]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/e_log10l.c
Optimize libm
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / e_log10l.c
CommitLineData
76321a25
AJ
1/* log10l.c
2 *
3 * Common logarithm, 128-bit long double precision
4 *
5 *
6 *
7 * SYNOPSIS:
8 *
9 * long double x, y, log10l();
10 *
11 * y = log10l( x );
12 *
13 *
14 *
15 * DESCRIPTION:
16 *
17 * Returns the base 10 logarithm of x.
18 *
19 * The argument is separated into its exponent and fractional
20 * parts. If the exponent is between -1 and +1, the logarithm
21 * of the fraction is approximated by
22 *
23 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24 *
25 * Otherwise, setting z = 2(x-1)/x+1),
26 *
27 * log(x) = z + z^3 P(z)/Q(z).
28 *
29 *
30 *
31 * ACCURACY:
32 *
33 * Relative error:
34 * arithmetic domain # trials peak rms
35 * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
36 * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
37 *
38 * In the tests over the interval exp(+-10000), the logarithms
39 * of the random arguments were uniformly distributed over
40 * [-10000, +10000].
41 *
42 */
43
44/*
45 Cephes Math Library Release 2.2: January, 1991
46 Copyright 1984, 1991 by Stephen L. Moshier
47 Adapted for glibc November, 2001
cc7375ce
RM
48
49 This library is free software; you can redistribute it and/or
50 modify it under the terms of the GNU Lesser General Public
51 License as published by the Free Software Foundation; either
52 version 2.1 of the License, or (at your option) any later version.
53
54 This library is distributed in the hope that it will be useful,
55 but WITHOUT ANY WARRANTY; without even the implied warranty of
56 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
57 Lesser General Public License for more details.
58
59 You should have received a copy of the GNU Lesser General Public
60 License along with this library; if not, write to the Free Software
0ac5ae23 61 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
cc7375ce 62
76321a25
AJ
63 */
64
65#include "math.h"
66#include "math_private.h"
67
68/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
69 * 1/sqrt(2) <= x < sqrt(2)
70 * Theoretical peak relative error = 5.3e-37,
71 * relative peak error spread = 2.3e-14
72 */
73static const long double P[13] =
74{
75 1.313572404063446165910279910527789794488E4L,
76 7.771154681358524243729929227226708890930E4L,
77 2.014652742082537582487669938141683759923E5L,
78 3.007007295140399532324943111654767187848E5L,
79 2.854829159639697837788887080758954924001E5L,
80 1.797628303815655343403735250238293741397E5L,
81 7.594356839258970405033155585486712125861E4L,
82 2.128857716871515081352991964243375186031E4L,
83 3.824952356185897735160588078446136783779E3L,
84 4.114517881637811823002128927449878962058E2L,
85 2.321125933898420063925789532045674660756E1L,
86 4.998469661968096229986658302195402690910E-1L,
87 1.538612243596254322971797716843006400388E-6L
88};
89static const long double Q[12] =
90{
91 3.940717212190338497730839731583397586124E4L,
92 2.626900195321832660448791748036714883242E5L,
93 7.777690340007566932935753241556479363645E5L,
94 1.347518538384329112529391120390701166528E6L,
95 1.514882452993549494932585972882995548426E6L,
96 1.158019977462989115839826904108208787040E6L,
97 6.132189329546557743179177159925690841200E5L,
98 2.248234257620569139969141618556349415120E5L,
99 5.605842085972455027590989944010492125825E4L,
100 9.147150349299596453976674231612674085381E3L,
101 9.104928120962988414618126155557301584078E2L,
102 4.839208193348159620282142911143429644326E1L
103/* 1.000000000000000000000000000000000000000E0L, */
104};
105
106/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
107 * where z = 2(x-1)/(x+1)
108 * 1/sqrt(2) <= x < sqrt(2)
109 * Theoretical peak relative error = 1.1e-35,
110 * relative peak error spread 1.1e-9
111 */
112static const long double R[6] =
113{
114 1.418134209872192732479751274970992665513E5L,
115 -8.977257995689735303686582344659576526998E4L,
116 2.048819892795278657810231591630928516206E4L,
117 -2.024301798136027039250415126250455056397E3L,
118 8.057002716646055371965756206836056074715E1L,
119 -8.828896441624934385266096344596648080902E-1L
120};
121static const long double S[6] =
122{
123 1.701761051846631278975701529965589676574E6L,
124 -1.332535117259762928288745111081235577029E6L,
125 4.001557694070773974936904547424676279307E5L,
126 -5.748542087379434595104154610899551484314E4L,
127 3.998526750980007367835804959888064681098E3L,
128 -1.186359407982897997337150403816839480438E2L
129/* 1.000000000000000000000000000000000000000E0L, */
130};
131
132static const long double
133/* log10(2) */
134L102A = 0.3125L,
9992bc08 135L102B = -1.14700043360188047862611052755069732318101185E-2L,
76321a25
AJ
136/* log10(e) */
137L10EA = 0.5L,
138L10EB = -6.570551809674817234887108108339491770560299E-2L,
139/* sqrt(2)/2 */
140SQRTH = 7.071067811865475244008443621048490392848359E-1L;
141
142
143
144/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
145
146static long double
147neval (long double x, const long double *p, int n)
148{
149 long double y;
150
151 p += n;
152 y = *p--;
153 do
154 {
155 y = y * x + *p--;
156 }
157 while (--n > 0);
158 return y;
159}
160
161
162/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
163
164static long double
165deval (long double x, const long double *p, int n)
166{
167 long double y;
168
169 p += n;
170 y = x + *p--;
171 do
172 {
173 y = y * x + *p--;
174 }
175 while (--n > 0);
176 return y;
177}
178
179
180
181long double
0ac5ae23 182__ieee754_log10l (long double x)
76321a25
AJ
183{
184 long double z;
185 long double y;
186 int e;
52e1b618 187 int64_t hx, lx;
76321a25
AJ
188
189/* Test for domain */
52e1b618
UD
190 GET_LDOUBLE_WORDS64 (hx, lx, x);
191 if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
192 return (-1.0L / (x - x));
193 if (hx < 0)
194 return (x - x) / (x - x);
195 if (hx >= 0x7fff000000000000LL)
76321a25
AJ
196 return (x + x);
197
198/* separate mantissa from exponent */
199
200/* Note, frexp is used so that denormal numbers
201 * will be handled properly.
202 */
203 x = __frexpl (x, &e);
204
205
206/* logarithm using log(x) = z + z**3 P(z)/Q(z),
207 * where z = 2(x-1)/x+1)
208 */
209 if ((e > 2) || (e < -2))
210 {
211 if (x < SQRTH)
212 { /* 2( 2x-1 )/( 2x+1 ) */
213 e -= 1;
214 z = x - 0.5L;
215 y = 0.5L * z + 0.5L;
216 }
217 else
218 { /* 2 (x-1)/(x+1) */
219 z = x - 0.5L;
220 z -= 0.5L;
221 y = 0.5L * x + 0.5L;
222 }
223 x = z / y;
224 z = x * x;
225 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
226 goto done;
227 }
228
229
230/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
231
232 if (x < SQRTH)
233 {
234 e -= 1;
235 x = 2.0 * x - 1.0L; /* 2x - 1 */
236 }
237 else
238 {
239 x = x - 1.0L;
240 }
241 z = x * x;
242 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
243 y = y - 0.5 * z;
244
245done:
246
247 /* Multiply log of fraction by log10(e)
248 * and base 2 exponent by log10(2).
249 */
250 z = y * L10EB;
251 z += x * L10EB;
252 z += e * L102B;
253 z += y * L10EA;
254 z += x * L10EA;
255 z += e * L102A;
256 return (z);
257}
0ac5ae23 258strong_alias (__ieee754_log10l, __log10l_finite)