }
278
279 /* Now rotate the MAC */
820988a0 280#if defined(CBC_MAC_ROTATE_IN_PLACE)
ae5c8664
MC
281 j = 0;
282 for (i = 0; i < md_size; i++) {
283 /* in case cache-line is 32 bytes, touch second line */
284 ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
285 out[j++] = rotated_mac[rotate_offset++];
286 rotate_offset &= constant_time_lt(rotate_offset, md_size);
287 }
820988a0 288#else
ae5c8664
MC
289 memset(out, 0, md_size);
290 rotate_offset = md_size - rotate_offset;
291 rotate_offset &= constant_time_lt(rotate_offset, md_size);
292 for (i = 0; i < md_size; i++) {
293 for (j = 0; j < md_size; j++)
294 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
295 rotate_offset++;
296 rotate_offset &= constant_time_lt(rotate_offset, md_size);
297 }
820988a0 298#endif
ae5c8664 299}
820988a0 300
ae5c8664
MC
301/*
302 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
303 * little-endian order. The value of p is advanced by four.
304 */
0462eedf 305#define u32toLE(n, p) \
ae5c8664
MC
306 (*((p)++)=(unsigned char)(n), \
307 *((p)++)=(unsigned char)(n>>8), \
308 *((p)++)=(unsigned char)(n>>16), \
309 *((p)++)=(unsigned char)(n>>24))
310
311/*
312 * These functions serialize the state of a hash and thus perform the
313 * standard "final" operation without adding the padding and length that such
314 * a function typically does.
315 */
316static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
317{
318 MD5_CTX *md5 = ctx;
319 u32toLE(md5->A, md_out);
320 u32toLE(md5->B, md_out);
321 u32toLE(md5->C, md_out);
322 u32toLE(md5->D, md_out);
323}
324
325static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
326{
327 SHA_CTX *sha1 = ctx;
328 l2n(sha1->h0, md_out);
329 l2n(sha1->h1, md_out);
330 l2n(sha1->h2, md_out);
331 l2n(sha1->h3, md_out);
332 l2n(sha1->h4, md_out);
333}
334
7d9e781a 335#define LARGEST_DIGEST_CTX SHA_CTX
820988a0 336
7d9e781a 337#ifndef OPENSSL_NO_SHA256
ae5c8664
MC
338static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
339{
340 SHA256_CTX *sha256 = ctx;
341 unsigned i;
342
343 for (i = 0; i < 8; i++) {
344 l2n(sha256->h[i], md_out);
345 }
346}
347
348# undef LARGEST_DIGEST_CTX
349# define LARGEST_DIGEST_CTX SHA256_CTX
7d9e781a 350#endif
820988a0 351
7d9e781a 352#ifndef OPENSSL_NO_SHA512
ae5c8664
MC
353static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
354{
355 SHA512_CTX *sha512 = ctx;
356 unsigned i;
357
358 for (i = 0; i < 8; i++) {
359 l2n8(sha512->h[i], md_out);
360 }
361}
362
363# undef LARGEST_DIGEST_CTX
364# define LARGEST_DIGEST_CTX SHA512_CTX
7d9e781a 365#endif
820988a0 366
ae5c8664
MC
367/*
368 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
369 * which ssl3_cbc_digest_record supports.
370 */
820988a0 371char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
ae5c8664 372{
d91d9acc 373#ifdef OPENSSL_FIPS
ae5c8664
MC
374 if (FIPS_mode())
375 return 0;
d91d9acc 376#endif
ae5c8664
MC
377 switch (EVP_MD_CTX_type(ctx)) {
378 case NID_md5:
379 case NID_sha1:
7d9e781a 380#ifndef OPENSSL_NO_SHA256
ae5c8664
MC
381 case NID_sha224:
382 case NID_sha256:
7d9e781a
AP
383#endif
384#ifndef OPENSSL_NO_SHA512
ae5c8664
MC
385 case NID_sha384:
386 case NID_sha512:
7d9e781a 387#endif
ae5c8664
MC
388 return 1;
389 default:
390 return 0;
391 }
392}
820988a0 393
6977c7e2
TH
394/*-
395 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
820988a0
BL
396 * record.
397 *
398 * ctx: the EVP_MD_CTX from which we take the hash function.
399 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
400 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
401 * md_out_size: if non-NULL, the number of output bytes is written here.
402 * header: the 13-byte, TLS record header.
403 * data: the record data itself, less any preceeding explicit IV.
404 * data_plus_mac_size: the secret, reported length of the data and MAC
405 * once the padding has been removed.
406 * data_plus_mac_plus_padding_size: the public length of the whole
407 * record, including padding.
408 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
409 *
410 * On entry: by virtue of having been through one of the remove_padding
411 * functions, above, we know that data_plus_mac_size is large enough to contain
412 * a padding byte and MAC. (If the padding was invalid, it might contain the
ae5c8664 413 * padding too. )
56d91346 414 * Returns 1 on success or 0 on error
6977c7e2 415 */
56d91346 416int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
ae5c8664
MC
417 unsigned char *md_out,
418 size_t *md_out_size,
419 const unsigned char header[13],
420 const unsigned char *data,
421 size_t data_plus_mac_size,
422 size_t data_plus_mac_plus_padding_size,
423 const unsigned char *mac_secret,
424 unsigned mac_secret_length, char is_sslv3)
425{
426 union {
427 double align;
428 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
429 } md_state;
430 void (*md_final_raw) (void *ctx, unsigned char *md_out);
431 void (*md_transform) (void *ctx, const unsigned char *block);
432 unsigned md_size, md_block_size = 64;
433 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
434 len, max_mac_bytes, num_blocks,
435 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
436 unsigned int bits; /* at most 18 bits */
437 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
438 /* hmac_pad is the masked HMAC key. */
439 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
440 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
441 unsigned char mac_out[EVP_MAX_MD_SIZE];
442 unsigned i, j, md_out_size_u;
443 EVP_MD_CTX md_ctx;
444 /*
445 * mdLengthSize is the number of bytes in the length field that
446 * terminates * the hash.
447 */
448 unsigned md_length_size = 8;
449 char length_is_big_endian = 1;
450
451 /*
452 * This is a, hopefully redundant, check that allows us to forget about
453 * many possible overflows later in this function.
454 */
455 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
456
457 switch (EVP_MD_CTX_type(ctx)) {
458 case NID_md5:
56d91346
MC
459 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
460 return 0;
ae5c8664
MC
461 md_final_raw = tls1_md5_final_raw;
462 md_transform =
463 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
464 md_size = 16;
465 sslv3_pad_length = 48;
466 length_is_big_endian = 0;
467 break;
468 case NID_sha1:
56d91346
MC
469 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
470 return 0;
ae5c8664
MC
471 md_final_raw = tls1_sha1_final_raw;
472 md_transform =
473 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
474 md_size = 20;
475 break;
7d9e781a 476#ifndef OPENSSL_NO_SHA256
ae5c8664 477 case NID_sha224:
56d91346
MC
478 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
479 return 0;
ae5c8664
MC
480 md_final_raw = tls1_sha256_final_raw;
481 md_transform =
482 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
483 md_size = 224 / 8;
484 break;
485 case NID_sha256:
56d91346
MC
486 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
487 return 0;
ae5c8664
MC
488 md_final_raw = tls1_sha256_final_raw;
489 md_transform =
490 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
491 md_size = 32;
492 break;
7d9e781a
AP
493#endif
494#ifndef OPENSSL_NO_SHA512
ae5c8664 495 case NID_sha384:
56d91346
MC
496 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
497 return 0;
ae5c8664
MC
498 md_final_raw = tls1_sha512_final_raw;
499 md_transform =
500 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
501 md_size = 384 / 8;
502 md_block_size = 128;
503 md_length_size = 16;
504 break;
505 case NID_sha512:
56d91346
MC
506 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
507 return 0;
ae5c8664
MC
508 md_final_raw = tls1_sha512_final_raw;
509 md_transform =
510 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
511 md_size = 64;
512 md_block_size = 128;
513 md_length_size = 16;
514 break;
7d9e781a 515#endif
ae5c8664
MC
516 default:
517 /*
518 * ssl3_cbc_record_digest_supported should have been called first to
519 * check that the hash function is supported.
520 */
521 OPENSSL_assert(0);
522 if (md_out_size)
03bf7127 523 *md_out_size = 0;
56d91346 524 return 0;
ae5c8664
MC
525 }
526
527 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
528 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
529 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
530
531 header_length = 13;
532 if (is_sslv3) {
533 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
534 * number */ +
535 1 /* record type */ +
536 2 /* record length */ ;
537 }
538
539 /*
540 * variance_blocks is the number of blocks of the hash that we have to
541 * calculate in constant time because they could be altered by the
542 * padding value. In SSLv3, the padding must be minimal so the end of
543 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
544 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
545 * of hash termination (0x80 + 64-bit length) don't fit in the final
546 * block, we say that the final two blocks can vary based on the padding.
547 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
548 * required to be minimal. Therefore we say that the final six blocks can
549 * vary based on the padding. Later in the function, if the message is
550 * short and there obviously cannot be this many blocks then
551 * variance_blocks can be reduced.
552 */
553 variance_blocks = is_sslv3 ? 2 : 6;
554 /*
555 * From now on we're dealing with the MAC, which conceptually has 13
556 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
557 * (SSLv3)
558 */
559 len = data_plus_mac_plus_padding_size + header_length;
560 /*
561 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
562 * including * |header|, assuming that there's no padding.
563 */
564 max_mac_bytes = len - md_size - 1;
565 /* num_blocks is the maximum number of hash blocks. */
566 num_blocks =
567 (max_mac_bytes + 1 + md_length_size + md_block_size -
568 1) / md_block_size;
569 /*
570 * In order to calculate the MAC in constant time we have to handle the
571 * final blocks specially because the padding value could cause the end
572 * to appear somewhere in the final |variance_blocks| blocks and we can't
573 * leak where. However, |num_starting_blocks| worth of data can be hashed
574 * right away because no padding value can affect whether they are
575 * plaintext.
576 */
577 num_starting_blocks = 0;
578 /*
579 * k is the starting byte offset into the conceptual header||data where
580 * we start processing.
581 */
582 k = 0;
583 /*
584 * mac_end_offset is the index just past the end of the data to be MACed.
585 */
586 mac_end_offset = data_plus_mac_size + header_length - md_size;
587 /*
588 * c is the index of the 0x80 byte in the final hash block that contains
589 * application data.
590 */
591 c = mac_end_offset % md_block_size;
592 /*
593 * index_a is the hash block number that contains the 0x80 terminating
594 * value.
595 */
596 index_a = mac_end_offset / md_block_size;
597 /*
598 * index_b is the hash block number that contains the 64-bit hash length,
599 * in bits.
600 */
601 index_b = (mac_end_offset + md_length_size) / md_block_size;
602 /*
603 * bits is the hash-length in bits. It includes the additional hash block
604 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
605 */
606
607 /*
608 * For SSLv3, if we're going to have any starting blocks then we need at
609 * least two because the header is larger than a single block.
610 */
611 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
612 num_starting_blocks = num_blocks - variance_blocks;
613 k = md_block_size * num_starting_blocks;
614 }
615
616 bits = 8 * mac_end_offset;
617 if (!is_sslv3) {
618 /*
619 * Compute the initial HMAC block. For SSLv3, the padding and secret
620 * bytes are included in |header| because they take more than a
621 * single block.
622 */
623 bits += 8 * md_block_size;
624 memset(hmac_pad, 0, md_block_size);
625 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
626 memcpy(hmac_pad, mac_secret, mac_secret_length);
627 for (i = 0; i < md_block_size; i++)
628 hmac_pad[i] ^= 0x36;
629
630 md_transform(md_state.c, hmac_pad);
631 }
632
633 if (length_is_big_endian) {
634 memset(length_bytes, 0, md_length_size - 4);
635 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
636 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
637 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
638 length_bytes[md_length_size - 1] = (unsigned char)bits;
639 } else {
640 memset(length_bytes, 0, md_length_size);
641 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
642 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
643 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
644 length_bytes[md_length_size - 8] = (unsigned char)bits;
645 }
646
647 if (k > 0) {
648 if (is_sslv3) {
99ceb2d4
MC
649 unsigned overhang;
650
ae5c8664
MC
651 /*
652 * The SSLv3 header is larger than a single block. overhang is
653 * the number of bytes beyond a single block that the header
99ceb2d4
MC
654 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
655 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
656 * therefore we can be confident that the header_length will be
657 * greater than |md_block_size|. However we add a sanity check just
658 * in case
ae5c8664 659 */
99ceb2d4
MC
660 if (header_length <= md_block_size) {
661 /* Should never happen */
56d91346 662 return 0;
99ceb2d4
MC
663 }
664 overhang = header_length - md_block_size;
ae5c8664
MC
665 md_transform(md_state.c, header);
666 memcpy(first_block, header + md_block_size, overhang);
667 memcpy(first_block + overhang, data, md_block_size - overhang);
668 md_transform(md_state.c, first_block);
669 for (i = 1; i < k / md_block_size - 1; i++)
670 md_transform(md_state.c, data + md_block_size * i - overhang);
671 } else {
672 /* k is a multiple of md_block_size. */
673 memcpy(first_block, header, 13);
674 memcpy(first_block + 13, data, md_block_size - 13);
675 md_transform(md_state.c, first_block);
676 for (i = 1; i < k / md_block_size; i++)
677 md_transform(md_state.c, data + md_block_size * i - 13);
678 }
679 }
680
681 memset(mac_out, 0, sizeof(mac_out));
682
683 /*
684 * We now process the final hash blocks. For each block, we construct it
685 * in constant time. If the |i==index_a| then we'll include the 0x80
686 * bytes and zero pad etc. For each block we selectively copy it, in
687 * constant time, to |mac_out|.
688 */
689 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
690 i++) {
691 unsigned char block[MAX_HASH_BLOCK_SIZE];
692 unsigned char is_block_a = constant_time_eq_8(i, index_a);
693 unsigned char is_block_b = constant_time_eq_8(i, index_b);
694 for (j = 0; j < md_block_size; j++) {
695 unsigned char b = 0, is_past_c, is_past_cp1;
696 if (k < header_length)
697 b = header[k];
698 else if (k < data_plus_mac_plus_padding_size + header_length)
699 b = data[k - header_length];
700 k++;
701
702 is_past_c = is_block_a & constant_time_ge_8(j, c);
703 is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
704 /*
705 * If this is the block containing the end of the application
706 * data, and we are at the offset for the 0x80 value, then
707 * overwrite b with 0x80.
708 */
709 b = constant_time_select_8(is_past_c, 0x80, b);
710 /*
711 * If this the the block containing the end of the application
712 * data and we're past the 0x80 value then just write zero.
713 */
714 b = b & ~is_past_cp1;
715 /*
716 * If this is index_b (the final block), but not index_a (the end
717 * of the data), then the 64-bit length didn't fit into index_a
718 * and we're having to add an extra block of zeros.
719 */
720 b &= ~is_block_b | is_block_a;
721
722 /*
723 * The final bytes of one of the blocks contains the length.
724 */
725 if (j >= md_block_size - md_length_size) {
726 /* If this is index_b, write a length byte. */
727 b = constant_time_select_8(is_block_b,
728 length_bytes[j -
729 (md_block_size -
730 md_length_size)], b);
731 }
732 block[j] = b;
733 }
734
735 md_transform(md_state.c, block);
736 md_final_raw(md_state.c, block);
737 /* If this is index_b, copy the hash value to |mac_out|. */
738 for (j = 0; j < md_size; j++)
739 mac_out[j] |= block[j] & is_block_b;
740 }
741
742 EVP_MD_CTX_init(&md_ctx);
56d91346
MC
743 if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0)
744 goto err;
ae5c8664
MC
745 if (is_sslv3) {
746 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
747 memset(hmac_pad, 0x5c, sslv3_pad_length);
748
56d91346
MC
749 if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0
750 || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0
751 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
752 goto err;
ae5c8664
MC
753 } else {
754 /* Complete the HMAC in the standard manner. */
755 for (i = 0; i < md_block_size; i++)
756 hmac_pad[i] ^= 0x6a;
757
56d91346
MC
758 if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0
759 || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
760 goto err;
ae5c8664
MC
761 }
762 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
763 if (md_out_size)
764 *md_out_size = md_out_size_u;
765 EVP_MD_CTX_cleanup(&md_ctx);
56d91346
MC
766
767 return 1;
768err:
769 EVP_MD_CTX_cleanup(&md_ctx);
770 return 0;
ae5c8664 771}
d91d9acc 772
e5cb7743 773#ifdef OPENSSL_FIPS
d91d9acc 774
ae5c8664
MC
775/*
776 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
777 * we can ensure the number of blocks processed is equal for all cases by
778 * digesting additional data.
d91d9acc
DSH
779 */
780
ae5c8664
MC
781void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
782 EVP_MD_CTX *mac_ctx, const unsigned char *data,
783 size_t data_len, size_t orig_len)
784{
785 size_t block_size, digest_pad, blocks_data, blocks_orig;
786 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
787 return;
788 block_size = EVP_MD_CTX_block_size(mac_ctx);
83975c80
MC
789 /*-
790 * We are in FIPS mode if we get this far so we know we have only SHA*
791 * digests and TLS to deal with.
792 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
793 * otherwise.
794 * Additional header is 13 bytes. To get the number of digest blocks
795 * processed round up the amount of data plus padding to the nearest
796 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
797 * So we have:
798 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
799 * equivalently:
800 * blocks = (payload_len + digest_pad + 12)/block_size + 1
801 * HMAC adds a constant overhead.
802 * We're ultimately only interested in differences so this becomes
803 * blocks = (payload_len + 29)/128
804 * for SHA384/SHA512 and
805 * blocks = (payload_len + 21)/64
806 * otherwise.
807 */
ae5c8664
MC
808 digest_pad = block_size == 64 ? 21 : 29;
809 blocks_orig = (orig_len + digest_pad) / block_size;
810 blocks_data = (data_len + digest_pad) / block_size;
811 /*
812 * MAC enough blocks to make up the difference between the original and
813 * actual lengths plus one extra block to ensure this is never a no op.
814 * The "data" pointer should always have enough space to perform this
815 * operation as it is large enough for a maximum length TLS buffer.
816 */
817 EVP_DigestSignUpdate(mac_ctx, data,
818 (blocks_orig - blocks_data + 1) * block_size);
819}
d91d9acc 820#endif