]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ia64/fpu/e_exp2.S
2.5-18.1
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_exp2.S
CommitLineData
0ecb606c
JJ
1.file "exp2.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7// Contributed 2000 by the Intel Numerics Group, Intel Corporation
8//
9// Redistribution and use in source and binary forms, with or without
10// modification, are permitted provided that the following conditions are
11// met:
12//
13// * Redistributions of source code must retain the above copyright
14// notice, this list of conditions and the following disclaimer.
15//
16// * Redistributions in binary form must reproduce the above copyright
17// notice, this list of conditions and the following disclaimer in the
18// documentation and/or other materials provided with the distribution.
19//
20// * The name of Intel Corporation may not be used to endorse or promote
21// products derived from this software without specific prior written
22// permission.
23
24// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35//
36// Intel Corporation is the author of this code, and requests that all
37// problem reports or change requests be submitted to it directly at
38// http://www.intel.com/software/products/opensource/libraries/num.htm.
39//
40// History
41//==============================================================
42// 08/25/00 Initial version
43// 05/20/02 Cleaned up namespace and sf0 syntax
44// 09/05/02 Improved performance
45// 01/17/03 Fixed to call error support when x=1024.0
46// 03/31/05 Reformatted delimiters between data tables
47//
48// API
49//==============================================================
50// double exp2(double)
51//
52// Overview of operation
53//==============================================================
54// Background
55//
56// Implementation
57//
58// Let x= (K + fh + fl + r), where
59// K is an integer, fh= 0.b1 b2 b3 b4 b5,
60// fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
61// and |r|<2^{-11}
62// Th is a table that stores 2^fh (32 entries) rounded to
63// double extended precision (only mantissa is stored)
64// Tl is a table that stores 2^fl (32 entries) rounded to
65// double extended precision (only mantissa is stored)
66//
67// 2^x is approximated as
68// 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2+c3*r^3+c4*r^4)
69
70// Note: We use the following trick to speed up conversion from FP to integer:
71//
72// Let x = K + r, where K is an integer, and |r| <= 0.5
73// Let N be the number of significand bits for the FP format used
74// ( N=64 for double-extended, N=53 for double)
75//
76// Then let y = 1.5 * 2^(N-1) + x for RN mode
77// K = y - 1.5 * 2^(N-1)
78// r = x - K
79//
80// If we want to obtain the integer part and the first m fractional bits of x,
81// we can use the same trick, but with a constant of 1.5 * 2^(N-1-m):
82//
83// Let x = K + f + r
84// f = 0.b_1 b_2 ... b_m
85// |r| <= 2^(-m-1)
86//
87// Then let y = 1.5 * 2^(N-1-m) + x for RN mode
88// (K+f) = y - 1.5 * 2^(N-1-m)
89// r = x - K
90
91
92// Special values
93//==============================================================
94// exp2(0)= 1
95// exp2(+inf)= inf
96// exp2(-inf)= 0
97//
98
99// Registers used
100//==============================================================
101// r2-r3, r14-r40
102// f6-f15, f32-f45
103// p6-p8, p12
104//
105
106
107GR_TBL_START = r2
108GR_LOG_TBL = r3
109
110GR_OF_LIMIT = r14
111GR_UF_LIMIT = r15
112GR_EXP_CORR = r16
113GR_F_low = r17
114GR_F_high = r18
115GR_K = r19
116GR_Flow_ADDR = r20
117
118GR_BIAS = r21
119GR_Fh = r22
120GR_Fh_ADDR = r23
121GR_EXPMAX = r24
122GR_EMIN = r25
123
124GR_ROUNDVAL = r26
125GR_MASK = r27
126GR_KF0 = r28
127GR_MASK_low = r29
128GR_COEFF_START = r30
129
130GR_SAVE_B0 = r33
131GR_SAVE_PFS = r34
132GR_SAVE_GP = r35
133GR_SAVE_SP = r36
134
135GR_Parameter_X = r37
136GR_Parameter_Y = r38
137GR_Parameter_RESULT = r39
138GR_Parameter_TAG = r40
139
140
141FR_X = f10
142FR_Y = f1
143FR_RESULT = f8
144
145
146FR_COEFF1 = f6
147FR_COEFF2 = f7
148FR_R = f9
149
150FR_KF0 = f12
151FR_COEFF3 = f13
152FR_COEFF4 = f14
153FR_UF_LIMIT = f15
154
155FR_OF_LIMIT = f32
156FR_EXPMIN = f33
157FR_ROUNDVAL = f34
158FR_KF = f35
159
160FR_2_TO_K = f36
161FR_T_low = f37
162FR_T_high = f38
163FR_P34 = f39
164FR_R2 = f40
165
166FR_P12 = f41
167FR_T_low_K = f42
168FR_P14 = f43
169FR_T = f44
170FR_P = f45
171
172
173// Data tables
174//==============================================================
175
176RODATA
177
178.align 16
179
180LOCAL_OBJECT_START(poly_coeffs)
181
182data8 0x3fac6b08d704a0c0, 0x3f83b2ab6fba4e77 // C_3 and C_4
183data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
184data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
185LOCAL_OBJECT_END(poly_coeffs)
186
187
188LOCAL_OBJECT_START(T_table)
189
190// 2^{0.00000 b6 b7 b8 b9 b10}
191data8 0x8000000000000000, 0x8016302f17467628
192data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
193data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
194data8 0x80855ad965e88b83, 0x809ba2264dada76a
195data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
196data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
197data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
198data8 0x813801881d886f7b, 0x814e67cceb90502c
199data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
200data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
201data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
202data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
203data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
204data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
205data8 0x8272fb97b2a5894c, 0x828998760d01faf3
206data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
207//
208// 2^{0.b1 b2 b3 b4 b5}
209data8 0x8000000000000000, 0x82cd8698ac2ba1d7
210data8 0x85aac367cc487b14, 0x88980e8092da8527
211data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
212data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
213data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
214data8 0x9ef5326091a111ad, 0xa27043030c496818
215data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
216data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
217data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
218data8 0xbd08a39f580c36be, 0xc12c4cca66709456
219data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
220data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
221data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
222data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
223data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
224data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
225LOCAL_OBJECT_END(T_table)
226
227
228
229.section .text
230GLOBAL_LIBM_ENTRY(exp2)
231
232
233{.mfi
234 alloc r32= ar.pfs, 1, 4, 4, 0
235 // will continue only for non-zero normal/denormal numbers
236 fclass.nm p12, p0= f8, 0x1b
237 // GR_TBL_START= pointer to C_1...C_4 followed by T_table
238 addl GR_TBL_START= @ltoff(poly_coeffs), gp
239}
240{.mlx
241 mov GR_OF_LIMIT= 0xffff + 10 // Exponent of overflow limit
242 movl GR_ROUNDVAL= 0x5a400000 // 1.5*2^(63-10) (SP)
243}
244;;
245
246// Form special constant 1.5*2^(63-10) to give integer part and first 10
247// fractional bits of x
248{.mfi
249 setf.s FR_ROUNDVAL= GR_ROUNDVAL // Form special constant
250 fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
251 nop.i 0
252}
253{.mfb
254 ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
255 nop.f 0
256 (p12) br.cond.spnt SPECIAL_exp2 // Branch if nan, inf, zero
257}
258;;
259
260{.mlx
261 setf.exp FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
262 movl GR_UF_LIMIT= 0xc4866000 // (-2^10-51) = -1075
263}
264;;
265
266{.mfi
267 ldfpd FR_COEFF3, FR_COEFF4= [ GR_COEFF_START ], 16 // load C_3, C_4
268 fma.s0 f8= f8, f1, f0 // normalize x
269 nop.i 0
270}
271;;
272
273{.mmi
274 setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
275 ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
276 mov GR_EXP_CORR= 0xffff-126
277}
278;;
279
280{.mfi
281 ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
282 fma.s1 FR_KF0= f8, f1, FR_ROUNDVAL // y= x + 1.5*2^(63-10)
283 nop.i 0
284}
285;;
286
287{.mfi
288 mov GR_MASK= 1023
289 fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)
290 mov GR_MASK_low= 31
291}
292;;
293
294{.mfi
295 getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
296 fcmp.ge.s1 p12, p7= f8, FR_OF_LIMIT // x >= overflow threshold ?
297 add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
298}
299;;
300
301{.mmi
302 and GR_F_low= GR_KF0, GR_MASK_low // f_low
303 and GR_F_high= GR_MASK, GR_KF0 // f_high*32
304 shr GR_K= GR_KF0, 10 // K
305}
306;;
307
308{.mmi
309 shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
310 add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
311 shr GR_Fh= GR_F_high, 5 // f_high
312}
313;;
314
315{.mfi
316 setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
317 fnma.s1 FR_R= FR_KF, f1, f8 // r= x - (K+f)
318 shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
319}
320{.mlx
321 ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
322 movl GR_EMIN= 0xc47f8000 // EMIN= -1022
323}
324;;
325
326{.mfi
327 ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
328 (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
329 nop.i 0
330}
331;;
332
333{.mfi
334 setf.s FR_EXPMIN= GR_EMIN // FR_EXPMIN= EMIN
335 fma.s1 FR_P34= FR_COEFF4, FR_R, FR_COEFF3 // P34= C_3+C_4*r
336 nop.i 0
337}
338{.mfb
339 nop.m 0
340 fma.s1 FR_R2= FR_R, FR_R, f0 // r*r
341 (p12) br.cond.spnt OUT_RANGE_exp2
342}
343;;
344
345{.mfi
346 nop.m 0
347 fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
348 nop.i 0
349}
350;;
351
352{.mfi
353 nop.m 0
354 fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
355 nop.i 0
356}
357;;
358
359{.mfi
360 nop.m 0
361 fma.s1 FR_P14= FR_R2, FR_P34, FR_P12 // P14= P12+r2*P34
362 nop.i 0
363}
364;;
365
366{.mfi
367 nop.m 0
368 fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
369 nop.i 0
370}
371;;
372
373{.mfi
374 nop.m 0
375 fcmp.lt.s0 p6, p8= f8, FR_EXPMIN // underflow (x<EMIN) ?
376 nop.i 0
377}
378;;
379
380{.mfi
381 nop.m 0
382 fma.s1 FR_P= FR_P14, FR_R, f0 // P= P14*r
383 nop.i 0
384}
385;;
386
387{.mfb
388 nop.m 0
389 fma.d.s0 f8= FR_P, FR_T, FR_T // result= T+T*P
390 (p8) br.ret.sptk b0 // return
391}
392;;
393
394{.mfb
395 (p6) mov GR_Parameter_TAG= 162
396 nop.f 0
397 (p6) br.cond.sptk __libm_error_region
398}
399;;
400
401
402SPECIAL_exp2:
403{.mfi
404 nop.m 0
405 fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
406 nop.i 0
407}
408;;
409
410{.mfi
411 nop.m 0
412 fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
413 nop.i 0
414}
415;;
416
417{.mfi
418 nop.m 0
419 fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
420 nop.i 0
421}
422{.mfb
423 nop.m 0
424 (p6) mov f8= f0 // exp2(-Infinity)= 0
425 (p6) br.ret.spnt b0
426}
427;;
428
429{.mfb
430 nop.m 0
431 nop.f 0
432 (p7) br.ret.spnt b0 // exp2(+Infinity)= +Infinity
433}
434;;
435
436{.mfb
437 nop.m 0
438 (p8) mov f8= f1 // exp2(+/-0)= 1
439 (p8) br.ret.spnt b0
440}
441;;
442
443{.mfb
444 nop.m 0
445 fma.d.s0 f8= f8, f1, f0 // Remaining cases: NaNs
446 br.ret.sptk b0
447}
448;;
449
450
451OUT_RANGE_exp2:
452
453// overflow: p8= 1
454
455{.mii
456 (p8) mov GR_EXPMAX= 0x1fffe
457 nop.i 0
458 nop.i 0
459}
460;;
461
462{.mmb
463 (p8) mov GR_Parameter_TAG= 161
464 (p8) setf.exp FR_R= GR_EXPMAX
465 nop.b 999
466}
467;;
468
469{.mfi
470 nop.m 999
471 (p8) fma.d.s0 f8= FR_R, FR_R, f0 // Create overflow
472 nop.i 999
473}
474// underflow: p6= 1
475{.mii
476 (p6) mov GR_Parameter_TAG= 162
477 (p6) mov GR_EXPMAX= 1
478 nop.i 0
479}
480;;
481
482{.mmb
483 nop.m 0
484 (p6) setf.exp FR_R= GR_EXPMAX
485 nop.b 999
486}
487;;
488
489{.mfb
490 nop.m 999
491 (p6) fma.d.s0 f8= FR_R, FR_R, f0 // Create underflow
492 nop.b 0
493}
494;;
495
496GLOBAL_LIBM_END(exp2)
497
498
499LOCAL_LIBM_ENTRY(__libm_error_region)
500
501.prologue
502{.mfi
503 add GR_Parameter_Y= -32, sp // Parameter 2 value
504 nop.f 0
505.save ar.pfs, GR_SAVE_PFS
506 mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
507}
508
509{.mfi
510.fframe 64
511 add sp= -64, sp // Create new stack
512 nop.f 0
513 mov GR_SAVE_GP= gp // Save gp
514}
515;;
516
517{.mmi
518 stfd [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
519 add GR_Parameter_X= 16, sp // Parameter 1 address
520.save b0, GR_SAVE_B0
521 mov GR_SAVE_B0= b0 // Save b0
522}
523;;
524
525.body
526{.mib
527 stfd [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
528 add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
529 nop.b 0
530}
531{.mib
532 stfd [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
533 add GR_Parameter_Y= -16, GR_Parameter_Y
534 br.call.sptk b0= __libm_error_support# // Call error handling function
535}
536;;
537
538{.mmi
539 add GR_Parameter_RESULT= 48, sp
540 nop.m 0
541 nop.i 0
542}
543;;
544
545{.mmi
546 ldfd f8= [ GR_Parameter_RESULT ] // Get return result off stack
547.restore sp
548 add sp= 64, sp // Restore stack pointer
549 mov b0= GR_SAVE_B0 // Restore return address
550}
551;;
552
553{.mib
554 mov gp= GR_SAVE_GP // Restore gp
555 mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
556 br.ret.sptk b0 // Return
557}
558;;
559
560
561LOCAL_LIBM_END(__libm_error_region)
562
563.type __libm_error_support#, @function
564.global __libm_error_support#