]> git.ipfire.org Git - thirdparty/openssl.git/blame - ssl/s3_cbc.c
Update the EVP_PKEY MAC documentation
[thirdparty/openssl.git] / ssl / s3_cbc.c
CommitLineData
846e33c7 1/*
33388b44 2 * Copyright 2012-2020 The OpenSSL Project Authors. All Rights Reserved.
a693ead6 3 *
2c18d164 4 * Licensed under the Apache License 2.0 (the "License"). You may not use
846e33c7
RS
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
a693ead6
BL
8 */
9
3fddbb26
MC
10/*
11 * This file has no dependencies on the rest of libssl because it is shared
12 * with the providers. It contains functions for low level MAC calculations.
13 * Responsibility for this lies with the HMAC implementation in the
14 * providers. However there are legacy code paths in libssl which also need to
15 * do this. In time those legacy code paths can be removed and this file can be
16 * moved out of libssl.
17 */
18
19
85d843c8 20/*
781aa7ab 21 * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
85d843c8
P
22 * internal use.
23 */
24#include "internal/deprecated.h"
25
706457b7 26#include "internal/constant_time.h"
67dc995e 27#include "internal/cryptlib.h"
a693ead6 28
3fddbb26 29#include <openssl/evp.h>
a693ead6
BL
30#include <openssl/md5.h>
31#include <openssl/sha.h>
32
3fddbb26
MC
33char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
34int ssl3_cbc_digest_record(const EVP_MD *md,
35 unsigned char *md_out,
36 size_t *md_out_size,
37 const unsigned char header[13],
38 const unsigned char *data,
e08f86dd 39 size_t data_size,
3fddbb26
MC
40 size_t data_plus_mac_plus_padding_size,
41 const unsigned char *mac_secret,
42 size_t mac_secret_length, char is_sslv3);
43
44# define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
45 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
46 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
47 *((c)++)=(unsigned char)(((l) )&0xff))
48
49# define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
50 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
51 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
52 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
53 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
54 *((c)++)=(unsigned char)(((l) )&0xff))
55
56# define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
57 *((c)++)=(unsigned char)(((l)>>48)&0xff), \
58 *((c)++)=(unsigned char)(((l)>>40)&0xff), \
59 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
60 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
61 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
62 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
63 *((c)++)=(unsigned char)(((l) )&0xff))
64
0f113f3e
MC
65/*
66 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
67 * length field. (SHA-384/512 have 128-bit length.)
68 */
a693ead6
BL
69#define MAX_HASH_BIT_COUNT_BYTES 16
70
0f113f3e
MC
71/*
72 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
a693ead6 73 * Currently SHA-384/512 has a 128-byte block size and that's the largest
0f113f3e
MC
74 * supported by TLS.)
75 */
a693ead6
BL
76#define MAX_HASH_BLOCK_SIZE 128
77
0f113f3e 78/*
aa97970c 79 * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
0f113f3e
MC
80 * little-endian order. The value of p is advanced by four.
81 */
32620fe9 82#define u32toLE(n, p) \
0f113f3e
MC
83 (*((p)++)=(unsigned char)(n), \
84 *((p)++)=(unsigned char)(n>>8), \
85 *((p)++)=(unsigned char)(n>>16), \
86 *((p)++)=(unsigned char)(n>>24))
87
88/*
89 * These functions serialize the state of a hash and thus perform the
90 * standard "final" operation without adding the padding and length that such
91 * a function typically does.
92 */
93static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
94{
95 MD5_CTX *md5 = ctx;
96 u32toLE(md5->A, md_out);
97 u32toLE(md5->B, md_out);
98 u32toLE(md5->C, md_out);
99 u32toLE(md5->D, md_out);
100}
101
102static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
103{
104 SHA_CTX *sha1 = ctx;
105 l2n(sha1->h0, md_out);
106 l2n(sha1->h1, md_out);
107 l2n(sha1->h2, md_out);
108 l2n(sha1->h3, md_out);
109 l2n(sha1->h4, md_out);
110}
111
0f113f3e
MC
112static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
113{
114 SHA256_CTX *sha256 = ctx;
115 unsigned i;
116
117 for (i = 0; i < 8; i++) {
118 l2n(sha256->h[i], md_out);
119 }
120}
121
0f113f3e
MC
122static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
123{
124 SHA512_CTX *sha512 = ctx;
125 unsigned i;
126
127 for (i = 0; i < 8; i++) {
128 l2n8(sha512->h[i], md_out);
129 }
130}
131
474e469b
RS
132#undef LARGEST_DIGEST_CTX
133#define LARGEST_DIGEST_CTX SHA512_CTX
a693ead6 134
0f113f3e
MC
135/*
136 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
137 * which ssl3_cbc_digest_record supports.
138 */
a693ead6 139char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
0f113f3e 140{
0f113f3e
MC
141 switch (EVP_MD_CTX_type(ctx)) {
142 case NID_md5:
143 case NID_sha1:
0f113f3e
MC
144 case NID_sha224:
145 case NID_sha256:
0f113f3e
MC
146 case NID_sha384:
147 case NID_sha512:
0f113f3e
MC
148 return 1;
149 default:
150 return 0;
151 }
152}
a693ead6 153
1d97c843
TH
154/*-
155 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
a693ead6
BL
156 * record.
157 *
158 * ctx: the EVP_MD_CTX from which we take the hash function.
159 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
160 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
161 * md_out_size: if non-NULL, the number of output bytes is written here.
162 * header: the 13-byte, TLS record header.
478b50cf 163 * data: the record data itself, less any preceding explicit IV.
e08f86dd
MC
164 * data_size: the secret, reported length of the data once the MAC and padding
165 * has been removed.
a693ead6 166 * data_plus_mac_plus_padding_size: the public length of the whole
e08f86dd 167 * record, including MAC and padding.
a693ead6
BL
168 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
169 *
e08f86dd 170 * On entry: we know that data is data_plus_mac_plus_padding_size in length
5f3d93e4 171 * Returns 1 on success or 0 on error
1d97c843 172 */
3fddbb26 173int ssl3_cbc_digest_record(const EVP_MD *md,
a230b26e
EK
174 unsigned char *md_out,
175 size_t *md_out_size,
176 const unsigned char header[13],
177 const unsigned char *data,
e08f86dd 178 size_t data_size,
a230b26e
EK
179 size_t data_plus_mac_plus_padding_size,
180 const unsigned char *mac_secret,
d0e7c31d 181 size_t mac_secret_length, char is_sslv3)
0f113f3e
MC
182{
183 union {
39147079 184 OSSL_UNION_ALIGN;
0f113f3e
MC
185 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
186 } md_state;
187 void (*md_final_raw) (void *ctx, unsigned char *md_out);
188 void (*md_transform) (void *ctx, const unsigned char *block);
d0e7c31d
MC
189 size_t md_size, md_block_size = 64;
190 size_t sslv3_pad_length = 40, header_length, variance_blocks,
0f113f3e
MC
191 len, max_mac_bytes, num_blocks,
192 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
d0e7c31d 193 size_t bits; /* at most 18 bits */
0f113f3e
MC
194 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
195 /* hmac_pad is the masked HMAC key. */
196 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
197 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
198 unsigned char mac_out[EVP_MAX_MD_SIZE];
d0e7c31d
MC
199 size_t i, j;
200 unsigned md_out_size_u;
6e59a892 201 EVP_MD_CTX *md_ctx = NULL;
0f113f3e
MC
202 /*
203 * mdLengthSize is the number of bytes in the length field that
204 * terminates * the hash.
205 */
d0e7c31d 206 size_t md_length_size = 8;
0f113f3e 207 char length_is_big_endian = 1;
73d391ad 208 int ret = 0;
0f113f3e
MC
209
210 /*
211 * This is a, hopefully redundant, check that allows us to forget about
212 * many possible overflows later in this function.
213 */
380a522f
MC
214 if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
215 return 0;
0f113f3e 216
3fddbb26 217 switch (EVP_MD_type(md)) {
0f113f3e 218 case NID_md5:
5f3d93e4
MC
219 if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
220 return 0;
0f113f3e
MC
221 md_final_raw = tls1_md5_final_raw;
222 md_transform =
223 (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
224 md_size = 16;
225 sslv3_pad_length = 48;
226 length_is_big_endian = 0;
227 break;
228 case NID_sha1:
5f3d93e4
MC
229 if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
230 return 0;
0f113f3e
MC
231 md_final_raw = tls1_sha1_final_raw;
232 md_transform =
233 (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
234 md_size = 20;
235 break;
0f113f3e 236 case NID_sha224:
5f3d93e4
MC
237 if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
238 return 0;
0f113f3e
MC
239 md_final_raw = tls1_sha256_final_raw;
240 md_transform =
241 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
242 md_size = 224 / 8;
243 break;
244 case NID_sha256:
5f3d93e4
MC
245 if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
246 return 0;
0f113f3e
MC
247 md_final_raw = tls1_sha256_final_raw;
248 md_transform =
249 (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
250 md_size = 32;
251 break;
0f113f3e 252 case NID_sha384:
5f3d93e4
MC
253 if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
254 return 0;
0f113f3e
MC
255 md_final_raw = tls1_sha512_final_raw;
256 md_transform =
257 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
258 md_size = 384 / 8;
259 md_block_size = 128;
260 md_length_size = 16;
261 break;
262 case NID_sha512:
5f3d93e4
MC
263 if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
264 return 0;
0f113f3e
MC
265 md_final_raw = tls1_sha512_final_raw;
266 md_transform =
267 (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
268 md_size = 64;
269 md_block_size = 128;
270 md_length_size = 16;
271 break;
0f113f3e
MC
272 default:
273 /*
274 * ssl3_cbc_record_digest_supported should have been called first to
275 * check that the hash function is supported.
276 */
b77f3ed1 277 if (md_out_size != NULL)
5c649375 278 *md_out_size = 0;
b77f3ed1 279 return ossl_assert(0);
0f113f3e
MC
280 }
281
b77f3ed1
MC
282 if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
283 || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
284 || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
380a522f 285 return 0;
0f113f3e
MC
286
287 header_length = 13;
288 if (is_sslv3) {
289 header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
290 * number */ +
291 1 /* record type */ +
292 2 /* record length */ ;
293 }
294
295 /*
296 * variance_blocks is the number of blocks of the hash that we have to
297 * calculate in constant time because they could be altered by the
298 * padding value. In SSLv3, the padding must be minimal so the end of
299 * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
300 * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
301 * of hash termination (0x80 + 64-bit length) don't fit in the final
302 * block, we say that the final two blocks can vary based on the padding.
303 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
cb8164b0 304 * required to be minimal. Therefore we say that the final |variance_blocks|
305 * blocks can
0f113f3e
MC
306 * vary based on the padding. Later in the function, if the message is
307 * short and there obviously cannot be this many blocks then
308 * variance_blocks can be reduced.
309 */
cb8164b0 310 variance_blocks = is_sslv3 ? 2 : ( ((255 + 1 + md_size + md_block_size - 1) / md_block_size) + 1);
0f113f3e
MC
311 /*
312 * From now on we're dealing with the MAC, which conceptually has 13
313 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
314 * (SSLv3)
315 */
316 len = data_plus_mac_plus_padding_size + header_length;
317 /*
318 * max_mac_bytes contains the maximum bytes of bytes in the MAC,
319 * including * |header|, assuming that there's no padding.
320 */
321 max_mac_bytes = len - md_size - 1;
322 /* num_blocks is the maximum number of hash blocks. */
323 num_blocks =
324 (max_mac_bytes + 1 + md_length_size + md_block_size -
325 1) / md_block_size;
326 /*
327 * In order to calculate the MAC in constant time we have to handle the
328 * final blocks specially because the padding value could cause the end
329 * to appear somewhere in the final |variance_blocks| blocks and we can't
330 * leak where. However, |num_starting_blocks| worth of data can be hashed
331 * right away because no padding value can affect whether they are
332 * plaintext.
333 */
334 num_starting_blocks = 0;
335 /*
336 * k is the starting byte offset into the conceptual header||data where
337 * we start processing.
338 */
339 k = 0;
340 /*
341 * mac_end_offset is the index just past the end of the data to be MACed.
342 */
e08f86dd 343 mac_end_offset = data_size + header_length;
0f113f3e
MC
344 /*
345 * c is the index of the 0x80 byte in the final hash block that contains
346 * application data.
347 */
348 c = mac_end_offset % md_block_size;
349 /*
350 * index_a is the hash block number that contains the 0x80 terminating
351 * value.
352 */
353 index_a = mac_end_offset / md_block_size;
354 /*
355 * index_b is the hash block number that contains the 64-bit hash length,
356 * in bits.
357 */
358 index_b = (mac_end_offset + md_length_size) / md_block_size;
359 /*
360 * bits is the hash-length in bits. It includes the additional hash block
361 * for the masked HMAC key, or whole of |header| in the case of SSLv3.
362 */
363
364 /*
365 * For SSLv3, if we're going to have any starting blocks then we need at
366 * least two because the header is larger than a single block.
367 */
368 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
369 num_starting_blocks = num_blocks - variance_blocks;
370 k = md_block_size * num_starting_blocks;
371 }
372
373 bits = 8 * mac_end_offset;
374 if (!is_sslv3) {
375 /*
376 * Compute the initial HMAC block. For SSLv3, the padding and secret
377 * bytes are included in |header| because they take more than a
378 * single block.
379 */
380 bits += 8 * md_block_size;
381 memset(hmac_pad, 0, md_block_size);
380a522f
MC
382 if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
383 return 0;
0f113f3e
MC
384 memcpy(hmac_pad, mac_secret, mac_secret_length);
385 for (i = 0; i < md_block_size; i++)
386 hmac_pad[i] ^= 0x36;
387
388 md_transform(md_state.c, hmac_pad);
389 }
390
391 if (length_is_big_endian) {
392 memset(length_bytes, 0, md_length_size - 4);
393 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
394 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
395 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
396 length_bytes[md_length_size - 1] = (unsigned char)bits;
397 } else {
398 memset(length_bytes, 0, md_length_size);
399 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
400 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
401 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
402 length_bytes[md_length_size - 8] = (unsigned char)bits;
403 }
404
405 if (k > 0) {
406 if (is_sslv3) {
348240c6 407 size_t overhang;
29b0a15a 408
0f113f3e
MC
409 /*
410 * The SSLv3 header is larger than a single block. overhang is
411 * the number of bytes beyond a single block that the header
29b0a15a
MC
412 * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
413 * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
414 * therefore we can be confident that the header_length will be
415 * greater than |md_block_size|. However we add a sanity check just
416 * in case
0f113f3e 417 */
29b0a15a
MC
418 if (header_length <= md_block_size) {
419 /* Should never happen */
5f3d93e4 420 return 0;
29b0a15a
MC
421 }
422 overhang = header_length - md_block_size;
0f113f3e
MC
423 md_transform(md_state.c, header);
424 memcpy(first_block, header + md_block_size, overhang);
425 memcpy(first_block + overhang, data, md_block_size - overhang);
426 md_transform(md_state.c, first_block);
427 for (i = 1; i < k / md_block_size - 1; i++)
428 md_transform(md_state.c, data + md_block_size * i - overhang);
429 } else {
430 /* k is a multiple of md_block_size. */
431 memcpy(first_block, header, 13);
432 memcpy(first_block + 13, data, md_block_size - 13);
433 md_transform(md_state.c, first_block);
434 for (i = 1; i < k / md_block_size; i++)
435 md_transform(md_state.c, data + md_block_size * i - 13);
436 }
437 }
438
439 memset(mac_out, 0, sizeof(mac_out));
440
441 /*
442 * We now process the final hash blocks. For each block, we construct it
443 * in constant time. If the |i==index_a| then we'll include the 0x80
444 * bytes and zero pad etc. For each block we selectively copy it, in
445 * constant time, to |mac_out|.
446 */
447 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
448 i++) {
449 unsigned char block[MAX_HASH_BLOCK_SIZE];
2688e7a0
MC
450 unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
451 unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
0f113f3e
MC
452 for (j = 0; j < md_block_size; j++) {
453 unsigned char b = 0, is_past_c, is_past_cp1;
454 if (k < header_length)
455 b = header[k];
456 else if (k < data_plus_mac_plus_padding_size + header_length)
457 b = data[k - header_length];
458 k++;
459
2688e7a0
MC
460 is_past_c = is_block_a & constant_time_ge_8_s(j, c);
461 is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
0f113f3e
MC
462 /*
463 * If this is the block containing the end of the application
464 * data, and we are at the offset for the 0x80 value, then
465 * overwrite b with 0x80.
466 */
467 b = constant_time_select_8(is_past_c, 0x80, b);
468 /*
3519bae5
XL
469 * If this block contains the end of the application data
470 * and we're past the 0x80 value then just write zero.
0f113f3e
MC
471 */
472 b = b & ~is_past_cp1;
473 /*
474 * If this is index_b (the final block), but not index_a (the end
475 * of the data), then the 64-bit length didn't fit into index_a
476 * and we're having to add an extra block of zeros.
477 */
478 b &= ~is_block_b | is_block_a;
479
480 /*
481 * The final bytes of one of the blocks contains the length.
482 */
483 if (j >= md_block_size - md_length_size) {
484 /* If this is index_b, write a length byte. */
485 b = constant_time_select_8(is_block_b,
486 length_bytes[j -
487 (md_block_size -
488 md_length_size)], b);
489 }
490 block[j] = b;
491 }
492
493 md_transform(md_state.c, block);
494 md_final_raw(md_state.c, block);
495 /* If this is index_b, copy the hash value to |mac_out|. */
496 for (j = 0; j < md_size; j++)
497 mac_out[j] |= block[j] & is_block_b;
498 }
499
bfb0641f 500 md_ctx = EVP_MD_CTX_new();
6e59a892
RL
501 if (md_ctx == NULL)
502 goto err;
3fddbb26 503
73d391ad 504 if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */ ) <= 0)
5f3d93e4 505 goto err;
0f113f3e
MC
506 if (is_sslv3) {
507 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
508 memset(hmac_pad, 0x5c, sslv3_pad_length);
509
6e59a892 510 if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
a230b26e
EK
511 || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
512 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 513 goto err;
0f113f3e
MC
514 } else {
515 /* Complete the HMAC in the standard manner. */
516 for (i = 0; i < md_block_size; i++)
517 hmac_pad[i] ^= 0x6a;
518
6e59a892 519 if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
a230b26e 520 || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
5f3d93e4 521 goto err;
0f113f3e 522 }
d0e7c31d 523 /* TODO(size_t): Convert me */
6e59a892 524 ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
0f113f3e
MC
525 if (ret && md_out_size)
526 *md_out_size = md_out_size_u;
5f3d93e4 527
73d391ad 528 ret = 1;
a230b26e 529 err:
bfb0641f 530 EVP_MD_CTX_free(md_ctx);
73d391ad 531 return ret;
0f113f3e 532}