]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/e_log.c
Add a number of alias, mostly for IBM codepages.
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / e_log.c
CommitLineData
f7eac6eb
RM
1/* @(#)e_log.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
6d52618b 8 * software is freely granted, provided that this notice
f7eac6eb
RM
9 * is preserved.
10 * ====================================================
11 */
923609d1
UD
12/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
13 for performance improvement on pipelined processors.
14*/
f7eac6eb
RM
15
16#if defined(LIBM_SCCS) && !defined(lint)
17static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
18#endif
19
20/* __ieee754_log(x)
6d52618b 21 * Return the logarithm of x
f7eac6eb 22 *
6d52618b
UD
23 * Method :
24 * 1. Argument Reduction: find k and f such that
25 * x = 2^k * (1+f),
f7eac6eb
RM
26 * where sqrt(2)/2 < 1+f < sqrt(2) .
27 *
28 * 2. Approximation of log(1+f).
29 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
30 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
31 * = 2s + s*R
6d52618b
UD
32 * We use a special Reme algorithm on [0,0.1716] to generate
33 * a polynomial of degree 14 to approximate R The maximum error
f7eac6eb
RM
34 * of this polynomial approximation is bounded by 2**-58.45. In
35 * other words,
36 * 2 4 6 8 10 12 14
37 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
38 * (the values of Lg1 to Lg7 are listed in the program)
39 * and
40 * | 2 14 | -58.45
6d52618b 41 * | Lg1*s +...+Lg7*s - R(z) | <= 2
f7eac6eb
RM
42 * | |
43 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
44 * In order to guarantee error in log below 1ulp, we compute log
45 * by
46 * log(1+f) = f - s*(f - R) (if f is not too large)
47 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
6d52618b
UD
48 *
49 * 3. Finally, log(x) = k*ln2 + log(1+f).
f7eac6eb 50 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
6d52618b 51 * Here ln2 is split into two floating point number:
f7eac6eb
RM
52 * ln2_hi + ln2_lo,
53 * where n*ln2_hi is always exact for |n| < 2000.
54 *
55 * Special cases:
6d52618b 56 * log(x) is NaN with signal if x < 0 (including -INF) ;
f7eac6eb
RM
57 * log(+INF) is +INF; log(0) is -INF with signal;
58 * log(NaN) is that NaN with no signal.
59 *
60 * Accuracy:
61 * according to an error analysis, the error is always less than
62 * 1 ulp (unit in the last place).
63 *
64 * Constants:
6d52618b
UD
65 * The hexadecimal values are the intended ones for the following
66 * constants. The decimal values may be used, provided that the
67 * compiler will convert from decimal to binary accurately enough
f7eac6eb
RM
68 * to produce the hexadecimal values shown.
69 */
70
71#include "math.h"
72#include "math_private.h"
923609d1
UD
73#define half Lg[8]
74#define two Lg[9]
f7eac6eb
RM
75#ifdef __STDC__
76static const double
77#else
78static double
79#endif
80ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
81ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
82two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
923609d1
UD
83 Lg[] = {0.0,
84 6.666666666666735130e-01, /* 3FE55555 55555593 */
85 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
86 2.857142874366239149e-01, /* 3FD24924 94229359 */
87 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
88 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
89 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
90 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
91 0.5,
92 2.0};
f7eac6eb
RM
93#ifdef __STDC__
94static const double zero = 0.0;
95#else
96static double zero = 0.0;
97#endif
98
99#ifdef __STDC__
100 double __ieee754_log(double x)
101#else
102 double __ieee754_log(x)
103 double x;
104#endif
105{
48252123
UD
106 double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
107#ifdef DO_NOT_USE_THIS
108 double t1,t2;
109#endif
f7eac6eb
RM
110 int32_t k,hx,i,j;
111 u_int32_t lx;
112
113 EXTRACT_WORDS(hx,lx,x);
114
115 k=0;
116 if (hx < 0x00100000) { /* x < 2**-1022 */
6d52618b 117 if (((hx&0x7fffffff)|lx)==0)
60c96635
UD
118 return -two54/(x-x); /* log(+-0)=-inf */
119 if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
f7eac6eb
RM
120 k -= 54; x *= two54; /* subnormal number, scale up x */
121 GET_HIGH_WORD(hx,x);
6d52618b 122 }
f7eac6eb
RM
123 if (hx >= 0x7ff00000) return x+x;
124 k += (hx>>20)-1023;
125 hx &= 0x000fffff;
126 i = (hx+0x95f64)&0x100000;
127 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
128 k += (i>>20);
129 f = x-1.0;
130 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
3bb266e0
UD
131 if(f==zero) {
132 if(k==0) return zero; else {dk=(double)k;
133 return dk*ln2_hi+dk*ln2_lo;}
134 }
923609d1 135 R = f*f*(half-0.33333333333333333*f);
f7eac6eb
RM
136 if(k==0) return f-R; else {dk=(double)k;
137 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
138 }
923609d1 139 s = f/(two+f);
f7eac6eb
RM
140 dk = (double)k;
141 z = s*s;
142 i = hx-0x6147a;
143 w = z*z;
144 j = 0x6b851-hx;
923609d1 145#ifdef DO_NOT_USE_THIS
6d52618b
UD
146 t1= w*(Lg2+w*(Lg4+w*Lg6));
147 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
f7eac6eb 148 R = t2+t1;
923609d1
UD
149#else
150 t21 = Lg[5]+w*Lg[7]; w2=w*w;
151 t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
152 t11 = Lg[4]+w*Lg[6];
153 t12 = w*Lg[2];
154 R = t12 + w2*t11 + z*t22 + zw2*t21;
155#endif
156 i |= j;
f7eac6eb
RM
157 if(i>0) {
158 hfsq=0.5*f*f;
159 if(k==0) return f-(hfsq-s*(hfsq+R)); else
160 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
161 } else {
162 if(k==0) return f-s*(f-R); else
163 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
164 }
165}