]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128/k_tanl.c
Replace FSF snail mail address with URLs.
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128 / k_tanl.c
CommitLineData
9b7ee67e
UD
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
cc7375ce
RM
13 Long double expansions are
14 Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
9cd2726c
RM
15 and are incorporated herein by permission of the author. The author
16 reserves the right to distribute this material elsewhere under different
17 copying permissions. These modifications are distributed here under
18 the following terms:
cc7375ce
RM
19
20 This library is free software; you can redistribute it and/or
21 modify it under the terms of the GNU Lesser General Public
22 License as published by the Free Software Foundation; either
23 version 2.1 of the License, or (at your option) any later version.
24
25 This library is distributed in the hope that it will be useful,
26 but WITHOUT ANY WARRANTY; without even the implied warranty of
27 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 Lesser General Public License for more details.
29
30 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
31 License along with this library; if not, see
32 <http://www.gnu.org/licenses/>. */
9b7ee67e
UD
33
34/* __kernel_tanl( x, y, k )
35 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37 * Input y is the tail of x.
38 * Input k indicates whether tan (if k=1) or
39 * -1/tan (if k= -1) is returned.
40 *
41 * Algorithm
42 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43 * 2. if x < 2^-57, return x with inexact if x!=0.
44 * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45 * on [0,0.67433].
46 *
47 * Note: tan(x+y) = tan(x) + tan'(x)*y
48 * ~ tan(x) + (1+x*x)*y
49 * Therefore, for better accuracy in computing tan(x+y), let
50 * r = x^3 * R(x^2)
51 * then
52 * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53 *
54 * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57 */
58
59#include "math.h"
60#include "math_private.h"
9b7ee67e 61static const long double
9b7ee67e
UD
62 one = 1.0L,
63 pio4hi = 7.8539816339744830961566084581987569936977E-1L,
64 pio4lo = 2.1679525325309452561992610065108379921906E-35L,
65
66 /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
67 0 <= x <= 0.6743316650390625
68 Peak relative error 8.0e-36 */
69 TH = 3.333333333333333333333333333333333333333E-1L,
70 T0 = -1.813014711743583437742363284336855889393E7L,
71 T1 = 1.320767960008972224312740075083259247618E6L,
72 T2 = -2.626775478255838182468651821863299023956E4L,
73 T3 = 1.764573356488504935415411383687150199315E2L,
74 T4 = -3.333267763822178690794678978979803526092E-1L,
75
76 U0 = -1.359761033807687578306772463253710042010E8L,
77 U1 = 6.494370630656893175666729313065113194784E7L,
78 U2 = -4.180787672237927475505536849168729386782E6L,
79 U3 = 8.031643765106170040139966622980914621521E4L,
80 U4 = -5.323131271912475695157127875560667378597E2L;
81 /* 1.000000000000000000000000000000000000000E0 */
82
83
9b7ee67e
UD
84long double
85__kernel_tanl (long double x, long double y, int iy)
9b7ee67e
UD
86{
87 long double z, r, v, w, s;
88 int32_t ix, sign;
89 ieee854_long_double_shape_type u, u1;
90
91 u.value = x;
92 ix = u.parts32.w0 & 0x7fffffff;
93 if (ix < 0x3fc60000) /* x < 2**-57 */
94 {
95 if ((int) x == 0)
96 { /* generate inexact */
97 if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3
98 | (iy + 1)) == 0)
99 return one / fabs (x);
100 else
101 return (iy == 1) ? x : -one / x;
102 }
103 }
104 if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
105 {
106 if ((u.parts32.w0 & 0x80000000) != 0)
107 {
108 x = -x;
109 y = -y;
110 sign = -1;
111 }
112 else
113 sign = 1;
114 z = pio4hi - x;
115 w = pio4lo - y;
116 x = z + w;
117 y = 0.0;
118 }
119 z = x * x;
120 r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
121 v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
122 r = r / v;
123
124 s = z * x;
125 r = y + z * (s * r + y);
126 r += TH * s;
127 w = x + r;
128 if (ix >= 0x3ffe5942)
129 {
130 v = (long double) iy;
131 w = (v - 2.0 * (x - (w * w / (w + v) - r)));
132 if (sign < 0)
133 w = -w;
134 return w;
135 }
136 if (iy == 1)
137 return w;
138 else
139 { /* if allow error up to 2 ulp,
140 simply return -1.0/(x+r) here */
141 /* compute -1.0/(x+r) accurately */
142 u1.value = w;
143 u1.parts32.w2 = 0;
144 u1.parts32.w3 = 0;
145 v = r - (u1.value - x); /* u1+v = r+x */
146 z = -1.0 / w;
147 u.value = z;
148 u.parts32.w2 = 0;
149 u.parts32.w3 = 0;
150 s = 1.0 + u.value * u1.value;
151 return u.value + z * (s + u.value * v);
152 }
153}