]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/generic/unwind-dw2-fde.c
2.5-18.1
[thirdparty/glibc.git] / sysdeps / generic / unwind-dw2-fde.c
CommitLineData
74bd2300 1/* Subroutines needed for unwinding stack frames for exception handling. */
0ecb606c 2/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2006
9c7ff11a 3 Free Software Foundation, Inc.
74bd2300
UD
4 Contributed by Jason Merrill <jason@cygnus.com>.
5
df5fd414
RM
6 This file is part of the GNU C Library.
7
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21 02111-1307 USA. */
74bd2300
UD
22
23#ifdef _LIBC
24# include <shlib-compat.h>
25#endif
26
27#if !defined _LIBC || SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_2_5)
28
29#ifdef _LIBC
30#include <stdlib.h>
31#include <string.h>
32#include <bits/libc-lock.h>
33#include <dwarf2.h>
34#include <unwind.h>
35#define NO_BASE_OF_ENCODED_VALUE
36#include <unwind-pe.h>
37#include <unwind-dw2-fde.h>
38#else
6180ac2f 39#ifndef _Unwind_Find_FDE
74bd2300
UD
40#include "tconfig.h"
41#include "tsystem.h"
42#include "dwarf2.h"
43#include "unwind.h"
44#define NO_BASE_OF_ENCODED_VALUE
45#include "unwind-pe.h"
46#include "unwind-dw2-fde.h"
47#include "gthr.h"
48#endif
6180ac2f 49#endif
74bd2300
UD
50
51/* The unseen_objects list contains objects that have been registered
52 but not yet categorized in any way. The seen_objects list has had
53 it's pc_begin and count fields initialized at minimum, and is sorted
54 by decreasing value of pc_begin. */
55static struct object *unseen_objects;
56static struct object *seen_objects;
57
58#ifdef _LIBC
59
5ff4a0aa 60__libc_lock_define_initialized (static, object_mutex)
74bd2300 61#define init_object_mutex_once()
5ff4a0aa
UD
62#define __gthread_mutex_lock(m) __libc_lock_lock (*(m))
63#define __gthread_mutex_unlock(m) __libc_lock_unlock (*(m))
74bd2300 64
b2bffca2
UD
65void __register_frame_info_bases_internal (void *begin, struct object *ob,
66 void *tbase, void *dbase);
67void __register_frame_info_table_bases_internal (void *begin,
68 struct object *ob,
69 void *tbase, void *dbase);
70void *__deregister_frame_info_bases_internal (void *begin);
71
74bd2300
UD
72#else
73
74#ifdef __GTHREAD_MUTEX_INIT
75static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
76#else
77static __gthread_mutex_t object_mutex;
78#endif
79
80#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
81static void
82init_object_mutex (void)
83{
84 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
85}
86
87static void
88init_object_mutex_once (void)
89{
90 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
91 __gthread_once (&once, init_object_mutex);
92}
93#else
94#define init_object_mutex_once()
95#endif
96
97#endif /* _LIBC */
98
99/* Called from crtbegin.o to register the unwind info for an object. */
100
101void
102__register_frame_info_bases (void *begin, struct object *ob,
103 void *tbase, void *dbase)
104{
a0dcb689 105 /* If .eh_frame is empty, don't register at all. */
6180ac2f 106 if (*(uword *) begin == 0)
a0dcb689
UD
107 return;
108
74bd2300
UD
109 ob->pc_begin = (void *)-1;
110 ob->tbase = tbase;
111 ob->dbase = dbase;
112 ob->u.single = begin;
113 ob->s.i = 0;
114 ob->s.b.encoding = DW_EH_PE_omit;
6180ac2f
UD
115#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
116 ob->fde_end = NULL;
117#endif
74bd2300
UD
118
119 init_object_mutex_once ();
120 __gthread_mutex_lock (&object_mutex);
121
122 ob->next = unseen_objects;
123 unseen_objects = ob;
124
125 __gthread_mutex_unlock (&object_mutex);
126}
b2bffca2 127INTDEF(__register_frame_info_bases)
74bd2300
UD
128
129void
130__register_frame_info (void *begin, struct object *ob)
131{
b2bffca2 132 INTUSE(__register_frame_info_bases) (begin, ob, 0, 0);
74bd2300
UD
133}
134
135void
136__register_frame (void *begin)
137{
a0dcb689
UD
138 struct object *ob;
139
140 /* If .eh_frame is empty, don't register at all. */
6180ac2f 141 if (*(uword *) begin == 0)
a0dcb689
UD
142 return;
143
144 ob = (struct object *) malloc (sizeof (struct object));
b2bffca2 145 INTUSE(__register_frame_info_bases) (begin, ob, 0, 0);
74bd2300
UD
146}
147
148/* Similar, but BEGIN is actually a pointer to a table of unwind entries
149 for different translation units. Called from the file generated by
150 collect2. */
151
152void
153__register_frame_info_table_bases (void *begin, struct object *ob,
154 void *tbase, void *dbase)
155{
156 ob->pc_begin = (void *)-1;
157 ob->tbase = tbase;
158 ob->dbase = dbase;
159 ob->u.array = begin;
160 ob->s.i = 0;
161 ob->s.b.from_array = 1;
162 ob->s.b.encoding = DW_EH_PE_omit;
163
164 init_object_mutex_once ();
165 __gthread_mutex_lock (&object_mutex);
166
167 ob->next = unseen_objects;
168 unseen_objects = ob;
169
170 __gthread_mutex_unlock (&object_mutex);
171}
b2bffca2 172INTDEF(__register_frame_info_table_bases)
74bd2300
UD
173
174void
175__register_frame_info_table (void *begin, struct object *ob)
176{
b2bffca2 177 INTUSE(__register_frame_info_table_bases) (begin, ob, 0, 0);
74bd2300
UD
178}
179
180void
181__register_frame_table (void *begin)
182{
183 struct object *ob = (struct object *) malloc (sizeof (struct object));
b2bffca2 184 INTUSE(__register_frame_info_table_bases) (begin, ob, 0, 0);
74bd2300
UD
185}
186
187/* Called from crtbegin.o to deregister the unwind info for an object. */
188/* ??? Glibc has for a while now exported __register_frame_info and
189 __deregister_frame_info. If we call __register_frame_info_bases
190 from crtbegin (wherein it is declared weak), and this object does
191 not get pulled from libgcc.a for other reasons, then the
192 invocation of __deregister_frame_info will be resolved from glibc.
193 Since the registration did not happen there, we'll abort.
194
195 Therefore, declare a new deregistration entry point that does the
196 exact same thing, but will resolve to the same library as
197 implements __register_frame_info_bases. */
198
199void *
200__deregister_frame_info_bases (void *begin)
201{
202 struct object **p;
203 struct object *ob = 0;
204
a0dcb689 205 /* If .eh_frame is empty, we haven't registered. */
6180ac2f 206 if (*(uword *) begin == 0)
a0dcb689
UD
207 return ob;
208
74bd2300
UD
209 init_object_mutex_once ();
210 __gthread_mutex_lock (&object_mutex);
211
212 for (p = &unseen_objects; *p ; p = &(*p)->next)
213 if ((*p)->u.single == begin)
214 {
215 ob = *p;
216 *p = ob->next;
217 goto out;
218 }
219
220 for (p = &seen_objects; *p ; p = &(*p)->next)
221 if ((*p)->s.b.sorted)
222 {
223 if ((*p)->u.sort->orig_data == begin)
224 {
225 ob = *p;
226 *p = ob->next;
227 free (ob->u.sort);
228 goto out;
229 }
230 }
231 else
232 {
233 if ((*p)->u.single == begin)
234 {
235 ob = *p;
236 *p = ob->next;
237 goto out;
238 }
239 }
240
241 __gthread_mutex_unlock (&object_mutex);
242 abort ();
243
244 out:
245 __gthread_mutex_unlock (&object_mutex);
246 return (void *) ob;
247}
b2bffca2 248INTDEF(__deregister_frame_info_bases)
74bd2300
UD
249
250void *
251__deregister_frame_info (void *begin)
252{
b2bffca2 253 return INTUSE(__deregister_frame_info_bases) (begin);
74bd2300
UD
254}
255
256void
257__deregister_frame (void *begin)
258{
a0dcb689 259 /* If .eh_frame is empty, we haven't registered. */
6180ac2f 260 if (*(uword *) begin != 0)
b2bffca2 261 free (INTUSE(__deregister_frame_info_bases) (begin));
74bd2300
UD
262}
263
264\f
265/* Like base_of_encoded_value, but take the base from a struct object
266 instead of an _Unwind_Context. */
267
268static _Unwind_Ptr
269base_from_object (unsigned char encoding, struct object *ob)
270{
271 if (encoding == DW_EH_PE_omit)
272 return 0;
273
274 switch (encoding & 0x70)
275 {
276 case DW_EH_PE_absptr:
277 case DW_EH_PE_pcrel:
278 case DW_EH_PE_aligned:
279 return 0;
280
281 case DW_EH_PE_textrel:
282 return (_Unwind_Ptr) ob->tbase;
283 case DW_EH_PE_datarel:
284 return (_Unwind_Ptr) ob->dbase;
285 }
286 abort ();
287}
288
289/* Return the FDE pointer encoding from the CIE. */
290/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
291
292static int
293get_cie_encoding (struct dwarf_cie *cie)
294{
295 const unsigned char *aug, *p;
296 _Unwind_Ptr dummy;
6180ac2f
UD
297 _Unwind_Word utmp;
298 _Unwind_Sword stmp;
74bd2300
UD
299
300 aug = cie->augmentation;
301 if (aug[0] != 'z')
302 return DW_EH_PE_absptr;
303
304 p = aug + strlen (aug) + 1; /* Skip the augmentation string. */
6180ac2f
UD
305 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
306 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
74bd2300
UD
307 p++; /* Skip return address column. */
308
309 aug++; /* Skip 'z' */
6180ac2f 310 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
74bd2300
UD
311 while (1)
312 {
313 /* This is what we're looking for. */
314 if (*aug == 'R')
315 return *p;
316 /* Personality encoding and pointer. */
317 else if (*aug == 'P')
318 {
319 /* ??? Avoid dereferencing indirect pointers, since we're
320 faking the base address. Gotta keep DW_EH_PE_aligned
321 intact, however. */
322 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
323 }
324 /* LSDA encoding. */
325 else if (*aug == 'L')
326 p++;
327 /* Otherwise end of string, or unknown augmentation. */
328 else
329 return DW_EH_PE_absptr;
330 aug++;
331 }
332}
333
334static inline int
335get_fde_encoding (struct dwarf_fde *f)
336{
337 return get_cie_encoding (get_cie (f));
338}
339
340\f
341/* Sorting an array of FDEs by address.
342 (Ideally we would have the linker sort the FDEs so we don't have to do
343 it at run time. But the linkers are not yet prepared for this.) */
344
345/* Comparison routines. Three variants of increasing complexity. */
346
6180ac2f 347static int
74bd2300
UD
348fde_unencoded_compare (struct object *ob __attribute__((unused)),
349 fde *x, fde *y)
350{
6180ac2f
UD
351 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
352 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
353
354 if (x_ptr > y_ptr)
355 return 1;
356 if (x_ptr < y_ptr)
357 return -1;
358 return 0;
74bd2300
UD
359}
360
6180ac2f 361static int
74bd2300
UD
362fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
363{
364 _Unwind_Ptr base, x_ptr, y_ptr;
365
366 base = base_from_object (ob->s.b.encoding, ob);
367 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
368 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
369
6180ac2f
UD
370 if (x_ptr > y_ptr)
371 return 1;
372 if (x_ptr < y_ptr)
373 return -1;
374 return 0;
74bd2300
UD
375}
376
6180ac2f 377static int
74bd2300
UD
378fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
379{
380 int x_encoding, y_encoding;
381 _Unwind_Ptr x_ptr, y_ptr;
382
383 x_encoding = get_fde_encoding (x);
384 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
385 x->pc_begin, &x_ptr);
386
387 y_encoding = get_fde_encoding (y);
388 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
389 y->pc_begin, &y_ptr);
390
6180ac2f
UD
391 if (x_ptr > y_ptr)
392 return 1;
393 if (x_ptr < y_ptr)
394 return -1;
395 return 0;
74bd2300
UD
396}
397
6180ac2f 398typedef int (*fde_compare_t) (struct object *, fde *, fde *);
74bd2300
UD
399
400
401/* This is a special mix of insertion sort and heap sort, optimized for
402 the data sets that actually occur. They look like
403 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
404 I.e. a linearly increasing sequence (coming from functions in the text
405 section), with additionally a few unordered elements (coming from functions
406 in gnu_linkonce sections) whose values are higher than the values in the
407 surrounding linear sequence (but not necessarily higher than the values
408 at the end of the linear sequence!).
409 The worst-case total run time is O(N) + O(n log (n)), where N is the
410 total number of FDEs and n is the number of erratic ones. */
411
412struct fde_accumulator
413{
414 struct fde_vector *linear;
415 struct fde_vector *erratic;
416};
417
9c7ff11a 418static int
74bd2300
UD
419start_fde_sort (struct fde_accumulator *accu, size_t count)
420{
421 size_t size;
422 if (! count)
423 return 0;
424
425 size = sizeof (struct fde_vector) + sizeof (fde *) * count;
426 if ((accu->linear = (struct fde_vector *) malloc (size)))
427 {
428 accu->linear->count = 0;
429 if ((accu->erratic = (struct fde_vector *) malloc (size)))
430 accu->erratic->count = 0;
431 return 1;
432 }
433 else
434 return 0;
435}
436
437static inline void
438fde_insert (struct fde_accumulator *accu, fde *this_fde)
439{
440 if (accu->linear)
441 accu->linear->array[accu->linear->count++] = this_fde;
442}
443
444/* Split LINEAR into a linear sequence with low values and an erratic
445 sequence with high values, put the linear one (of longest possible
446 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
447
448 Because the longest linear sequence we are trying to locate within the
449 incoming LINEAR array can be interspersed with (high valued) erratic
450 entries. We construct a chain indicating the sequenced entries.
451 To avoid having to allocate this chain, we overlay it onto the space of
452 the ERRATIC array during construction. A final pass iterates over the
453 chain to determine what should be placed in the ERRATIC array, and
454 what is the linear sequence. This overlay is safe from aliasing. */
455
9c7ff11a 456static void
74bd2300
UD
457fde_split (struct object *ob, fde_compare_t fde_compare,
458 struct fde_vector *linear, struct fde_vector *erratic)
459{
460 static fde *marker;
461 size_t count = linear->count;
462 fde **chain_end = &marker;
463 size_t i, j, k;
464
465 /* This should optimize out, but it is wise to make sure this assumption
466 is correct. Should these have different sizes, we cannot cast between
467 them and the overlaying onto ERRATIC will not work. */
468 if (sizeof (fde *) != sizeof (fde **))
469 abort ();
470
471 for (i = 0; i < count; i++)
472 {
473 fde **probe;
474
475 for (probe = chain_end;
6180ac2f
UD
476 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
477 probe = chain_end)
478 {
479 chain_end = (fde **) erratic->array[probe - linear->array];
480 erratic->array[probe - linear->array] = NULL;
481 }
482 erratic->array[i] = (fde *) chain_end;
74bd2300
UD
483 chain_end = &linear->array[i];
484 }
485
486 /* Each entry in LINEAR which is part of the linear sequence we have
487 discovered will correspond to a non-NULL entry in the chain we built in
488 the ERRATIC array. */
489 for (i = j = k = 0; i < count; i++)
490 if (erratic->array[i])
491 linear->array[j++] = linear->array[i];
492 else
493 erratic->array[k++] = linear->array[i];
494 linear->count = j;
495 erratic->count = k;
496}
497
498/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
499 use a name that does not conflict. */
500
501static void
502frame_heapsort (struct object *ob, fde_compare_t fde_compare,
503 struct fde_vector *erratic)
504{
505 /* For a description of this algorithm, see:
506 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
6180ac2f 507 p. 60-61. */
74bd2300
UD
508 fde ** a = erratic->array;
509 /* A portion of the array is called a "heap" if for all i>=0:
510 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
6180ac2f 511 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
74bd2300
UD
512#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
513 size_t n = erratic->count;
514 size_t m = n;
515 size_t i;
516
517 while (m > 0)
518 {
6180ac2f 519 /* Invariant: a[m..n-1] is a heap. */
74bd2300
UD
520 m--;
521 for (i = m; 2*i+1 < n; )
6180ac2f
UD
522 {
523 if (2*i+2 < n
524 && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
525 && fde_compare (ob, a[2*i+2], a[i]) > 0)
526 {
527 SWAP (a[i], a[2*i+2]);
528 i = 2*i+2;
529 }
530 else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
531 {
532 SWAP (a[i], a[2*i+1]);
533 i = 2*i+1;
534 }
535 else
536 break;
537 }
74bd2300
UD
538 }
539 while (n > 1)
540 {
6180ac2f 541 /* Invariant: a[0..n-1] is a heap. */
74bd2300
UD
542 n--;
543 SWAP (a[0], a[n]);
544 for (i = 0; 2*i+1 < n; )
6180ac2f
UD
545 {
546 if (2*i+2 < n
547 && fde_compare (ob, a[2*i+2], a[2*i+1]) > 0
548 && fde_compare (ob, a[2*i+2], a[i]) > 0)
549 {
550 SWAP (a[i], a[2*i+2]);
551 i = 2*i+2;
552 }
553 else if (fde_compare (ob, a[2*i+1], a[i]) > 0)
554 {
555 SWAP (a[i], a[2*i+1]);
556 i = 2*i+1;
557 }
558 else
559 break;
560 }
74bd2300
UD
561 }
562#undef SWAP
563}
564
6180ac2f 565/* Merge V1 and V2, both sorted, and put the result into V1. */
9c7ff11a 566static void
74bd2300
UD
567fde_merge (struct object *ob, fde_compare_t fde_compare,
568 struct fde_vector *v1, struct fde_vector *v2)
569{
570 size_t i1, i2;
571 fde * fde2;
572
573 i2 = v2->count;
574 if (i2 > 0)
575 {
576 i1 = v1->count;
6180ac2f
UD
577 do
578 {
579 i2--;
580 fde2 = v2->array[i2];
581 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
582 {
583 v1->array[i1+i2] = v1->array[i1-1];
584 i1--;
585 }
586 v1->array[i1+i2] = fde2;
587 }
588 while (i2 > 0);
74bd2300
UD
589 v1->count += v2->count;
590 }
591}
592
9c7ff11a 593static void
74bd2300
UD
594end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
595{
596 fde_compare_t fde_compare;
597
0ecb606c 598 if (accu->linear->count != count)
74bd2300
UD
599 abort ();
600
601 if (ob->s.b.mixed_encoding)
602 fde_compare = fde_mixed_encoding_compare;
603 else if (ob->s.b.encoding == DW_EH_PE_absptr)
604 fde_compare = fde_unencoded_compare;
605 else
606 fde_compare = fde_single_encoding_compare;
607
608 if (accu->erratic)
609 {
610 fde_split (ob, fde_compare, accu->linear, accu->erratic);
611 if (accu->linear->count + accu->erratic->count != count)
612 abort ();
613 frame_heapsort (ob, fde_compare, accu->erratic);
614 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
615 free (accu->erratic);
616 }
617 else
618 {
619 /* We've not managed to malloc an erratic array,
620 so heap sort in the linear one. */
621 frame_heapsort (ob, fde_compare, accu->linear);
622 }
623}
624
625\f
626/* Update encoding, mixed_encoding, and pc_begin for OB for the
627 fde array beginning at THIS_FDE. Return the number of fdes
628 encountered along the way. */
629
630static size_t
631classify_object_over_fdes (struct object *ob, fde *this_fde)
632{
633 struct dwarf_cie *last_cie = 0;
634 size_t count = 0;
635 int encoding = DW_EH_PE_absptr;
636 _Unwind_Ptr base = 0;
637
6180ac2f 638 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
74bd2300
UD
639 {
640 struct dwarf_cie *this_cie;
641 _Unwind_Ptr mask, pc_begin;
642
643 /* Skip CIEs. */
644 if (this_fde->CIE_delta == 0)
645 continue;
646
647 /* Determine the encoding for this FDE. Note mixed encoded
648 objects for later. */
649 this_cie = get_cie (this_fde);
650 if (this_cie != last_cie)
651 {
652 last_cie = this_cie;
653 encoding = get_cie_encoding (this_cie);
654 base = base_from_object (encoding, ob);
655 if (ob->s.b.encoding == DW_EH_PE_omit)
656 ob->s.b.encoding = encoding;
657 else if (ob->s.b.encoding != encoding)
658 ob->s.b.mixed_encoding = 1;
659 }
660
661 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
662 &pc_begin);
663
664 /* Take care to ignore link-once functions that were removed.
665 In these cases, the function address will be NULL, but if
666 the encoding is smaller than a pointer a true NULL may not
667 be representable. Assume 0 in the representable bits is NULL. */
668 mask = size_of_encoded_value (encoding);
669 if (mask < sizeof (void *))
670 mask = (1L << (mask << 3)) - 1;
671 else
672 mask = -1;
673
674 if ((pc_begin & mask) == 0)
675 continue;
676
677 count += 1;
6180ac2f
UD
678 if ((void *) pc_begin < ob->pc_begin)
679 ob->pc_begin = (void *) pc_begin;
74bd2300
UD
680 }
681
682 return count;
683}
684
685static void
686add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
687{
688 struct dwarf_cie *last_cie = 0;
689 int encoding = ob->s.b.encoding;
690 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
691
6180ac2f 692 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
74bd2300
UD
693 {
694 struct dwarf_cie *this_cie;
695
696 /* Skip CIEs. */
697 if (this_fde->CIE_delta == 0)
698 continue;
699
700 if (ob->s.b.mixed_encoding)
701 {
702 /* Determine the encoding for this FDE. Note mixed encoded
703 objects for later. */
704 this_cie = get_cie (this_fde);
705 if (this_cie != last_cie)
706 {
707 last_cie = this_cie;
708 encoding = get_cie_encoding (this_cie);
709 base = base_from_object (encoding, ob);
710 }
711 }
712
713 if (encoding == DW_EH_PE_absptr)
714 {
6180ac2f 715 if (*(_Unwind_Ptr *) this_fde->pc_begin == 0)
74bd2300
UD
716 continue;
717 }
718 else
719 {
720 _Unwind_Ptr pc_begin, mask;
721
722 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
723 &pc_begin);
724
725 /* Take care to ignore link-once functions that were removed.
726 In these cases, the function address will be NULL, but if
727 the encoding is smaller than a pointer a true NULL may not
728 be representable. Assume 0 in the representable bits is NULL. */
729 mask = size_of_encoded_value (encoding);
730 if (mask < sizeof (void *))
731 mask = (1L << (mask << 3)) - 1;
732 else
733 mask = -1;
734
735 if ((pc_begin & mask) == 0)
736 continue;
737 }
738
739 fde_insert (accu, this_fde);
740 }
741}
742
743/* Set up a sorted array of pointers to FDEs for a loaded object. We
744 count up the entries before allocating the array because it's likely to
745 be faster. We can be called multiple times, should we have failed to
746 allocate a sorted fde array on a previous occasion. */
747
9c7ff11a 748static void
74bd2300
UD
749init_object (struct object* ob)
750{
751 struct fde_accumulator accu;
752 size_t count;
753
754 count = ob->s.b.count;
755 if (count == 0)
756 {
757 if (ob->s.b.from_array)
758 {
759 fde **p = ob->u.array;
760 for (count = 0; *p; ++p)
761 count += classify_object_over_fdes (ob, *p);
762 }
763 else
764 count = classify_object_over_fdes (ob, ob->u.single);
765
766 /* The count field we have in the main struct object is somewhat
767 limited, but should suffice for virtually all cases. If the
768 counted value doesn't fit, re-write a zero. The worst that
769 happens is that we re-count next time -- admittedly non-trivial
770 in that this implies some 2M fdes, but at least we function. */
771 ob->s.b.count = count;
772 if (ob->s.b.count != count)
773 ob->s.b.count = 0;
774 }
775
776 if (!start_fde_sort (&accu, count))
777 return;
778
779 if (ob->s.b.from_array)
780 {
781 fde **p;
782 for (p = ob->u.array; *p; ++p)
6180ac2f 783 add_fdes (ob, &accu, *p);
74bd2300
UD
784 }
785 else
786 add_fdes (ob, &accu, ob->u.single);
787
788 end_fde_sort (ob, &accu, count);
789
790 /* Save the original fde pointer, since this is the key by which the
791 DSO will deregister the object. */
792 accu.linear->orig_data = ob->u.single;
793 ob->u.sort = accu.linear;
794
795 ob->s.b.sorted = 1;
796}
797
798/* A linear search through a set of FDEs for the given PC. This is
799 used when there was insufficient memory to allocate and sort an
800 array. */
801
802static fde *
803linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
804{
805 struct dwarf_cie *last_cie = 0;
806 int encoding = ob->s.b.encoding;
807 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
808
6180ac2f 809 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
74bd2300
UD
810 {
811 struct dwarf_cie *this_cie;
812 _Unwind_Ptr pc_begin, pc_range;
813
814 /* Skip CIEs. */
815 if (this_fde->CIE_delta == 0)
816 continue;
817
818 if (ob->s.b.mixed_encoding)
819 {
820 /* Determine the encoding for this FDE. Note mixed encoded
821 objects for later. */
822 this_cie = get_cie (this_fde);
823 if (this_cie != last_cie)
824 {
825 last_cie = this_cie;
826 encoding = get_cie_encoding (this_cie);
827 base = base_from_object (encoding, ob);
828 }
829 }
830
831 if (encoding == DW_EH_PE_absptr)
832 {
6180ac2f
UD
833 pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0];
834 pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1];
74bd2300
UD
835 if (pc_begin == 0)
836 continue;
837 }
838 else
839 {
840 _Unwind_Ptr mask;
841 const char *p;
842
843 p = read_encoded_value_with_base (encoding, base,
844 this_fde->pc_begin, &pc_begin);
845 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
846
847 /* Take care to ignore link-once functions that were removed.
848 In these cases, the function address will be NULL, but if
849 the encoding is smaller than a pointer a true NULL may not
850 be representable. Assume 0 in the representable bits is NULL. */
851 mask = size_of_encoded_value (encoding);
852 if (mask < sizeof (void *))
853 mask = (1L << (mask << 3)) - 1;
854 else
855 mask = -1;
856
857 if ((pc_begin & mask) == 0)
858 continue;
859 }
860
6180ac2f
UD
861 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
862 return this_fde;
74bd2300
UD
863 }
864
865 return NULL;
866}
867
868/* Binary search for an FDE containing the given PC. Here are three
869 implementations of increasing complexity. */
870
9c7ff11a 871static fde *
74bd2300
UD
872binary_search_unencoded_fdes (struct object *ob, void *pc)
873{
874 struct fde_vector *vec = ob->u.sort;
875 size_t lo, hi;
876
877 for (lo = 0, hi = vec->count; lo < hi; )
878 {
879 size_t i = (lo + hi) / 2;
880 fde *f = vec->array[i];
881 void *pc_begin;
882 uaddr pc_range;
883
6180ac2f
UD
884 pc_begin = ((void **) f->pc_begin)[0];
885 pc_range = ((uaddr *) f->pc_begin)[1];
74bd2300
UD
886
887 if (pc < pc_begin)
888 hi = i;
889 else if (pc >= pc_begin + pc_range)
890 lo = i + 1;
891 else
892 return f;
893 }
894
895 return NULL;
896}
897
9c7ff11a 898static fde *
74bd2300
UD
899binary_search_single_encoding_fdes (struct object *ob, void *pc)
900{
901 struct fde_vector *vec = ob->u.sort;
902 int encoding = ob->s.b.encoding;
903 _Unwind_Ptr base = base_from_object (encoding, ob);
904 size_t lo, hi;
905
906 for (lo = 0, hi = vec->count; lo < hi; )
907 {
908 size_t i = (lo + hi) / 2;
909 fde *f = vec->array[i];
910 _Unwind_Ptr pc_begin, pc_range;
911 const char *p;
912
913 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
914 &pc_begin);
915 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
916
6180ac2f 917 if ((_Unwind_Ptr) pc < pc_begin)
74bd2300 918 hi = i;
6180ac2f 919 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
74bd2300
UD
920 lo = i + 1;
921 else
922 return f;
923 }
924
925 return NULL;
926}
927
9c7ff11a 928static fde *
74bd2300
UD
929binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
930{
931 struct fde_vector *vec = ob->u.sort;
932 size_t lo, hi;
933
934 for (lo = 0, hi = vec->count; lo < hi; )
935 {
936 size_t i = (lo + hi) / 2;
937 fde *f = vec->array[i];
938 _Unwind_Ptr pc_begin, pc_range;
939 const char *p;
940 int encoding;
941
942 encoding = get_fde_encoding (f);
943 p = read_encoded_value_with_base (encoding,
944 base_from_object (encoding, ob),
945 f->pc_begin, &pc_begin);
946 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
947
6180ac2f 948 if ((_Unwind_Ptr) pc < pc_begin)
74bd2300 949 hi = i;
6180ac2f 950 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
74bd2300
UD
951 lo = i + 1;
952 else
953 return f;
954 }
955
956 return NULL;
957}
958
959static fde *
960search_object (struct object* ob, void *pc)
961{
962 /* If the data hasn't been sorted, try to do this now. We may have
963 more memory available than last time we tried. */
964 if (! ob->s.b.sorted)
965 {
966 init_object (ob);
967
968 /* Despite the above comment, the normal reason to get here is
969 that we've not processed this object before. A quick range
970 check is in order. */
971 if (pc < ob->pc_begin)
972 return NULL;
973 }
974
975 if (ob->s.b.sorted)
976 {
977 if (ob->s.b.mixed_encoding)
978 return binary_search_mixed_encoding_fdes (ob, pc);
979 else if (ob->s.b.encoding == DW_EH_PE_absptr)
980 return binary_search_unencoded_fdes (ob, pc);
981 else
982 return binary_search_single_encoding_fdes (ob, pc);
983 }
984 else
985 {
986 /* Long slow labourious linear search, cos we've no memory. */
987 if (ob->s.b.from_array)
6180ac2f
UD
988 {
989 fde **p;
74bd2300
UD
990 for (p = ob->u.array; *p ; p++)
991 {
992 fde *f = linear_search_fdes (ob, *p, pc);
6180ac2f 993 if (f)
74bd2300 994 return f;
6180ac2f 995 }
74bd2300
UD
996 return NULL;
997 }
998 else
999 return linear_search_fdes (ob, ob->u.single, pc);
1000 }
1001}
1002
1003fde *
1004_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
1005{
1006 struct object *ob;
1007 fde *f = NULL;
1008
1009 init_object_mutex_once ();
1010 __gthread_mutex_lock (&object_mutex);
1011
1012 /* Linear search through the classified objects, to find the one
a0dcb689 1013 containing the pc. Note that pc_begin is sorted descending, and
74bd2300
UD
1014 we expect objects to be non-overlapping. */
1015 for (ob = seen_objects; ob; ob = ob->next)
1016 if (pc >= ob->pc_begin)
1017 {
1018 f = search_object (ob, pc);
1019 if (f)
1020 goto fini;
1021 break;
1022 }
1023
1024 /* Classify and search the objects we've not yet processed. */
1025 while ((ob = unseen_objects))
1026 {
1027 struct object **p;
1028
1029 unseen_objects = ob->next;
1030 f = search_object (ob, pc);
1031
1032 /* Insert the object into the classified list. */
1033 for (p = &seen_objects; *p ; p = &(*p)->next)
1034 if ((*p)->pc_begin < ob->pc_begin)
1035 break;
1036 ob->next = *p;
1037 *p = ob;
1038
1039 if (f)
1040 goto fini;
1041 }
1042
1043 fini:
1044 __gthread_mutex_unlock (&object_mutex);
1045
1046 if (f)
1047 {
1048 int encoding;
1049
1050 bases->tbase = ob->tbase;
1051 bases->dbase = ob->dbase;
1052
1053 encoding = ob->s.b.encoding;
1054 if (ob->s.b.mixed_encoding)
1055 encoding = get_fde_encoding (f);
1056 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
1057 f->pc_begin, (_Unwind_Ptr *)&bases->func);
1058 }
1059
1060 return f;
1061}
1062
1063#endif