]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/e_expl.c
Remove "Contributed by" lines
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / e_expl.c
CommitLineData
652df710 1/* Quad-precision floating point e^x.
2b778ceb 2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
652df710 3 This file is part of the GNU C Library.
652df710
UD
4
5 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
652df710
UD
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 13 Lesser General Public License for more details.
652df710 14
41bdb6e2 15 You should have received a copy of the GNU Lesser General Public
59ba27a6 16 License along with the GNU C Library; if not, see
5a82c748 17 <https://www.gnu.org/licenses/>. */
652df710
UD
18
19/* The basic design here is from
20 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
21 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
22 pp. 410-423.
23
24 We work with number pairs where the first number is the high part and
25 the second one is the low part. Arithmetic with the high part numbers must
26 be exact, without any roundoff errors.
27
28 The input value, X, is written as
29 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
30 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
31
32 where:
33 - n is an integer, 16384 >= n >= -16495;
34 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
35 - t1 is an integer, 89 >= t1 >= -89
36 - t2 is an integer, 65 >= t2 >= -65
37 - |arg1[t1]-t1/256.0| < 2^-53
38 - |arg2[t2]-t2/32768.0| < 2^-53
39 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
40
41 Then e^x is approximated as
42
43 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
44 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
45 * p (x + xl + n * ln(2)_1))
46 where:
47 - p(x) is a polynomial approximating e(x)-1
48 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
49 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
50 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
51
52 If it happens that n_1 == 0 (this is the usual case), that multiplication
53 is omitted.
54 */
55
56#ifndef _GNU_SOURCE
57#define _GNU_SOURCE
58#endif
59#include <float.h>
60#include <ieee754.h>
61#include <math.h>
62#include <fenv.h>
63#include <inttypes.h>
b4d5b8b0 64#include <math-barriers.h>
652df710 65#include <math_private.h>
8f5b00d3 66#include <math-underflow.h>
e853ea00 67#include <stdlib.h>
652df710 68#include "t_expl.h"
220622dd 69#include <libm-alias-finite.h>
652df710 70
15089e04 71static const _Float128 C[] = {
652df710
UD
72/* Smallest integer x for which e^x overflows. */
73#define himark C[0]
02bbfb41 74 L(11356.523406294143949491931077970765),
bcf01e6d 75
652df710
UD
76/* Largest integer x for which e^x underflows. */
77#define lomark C[1]
02bbfb41 78L(-11433.4627433362978788372438434526231),
652df710
UD
79
80/* 3x2^96 */
81#define THREEp96 C[2]
02bbfb41 82 L(59421121885698253195157962752.0),
652df710
UD
83
84/* 3x2^103 */
85#define THREEp103 C[3]
02bbfb41 86 L(30423614405477505635920876929024.0),
652df710
UD
87
88/* 3x2^111 */
89#define THREEp111 C[4]
02bbfb41 90 L(7788445287802241442795744493830144.0),
652df710
UD
91
92/* 1/ln(2) */
93#define M_1_LN2 C[5]
02bbfb41 94 L(1.44269504088896340735992468100189204),
652df710
UD
95
96/* first 93 bits of ln(2) */
97#define M_LN2_0 C[6]
02bbfb41 98 L(0.693147180559945309417232121457981864),
652df710
UD
99
100/* ln2_0 - ln(2) */
101#define M_LN2_1 C[7]
02bbfb41 102L(-1.94704509238074995158795957333327386E-31),
652df710
UD
103
104/* very small number */
105#define TINY C[8]
02bbfb41 106 L(1.0e-4900),
652df710
UD
107
108/* 2^16383 */
109#define TWO16383 C[9]
02bbfb41 110 L(5.94865747678615882542879663314003565E+4931),
652df710
UD
111
112/* 256 */
113#define TWO8 C[10]
02bbfb41 114 256,
652df710
UD
115
116/* 32768 */
117#define TWO15 C[11]
02bbfb41 118 32768,
652df710 119
382466e0 120/* Chebyshev polynom coefficients for (exp(x)-1)/x */
652df710
UD
121#define P1 C[12]
122#define P2 C[13]
123#define P3 C[14]
124#define P4 C[15]
125#define P5 C[16]
126#define P6 C[17]
02bbfb41
PM
127 L(0.5),
128 L(1.66666666666666666666666666666666683E-01),
129 L(4.16666666666666666666654902320001674E-02),
130 L(8.33333333333333333333314659767198461E-03),
131 L(1.38888888889899438565058018857254025E-03),
132 L(1.98412698413981650382436541785404286E-04),
652df710
UD
133};
134
15089e04
PM
135_Float128
136__ieee754_expl (_Float128 x)
652df710
UD
137{
138 /* Check for usual case. */
139 if (isless (x, himark) && isgreater (x, lomark))
140 {
141 int tval1, tval2, unsafe, n_i;
15089e04 142 _Float128 x22, n, t, result, xl;
652df710
UD
143 union ieee854_long_double ex2_u, scale_u;
144 fenv_t oldenv;
145
146 feholdexcept (&oldenv);
147#ifdef FE_TONEAREST
148 fesetround (FE_TONEAREST);
149#endif
150
151 /* Calculate n. */
152 n = x * M_1_LN2 + THREEp111;
153 n -= THREEp111;
154 x = x - n * M_LN2_0;
155 xl = n * M_LN2_1;
156
157 /* Calculate t/256. */
158 t = x + THREEp103;
159 t -= THREEp103;
160
161 /* Compute tval1 = t. */
162 tval1 = (int) (t * TWO8);
163
164 x -= __expl_table[T_EXPL_ARG1+2*tval1];
165 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
166
167 /* Calculate t/32768. */
168 t = x + THREEp96;
169 t -= THREEp96;
170
171 /* Compute tval2 = t. */
172 tval2 = (int) (t * TWO15);
173
174 x -= __expl_table[T_EXPL_ARG2+2*tval2];
175 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
176
177 x = x + xl;
178
179 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
180 ex2_u.d = __expl_table[T_EXPL_RES1 + tval1]
181 * __expl_table[T_EXPL_RES2 + tval2];
182 n_i = (int)n;
183 /* 'unsafe' is 1 iff n_1 != 0. */
7e6424e3 184 unsafe = abs(n_i) >= 15000;
652df710
UD
185 ex2_u.ieee.exponent += n_i >> unsafe;
186
187 /* Compute scale = 2^n_1. */
02bbfb41 188 scale_u.d = 1;
652df710
UD
189 scale_u.ieee.exponent += n_i - (n_i >> unsafe);
190
191 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
192 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
193 less than 4.8e-39. */
194 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
a4c9be1b 195 math_force_eval (x22);
652df710
UD
196
197 /* Return result. */
198 fesetenv (&oldenv);
199
200 result = x22 * ex2_u.d + ex2_u.d;
201
202 /* Now we can test whether the result is ultimate or if we are unsure.
203 In the later case we should probably call a mpn based routine to give
204 the ultimate result.
205 Empirically, this routine is already ultimate in about 99.9986% of
206 cases, the test below for the round to nearest case will be false
207 in ~ 99.9963% of cases.
208 Without proc2 routine maximum error which has been seen is
209 0.5000262 ulp.
210
211 union ieee854_long_double ex3_u;
212
213 #ifdef FE_TONEAREST
214 fesetround (FE_TONEAREST);
215 #endif
216 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
217 ex2_u.d = result;
218 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
350635a5 219 - ex2_u.ieee.exponent;
652df710
UD
220 n_i = abs (ex3_u.d);
221 n_i = (n_i + 1) / 2;
222 fesetenv (&oldenv);
223 #ifdef FE_TONEAREST
224 if (fegetround () == FE_TONEAREST)
225 n_i -= 0x4000;
226 #endif
227 if (!n_i) {
228 return __ieee754_expl_proc2 (origx);
229 }
230 */
231 if (!unsafe)
232 return result;
233 else
8475ab16
JM
234 {
235 result *= scale_u.d;
d96164c3 236 math_check_force_underflow_nonneg (result);
8475ab16
JM
237 return result;
238 }
652df710
UD
239 }
240 /* Exceptional cases: */
241 else if (isless (x, himark))
242 {
d81f90cc 243 if (isinf (x))
652df710
UD
244 /* e^-inf == 0, with no error. */
245 return 0;
246 else
247 /* Underflow */
248 return TINY * TINY;
249 }
250 else
251 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
252 return TWO16383*x;
253}
220622dd 254libm_alias_finite (__ieee754_expl, __expl)