]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/e_expl.c
This patch renames all uses of __isinf*, __isnan*, __finite* and __signbit* to use...
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / e_expl.c
CommitLineData
652df710 1/* Quad-precision floating point e^x.
b168057a 2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
652df710
UD
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5 Partly based on double-precision code
6 by Geoffrey Keating <geoffk@ozemail.com.au>
7
8 The GNU C Library is free software; you can redistribute it and/or
41bdb6e2
AJ
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
652df710
UD
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
41bdb6e2 16 Lesser General Public License for more details.
652df710 17
41bdb6e2 18 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
19 License along with the GNU C Library; if not, see
20 <http://www.gnu.org/licenses/>. */
652df710
UD
21
22/* The basic design here is from
23 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
24 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
25 pp. 410-423.
26
27 We work with number pairs where the first number is the high part and
28 the second one is the low part. Arithmetic with the high part numbers must
29 be exact, without any roundoff errors.
30
31 The input value, X, is written as
32 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
33 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
34
35 where:
36 - n is an integer, 16384 >= n >= -16495;
37 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
38 - t1 is an integer, 89 >= t1 >= -89
39 - t2 is an integer, 65 >= t2 >= -65
40 - |arg1[t1]-t1/256.0| < 2^-53
41 - |arg2[t2]-t2/32768.0| < 2^-53
42 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
43
44 Then e^x is approximated as
45
46 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
47 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
48 * p (x + xl + n * ln(2)_1))
49 where:
50 - p(x) is a polynomial approximating e(x)-1
51 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
52 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
53 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
54
55 If it happens that n_1 == 0 (this is the usual case), that multiplication
56 is omitted.
57 */
58
59#ifndef _GNU_SOURCE
60#define _GNU_SOURCE
61#endif
62#include <float.h>
63#include <ieee754.h>
64#include <math.h>
65#include <fenv.h>
66#include <inttypes.h>
67#include <math_private.h>
e853ea00 68#include <stdlib.h>
652df710
UD
69#include "t_expl.h"
70
71static const long double C[] = {
72/* Smallest integer x for which e^x overflows. */
73#define himark C[0]
74 11356.523406294143949491931077970765L,
bcf01e6d 75
652df710
UD
76/* Largest integer x for which e^x underflows. */
77#define lomark C[1]
78-11433.4627433362978788372438434526231L,
79
80/* 3x2^96 */
81#define THREEp96 C[2]
82 59421121885698253195157962752.0L,
83
84/* 3x2^103 */
85#define THREEp103 C[3]
86 30423614405477505635920876929024.0L,
87
88/* 3x2^111 */
89#define THREEp111 C[4]
90 7788445287802241442795744493830144.0L,
91
92/* 1/ln(2) */
93#define M_1_LN2 C[5]
94 1.44269504088896340735992468100189204L,
95
96/* first 93 bits of ln(2) */
97#define M_LN2_0 C[6]
98 0.693147180559945309417232121457981864L,
99
100/* ln2_0 - ln(2) */
101#define M_LN2_1 C[7]
102-1.94704509238074995158795957333327386E-31L,
103
104/* very small number */
105#define TINY C[8]
106 1.0e-4900L,
107
108/* 2^16383 */
109#define TWO16383 C[9]
110 5.94865747678615882542879663314003565E+4931L,
111
112/* 256 */
113#define TWO8 C[10]
114 256.0L,
115
116/* 32768 */
117#define TWO15 C[11]
118 32768.0L,
119
382466e0 120/* Chebyshev polynom coefficients for (exp(x)-1)/x */
652df710
UD
121#define P1 C[12]
122#define P2 C[13]
123#define P3 C[14]
124#define P4 C[15]
125#define P5 C[16]
126#define P6 C[17]
127 0.5L,
128 1.66666666666666666666666666666666683E-01L,
129 4.16666666666666666666654902320001674E-02L,
130 8.33333333333333333333314659767198461E-03L,
131 1.38888888889899438565058018857254025E-03L,
132 1.98412698413981650382436541785404286E-04L,
133};
134
135long double
136__ieee754_expl (long double x)
137{
138 /* Check for usual case. */
139 if (isless (x, himark) && isgreater (x, lomark))
140 {
141 int tval1, tval2, unsafe, n_i;
142 long double x22, n, t, result, xl;
143 union ieee854_long_double ex2_u, scale_u;
144 fenv_t oldenv;
145
146 feholdexcept (&oldenv);
147#ifdef FE_TONEAREST
148 fesetround (FE_TONEAREST);
149#endif
150
151 /* Calculate n. */
152 n = x * M_1_LN2 + THREEp111;
153 n -= THREEp111;
154 x = x - n * M_LN2_0;
155 xl = n * M_LN2_1;
156
157 /* Calculate t/256. */
158 t = x + THREEp103;
159 t -= THREEp103;
160
161 /* Compute tval1 = t. */
162 tval1 = (int) (t * TWO8);
163
164 x -= __expl_table[T_EXPL_ARG1+2*tval1];
165 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
166
167 /* Calculate t/32768. */
168 t = x + THREEp96;
169 t -= THREEp96;
170
171 /* Compute tval2 = t. */
172 tval2 = (int) (t * TWO15);
173
174 x -= __expl_table[T_EXPL_ARG2+2*tval2];
175 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
176
177 x = x + xl;
178
179 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
180 ex2_u.d = __expl_table[T_EXPL_RES1 + tval1]
181 * __expl_table[T_EXPL_RES2 + tval2];
182 n_i = (int)n;
183 /* 'unsafe' is 1 iff n_1 != 0. */
7e6424e3 184 unsafe = abs(n_i) >= 15000;
652df710
UD
185 ex2_u.ieee.exponent += n_i >> unsafe;
186
187 /* Compute scale = 2^n_1. */
188 scale_u.d = 1.0L;
189 scale_u.ieee.exponent += n_i - (n_i >> unsafe);
190
191 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
192 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
193 less than 4.8e-39. */
194 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
195
196 /* Return result. */
197 fesetenv (&oldenv);
198
199 result = x22 * ex2_u.d + ex2_u.d;
200
201 /* Now we can test whether the result is ultimate or if we are unsure.
202 In the later case we should probably call a mpn based routine to give
203 the ultimate result.
204 Empirically, this routine is already ultimate in about 99.9986% of
205 cases, the test below for the round to nearest case will be false
206 in ~ 99.9963% of cases.
207 Without proc2 routine maximum error which has been seen is
208 0.5000262 ulp.
209
210 union ieee854_long_double ex3_u;
211
212 #ifdef FE_TONEAREST
213 fesetround (FE_TONEAREST);
214 #endif
215 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
216 ex2_u.d = result;
217 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
350635a5 218 - ex2_u.ieee.exponent;
652df710
UD
219 n_i = abs (ex3_u.d);
220 n_i = (n_i + 1) / 2;
221 fesetenv (&oldenv);
222 #ifdef FE_TONEAREST
223 if (fegetround () == FE_TONEAREST)
224 n_i -= 0x4000;
225 #endif
226 if (!n_i) {
227 return __ieee754_expl_proc2 (origx);
228 }
229 */
230 if (!unsafe)
231 return result;
232 else
233 return result * scale_u.d;
234 }
235 /* Exceptional cases: */
236 else if (isless (x, himark))
237 {
d81f90cc 238 if (isinf (x))
652df710
UD
239 /* e^-inf == 0, with no error. */
240 return 0;
241 else
242 /* Underflow */
243 return TINY * TINY;
244 }
245 else
246 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
247 return TWO16383*x;
248}
bcf01e6d 249strong_alias (__ieee754_expl, __expl_finite)