]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ia64/fpu/s_expm1f.S
Remove "Contributed by" lines
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / s_expm1f.S
CommitLineData
d5efd131
MF
1.file "expf_m1.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
d5efd131
MF
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38
39// History
40//*********************************************************************
41// 02/02/00 Initial Version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44// set [the previously overwritten] GR_Parameter_RESULT.
45// 07/07/01 Improved speed of all paths
46// 05/20/02 Cleaned up namespace and sf0 syntax
47// 11/20/02 Improved speed, algorithm based on expf
48// 03/31/05 Reformatted delimiters between data tables
49//
50//
51// API
52//*********************************************************************
53// float expm1f(float)
54//
55// Overview of operation
56//*********************************************************************
57// 1. Inputs of Nan, Inf, Zero, NatVal handled with special paths
58//
59// 2. |x| < 2^-40
60// Result = x, computed by x + x*x to handle appropriate flags and rounding
61//
62// 3. 2^-40 <= |x| < 2^-2
63// Result determined by 8th order Taylor series polynomial
64// expm1f(x) = x + A2*x^2 + ... + A8*x^8
65//
66// 4. x < -24.0
67// Here we know result is essentially -1 + eps, where eps only affects
68// rounded result. Set I.
69//
0347518d 70// 5. x >= 88.7228
d5efd131
MF
71// Result overflows. Set I, O, and call error support
72//
0347518d 73// 6. 2^-2 <= x < 88.7228 or -24.0 <= x < -2^-2
d5efd131
MF
74// This is the main path. The algorithm is described below:
75
76// Take the input x. w is "how many log2/128 in x?"
77// w = x * 64/log2
78// NJ = int(w)
79// x = NJ*log2/64 + R
80
81// NJ = 64*n + j
82// x = n*log2 + (log2/64)*j + R
83//
84// So, exp(x) = 2^n * 2^(j/64)* exp(R)
85//
86// T = 2^n * 2^(j/64)
87// Construct 2^n
88// Get 2^(j/64) table
89// actually all the entries of 2^(j/64) table are stored in DP and
90// with exponent bits set to 0 -> multiplication on 2^n can be
91// performed by doing logical "or" operation with bits presenting 2^n
92
93// exp(R) = 1 + (exp(R) - 1)
94// P = exp(R) - 1 approximated by Taylor series of 3rd degree
95// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
96//
97
98// The final result is reconstructed as follows
99// expm1f(x) = T*P + (T - 1.0)
100
101// Special values
102//*********************************************************************
103// expm1f(+0) = +0.0
104// expm1f(-0) = -0.0
105
106// expm1f(+qnan) = +qnan
107// expm1f(-qnan) = -qnan
108// expm1f(+snan) = +qnan
109// expm1f(-snan) = -qnan
110
111// expm1f(-inf) = -1.0
112// expm1f(+inf) = +inf
113
114// Overflow and Underflow
115//*********************************************************************
116// expm1f(x) = largest single normal when
117// x = 88.7228 = 0x42b17217
118//
119// Underflow is handled as described in case 2 above.
120
121
122// Registers used
123//*********************************************************************
124// Floating Point registers used:
125// f8, input
126// f6,f7, f9 -> f15, f32 -> f45
127
128// General registers used:
129// r3, r20 -> r38
130
131// Predicate registers used:
132// p9 -> p15
133
134// Assembly macros
135//*********************************************************************
136// integer registers used
137// scratch
138rNJ = r3
139
140rExp_half = r20
141rSignexp_x = r21
142rExp_x = r22
143rExp_mask = r23
144rExp_bias = r24
145rTmp = r25
146rM1_lim = r25
147rGt_ln = r25
148rJ = r26
149rN = r27
150rTblAddr = r28
151rLn2Div64 = r29
152rRightShifter = r30
153r64DivLn2 = r31
154// stacked
155GR_SAVE_PFS = r32
156GR_SAVE_B0 = r33
157GR_SAVE_GP = r34
158GR_Parameter_X = r35
159GR_Parameter_Y = r36
160GR_Parameter_RESULT = r37
161GR_Parameter_TAG = r38
162
163// floating point registers used
164FR_X = f10
165FR_Y = f1
166FR_RESULT = f8
167// scratch
168fRightShifter = f6
169f64DivLn2 = f7
170fNormX = f9
171fNint = f10
172fN = f11
173fR = f12
174fLn2Div64 = f13
175fA2 = f14
176fA3 = f15
177// stacked
178fP = f32
179fX3 = f33
180fT = f34
181fMIN_SGL_OFLOW_ARG = f35
182fMAX_SGL_NORM_ARG = f36
183fMAX_SGL_MINUS_1_ARG = f37
184fA4 = f38
185fA43 = f38
186fA432 = f38
187fRSqr = f39
188fA5 = f40
189fTmp = f41
190fGt_pln = f41
191fXsq = f41
192fA7 = f42
193fA6 = f43
194fA65 = f43
195fTm1 = f44
196fA8 = f45
197fA87 = f45
198fA8765 = f45
199fA8765432 = f45
200fWre_urm_f8 = f45
201
202RODATA
203.align 16
204LOCAL_OBJECT_START(_expf_table)
205data8 0x3efa01a01a01a01a // A8 = 1/8!
206data8 0x3f2a01a01a01a01a // A7 = 1/7!
207data8 0x3f56c16c16c16c17 // A6 = 1/6!
208data8 0x3f81111111111111 // A5 = 1/5!
209data8 0x3fa5555555555555 // A4 = 1/4!
210data8 0x3fc5555555555555 // A3 = 1/3!
211//
212data4 0x42b17218 // Smallest sgl arg to overflow sgl result
213data4 0x42b17217 // Largest sgl arg to give sgl result
214//
215// 2^(j/64) table, j goes from 0 to 63
216data8 0x0000000000000000 // 2^(0/64)
217data8 0x00002C9A3E778061 // 2^(1/64)
218data8 0x000059B0D3158574 // 2^(2/64)
219data8 0x0000874518759BC8 // 2^(3/64)
220data8 0x0000B5586CF9890F // 2^(4/64)
221data8 0x0000E3EC32D3D1A2 // 2^(5/64)
222data8 0x00011301D0125B51 // 2^(6/64)
223data8 0x0001429AAEA92DE0 // 2^(7/64)
224data8 0x000172B83C7D517B // 2^(8/64)
225data8 0x0001A35BEB6FCB75 // 2^(9/64)
226data8 0x0001D4873168B9AA // 2^(10/64)
227data8 0x0002063B88628CD6 // 2^(11/64)
228data8 0x0002387A6E756238 // 2^(12/64)
229data8 0x00026B4565E27CDD // 2^(13/64)
230data8 0x00029E9DF51FDEE1 // 2^(14/64)
231data8 0x0002D285A6E4030B // 2^(15/64)
232data8 0x000306FE0A31B715 // 2^(16/64)
233data8 0x00033C08B26416FF // 2^(17/64)
234data8 0x000371A7373AA9CB // 2^(18/64)
235data8 0x0003A7DB34E59FF7 // 2^(19/64)
236data8 0x0003DEA64C123422 // 2^(20/64)
237data8 0x0004160A21F72E2A // 2^(21/64)
238data8 0x00044E086061892D // 2^(22/64)
239data8 0x000486A2B5C13CD0 // 2^(23/64)
240data8 0x0004BFDAD5362A27 // 2^(24/64)
241data8 0x0004F9B2769D2CA7 // 2^(25/64)
242data8 0x0005342B569D4F82 // 2^(26/64)
243data8 0x00056F4736B527DA // 2^(27/64)
244data8 0x0005AB07DD485429 // 2^(28/64)
245data8 0x0005E76F15AD2148 // 2^(29/64)
246data8 0x0006247EB03A5585 // 2^(30/64)
247data8 0x0006623882552225 // 2^(31/64)
248data8 0x0006A09E667F3BCD // 2^(32/64)
249data8 0x0006DFB23C651A2F // 2^(33/64)
250data8 0x00071F75E8EC5F74 // 2^(34/64)
251data8 0x00075FEB564267C9 // 2^(35/64)
252data8 0x0007A11473EB0187 // 2^(36/64)
253data8 0x0007E2F336CF4E62 // 2^(37/64)
254data8 0x00082589994CCE13 // 2^(38/64)
255data8 0x000868D99B4492ED // 2^(39/64)
256data8 0x0008ACE5422AA0DB // 2^(40/64)
257data8 0x0008F1AE99157736 // 2^(41/64)
258data8 0x00093737B0CDC5E5 // 2^(42/64)
259data8 0x00097D829FDE4E50 // 2^(43/64)
260data8 0x0009C49182A3F090 // 2^(44/64)
261data8 0x000A0C667B5DE565 // 2^(45/64)
262data8 0x000A5503B23E255D // 2^(46/64)
263data8 0x000A9E6B5579FDBF // 2^(47/64)
264data8 0x000AE89F995AD3AD // 2^(48/64)
265data8 0x000B33A2B84F15FB // 2^(49/64)
266data8 0x000B7F76F2FB5E47 // 2^(50/64)
267data8 0x000BCC1E904BC1D2 // 2^(51/64)
268data8 0x000C199BDD85529C // 2^(52/64)
269data8 0x000C67F12E57D14B // 2^(53/64)
270data8 0x000CB720DCEF9069 // 2^(54/64)
271data8 0x000D072D4A07897C // 2^(55/64)
272data8 0x000D5818DCFBA487 // 2^(56/64)
273data8 0x000DA9E603DB3285 // 2^(57/64)
274data8 0x000DFC97337B9B5F // 2^(58/64)
275data8 0x000E502EE78B3FF6 // 2^(59/64)
276data8 0x000EA4AFA2A490DA // 2^(60/64)
277data8 0x000EFA1BEE615A27 // 2^(61/64)
278data8 0x000F50765B6E4540 // 2^(62/64)
279data8 0x000FA7C1819E90D8 // 2^(63/64)
280LOCAL_OBJECT_END(_expf_table)
281
282
283.section .text
284GLOBAL_IEEE754_ENTRY(expm1f)
285
286{ .mlx
287 getf.exp rSignexp_x = f8 // Must recompute if x unorm
288 movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
289}
290{ .mlx
291 addl rTblAddr = @ltoff(_expf_table),gp
292 movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
293}
294;;
295
296{ .mfi
297 // point to the beginning of the table
298 ld8 rTblAddr = [rTblAddr]
299 fclass.m p14, p0 = f8 , 0x22 // test for -INF
300 mov rExp_mask = 0x1ffff // Exponent mask
301}
302{ .mfi
303 nop.m 0
304 fnorm.s1 fNormX = f8 // normalized x
305 nop.i 0
306}
307;;
308
309{ .mfi
310 setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
311 fclass.m p9, p0 = f8 , 0x0b // test for x unorm
312 mov rExp_bias = 0xffff // Exponent bias
313}
314{ .mlx
315 // load Right Shifter to FP reg
316 setf.d fRightShifter = rRightShifter
317 movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
318}
319;;
320
321{ .mfi
322 ldfpd fA8, fA7 = [rTblAddr], 16
323 fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
324 mov rExp_half = 0xfffe
325}
326{ .mfb
327 setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
328 nop.f 0
329(p9) br.cond.spnt EXPM1_UNORM // Branch if x unorm
330}
331;;
332
333EXPM1_COMMON:
334{ .mfb
335 ldfpd fA6, fA5 = [rTblAddr], 16
336(p14) fms.s.s0 f8 = f0, f0, f1 // result if x = -inf
337(p14) br.ret.spnt b0 // exit here if x = -inf
338}
339;;
340
341{ .mfb
342 ldfpd fA4, fA3 = [rTblAddr], 16
343 fclass.m p15, p0 = f8 , 0x1e1 // test for NaT,NaN,+Inf
344(p13) br.ret.spnt b0 // exit here if x =0.0, result is x
345}
346;;
347
348{ .mfi
349 // overflow thresholds
350 ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_NORM_ARG = [rTblAddr], 8
351 fma.s1 fXsq = fNormX, fNormX, f0 // x^2 for small path
352 and rExp_x = rExp_mask, rSignexp_x // Biased exponent of x
353}
354{ .mlx
355 nop.m 0
356 movl rM1_lim = 0xc1c00000 // Minus -1 limit (-24.0), SP
357}
358;;
359
360{ .mfi
361 setf.exp fA2 = rExp_half
362 // x*(64/ln(2)) + Right Shifter
363 fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
364 sub rExp_x = rExp_x, rExp_bias // True exponent of x
365}
366{ .mfb
367 nop.m 0
368(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
369(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
370}
371;;
372
373{ .mfi
374 setf.s fMAX_SGL_MINUS_1_ARG = rM1_lim // -1 threshold, -24.0
375 nop.f 0
376 cmp.gt p7, p8 = -2, rExp_x // Test |x| < 2^(-2)
377}
378;;
379
380{ .mfi
381(p7) cmp.gt.unc p6, p7 = -40, rExp_x // Test |x| < 2^(-40)
382 fma.s1 fA87 = fA8, fNormX, fA7 // Small path, A8*x+A7
383 nop.i 0
384}
385{ .mfi
386 nop.m 0
387 fma.s1 fA65 = fA6, fNormX, fA5 // Small path, A6*x+A5
388 nop.i 0
389}
390;;
391
392{ .mfb
393 nop.m 0
394(p6) fma.s.s0 f8 = f8, f8, f8 // If x < 2^-40, result=x+x*x
395(p6) br.ret.spnt b0 // Exit if x < 2^-40
396}
397;;
398
399{ .mfi
400 nop.m 0
401 // check for overflow
402 fcmp.gt.s1 p15, p14 = fNormX, fMIN_SGL_OFLOW_ARG
403 nop.i 0
404}
405{ .mfi
406 nop.m 0
407 fms.s1 fN = fNint, f1, fRightShifter // n in FP register
408 nop.i 0
409}
410;;
411
412{ .mfi
413 nop.m 0
414(p7) fma.s1 fA43 = fA4, fNormX, fA3 // Small path, A4*x+A3
415 nop.i 0
416}
417;;
418
419{ .mfi
420 getf.sig rNJ = fNint // bits of n, j
421(p7) fma.s1 fA8765 = fA87, fXsq, fA65 // Small path, A87*xsq+A65
422 nop.i 0
423}
424{ .mfb
425 nop.m 0
426(p7) fma.s1 fX3 = fXsq, fNormX, f0 // Small path, x^3
427 // branch out if overflow
428(p15) br.cond.spnt EXPM1_CERTAIN_OVERFLOW
429}
430;;
431
432{ .mfi
433 addl rN = 0xffff-63, rNJ // biased and shifted n
434 fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
435 extr.u rJ = rNJ , 0 , 6 // bits of j
436}
437;;
438
439{ .mfi
440 shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
441 // check for certain -1
442 fcmp.le.s1 p13, p0 = fNormX, fMAX_SGL_MINUS_1_ARG
443 shr rN = rN, 6 // biased n
444}
445{ .mfi
446 nop.m 0
447(p7) fma.s1 fA432 = fA43, fNormX, fA2 // Small path, A43*x+A2
448 nop.i 0
449}
450;;
451
452{ .mfi
453 ld8 rJ = [rJ]
454 nop.f 0
455 shl rN = rN , 52 // 2^n bits in DP format
456}
457;;
458
459{ .mmi
460 or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
461(p13) mov rTmp = 1 // Make small value for -1 path
462 nop.i 0
463}
464;;
465
466{ .mfi
467 setf.d fT = rN // 2^n
468 // check for possible overflow (only happens if input higher precision)
469(p14) fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
470 nop.i 0
471}
472{ .mfi
473 nop.m 0
474(p7) fma.s1 fA8765432 = fA8765, fX3, fA432 // A8765*x^3+A432
475 nop.i 0
476}
477;;
478
479{ .mfi
480(p13) setf.exp fTmp = rTmp // Make small value for -1 path
481 fma.s1 fP = fA3, fR, fA2 // A3*R + A2
482 nop.i 0
483}
484{ .mfb
485 nop.m 0
486 fma.s1 fRSqr = fR, fR, f0 // R^2
487(p13) br.cond.spnt EXPM1_CERTAIN_MINUS_ONE // Branch if x < -24.0
488}
489;;
490
491{ .mfb
492 nop.m 0
0347518d 493(p7) fma.s.s0 f8 = fA8765432, fXsq, fNormX // Small path,
d5efd131
MF
494 // result=xsq*A8765432+x
495(p7) br.ret.spnt b0 // Exit if 2^-40 <= |x| < 2^-2
496}
497;;
498
499{ .mfi
500 nop.m 0
501 fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*Rsqr + R
502 nop.i 0
503}
504;;
505
506{ .mfb
507 nop.m 0
508 fms.s1 fTm1 = fT, f1, f1 // T - 1.0
509(p14) br.cond.spnt EXPM1_POSSIBLE_OVERFLOW
510}
511;;
512
513{ .mfb
514 nop.m 0
515 fma.s.s0 f8 = fP, fT, fTm1
516 br.ret.sptk b0 // Result for main path
517 // minus_one_limit < x < -2^-2
518 // and +2^-2 <= x < overflow_limit
519}
520;;
521
522// Here if x unorm
523EXPM1_UNORM:
524{ .mfb
525 getf.exp rSignexp_x = fNormX // Must recompute if x unorm
526 fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag
527 br.cond.sptk EXPM1_COMMON
528}
529;;
530
531// here if result will be -1 and inexact, x <= -24.0
532EXPM1_CERTAIN_MINUS_ONE:
533{ .mfb
534 nop.m 0
535 fms.s.s0 f8 = fTmp, fTmp, f1 // Result -1, and Inexact set
536 br.ret.sptk b0
537}
538;;
539
540EXPM1_POSSIBLE_OVERFLOW:
541
542// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
543// This cannot happen if input is a single, only if input higher precision.
544// Overflow is a possibility, not a certainty.
545
546// Recompute result using status field 2 with user's rounding mode,
547// and wre set. If result is larger than largest single, then we have
548// overflow
549
550{ .mfi
551 mov rGt_ln = 0x1007f // Exponent for largest sgl + 1 ulp
552 fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
553 nop.i 0
554}
555;;
556
557{ .mfi
558 setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
559 fma.s.s2 fWre_urm_f8 = fP, fT, fTm1 // Result with wre set
560 nop.i 0
561}
562;;
563
564{ .mfi
565 nop.m 0
566 fsetc.s2 0x7F,0x40 // Turn off wre in sf2
567 nop.i 0
568}
569;;
570
571{ .mfi
572 nop.m 0
573 fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
574 nop.i 0
575}
576;;
577
578{ .mfb
579 nop.m 0
580 nop.f 0
581(p6) br.cond.spnt EXPM1_CERTAIN_OVERFLOW // Branch if overflow
582}
583;;
584
585{ .mfb
586 nop.m 0
587 fma.s.s0 f8 = fP, fT, fTm1
588 br.ret.sptk b0 // Exit if really no overflow
589}
590;;
591
592// here if overflow
593EXPM1_CERTAIN_OVERFLOW:
594{ .mmi
595 addl rTmp = 0x1FFFE, r0;;
596 setf.exp fTmp = rTmp
597 nop.i 999
598}
599;;
600
601{ .mfi
602 alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers
603 fmerge.s FR_X = fNormX,fNormX
604 nop.i 0
605}
606{ .mfb
607 mov GR_Parameter_TAG = 43
608 fma.s.s0 FR_RESULT = fTmp, fTmp, f0 // Set I,O and +INF result
609 br.cond.sptk __libm_error_region
610}
611;;
612
613GLOBAL_IEEE754_END(expm1f)
aa1142c5 614libm_alias_float_other (__expm1, expm1)
d5efd131
MF
615
616
617LOCAL_LIBM_ENTRY(__libm_error_region)
618.prologue
619{ .mfi
620 add GR_Parameter_Y=-32,sp // Parameter 2 value
621 nop.f 999
622.save ar.pfs,GR_SAVE_PFS
623 mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
624}
625{ .mfi
626.fframe 64
627 add sp=-64,sp // Create new stack
628 nop.f 0
629 mov GR_SAVE_GP=gp // Save gp
630};;
631{ .mmi
632 stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
633 add GR_Parameter_X = 16,sp // Parameter 1 address
634.save b0, GR_SAVE_B0
635 mov GR_SAVE_B0=b0 // Save b0
636};;
637.body
638{ .mfi
639 stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
640 nop.f 0
641 add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
642}
643{ .mib
644 stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
645 add GR_Parameter_Y = -16,GR_Parameter_Y
646 br.call.sptk b0=__libm_error_support# // Call error handling function
647};;
648
649{ .mmi
650 add GR_Parameter_RESULT = 48,sp
651 nop.m 0
652 nop.i 0
653};;
654
655{ .mmi
656 ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
657.restore sp
658 add sp = 64,sp // Restore stack pointer
659 mov b0 = GR_SAVE_B0 // Restore return address
660};;
661{ .mib
662 mov gp = GR_SAVE_GP // Restore gp
663 mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
664 br.ret.sptk b0 // Return
665};;
666
667LOCAL_LIBM_END(__libm_error_region)
668
669
670.type __libm_error_support#,@function
671.global __libm_error_support#