]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/dbl-64/k_rem_pio2.c
Use floor functions not __floor functions in glibc libm.
[thirdparty/glibc.git] / sysdeps / ieee754 / dbl-64 / k_rem_pio2.c
CommitLineData
f7eac6eb
RM
1/* @(#)k_rem_pio2.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
6d52618b 8 * software is freely granted, provided that this notice
f7eac6eb
RM
9 * is preserved.
10 * ====================================================
11 */
12
13#if defined(LIBM_SCCS) && !defined(lint)
14static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
15#endif
16
17/*
18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19 * double x[],y[]; int e0,nx,prec; int ipio2[];
6d52618b
UD
20 *
21 * __kernel_rem_pio2 return the last three digits of N with
f7eac6eb
RM
22 * y = x - N*pi/2
23 * so that |y| < pi/2.
24 *
6d52618b 25 * The method is to compute the integer (mod 8) and fraction parts of
f7eac6eb
RM
26 * (2/pi)*x without doing the full multiplication. In general we
27 * skip the part of the product that are known to be a huge integer (
28 * more accurately, = 0 mod 8 ). Thus the number of operations are
29 * independent of the exponent of the input.
30 *
31 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
32 *
33 * Input parameters:
6d52618b 34 * x[] The input value (must be positive) is broken into nx
f7eac6eb 35 * pieces of 24-bit integers in double precision format.
6d52618b
UD
36 * x[i] will be the i-th 24 bit of x. The scaled exponent
37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
f7eac6eb
RM
38 * match x's up to 24 bits.
39 *
40 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
41 * e0 = ilogb(z)-23
42 * z = scalbn(z,-e0)
43 * for i = 0,1,2
44 * x[i] = floor(z)
45 * z = (z-x[i])*2**24
46 *
47 *
48 * y[] ouput result in an array of double precision numbers.
49 * The dimension of y[] is:
50 * 24-bit precision 1
51 * 53-bit precision 2
52 * 64-bit precision 2
53 * 113-bit precision 3
54 * The actual value is the sum of them. Thus for 113-bit
6d52618b 55 * precision, one may have to do something like:
f7eac6eb
RM
56 *
57 * long double t,w,r_head, r_tail;
58 * t = (long double)y[2] + (long double)y[1];
59 * w = (long double)y[0];
60 * r_head = t+w;
61 * r_tail = w - (r_head - t);
62 *
63 * e0 The exponent of x[0]
64 *
65 * nx dimension of x[]
66 *
67 * prec an integer indicating the precision:
68 * 0 24 bits (single)
69 * 1 53 bits (double)
70 * 2 64 bits (extended)
71 * 3 113 bits (quad)
72 *
73 * ipio2[]
6d52618b
UD
74 * integer array, contains the (24*i)-th to (24*i+23)-th
75 * bit of 2/pi after binary point. The corresponding
f7eac6eb
RM
76 * floating value is
77 *
78 * ipio2[i] * 2^(-24(i+1)).
79 *
80 * External function:
81 * double scalbn(), floor();
82 *
83 *
84 * Here is the description of some local variables:
85 *
86 * jk jk+1 is the initial number of terms of ipio2[] needed
87 * in the computation. The recommended value is 2,3,4,
88 * 6 for single, double, extended,and quad.
89 *
6d52618b
UD
90 * jz local integer variable indicating the number of
91 * terms of ipio2[] used.
f7eac6eb
RM
92 *
93 * jx nx - 1
94 *
95 * jv index for pointing to the suitable ipio2[] for the
96 * computation. In general, we want
97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
98 * is an integer. Thus
99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100 * Hence jv = max(0,(e0-3)/24).
101 *
102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
103 *
104 * q[] double array with integral value, representing the
105 * 24-bits chunk of the product of x and 2/pi.
106 *
107 * q0 the corresponding exponent of q[0]. Note that the
108 * exponent for q[i] would be q0-24*i.
109 *
110 * PIo2[] double precision array, obtained by cutting pi/2
6d52618b 111 * into 24 bits chunks.
f7eac6eb 112 *
6d52618b 113 * f[] ipio2[] in floating point
f7eac6eb
RM
114 *
115 * iq[] integer array by breaking up q[] in 24-bits chunk.
116 *
117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
118 *
119 * ih integer. If >0 it indicates q[] is >= 0.5, hence
120 * it also indicates the *sign* of the result.
121 *
122 */
123
124
125/*
126 * Constants:
6d52618b
UD
127 * The hexadecimal values are the intended ones for the following
128 * constants. The decimal values may be used, provided that the
129 * compiler will convert from decimal to binary accurately enough
f7eac6eb
RM
130 * to produce the hexadecimal values shown.
131 */
132
1ed0291c 133#include <math.h>
aaee3cd8 134#include <math-narrow-eval.h>
1ed0291c 135#include <math_private.h>
9090848d 136#include <libc-diag.h>
f7eac6eb 137
f7eac6eb 138static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
f7eac6eb 139
f7eac6eb 140static const double PIo2[] = {
f7eac6eb
RM
141 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
142 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
143 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
144 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
145 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
146 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
147 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
148 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
149};
150
6d52618b 151static const double
c5d5d574
OB
152 zero = 0.0,
153 one = 1.0,
154 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
155 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
f7eac6eb 156
c5d5d574
OB
157int
158__kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
159 const int32_t *ipio2)
f7eac6eb 160{
c5d5d574
OB
161 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
162 double z, fw, f[20], fq[20], q[20];
f7eac6eb 163
c5d5d574
OB
164 /* initialize jk*/
165 jk = init_jk[prec];
166 jp = jk;
f7eac6eb 167
c5d5d574
OB
168 /* determine jx,jv,q0, note that 3>q0 */
169 jx = nx - 1;
170 jv = (e0 - 3) / 24; if (jv < 0)
171 jv = 0;
172 q0 = e0 - 24 * (jv + 1);
f7eac6eb 173
c5d5d574
OB
174 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
175 j = jv - jx; m = jx + jk;
176 for (i = 0; i <= m; i++, j++)
177 f[i] = (j < 0) ? zero : (double) ipio2[j];
f7eac6eb 178
c5d5d574
OB
179 /* compute q[0],q[1],...q[jk] */
180 for (i = 0; i <= jk; i++)
181 {
182 for (j = 0, fw = 0.0; j <= jx; j++)
183 fw += x[j] * f[jx + i - j];
184 q[i] = fw;
185 }
f7eac6eb 186
c5d5d574 187 jz = jk;
f7eac6eb 188recompute:
c5d5d574
OB
189 /* distill q[] into iq[] reversingly */
190 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
191 {
192 fw = (double) ((int32_t) (twon24 * z));
193 iq[i] = (int32_t) (z - two24 * fw);
194 z = q[j - 1] + fw;
195 }
f7eac6eb 196
c5d5d574
OB
197 /* compute n */
198 z = __scalbn (z, q0); /* actual value of z */
e44acb20 199 z -= 8.0 * floor (z * 0.125); /* trim off integer >= 8 */
c5d5d574
OB
200 n = (int32_t) z;
201 z -= (double) n;
202 ih = 0;
203 if (q0 > 0) /* need iq[jz-1] to determine n */
204 {
205 i = (iq[jz - 1] >> (24 - q0)); n += i;
206 iq[jz - 1] -= i << (24 - q0);
207 ih = iq[jz - 1] >> (23 - q0);
208 }
209 else if (q0 == 0)
210 ih = iq[jz - 1] >> 23;
211 else if (z >= 0.5)
212 ih = 2;
f7eac6eb 213
c5d5d574
OB
214 if (ih > 0) /* q > 0.5 */
215 {
216 n += 1; carry = 0;
217 for (i = 0; i < jz; i++) /* compute 1-q */
218 {
219 j = iq[i];
220 if (carry == 0)
221 {
222 if (j != 0)
223 {
224 carry = 1; iq[i] = 0x1000000 - j;
225 }
f7eac6eb 226 }
c5d5d574
OB
227 else
228 iq[i] = 0xffffff - j;
229 }
230 if (q0 > 0) /* rare case: chance is 1 in 12 */
231 {
232 switch (q0)
233 {
234 case 1:
235 iq[jz - 1] &= 0x7fffff; break;
236 case 2:
237 iq[jz - 1] &= 0x3fffff; break;
f7eac6eb
RM
238 }
239 }
c5d5d574
OB
240 if (ih == 2)
241 {
242 z = one - z;
243 if (carry != 0)
244 z -= __scalbn (one, q0);
245 }
246 }
f7eac6eb 247
c5d5d574
OB
248 /* check if recomputation is needed */
249 if (z == zero)
250 {
251 j = 0;
252 for (i = jz - 1; i >= jk; i--)
253 j |= iq[i];
254 if (j == 0) /* need recomputation */
255 {
b65f0b7b
SL
256 /* On s390x gcc 6.1 -O3 produces the warning "array subscript is below
257 array bounds [-Werror=array-bounds]". Only __ieee754_rem_pio2l
258 calls __kernel_rem_pio2 for normal numbers and |x| > pi/4 in case
259 of ldbl-96 and |x| > 3pi/4 in case of ldbl-128[ibm].
260 Thus x can't be zero and ipio2 is not zero, too. Thus not all iq[]
261 values can't be zero. */
262 DIAG_PUSH_NEEDS_COMMENT;
263 DIAG_IGNORE_NEEDS_COMMENT (6.1, "-Warray-bounds");
c5d5d574
OB
264 for (k = 1; iq[jk - k] == 0; k++)
265 ; /* k = no. of terms needed */
b65f0b7b 266 DIAG_POP_NEEDS_COMMENT;
f7eac6eb 267
c5d5d574
OB
268 for (i = jz + 1; i <= jz + k; i++) /* add q[jz+1] to q[jz+k] */
269 {
270 f[jx + i] = (double) ipio2[jv + i];
271 for (j = 0, fw = 0.0; j <= jx; j++)
272 fw += x[j] * f[jx + i - j];
273 q[i] = fw;
f7eac6eb 274 }
c5d5d574
OB
275 jz += k;
276 goto recompute;
f7eac6eb 277 }
c5d5d574 278 }
f7eac6eb 279
c5d5d574
OB
280 /* chop off zero terms */
281 if (z == 0.0)
282 {
283 jz -= 1; q0 -= 24;
284 while (iq[jz] == 0)
285 {
286 jz--; q0 -= 24;
f7eac6eb 287 }
c5d5d574
OB
288 }
289 else /* break z into 24-bit if necessary */
290 {
291 z = __scalbn (z, -q0);
292 if (z >= two24)
293 {
294 fw = (double) ((int32_t) (twon24 * z));
295 iq[jz] = (int32_t) (z - two24 * fw);
296 jz += 1; q0 += 24;
297 iq[jz] = (int32_t) fw;
f7eac6eb 298 }
c5d5d574
OB
299 else
300 iq[jz] = (int32_t) z;
301 }
f7eac6eb 302
c5d5d574
OB
303 /* convert integer "bit" chunk to floating-point value */
304 fw = __scalbn (one, q0);
305 for (i = jz; i >= 0; i--)
306 {
307 q[i] = fw * (double) iq[i]; fw *= twon24;
308 }
f7eac6eb 309
c5d5d574
OB
310 /* compute PIo2[0,...,jp]*q[jz,...,0] */
311 for (i = jz; i >= 0; i--)
312 {
313 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
314 fw += PIo2[k] * q[i + k];
315 fq[jz - i] = fw;
316 }
317
318 /* compress fq[] into y[] */
319 switch (prec)
320 {
321 case 0:
322 fw = 0.0;
323 for (i = jz; i >= 0; i--)
324 fw += fq[i];
325 y[0] = (ih == 0) ? fw : -fw;
326 break;
327 case 1:
328 case 2:;
c5d5d574
OB
329 double fv = 0.0;
330 for (i = jz; i >= 0; i--)
54142c44 331 fv = math_narrow_eval (fv + fq[i]);
c5d5d574 332 y[0] = (ih == 0) ? fv : -fv;
3d6302a5
JM
333 /* GCC mainline (to be GCC 9), as of 2018-05-22 on i686, warns
334 that fq[0] may be used uninitialized. This is not possible
335 because jz is always nonnegative when the above loop
336 initializing fq is executed, because the result is never zero
337 to full precision (this function is not called for zero
338 arguments). */
339 DIAG_PUSH_NEEDS_COMMENT;
340 DIAG_IGNORE_NEEDS_COMMENT (9, "-Wmaybe-uninitialized");
54142c44 341 fv = math_narrow_eval (fq[0] - fv);
3d6302a5 342 DIAG_POP_NEEDS_COMMENT;
c5d5d574 343 for (i = 1; i <= jz; i++)
54142c44 344 fv = math_narrow_eval (fv + fq[i]);
c5d5d574
OB
345 y[1] = (ih == 0) ? fv : -fv;
346 break;
347 case 3: /* painful */
348 for (i = jz; i > 0; i--)
349 {
54142c44 350 double fv = math_narrow_eval (fq[i - 1] + fq[i]);
c5d5d574
OB
351 fq[i] += fq[i - 1] - fv;
352 fq[i - 1] = fv;
353 }
354 for (i = jz; i > 1; i--)
355 {
54142c44 356 double fv = math_narrow_eval (fq[i - 1] + fq[i]);
c5d5d574
OB
357 fq[i] += fq[i - 1] - fv;
358 fq[i - 1] = fv;
359 }
360 for (fw = 0.0, i = jz; i >= 2; i--)
361 fw += fq[i];
362 if (ih == 0)
363 {
364 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
365 }
366 else
367 {
368 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
f7eac6eb 369 }
c5d5d574
OB
370 }
371 return n & 7;
f7eac6eb 372}