]> git.ipfire.org Git - thirdparty/glibc.git/blame - stdlib/strtod_l.c
Update copyright dates with scripts/update-copyrights
[thirdparty/glibc.git] / stdlib / strtod_l.c
CommitLineData
0501d603 1/* Convert string representing a number to float value, using given locale.
6d7e8eda 2 Copyright (C) 1997-2023 Free Software Foundation, Inc.
0501d603 3 This file is part of the GNU C Library.
0501d603
UD
4
5 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
0501d603
UD
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 13 Lesser General Public License for more details.
0501d603 14
41bdb6e2 15 You should have received a copy of the GNU Lesser General Public
59ba27a6 16 License along with the GNU C Library; if not, see
5a82c748 17 <https://www.gnu.org/licenses/>. */
0501d603 18
a5a2a76b
JM
19#include <bits/floatn.h>
20
21#ifdef FLOAT
22# define BUILD_DOUBLE 0
23#else
24# define BUILD_DOUBLE 1
25#endif
26
27#if BUILD_DOUBLE
28# if __HAVE_FLOAT64 && !__HAVE_DISTINCT_FLOAT64
29# define strtof64_l __hide_strtof64_l
30# define wcstof64_l __hide_wcstof64_l
31# endif
32# if __HAVE_FLOAT32X && !__HAVE_DISTINCT_FLOAT32X
33# define strtof32x_l __hide_strtof32x_l
34# define wcstof32x_l __hide_wcstof32x_l
35# endif
36#endif
37
f0be25b6 38#include <locale.h>
ebbad4cc 39
af85385f 40extern double ____strtod_l_internal (const char *, char **, int, locale_t);
0501d603 41
ccadf7b5
UD
42/* Configuration part. These macros are defined by `strtold.c',
43 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
44 `long double' and `float' versions of the reader. */
45#ifndef FLOAT
c6251f03 46# include <math_ldbl_opt.h>
ccadf7b5
UD
47# define FLOAT double
48# define FLT DBL
49# ifdef USE_WIDE_CHAR
50# define STRTOF wcstod_l
51# define __STRTOF __wcstod_l
e02cabec 52# define STRTOF_NAN __wcstod_nan
ccadf7b5
UD
53# else
54# define STRTOF strtod_l
55# define __STRTOF __strtod_l
e02cabec 56# define STRTOF_NAN __strtod_nan
ccadf7b5
UD
57# endif
58# define MPN2FLOAT __mpn_construct_double
59# define FLOAT_HUGE_VAL HUGE_VAL
ccadf7b5
UD
60#endif
61/* End of configuration part. */
62\f
63#include <ctype.h>
64#include <errno.h>
65#include <float.h>
ccadf7b5 66#include "../locale/localeinfo.h"
ccadf7b5 67#include <math.h>
b4d5b8b0 68#include <math-barriers.h>
aaee3cd8 69#include <math-narrow-eval.h>
ccadf7b5
UD
70#include <stdlib.h>
71#include <string.h>
d6e70f43 72#include <stdint.h>
6c9b0f68 73#include <rounding-mode.h>
2a27fd6d 74#include <tininess.h>
ccadf7b5
UD
75
76/* The gmp headers need some configuration frobs. */
77#define HAVE_ALLOCA 1
78
79/* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
80 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
81#include <gmp-mparam.h>
82#include <gmp.h>
b6ab06ce
UD
83#include "gmp-impl.h"
84#include "longlong.h"
ccadf7b5
UD
85#include "fpioconst.h"
86
ccadf7b5
UD
87#include <assert.h>
88
89
90/* We use this code for the extended locale handling where the
91 function gets as an additional argument the locale which has to be
92 used. To access the values we have to redefine the _NL_CURRENT and
93 _NL_CURRENT_WORD macros. */
94#undef _NL_CURRENT
95#define _NL_CURRENT(category, item) \
96 (current->values[_NL_ITEM_INDEX (item)].string)
97#undef _NL_CURRENT_WORD
98#define _NL_CURRENT_WORD(category, item) \
99 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
100
101#if defined _LIBC || defined HAVE_WCHAR_H
102# include <wchar.h>
103#endif
104
105#ifdef USE_WIDE_CHAR
106# include <wctype.h>
107# define STRING_TYPE wchar_t
108# define CHAR_TYPE wint_t
109# define L_(Ch) L##Ch
110# define ISSPACE(Ch) __iswspace_l ((Ch), loc)
111# define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
112# define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
113# define TOLOWER(Ch) __towlower_l ((Ch), loc)
4b5b009c 114# define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
1873e3cd 115# define STRNCASECMP(S1, S2, N) \
4b5b009c 116 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
ccadf7b5
UD
117#else
118# define STRING_TYPE char
119# define CHAR_TYPE char
120# define L_(Ch) Ch
121# define ISSPACE(Ch) __isspace_l ((Ch), loc)
122# define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
123# define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
124# define TOLOWER(Ch) __tolower_l ((Ch), loc)
4b5b009c 125# define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
1873e3cd 126# define STRNCASECMP(S1, S2, N) \
4b5b009c 127 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
ccadf7b5
UD
128#endif
129
130
131/* Constants we need from float.h; select the set for the FLOAT precision. */
132#define MANT_DIG PASTE(FLT,_MANT_DIG)
133#define DIG PASTE(FLT,_DIG)
134#define MAX_EXP PASTE(FLT,_MAX_EXP)
135#define MIN_EXP PASTE(FLT,_MIN_EXP)
136#define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
137#define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
6c9b0f68
JM
138#define MAX_VALUE PASTE(FLT,_MAX)
139#define MIN_VALUE PASTE(FLT,_MIN)
ccadf7b5
UD
140
141/* Extra macros required to get FLT expanded before the pasting. */
142#define PASTE(a,b) PASTE1(a,b)
143#define PASTE1(a,b) a##b
144
145/* Function to construct a floating point number from an MP integer
146 containing the fraction bits, a base 2 exponent, and a sign flag. */
147extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
148\f
149/* Definitions according to limb size used. */
150#if BITS_PER_MP_LIMB == 32
151# define MAX_DIG_PER_LIMB 9
152# define MAX_FAC_PER_LIMB 1000000000UL
153#elif BITS_PER_MP_LIMB == 64
154# define MAX_DIG_PER_LIMB 19
155# define MAX_FAC_PER_LIMB 10000000000000000000ULL
156#else
157# error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
158#endif
159
72f10127 160extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
ccadf7b5
UD
161\f
162#ifndef howmany
163#define howmany(x,y) (((x)+((y)-1))/(y))
164#endif
165#define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
166
ccadf7b5
UD
167#define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
168
169#define RETURN(val,end) \
170 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
171 return val; } while (0)
172
af92131a
JM
173/* Maximum size necessary for mpn integers to hold floating point
174 numbers. The largest number we need to hold is 10^n where 2^-n is
175 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
176 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
177#define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
178 BITS_PER_MP_LIMB) + 2)
ccadf7b5
UD
179/* Declare an mpn integer variable that big. */
180#define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
181/* Copy an mpn integer value. */
182#define MPN_ASSIGN(dst, src) \
183 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
184
185
6c9b0f68
JM
186/* Set errno and return an overflowing value with sign specified by
187 NEGATIVE. */
188static FLOAT
189overflow_value (int negative)
190{
191 __set_errno (ERANGE);
54142c44
JM
192 FLOAT result = math_narrow_eval ((negative ? -MAX_VALUE : MAX_VALUE)
193 * MAX_VALUE);
6c9b0f68
JM
194 return result;
195}
196
197
198/* Set errno and return an underflowing value with sign specified by
199 NEGATIVE. */
200static FLOAT
201underflow_value (int negative)
202{
203 __set_errno (ERANGE);
54142c44
JM
204 FLOAT result = math_narrow_eval ((negative ? -MIN_VALUE : MIN_VALUE)
205 * MIN_VALUE);
6c9b0f68
JM
206 return result;
207}
208
209
ccadf7b5
UD
210/* Return a floating point number of the needed type according to the given
211 multi-precision number after possible rounding. */
212static FLOAT
d6e70f43 213round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
ccadf7b5
UD
214 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
215{
2a27fd6d
JM
216 int mode = get_rounding_mode ();
217
ccadf7b5
UD
218 if (exponent < MIN_EXP - 1)
219 {
d6e70f43 220 if (exponent < MIN_EXP - 1 - MANT_DIG)
6c9b0f68 221 return underflow_value (negative);
ccadf7b5 222
d6e70f43 223 mp_size_t shift = MIN_EXP - 1 - exponent;
2a27fd6d 224 bool is_tiny = true;
d6e70f43 225
ccadf7b5
UD
226 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
227 if (shift == MANT_DIG)
228 /* This is a special case to handle the very seldom case where
229 the mantissa will be empty after the shift. */
230 {
231 int i;
232
233 round_limb = retval[RETURN_LIMB_SIZE - 1];
234 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
9310c284 235 for (i = 0; i < RETURN_LIMB_SIZE - 1; ++i)
ccadf7b5
UD
236 more_bits |= retval[i] != 0;
237 MPN_ZERO (retval, RETURN_LIMB_SIZE);
238 }
239 else if (shift >= BITS_PER_MP_LIMB)
240 {
241 int i;
242
243 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
244 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
245 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
246 more_bits |= retval[i] != 0;
247 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
248 != 0);
249
4406c41c
AJ
250 /* __mpn_rshift requires 0 < shift < BITS_PER_MP_LIMB. */
251 if ((shift % BITS_PER_MP_LIMB) != 0)
252 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
253 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
254 shift % BITS_PER_MP_LIMB);
255 else
256 for (i = 0; i < RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB); i++)
257 retval[i] = retval[i + (shift / BITS_PER_MP_LIMB)];
f095bb72
UD
258 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
259 shift / BITS_PER_MP_LIMB);
ccadf7b5
UD
260 }
261 else if (shift > 0)
262 {
2a27fd6d
JM
263 if (TININESS_AFTER_ROUNDING && shift == 1)
264 {
265 /* Whether the result counts as tiny depends on whether,
266 after rounding to the normal precision, it still has
267 a subnormal exponent. */
268 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
269 if (round_away (negative,
270 (retval[0] & 1) != 0,
271 (round_limb
272 & (((mp_limb_t) 1) << round_bit)) != 0,
273 (more_bits
274 || ((round_limb
275 & ((((mp_limb_t) 1) << round_bit) - 1))
276 != 0)),
277 mode))
278 {
279 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
280 RETURN_LIMB_SIZE, 1);
281
34a5a146
JM
282 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy)
283 || ((MANT_DIG % BITS_PER_MP_LIMB) != 0
284 && ((retval_normal[RETURN_LIMB_SIZE - 1]
285 & (((mp_limb_t) 1)
286 << (MANT_DIG % BITS_PER_MP_LIMB)))
287 != 0)))
2a27fd6d
JM
288 is_tiny = false;
289 }
290 }
f095bb72
UD
291 round_limb = retval[0];
292 round_bit = shift - 1;
ccadf7b5
UD
293 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
294 }
295 /* This is a hook for the m68k long double format, where the
296 exponent bias is the same for normalized and denormalized
297 numbers. */
298#ifndef DENORM_EXP
299# define DENORM_EXP (MIN_EXP - 2)
300#endif
301 exponent = DENORM_EXP;
2a27fd6d
JM
302 if (is_tiny
303 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
304 || more_bits
305 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
306 {
307 __set_errno (ERANGE);
d96164c3
JM
308 FLOAT force_underflow = MIN_VALUE * MIN_VALUE;
309 math_force_eval (force_underflow);
2a27fd6d 310 }
ccadf7b5
UD
311 }
312
fcd6b5ac 313 if (exponent >= MAX_EXP)
d6e70f43
JM
314 goto overflow;
315
4725d33e
JM
316 bool half_bit = (round_limb & (((mp_limb_t) 1) << round_bit)) != 0;
317 bool more_bits_nonzero
318 = (more_bits
319 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0);
6c9b0f68
JM
320 if (round_away (negative,
321 (retval[0] & 1) != 0,
4725d33e
JM
322 half_bit,
323 more_bits_nonzero,
6c9b0f68 324 mode))
ccadf7b5
UD
325 {
326 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
327
34a5a146
JM
328 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy)
329 || ((MANT_DIG % BITS_PER_MP_LIMB) != 0
330 && (retval[RETURN_LIMB_SIZE - 1]
331 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
ccadf7b5
UD
332 {
333 ++exponent;
334 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
335 retval[RETURN_LIMB_SIZE - 1]
336 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
337 }
338 else if (exponent == DENORM_EXP
339 && (retval[RETURN_LIMB_SIZE - 1]
340 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
341 != 0)
342 /* The number was denormalized but now normalized. */
343 exponent = MIN_EXP - 1;
344 }
345
fcd6b5ac 346 if (exponent >= MAX_EXP)
d6e70f43 347 overflow:
6c9b0f68 348 return overflow_value (negative);
ccadf7b5 349
4725d33e
JM
350 if (half_bit || more_bits_nonzero)
351 {
352 FLOAT force_inexact = (FLOAT) 1 + MIN_VALUE;
353 math_force_eval (force_inexact);
354 }
ccadf7b5
UD
355 return MPN2FLOAT (retval, exponent, negative);
356}
357
358
359/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
360 into N. Return the size of the number limbs in NSIZE at the first
361 character od the string that is not part of the integer as the function
362 value. If the EXPONENT is small enough to be taken as an additional
363 factor for the resulting number (see code) multiply by it. */
364static const STRING_TYPE *
365str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
d6e70f43 366 intmax_t *exponent
ccadf7b5
UD
367#ifndef USE_WIDE_CHAR
368 , const char *decimal, size_t decimal_len, const char *thousands
369#endif
370
371 )
372{
373 /* Number of digits for actual limb. */
374 int cnt = 0;
375 mp_limb_t low = 0;
376 mp_limb_t start;
377
378 *nsize = 0;
379 assert (digcnt > 0);
380 do
381 {
382 if (cnt == MAX_DIG_PER_LIMB)
383 {
384 if (*nsize == 0)
385 {
386 n[0] = low;
387 *nsize = 1;
388 }
389 else
390 {
391 mp_limb_t cy;
392 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
393 cy += __mpn_add_1 (n, n, *nsize, low);
394 if (cy != 0)
395 {
d6e70f43 396 assert (*nsize < MPNSIZE);
ccadf7b5
UD
397 n[*nsize] = cy;
398 ++(*nsize);
399 }
400 }
401 cnt = 0;
402 low = 0;
403 }
404
405 /* There might be thousands separators or radix characters in
406 the string. But these all can be ignored because we know the
407 format of the number is correct and we have an exact number
408 of characters to read. */
409#ifdef USE_WIDE_CHAR
410 if (*str < L'0' || *str > L'9')
411 ++str;
412#else
413 if (*str < '0' || *str > '9')
414 {
415 int inner = 0;
416 if (thousands != NULL && *str == *thousands
417 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
418 if (thousands[inner] != str[inner])
419 break;
420 thousands[inner] == '\0'; }))
421 str += inner;
422 else
423 str += decimal_len;
424 }
425#endif
426 low = low * 10 + *str++ - L_('0');
427 ++cnt;
428 }
429 while (--digcnt > 0);
430
d6e70f43 431 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
ccadf7b5
UD
432 {
433 low *= _tens_in_limb[*exponent];
434 start = _tens_in_limb[cnt + *exponent];
435 *exponent = 0;
436 }
437 else
438 start = _tens_in_limb[cnt];
439
440 if (*nsize == 0)
441 {
442 n[0] = low;
443 *nsize = 1;
444 }
445 else
446 {
447 mp_limb_t cy;
448 cy = __mpn_mul_1 (n, n, *nsize, start);
449 cy += __mpn_add_1 (n, n, *nsize, low);
450 if (cy != 0)
d6e70f43
JM
451 {
452 assert (*nsize < MPNSIZE);
453 n[(*nsize)++] = cy;
454 }
ccadf7b5
UD
455 }
456
457 return str;
458}
459
460
461/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
462 with the COUNT most significant bits of LIMB.
463
2389741a
JJ
464 Implemented as a macro, so that __builtin_constant_p works even at -O0.
465
466 Tege doesn't like this macro so I have to write it here myself. :)
ccadf7b5 467 --drepper */
2389741a
JJ
468#define __mpn_lshift_1(ptr, size, count, limb) \
469 do \
470 { \
471 mp_limb_t *__ptr = (ptr); \
472 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB) \
473 { \
474 mp_size_t i; \
475 for (i = (size) - 1; i > 0; --i) \
476 __ptr[i] = __ptr[i - 1]; \
477 __ptr[0] = (limb); \
478 } \
479 else \
480 { \
481 /* We assume count > 0 && count < BITS_PER_MP_LIMB here. */ \
482 unsigned int __count = (count); \
483 (void) __mpn_lshift (__ptr, __ptr, size, __count); \
484 __ptr[0] |= (limb) >> (BITS_PER_MP_LIMB - __count); \
485 } \
486 } \
487 while (0)
ccadf7b5
UD
488
489
490#define INTERNAL(x) INTERNAL1(x)
491#define INTERNAL1(x) __##x##_internal
c6251f03
RM
492#ifndef ____STRTOF_INTERNAL
493# define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
494#endif
ccadf7b5
UD
495
496/* This file defines a function to check for correct grouping. */
497#include "grouping.h"
498
499
500/* Return a floating point number with the value of the given string NPTR.
501 Set *ENDPTR to the character after the last used one. If the number is
502 smaller than the smallest representable number, set `errno' to ERANGE and
503 return 0.0. If the number is too big to be represented, set `errno' to
504 ERANGE and return HUGE_VAL with the appropriate sign. */
505FLOAT
9dd346ff 506____STRTOF_INTERNAL (const STRING_TYPE *nptr, STRING_TYPE **endptr, int group,
af85385f 507 locale_t loc)
ccadf7b5
UD
508{
509 int negative; /* The sign of the number. */
510 MPN_VAR (num); /* MP representation of the number. */
d6e70f43 511 intmax_t exponent; /* Exponent of the number. */
ccadf7b5
UD
512
513 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
514 int base = 10;
515
516 /* When we have to compute fractional digits we form a fraction with a
517 second multi-precision number (and we sometimes need a second for
518 temporary results). */
519 MPN_VAR (den);
520
521 /* Representation for the return value. */
522 mp_limb_t retval[RETURN_LIMB_SIZE];
523 /* Number of bits currently in result value. */
524 int bits;
525
526 /* Running pointer after the last character processed in the string. */
527 const STRING_TYPE *cp, *tp;
528 /* Start of significant part of the number. */
529 const STRING_TYPE *startp, *start_of_digits;
530 /* Points at the character following the integer and fractional digits. */
531 const STRING_TYPE *expp;
532 /* Total number of digit and number of digits in integer part. */
d6e70f43 533 size_t dig_no, int_no, lead_zero;
ccadf7b5
UD
534 /* Contains the last character read. */
535 CHAR_TYPE c;
536
537/* We should get wint_t from <stddef.h>, but not all GCC versions define it
538 there. So define it ourselves if it remains undefined. */
539#ifndef _WINT_T
540 typedef unsigned int wint_t;
541#endif
542 /* The radix character of the current locale. */
543#ifdef USE_WIDE_CHAR
544 wchar_t decimal;
545#else
546 const char *decimal;
547 size_t decimal_len;
548#endif
549 /* The thousands character of the current locale. */
550#ifdef USE_WIDE_CHAR
551 wchar_t thousands = L'\0';
552#else
553 const char *thousands = NULL;
554#endif
555 /* The numeric grouping specification of the current locale,
556 in the format described in <locale.h>. */
557 const char *grouping;
558 /* Used in several places. */
559 int cnt;
560
f095bb72 561 struct __locale_data *current = loc->__locales[LC_NUMERIC];
ccadf7b5 562
a1ffb40e 563 if (__glibc_unlikely (group))
ccadf7b5
UD
564 {
565 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
566 if (*grouping <= 0 || *grouping == CHAR_MAX)
567 grouping = NULL;
568 else
569 {
570 /* Figure out the thousands separator character. */
571#ifdef USE_WIDE_CHAR
572 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
573 _NL_NUMERIC_THOUSANDS_SEP_WC);
574 if (thousands == L'\0')
575 grouping = NULL;
576#else
577 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
578 if (*thousands == '\0')
579 {
580 thousands = NULL;
581 grouping = NULL;
582 }
583#endif
584 }
585 }
586 else
587 grouping = NULL;
588
589 /* Find the locale's decimal point character. */
590#ifdef USE_WIDE_CHAR
591 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
592 assert (decimal != L'\0');
593# define decimal_len 1
594#else
595 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
596 decimal_len = strlen (decimal);
597 assert (decimal_len > 0);
598#endif
599
600 /* Prepare number representation. */
601 exponent = 0;
602 negative = 0;
603 bits = 0;
604
605 /* Parse string to get maximal legal prefix. We need the number of
606 characters of the integer part, the fractional part and the exponent. */
607 cp = nptr - 1;
608 /* Ignore leading white space. */
609 do
610 c = *++cp;
611 while (ISSPACE (c));
612
613 /* Get sign of the result. */
614 if (c == L_('-'))
615 {
616 negative = 1;
617 c = *++cp;
618 }
619 else if (c == L_('+'))
620 c = *++cp;
621
622 /* Return 0.0 if no legal string is found.
623 No character is used even if a sign was found. */
624#ifdef USE_WIDE_CHAR
625 if (c == (wint_t) decimal
626 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
627 {
628 /* We accept it. This funny construct is here only to indent
621c133d 629 the code correctly. */
ccadf7b5
UD
630 }
631#else
632 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
633 if (cp[cnt] != decimal[cnt])
634 break;
635 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
636 {
637 /* We accept it. This funny construct is here only to indent
621c133d 638 the code correctly. */
ccadf7b5
UD
639 }
640#endif
641 else if (c < L_('0') || c > L_('9'))
642 {
643 /* Check for `INF' or `INFINITY'. */
9cf147d8
UD
644 CHAR_TYPE lowc = TOLOWER_C (c);
645
646 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
ccadf7b5
UD
647 {
648 /* Return +/- infinity. */
649 if (endptr != NULL)
650 *endptr = (STRING_TYPE *)
651 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
652 ? 8 : 3));
653
654 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
655 }
656
9cf147d8 657 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
ccadf7b5
UD
658 {
659 /* Return NaN. */
660 FLOAT retval = NAN;
661
662 cp += 3;
663
664 /* Match `(n-char-sequence-digit)'. */
665 if (*cp == L_('('))
666 {
667 const STRING_TYPE *startp = cp;
e02cabec
JM
668 STRING_TYPE *endp;
669 retval = STRTOF_NAN (cp + 1, &endp, L_(')'));
670 if (*endp == L_(')'))
671 /* Consume the closing parenthesis. */
672 cp = endp + 1;
ccadf7b5 673 else
e02cabec
JM
674 /* Only match the NAN part. */
675 cp = startp;
ccadf7b5
UD
676 }
677
678 if (endptr != NULL)
679 *endptr = (STRING_TYPE *) cp;
680
b0debe14 681 return negative ? -retval : retval;
ccadf7b5
UD
682 }
683
684 /* It is really a text we do not recognize. */
685 RETURN (0.0, nptr);
686 }
687
688 /* First look whether we are faced with a hexadecimal number. */
689 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
690 {
691 /* Okay, it is a hexa-decimal number. Remember this and skip
692 the characters. BTW: hexadecimal numbers must not be
693 grouped. */
694 base = 16;
695 cp += 2;
696 c = *cp;
697 grouping = NULL;
698 }
699
700 /* Record the start of the digits, in case we will check their grouping. */
701 start_of_digits = startp = cp;
702
703 /* Ignore leading zeroes. This helps us to avoid useless computations. */
704#ifdef USE_WIDE_CHAR
705 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
706 c = *++cp;
707#else
a1ffb40e 708 if (__glibc_likely (thousands == NULL))
ccadf7b5
UD
709 while (c == '0')
710 c = *++cp;
711 else
712 {
713 /* We also have the multibyte thousands string. */
714 while (1)
715 {
716 if (c != '0')
717 {
718 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
d6220e9e 719 if (thousands[cnt] != cp[cnt])
ccadf7b5
UD
720 break;
721 if (thousands[cnt] != '\0')
722 break;
d6220e9e 723 cp += cnt - 1;
ccadf7b5
UD
724 }
725 c = *++cp;
726 }
727 }
728#endif
729
730 /* If no other digit but a '0' is found the result is 0.0.
731 Return current read pointer. */
9cf147d8 732 CHAR_TYPE lowc = TOLOWER (c);
405698e9 733 if (!((c >= L_('0') && c <= L_('9'))
9cf147d8 734 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
43b9d657 735 || (
ccadf7b5 736#ifdef USE_WIDE_CHAR
43b9d657 737 c == (wint_t) decimal
ccadf7b5 738#else
43b9d657
UD
739 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
740 if (decimal[cnt] != cp[cnt])
741 break;
742 decimal[cnt] == '\0'; })
ccadf7b5 743#endif
43b9d657
UD
744 /* '0x.' alone is not a valid hexadecimal number.
745 '.' alone is not valid either, but that has been checked
746 already earlier. */
747 && (base != 16
748 || cp != start_of_digits
749 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
9cf147d8
UD
750 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
751 lo >= L_('a') && lo <= L_('f'); })))
405698e9 752 || (base == 16 && (cp != start_of_digits
9cf147d8
UD
753 && lowc == L_('p')))
754 || (base != 16 && lowc == L_('e'))))
ccadf7b5
UD
755 {
756#ifdef USE_WIDE_CHAR
757 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
758 grouping);
759#else
760 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
761 grouping);
762#endif
763 /* If TP is at the start of the digits, there was no correctly
764 grouped prefix of the string; so no number found. */
64f6281c
UD
765 RETURN (negative ? -0.0 : 0.0,
766 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
ccadf7b5
UD
767 }
768
769 /* Remember first significant digit and read following characters until the
770 decimal point, exponent character or any non-FP number character. */
771 startp = cp;
772 dig_no = 0;
773 while (1)
774 {
775 if ((c >= L_('0') && c <= L_('9'))
9cf147d8
UD
776 || (base == 16
777 && ({ CHAR_TYPE lo = TOLOWER (c);
778 lo >= L_('a') && lo <= L_('f'); })))
ccadf7b5
UD
779 ++dig_no;
780 else
781 {
782#ifdef USE_WIDE_CHAR
621c133d
UD
783 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
784 || c != (wint_t) thousands)
ccadf7b5
UD
785 /* Not a digit or separator: end of the integer part. */
786 break;
787#else
a1ffb40e 788 if (__glibc_likely (thousands == NULL))
ccadf7b5
UD
789 break;
790 else
791 {
792 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
793 if (thousands[cnt] != cp[cnt])
794 break;
795 if (thousands[cnt] != '\0')
796 break;
d6220e9e 797 cp += cnt - 1;
ccadf7b5
UD
798 }
799#endif
800 }
801 c = *++cp;
802 }
803
621c133d 804 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
ccadf7b5
UD
805 {
806 /* Check the grouping of the digits. */
807#ifdef USE_WIDE_CHAR
808 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
809 grouping);
810#else
811 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
812 grouping);
813#endif
814 if (cp != tp)
f095bb72 815 {
ccadf7b5
UD
816 /* Less than the entire string was correctly grouped. */
817
818 if (tp == start_of_digits)
819 /* No valid group of numbers at all: no valid number. */
820 RETURN (0.0, nptr);
821
822 if (tp < startp)
823 /* The number is validly grouped, but consists
824 only of zeroes. The whole value is zero. */
64f6281c 825 RETURN (negative ? -0.0 : 0.0, tp);
ccadf7b5
UD
826
827 /* Recompute DIG_NO so we won't read more digits than
828 are properly grouped. */
829 cp = tp;
830 dig_no = 0;
831 for (tp = startp; tp < cp; ++tp)
832 if (*tp >= L_('0') && *tp <= L_('9'))
833 ++dig_no;
834
835 int_no = dig_no;
836 lead_zero = 0;
837
838 goto number_parsed;
839 }
840 }
841
2282c90c
UD
842 /* We have the number of digits in the integer part. Whether these
843 are all or any is really a fractional digit will be decided
844 later. */
ccadf7b5 845 int_no = dig_no;
d6e70f43 846 lead_zero = int_no == 0 ? (size_t) -1 : 0;
ccadf7b5 847
2282c90c
UD
848 /* Read the fractional digits. A special case are the 'american
849 style' numbers like `16.' i.e. with decimal point but without
850 trailing digits. */
ccadf7b5
UD
851 if (
852#ifdef USE_WIDE_CHAR
853 c == (wint_t) decimal
854#else
855 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
856 if (decimal[cnt] != cp[cnt])
857 break;
858 decimal[cnt] == '\0'; })
859#endif
860 )
861 {
862 cp += decimal_len;
863 c = *cp;
34a5a146
JM
864 while ((c >= L_('0') && c <= L_('9'))
865 || (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
866 lo >= L_('a') && lo <= L_('f'); })))
ccadf7b5 867 {
d6e70f43 868 if (c != L_('0') && lead_zero == (size_t) -1)
ccadf7b5
UD
869 lead_zero = dig_no - int_no;
870 ++dig_no;
871 c = *++cp;
872 }
873 }
d6e70f43 874 assert (dig_no <= (uintmax_t) INTMAX_MAX);
ccadf7b5
UD
875
876 /* Remember start of exponent (if any). */
877 expp = cp;
878
879 /* Read exponent. */
9cf147d8
UD
880 lowc = TOLOWER (c);
881 if ((base == 16 && lowc == L_('p'))
882 || (base != 16 && lowc == L_('e')))
ccadf7b5
UD
883 {
884 int exp_negative = 0;
885
886 c = *++cp;
887 if (c == L_('-'))
888 {
889 exp_negative = 1;
890 c = *++cp;
891 }
892 else if (c == L_('+'))
893 c = *++cp;
894
895 if (c >= L_('0') && c <= L_('9'))
896 {
d6e70f43 897 intmax_t exp_limit;
ccadf7b5
UD
898
899 /* Get the exponent limit. */
900 if (base == 16)
d6e70f43
JM
901 {
902 if (exp_negative)
903 {
904 assert (int_no <= (uintmax_t) (INTMAX_MAX
905 + MIN_EXP - MANT_DIG) / 4);
906 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
907 }
908 else
909 {
910 if (int_no)
911 {
912 assert (lead_zero == 0
913 && int_no <= (uintmax_t) INTMAX_MAX / 4);
914 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
915 }
916 else if (lead_zero == (size_t) -1)
917 {
918 /* The number is zero and this limit is
919 arbitrary. */
920 exp_limit = MAX_EXP + 3;
921 }
922 else
923 {
924 assert (lead_zero
925 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
926 exp_limit = (MAX_EXP
927 + 4 * (intmax_t) lead_zero
928 + 3);
929 }
930 }
931 }
ccadf7b5 932 else
d6e70f43
JM
933 {
934 if (exp_negative)
935 {
936 assert (int_no
937 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
938 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
939 }
940 else
941 {
942 if (int_no)
943 {
944 assert (lead_zero == 0
945 && int_no <= (uintmax_t) INTMAX_MAX);
946 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
947 }
948 else if (lead_zero == (size_t) -1)
949 {
950 /* The number is zero and this limit is
951 arbitrary. */
952 exp_limit = MAX_10_EXP + 1;
953 }
954 else
955 {
956 assert (lead_zero
957 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
958 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
959 }
960 }
961 }
962
963 if (exp_limit < 0)
964 exp_limit = 0;
ccadf7b5
UD
965
966 do
967 {
d6e70f43
JM
968 if (__builtin_expect ((exponent > exp_limit / 10
969 || (exponent == exp_limit / 10
970 && c - L_('0') > exp_limit % 10)), 0))
ccadf7b5
UD
971 /* The exponent is too large/small to represent a valid
972 number. */
973 {
350635a5 974 FLOAT result;
ccadf7b5
UD
975
976 /* We have to take care for special situation: a joker
977 might have written "0.0e100000" which is in fact
978 zero. */
d6e70f43 979 if (lead_zero == (size_t) -1)
ccadf7b5
UD
980 result = negative ? -0.0 : 0.0;
981 else
982 {
983 /* Overflow or underflow. */
6c9b0f68
JM
984 result = (exp_negative
985 ? underflow_value (negative)
986 : overflow_value (negative));
ccadf7b5
UD
987 }
988
989 /* Accept all following digits as part of the exponent. */
990 do
991 ++cp;
992 while (*cp >= L_('0') && *cp <= L_('9'));
993
994 RETURN (result, cp);
995 /* NOTREACHED */
996 }
997
d6e70f43
JM
998 exponent *= 10;
999 exponent += c - L_('0');
1000
ccadf7b5
UD
1001 c = *++cp;
1002 }
1003 while (c >= L_('0') && c <= L_('9'));
1004
1005 if (exp_negative)
1006 exponent = -exponent;
1007 }
1008 else
1009 cp = expp;
1010 }
1011
1012 /* We don't want to have to work with trailing zeroes after the radix. */
1013 if (dig_no > int_no)
1014 {
1015 while (expp[-1] == L_('0'))
1016 {
1017 --expp;
1018 --dig_no;
1019 }
1020 assert (dig_no >= int_no);
1021 }
1022
1023 if (dig_no == int_no && dig_no > 0 && exponent < 0)
1024 do
1025 {
1026 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1027 --expp;
1028
1029 if (expp[-1] != L_('0'))
1030 break;
1031
1032 --expp;
1033 --dig_no;
1034 --int_no;
d117c1ce 1035 exponent += base == 16 ? 4 : 1;
ccadf7b5
UD
1036 }
1037 while (dig_no > 0 && exponent < 0);
1038
1039 number_parsed:
1040
1041 /* The whole string is parsed. Store the address of the next character. */
1042 if (endptr)
1043 *endptr = (STRING_TYPE *) cp;
1044
1045 if (dig_no == 0)
1046 return negative ? -0.0 : 0.0;
1047
1048 if (lead_zero)
1049 {
1050 /* Find the decimal point */
1051#ifdef USE_WIDE_CHAR
1052 while (*startp != decimal)
1053 ++startp;
1054#else
1055 while (1)
1056 {
1057 if (*startp == decimal[0])
1058 {
1059 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1060 if (decimal[cnt] != startp[cnt])
1061 break;
1062 if (decimal[cnt] == '\0')
1063 break;
1064 }
1065 ++startp;
1066 }
1067#endif
1068 startp += lead_zero + decimal_len;
d6e70f43
JM
1069 assert (lead_zero <= (base == 16
1070 ? (uintmax_t) INTMAX_MAX / 4
1071 : (uintmax_t) INTMAX_MAX));
1072 assert (lead_zero <= (base == 16
1073 ? ((uintmax_t) exponent
1074 - (uintmax_t) INTMAX_MIN) / 4
1075 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1076 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
ccadf7b5
UD
1077 dig_no -= lead_zero;
1078 }
1079
1080 /* If the BASE is 16 we can use a simpler algorithm. */
1081 if (base == 16)
1082 {
1083 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1084 4, 4, 4, 4, 4, 4, 4, 4 };
1085 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1086 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1087 mp_limb_t val;
1088
1089 while (!ISXDIGIT (*startp))
1090 ++startp;
1091 while (*startp == L_('0'))
1092 ++startp;
1093 if (ISDIGIT (*startp))
1094 val = *startp++ - L_('0');
1095 else
1096 val = 10 + TOLOWER (*startp++) - L_('a');
1097 bits = nbits[val];
1098 /* We cannot have a leading zero. */
1099 assert (bits != 0);
1100
1101 if (pos + 1 >= 4 || pos + 1 >= bits)
1102 {
1103 /* We don't have to care for wrapping. This is the normal
1104 case so we add the first clause in the `if' expression as
1105 an optimization. It is a compile-time constant and so does
1106 not cost anything. */
1107 retval[idx] = val << (pos - bits + 1);
1108 pos -= bits;
1109 }
1110 else
1111 {
1112 retval[idx--] = val >> (bits - pos - 1);
1113 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1114 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1115 }
1116
1117 /* Adjust the exponent for the bits we are shifting in. */
d6e70f43
JM
1118 assert (int_no <= (uintmax_t) (exponent < 0
1119 ? (INTMAX_MAX - bits + 1) / 4
1120 : (INTMAX_MAX - exponent - bits + 1) / 4));
1121 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
ccadf7b5
UD
1122
1123 while (--dig_no > 0 && idx >= 0)
1124 {
1125 if (!ISXDIGIT (*startp))
1126 startp += decimal_len;
1127 if (ISDIGIT (*startp))
1128 val = *startp++ - L_('0');
1129 else
1130 val = 10 + TOLOWER (*startp++) - L_('a');
1131
1132 if (pos + 1 >= 4)
1133 {
1134 retval[idx] |= val << (pos - 4 + 1);
1135 pos -= 4;
1136 }
1137 else
1138 {
1139 retval[idx--] |= val >> (4 - pos - 1);
1140 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1141 if (idx < 0)
8f203e6c
JM
1142 {
1143 int rest_nonzero = 0;
1144 while (--dig_no > 0)
1145 {
1146 if (*startp != L_('0'))
1147 {
1148 rest_nonzero = 1;
1149 break;
1150 }
1151 startp++;
1152 }
1153 return round_and_return (retval, exponent, negative, val,
1154 BITS_PER_MP_LIMB - 1, rest_nonzero);
1155 }
ccadf7b5
UD
1156
1157 retval[idx] = val;
1158 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1159 }
1160 }
1161
1162 /* We ran out of digits. */
1163 MPN_ZERO (retval, idx);
1164
1165 return round_and_return (retval, exponent, negative, 0, 0, 0);
1166 }
1167
1168 /* Now we have the number of digits in total and the integer digits as well
1169 as the exponent and its sign. We can decide whether the read digits are
1170 really integer digits or belong to the fractional part; i.e. we normalize
1171 123e-2 to 1.23. */
1172 {
2e09a79a
JM
1173 intmax_t incr = (exponent < 0
1174 ? MAX (-(intmax_t) int_no, exponent)
1175 : MIN ((intmax_t) dig_no - (intmax_t) int_no, exponent));
ccadf7b5
UD
1176 int_no += incr;
1177 exponent -= incr;
1178 }
1179
a1ffb40e 1180 if (__glibc_unlikely (exponent > MAX_10_EXP + 1 - (intmax_t) int_no))
6c9b0f68 1181 return overflow_value (negative);
ccadf7b5 1182
5556d30c
JM
1183 /* 10^(MIN_10_EXP-1) is not normal. Thus, 10^(MIN_10_EXP-1) /
1184 2^MANT_DIG is below half the least subnormal, so anything with a
1185 base-10 exponent less than the base-10 exponent (which is
1186 MIN_10_EXP - 1 - ceil(MANT_DIG*log10(2))) of that value
1187 underflows. DIG is floor((MANT_DIG-1)log10(2)), so an exponent
1188 below MIN_10_EXP - (DIG + 3) underflows. But EXPONENT is
1189 actually an exponent multiplied only by a fractional part, not an
1190 integer part, so an exponent below MIN_10_EXP - (DIG + 2)
1191 underflows. */
1192 if (__glibc_unlikely (exponent < MIN_10_EXP - (DIG + 2)))
6c9b0f68 1193 return underflow_value (negative);
ccadf7b5
UD
1194
1195 if (int_no > 0)
1196 {
1197 /* Read the integer part as a multi-precision number to NUM. */
1198 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1199#ifndef USE_WIDE_CHAR
1200 , decimal, decimal_len, thousands
1201#endif
1202 );
1203
1204 if (exponent > 0)
1205 {
1206 /* We now multiply the gained number by the given power of ten. */
1207 mp_limb_t *psrc = num;
1208 mp_limb_t *pdest = den;
1209 int expbit = 1;
1210 const struct mp_power *ttab = &_fpioconst_pow10[0];
1211
1212 do
1213 {
1214 if ((exponent & expbit) != 0)
1215 {
1216 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1217 mp_limb_t cy;
1218 exponent ^= expbit;
1219
1220 /* FIXME: not the whole multiplication has to be
1221 done. If we have the needed number of bits we
1222 only need the information whether more non-zero
1223 bits follow. */
1224 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1225 cy = __mpn_mul (pdest, psrc, numsize,
1226 &__tens[ttab->arrayoff
1227 + _FPIO_CONST_OFFSET],
1228 size);
1229 else
1230 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1231 + _FPIO_CONST_OFFSET],
1232 size, psrc, numsize);
1233 numsize += size;
1234 if (cy == 0)
1235 --numsize;
1236 (void) SWAP (psrc, pdest);
1237 }
1238 expbit <<= 1;
1239 ++ttab;
1240 }
1241 while (exponent != 0);
1242
1243 if (psrc == den)
1244 memcpy (num, den, numsize * sizeof (mp_limb_t));
1245 }
1246
1247 /* Determine how many bits of the result we already have. */
1248 count_leading_zeros (bits, num[numsize - 1]);
1249 bits = numsize * BITS_PER_MP_LIMB - bits;
1250
1251 /* Now we know the exponent of the number in base two.
1252 Check it against the maximum possible exponent. */
a1ffb40e 1253 if (__glibc_unlikely (bits > MAX_EXP))
6c9b0f68 1254 return overflow_value (negative);
ccadf7b5
UD
1255
1256 /* We have already the first BITS bits of the result. Together with
1257 the information whether more non-zero bits follow this is enough
1258 to determine the result. */
1259 if (bits > MANT_DIG)
1260 {
1261 int i;
1262 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1263 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1264 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1265 : least_idx;
1266 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1267 : least_bit - 1;
1268
1269 if (least_bit == 0)
1270 memcpy (retval, &num[least_idx],
1271 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1272 else
f095bb72
UD
1273 {
1274 for (i = least_idx; i < numsize - 1; ++i)
1275 retval[i - least_idx] = (num[i] >> least_bit)
1276 | (num[i + 1]
1277 << (BITS_PER_MP_LIMB - least_bit));
1278 if (i - least_idx < RETURN_LIMB_SIZE)
1279 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1280 }
ccadf7b5
UD
1281
1282 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1283 for (i = 0; num[i] == 0; ++i)
1284 ;
1285
1286 return round_and_return (retval, bits - 1, negative,
1287 num[round_idx], round_bit,
1288 int_no < dig_no || i < round_idx);
1289 /* NOTREACHED */
1290 }
1291 else if (dig_no == int_no)
1292 {
1293 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1294 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1295
1296 if (target_bit == is_bit)
1297 {
1298 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1299 numsize * sizeof (mp_limb_t));
1300 /* FIXME: the following loop can be avoided if we assume a
1301 maximal MANT_DIG value. */
1302 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1303 }
1304 else if (target_bit > is_bit)
1305 {
1306 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1307 num, numsize, target_bit - is_bit);
1308 /* FIXME: the following loop can be avoided if we assume a
1309 maximal MANT_DIG value. */
1310 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1311 }
1312 else
1313 {
1314 mp_limb_t cy;
1315 assert (numsize < RETURN_LIMB_SIZE);
1316
1317 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1318 num, numsize, is_bit - target_bit);
1319 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1320 /* FIXME: the following loop can be avoided if we assume a
1321 maximal MANT_DIG value. */
1322 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1323 }
1324
1325 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1326 /* NOTREACHED */
1327 }
1328
1329 /* Store the bits we already have. */
1330 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1331#if RETURN_LIMB_SIZE > 1
1332 if (numsize < RETURN_LIMB_SIZE)
9ce0ecbe 1333# if RETURN_LIMB_SIZE == 2
f095bb72 1334 retval[numsize] = 0;
9ce0ecbe
UD
1335# else
1336 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1337# endif
ccadf7b5
UD
1338#endif
1339 }
1340
1341 /* We have to compute at least some of the fractional digits. */
1342 {
1343 /* We construct a fraction and the result of the division gives us
1344 the needed digits. The denominator is 1.0 multiplied by the
1345 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1346 123e-6 gives 123 / 1000000. */
1347
1348 int expbit;
1349 int neg_exp;
1350 int more_bits;
af92131a 1351 int need_frac_digits;
ccadf7b5
UD
1352 mp_limb_t cy;
1353 mp_limb_t *psrc = den;
1354 mp_limb_t *pdest = num;
1355 const struct mp_power *ttab = &_fpioconst_pow10[0];
1356
af92131a
JM
1357 assert (dig_no > int_no
1358 && exponent <= 0
5556d30c 1359 && exponent >= MIN_10_EXP - (DIG + 2));
ccadf7b5 1360
af92131a
JM
1361 /* We need to compute MANT_DIG - BITS fractional bits that lie
1362 within the mantissa of the result, the following bit for
1363 rounding, and to know whether any subsequent bit is 0.
1364 Computing a bit with value 2^-n means looking at n digits after
1365 the decimal point. */
1366 if (bits > 0)
1367 {
1368 /* The bits required are those immediately after the point. */
1369 assert (int_no > 0 && exponent == 0);
1370 need_frac_digits = 1 + MANT_DIG - bits;
1371 }
1372 else
1373 {
1374 /* The number is in the form .123eEXPONENT. */
1375 assert (int_no == 0 && *startp != L_('0'));
1376 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1377 2^10. */
1378 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1379 /* The number is at least 2^-NEG_EXP_2. We need up to
1380 MANT_DIG bits following that bit. */
1381 need_frac_digits = neg_exp_2 + MANT_DIG;
1382 /* However, we never need bits beyond 1/4 ulp of the smallest
1383 representable value. (That 1/4 ulp bit is only needed to
1384 determine tinyness on machines where tinyness is determined
1385 after rounding.) */
1386 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1387 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1388 /* At this point, NEED_FRAC_DIGITS is the total number of
1389 digits needed after the point, but some of those may be
1390 leading 0s. */
1391 need_frac_digits += exponent;
1392 /* Any cases underflowing enough that none of the fractional
1393 digits are needed should have been caught earlier (such
1394 cases are on the order of 10^-n or smaller where 2^-n is
1395 the least subnormal). */
1396 assert (need_frac_digits > 0);
1397 }
1398
1399 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1400 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
ccadf7b5 1401
af92131a 1402 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
ccadf7b5 1403 {
af92131a 1404 dig_no = int_no + need_frac_digits;
f095bb72 1405 more_bits = 1;
ccadf7b5
UD
1406 }
1407 else
1408 more_bits = 0;
1409
d6e70f43 1410 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
ccadf7b5
UD
1411
1412 /* Construct the denominator. */
1413 densize = 0;
1414 expbit = 1;
1415 do
1416 {
1417 if ((neg_exp & expbit) != 0)
1418 {
1419 mp_limb_t cy;
1420 neg_exp ^= expbit;
1421
1422 if (densize == 0)
1423 {
1424 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1425 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1426 densize * sizeof (mp_limb_t));
1427 }
1428 else
1429 {
1430 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1431 + _FPIO_CONST_OFFSET],
1432 ttab->arraysize - _FPIO_CONST_OFFSET,
1433 psrc, densize);
1434 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1435 if (cy == 0)
1436 --densize;
1437 (void) SWAP (psrc, pdest);
1438 }
1439 }
1440 expbit <<= 1;
1441 ++ttab;
1442 }
1443 while (neg_exp != 0);
1444
1445 if (psrc == num)
1446 memcpy (den, num, densize * sizeof (mp_limb_t));
1447
1448 /* Read the fractional digits from the string. */
1449 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1450#ifndef USE_WIDE_CHAR
1451 , decimal, decimal_len, thousands
1452#endif
1453 );
1454
1455 /* We now have to shift both numbers so that the highest bit in the
1456 denominator is set. In the same process we copy the numerator to
1457 a high place in the array so that the division constructs the wanted
1458 digits. This is done by a "quasi fix point" number representation.
1459
1460 num: ddddddddddd . 0000000000000000000000
f095bb72 1461 |--- m ---|
ccadf7b5 1462 den: ddddddddddd n >= m
f095bb72 1463 |--- n ---|
ccadf7b5
UD
1464 */
1465
1466 count_leading_zeros (cnt, den[densize - 1]);
1467
1468 if (cnt > 0)
1469 {
1470 /* Don't call `mpn_shift' with a count of zero since the specification
1471 does not allow this. */
1472 (void) __mpn_lshift (den, den, densize, cnt);
1473 cy = __mpn_lshift (num, num, numsize, cnt);
1474 if (cy != 0)
1475 num[numsize++] = cy;
1476 }
1477
1478 /* Now we are ready for the division. But it is not necessary to
1479 do a full multi-precision division because we only need a small
1480 number of bits for the result. So we do not use __mpn_divmod
1481 here but instead do the division here by hand and stop whenever
1482 the needed number of bits is reached. The code itself comes
1483 from the GNU MP Library by Torbj\"orn Granlund. */
1484
1485 exponent = bits;
1486
1487 switch (densize)
1488 {
1489 case 1:
1490 {
1491 mp_limb_t d, n, quot;
1492 int used = 0;
1493
1494 n = num[0];
1495 d = den[0];
1496 assert (numsize == 1 && n < d);
1497
1498 do
1499 {
1500 udiv_qrnnd (quot, n, n, 0, d);
1501
1502#define got_limb \
1503 if (bits == 0) \
1504 { \
2e09a79a 1505 int cnt; \
ccadf7b5
UD
1506 if (quot == 0) \
1507 cnt = BITS_PER_MP_LIMB; \
1508 else \
1509 count_leading_zeros (cnt, quot); \
1510 exponent -= cnt; \
1511 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1512 { \
1513 used = MANT_DIG + cnt; \
1514 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1515 bits = MANT_DIG + 1; \
1516 } \
1517 else \
1518 { \
1519 /* Note that we only clear the second element. */ \
1520 /* The conditional is determined at compile time. */ \
1521 if (RETURN_LIMB_SIZE > 1) \
1522 retval[1] = 0; \
1523 retval[0] = quot; \
1524 bits = -cnt; \
1525 } \
1526 } \
1527 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1528 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1529 quot); \
1530 else \
1531 { \
1532 used = MANT_DIG - bits; \
1533 if (used > 0) \
1534 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1535 } \
1536 bits += BITS_PER_MP_LIMB
1537
1538 got_limb;
1539 }
1540 while (bits <= MANT_DIG);
1541
1542 return round_and_return (retval, exponent - 1, negative,
1543 quot, BITS_PER_MP_LIMB - 1 - used,
1544 more_bits || n != 0);
1545 }
1546 case 2:
1547 {
1548 mp_limb_t d0, d1, n0, n1;
1549 mp_limb_t quot = 0;
1550 int used = 0;
1551
1552 d0 = den[0];
1553 d1 = den[1];
1554
1555 if (numsize < densize)
1556 {
1557 if (num[0] >= d1)
1558 {
1559 /* The numerator of the number occupies fewer bits than
1560 the denominator but the one limb is bigger than the
1561 high limb of the numerator. */
1562 n1 = 0;
1563 n0 = num[0];
1564 }
1565 else
1566 {
1567 if (bits <= 0)
1568 exponent -= BITS_PER_MP_LIMB;
1569 else
1570 {
1571 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1572 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1573 BITS_PER_MP_LIMB, 0);
1574 else
1575 {
1576 used = MANT_DIG - bits;
1577 if (used > 0)
1578 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1579 }
1580 bits += BITS_PER_MP_LIMB;
1581 }
1582 n1 = num[0];
1583 n0 = 0;
1584 }
1585 }
1586 else
1587 {
1588 n1 = num[1];
1589 n0 = num[0];
1590 }
1591
1592 while (bits <= MANT_DIG)
1593 {
1594 mp_limb_t r;
1595
1596 if (n1 == d1)
1597 {
1598 /* QUOT should be either 111..111 or 111..110. We need
1599 special treatment of this rare case as normal division
1600 would give overflow. */
1601 quot = ~(mp_limb_t) 0;
1602
1603 r = n0 + d1;
1604 if (r < d1) /* Carry in the addition? */
1605 {
1606 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1607 goto have_quot;
1608 }
1609 n1 = d0 - (d0 != 0);
1610 n0 = -d0;
1611 }
1612 else
1613 {
1614 udiv_qrnnd (quot, r, n1, n0, d1);
1615 umul_ppmm (n1, n0, d0, quot);
1616 }
1617
1618 q_test:
1619 if (n1 > r || (n1 == r && n0 > 0))
1620 {
1621 /* The estimated QUOT was too large. */
1622 --quot;
1623
1624 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1625 r += d1;
1626 if (r >= d1) /* If not carry, test QUOT again. */
1627 goto q_test;
1628 }
1629 sub_ddmmss (n1, n0, r, 0, n1, n0);
1630
1631 have_quot:
1632 got_limb;
1633 }
1634
1635 return round_and_return (retval, exponent - 1, negative,
1636 quot, BITS_PER_MP_LIMB - 1 - used,
1637 more_bits || n1 != 0 || n0 != 0);
1638 }
1639 default:
1640 {
1641 int i;
1642 mp_limb_t cy, dX, d1, n0, n1;
1643 mp_limb_t quot = 0;
1644 int used = 0;
1645
1646 dX = den[densize - 1];
1647 d1 = den[densize - 2];
1648
1649 /* The division does not work if the upper limb of the two-limb
c6aac3bf 1650 numerator is greater than or equal to the denominator. */
09555b97 1651 if (__mpn_cmp (num, &den[densize - numsize], numsize) >= 0)
ccadf7b5
UD
1652 num[numsize++] = 0;
1653
1654 if (numsize < densize)
1655 {
1656 mp_size_t empty = densize - numsize;
2e09a79a 1657 int i;
ccadf7b5
UD
1658
1659 if (bits <= 0)
66ebe46c 1660 exponent -= empty * BITS_PER_MP_LIMB;
ccadf7b5
UD
1661 else
1662 {
1663 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1664 {
1665 /* We make a difference here because the compiler
1666 cannot optimize the `else' case that good and
1667 this reflects all currently used FLOAT types
1668 and GMP implementations. */
ccadf7b5
UD
1669#if RETURN_LIMB_SIZE <= 2
1670 assert (empty == 1);
1671 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1672 BITS_PER_MP_LIMB, 0);
1673#else
9ce0ecbe 1674 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
ccadf7b5 1675 retval[i] = retval[i - empty];
9ce0ecbe
UD
1676 while (i >= 0)
1677 retval[i--] = 0;
ccadf7b5 1678#endif
ccadf7b5
UD
1679 }
1680 else
1681 {
1682 used = MANT_DIG - bits;
1683 if (used >= BITS_PER_MP_LIMB)
1684 {
2e09a79a 1685 int i;
ccadf7b5
UD
1686 (void) __mpn_lshift (&retval[used
1687 / BITS_PER_MP_LIMB],
a726d796
AS
1688 retval,
1689 (RETURN_LIMB_SIZE
1690 - used / BITS_PER_MP_LIMB),
ccadf7b5 1691 used % BITS_PER_MP_LIMB);
deddf809 1692 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
ccadf7b5
UD
1693 retval[i] = 0;
1694 }
1695 else if (used > 0)
1696 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1697 }
1698 bits += empty * BITS_PER_MP_LIMB;
1699 }
66ebe46c
UD
1700 for (i = numsize; i > 0; --i)
1701 num[i + empty] = num[i - 1];
1702 MPN_ZERO (num, empty + 1);
ccadf7b5
UD
1703 }
1704 else
1705 {
1706 int i;
1707 assert (numsize == densize);
1708 for (i = numsize; i > 0; --i)
1709 num[i] = num[i - 1];
707f25df 1710 num[0] = 0;
ccadf7b5
UD
1711 }
1712
1713 den[densize] = 0;
1714 n0 = num[densize];
1715
1716 while (bits <= MANT_DIG)
1717 {
1718 if (n0 == dX)
1719 /* This might over-estimate QUOT, but it's probably not
1720 worth the extra code here to find out. */
1721 quot = ~(mp_limb_t) 0;
1722 else
1723 {
1724 mp_limb_t r;
1725
1726 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1727 umul_ppmm (n1, n0, d1, quot);
1728
1729 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1730 {
1731 --quot;
1732 r += dX;
1733 if (r < dX) /* I.e. "carry in previous addition?" */
1734 break;
1735 n1 -= n0 < d1;
1736 n0 -= d1;
1737 }
1738 }
1739
1740 /* Possible optimization: We already have (q * n0) and (1 * n1)
1741 after the calculation of QUOT. Taking advantage of this, we
1742 could make this loop make two iterations less. */
1743
1744 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1745
1746 if (num[densize] != cy)
1747 {
1748 cy = __mpn_add_n (num, num, den, densize);
1749 assert (cy != 0);
1750 --quot;
1751 }
1752 n0 = num[densize] = num[densize - 1];
1753 for (i = densize - 1; i > 0; --i)
1754 num[i] = num[i - 1];
707f25df 1755 num[0] = 0;
ccadf7b5
UD
1756
1757 got_limb;
1758 }
1759
d84f25c7 1760 for (i = densize; i >= 0 && num[i] == 0; --i)
ccadf7b5
UD
1761 ;
1762 return round_and_return (retval, exponent - 1, negative,
1763 quot, BITS_PER_MP_LIMB - 1 - used,
1764 more_bits || i >= 0);
1765 }
1766 }
1767 }
1768
1769 /* NOTREACHED */
1770}
1771#if defined _LIBC && !defined USE_WIDE_CHAR
c6251f03 1772libc_hidden_def (____STRTOF_INTERNAL)
ccadf7b5
UD
1773#endif
1774\f
1775/* External user entry point. */
1ab62b32 1776
ccadf7b5
UD
1777FLOAT
1778#ifdef weak_function
1779weak_function
1780#endif
af85385f 1781__STRTOF (const STRING_TYPE *nptr, STRING_TYPE **endptr, locale_t loc)
ccadf7b5 1782{
c6251f03 1783 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
ccadf7b5 1784}
773e305e
RM
1785#if defined _LIBC
1786libc_hidden_def (__STRTOF)
1787libc_hidden_ver (__STRTOF, STRTOF)
1788#endif
ccadf7b5 1789weak_alias (__STRTOF, STRTOF)
c6251f03
RM
1790
1791#ifdef LONG_DOUBLE_COMPAT
1792# if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1793# ifdef USE_WIDE_CHAR
1794compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1795# else
1796compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1797# endif
1798# endif
1799# if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1800# ifdef USE_WIDE_CHAR
1801compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1802# else
1803compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1804# endif
1805# endif
1806#endif
a5a2a76b
JM
1807
1808#if BUILD_DOUBLE
1809# if __HAVE_FLOAT64 && !__HAVE_DISTINCT_FLOAT64
1810# undef strtof64_l
1811# undef wcstof64_l
1812# ifdef USE_WIDE_CHAR
1813weak_alias (wcstod_l, wcstof64_l)
1814# else
1815weak_alias (strtod_l, strtof64_l)
1816# endif
1817# endif
1818# if __HAVE_FLOAT32X && !__HAVE_DISTINCT_FLOAT32X
1819# undef strtof32x_l
1820# undef wcstof32x_l
1821# ifdef USE_WIDE_CHAR
1822weak_alias (wcstod_l, wcstof32x_l)
1823# else
1824weak_alias (strtod_l, strtof32x_l)
1825# endif
1826# endif
1827#endif