]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/e_gamma_r.c
Use glibc_likely instead __builtin_expect.
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / e_gamma_r.c
CommitLineData
d705269e 1/* Implementation of gamma function according to ISO C.
d4697bc9 2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
c131718c
UD
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
c131718c
UD
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 14 Lesser General Public License for more details.
c131718c 15
41bdb6e2 16 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
c131718c 19
d705269e
UD
20#include <math.h>
21#include <math_private.h>
d8cd06db 22#include <float.h>
d705269e 23
d8cd06db
JM
24/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
25 approximation to gamma function. */
26
27static const double gamma_coeff[] =
28 {
29 0x1.5555555555555p-4,
30 -0xb.60b60b60b60b8p-12,
31 0x3.4034034034034p-12,
32 -0x2.7027027027028p-12,
33 0x3.72a3c5631fe46p-12,
34 -0x7.daac36664f1f4p-12,
35 };
36
37#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
38
39/* Return gamma (X), for positive X less than 184, in the form R *
40 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
41 avoid overflow or underflow in intermediate calculations. */
42
43static double
44gamma_positive (double x, int *exp2_adj)
45{
46 int local_signgam;
47 if (x < 0.5)
48 {
49 *exp2_adj = 0;
50 return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x;
51 }
52 else if (x <= 1.5)
53 {
54 *exp2_adj = 0;
55 return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam));
56 }
57 else if (x < 6.5)
58 {
59 /* Adjust into the range for using exp (lgamma). */
60 *exp2_adj = 0;
61 double n = __ceil (x - 1.5);
62 double x_adj = x - n;
63 double eps;
64 double prod = __gamma_product (x_adj, 0, n, &eps);
65 return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam))
66 * prod * (1.0 + eps));
67 }
68 else
69 {
70 double eps = 0;
71 double x_eps = 0;
72 double x_adj = x;
73 double prod = 1;
74 if (x < 12.0)
75 {
76 /* Adjust into the range for applying Stirling's
77 approximation. */
78 double n = __ceil (12.0 - x);
79#if FLT_EVAL_METHOD != 0
80 volatile
81#endif
82 double x_tmp = x + n;
83 x_adj = x_tmp;
84 x_eps = (x - (x_adj - n));
85 prod = __gamma_product (x_adj - n, x_eps, n, &eps);
86 }
87 /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
88 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
89 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
90 factored out. */
91 double exp_adj = -eps;
92 double x_adj_int = __round (x_adj);
93 double x_adj_frac = x_adj - x_adj_int;
94 int x_adj_log2;
95 double x_adj_mant = __frexp (x_adj, &x_adj_log2);
96 if (x_adj_mant < M_SQRT1_2)
97 {
98 x_adj_log2--;
99 x_adj_mant *= 2.0;
100 }
101 *exp2_adj = x_adj_log2 * (int) x_adj_int;
102 double ret = (__ieee754_pow (x_adj_mant, x_adj)
103 * __ieee754_exp2 (x_adj_log2 * x_adj_frac)
104 * __ieee754_exp (-x_adj)
105 * __ieee754_sqrt (2 * M_PI / x_adj)
106 / prod);
107 exp_adj += x_eps * __ieee754_log (x);
108 double bsum = gamma_coeff[NCOEFF - 1];
109 double x_adj2 = x_adj * x_adj;
110 for (size_t i = 1; i <= NCOEFF - 1; i++)
111 bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
112 exp_adj += bsum / x_adj;
113 return ret + ret * __expm1 (exp_adj);
114 }
115}
d705269e
UD
116
117double
118__ieee754_gamma_r (double x, int *signgamp)
119{
d705269e
UD
120 int32_t hx;
121 u_int32_t lx;
122
123 EXTRACT_WORDS (hx, lx, x);
124
a1ffb40e 125 if (__glibc_unlikely (((hx & 0x7fffffff) | lx) == 0))
b3fc5f84 126 {
52495f29 127 /* Return value for x == 0 is Inf with divide by zero exception. */
b3fc5f84 128 *signgamp = 0;
52495f29 129 return 1.0 / x;
b3fc5f84 130 }
0ac5ae23
UD
131 if (__builtin_expect (hx < 0, 0)
132 && (u_int32_t) hx < 0xfff00000 && __rint (x) == x)
d705269e
UD
133 {
134 /* Return value for integer x < 0 is NaN with invalid exception. */
b3fc5f84 135 *signgamp = 0;
d705269e
UD
136 return (x - x) / (x - x);
137 }
a1ffb40e 138 if (__glibc_unlikely ((unsigned int) hx == 0xfff00000 && lx == 0))
3bde1a69
UD
139 {
140 /* x == -Inf. According to ISO this is NaN. */
141 *signgamp = 0;
142 return x - x;
143 }
a1ffb40e 144 if (__glibc_unlikely ((hx & 0x7ff00000) == 0x7ff00000))
d8cd06db
JM
145 {
146 /* Positive infinity (return positive infinity) or NaN (return
147 NaN). */
148 *signgamp = 0;
149 return x + x;
150 }
d705269e 151
d8cd06db
JM
152 if (x >= 172.0)
153 {
154 /* Overflow. */
155 *signgamp = 0;
156 return DBL_MAX * DBL_MAX;
157 }
158 else if (x > 0.0)
159 {
160 *signgamp = 0;
161 int exp2_adj;
162 double ret = gamma_positive (x, &exp2_adj);
163 return __scalbn (ret, exp2_adj);
164 }
165 else if (x >= -DBL_EPSILON / 4.0)
166 {
167 *signgamp = 0;
168 return 1.0 / x;
169 }
170 else
171 {
172 double tx = __trunc (x);
173 *signgamp = (tx == 2.0 * __trunc (tx / 2.0)) ? -1 : 1;
174 if (x <= -184.0)
175 /* Underflow. */
176 return DBL_MIN * DBL_MIN;
177 double frac = tx - x;
178 if (frac > 0.5)
179 frac = 1.0 - frac;
180 double sinpix = (frac <= 0.25
181 ? __sin (M_PI * frac)
182 : __cos (M_PI * (0.5 - frac)));
183 int exp2_adj;
184 double ret = M_PI / (-x * sinpix * gamma_positive (-x, &exp2_adj));
185 return __scalbn (ret, -exp2_adj);
186 }
d705269e 187}
0ac5ae23 188strong_alias (__ieee754_gamma_r, __gamma_r_finite)