]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128ibm/e_expl.c
Update copyright dates with scripts/update-copyrights
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_expl.c
CommitLineData
f964490f 1/* Quad-precision floating point e^x.
dff8da6b 2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
f964490f 3 This file is part of the GNU C Library.
f964490f
RM
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
59ba27a6 16 License along with the GNU C Library; if not, see
5a82c748 17 <https://www.gnu.org/licenses/>. */
f964490f
RM
18
19/* The basic design here is from
20 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
21 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
22 pp. 410-423.
23
24 We work with number pairs where the first number is the high part and
25 the second one is the low part. Arithmetic with the high part numbers must
26 be exact, without any roundoff errors.
27
28 The input value, X, is written as
29 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
30 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
31
32 where:
33 - n is an integer, 16384 >= n >= -16495;
34 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
35 - t1 is an integer, 89 >= t1 >= -89
36 - t2 is an integer, 65 >= t2 >= -65
37 - |arg1[t1]-t1/256.0| < 2^-53
38 - |arg2[t2]-t2/32768.0| < 2^-53
39 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
40
41 Then e^x is approximated as
42
43 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
44 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
45 * p (x + xl + n * ln(2)_1))
46 where:
47 - p(x) is a polynomial approximating e(x)-1
48 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
49 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
50 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
51
52 If it happens that n_1 == 0 (this is the usual case), that multiplication
53 is omitted.
54 */
55
56#ifndef _GNU_SOURCE
57#define _GNU_SOURCE
58#endif
59#include <float.h>
60#include <ieee754.h>
61#include <math.h>
62#include <fenv.h>
63#include <inttypes.h>
64#include <math_private.h>
70e2ba33 65#include <fenv_private.h>
220622dd 66#include <libm-alias-finite.h>
15089e04 67
c5c2e667 68#include "t_expl.h"
f964490f
RM
69
70static const long double C[] = {
71/* Smallest integer x for which e^x overflows. */
72#define himark C[0]
e42a38dd 73 709.78271289338399678773454114191496482L,
f964490f
RM
74
75/* Largest integer x for which e^x underflows. */
76#define lomark C[1]
e42a38dd 77-744.44007192138126231410729844608163411L,
f964490f
RM
78
79/* 3x2^96 */
80#define THREEp96 C[2]
81 59421121885698253195157962752.0L,
82
83/* 3x2^103 */
84#define THREEp103 C[3]
85 30423614405477505635920876929024.0L,
86
87/* 3x2^111 */
88#define THREEp111 C[4]
89 7788445287802241442795744493830144.0L,
90
91/* 1/ln(2) */
92#define M_1_LN2 C[5]
93 1.44269504088896340735992468100189204L,
94
95/* first 93 bits of ln(2) */
96#define M_LN2_0 C[6]
97 0.693147180559945309417232121457981864L,
98
99/* ln2_0 - ln(2) */
100#define M_LN2_1 C[7]
101-1.94704509238074995158795957333327386E-31L,
102
103/* very small number */
104#define TINY C[8]
105 1.0e-308L,
106
107/* 2^16383 */
108#define TWO1023 C[9]
109 8.988465674311579538646525953945123668E+307L,
110
111/* 256 */
112#define TWO8 C[10]
113 256.0L,
114
115/* 32768 */
116#define TWO15 C[11]
117 32768.0L,
118
382466e0 119/* Chebyshev polynom coefficients for (exp(x)-1)/x */
f964490f
RM
120#define P1 C[12]
121#define P2 C[13]
122#define P3 C[14]
123#define P4 C[15]
124#define P5 C[16]
125#define P6 C[17]
126 0.5L,
127 1.66666666666666666666666666666666683E-01L,
128 4.16666666666666666666654902320001674E-02L,
129 8.33333333333333333333314659767198461E-03L,
130 1.38888888889899438565058018857254025E-03L,
131 1.98412698413981650382436541785404286E-04L,
132};
133
9755bc46
JM
134/* Avoid local PLT entry use from (int) roundl (...) being converted
135 to a call to lroundl in the case of 32-bit long and roundl not
136 inlined. */
137long int lroundl (long double) asm ("__lroundl");
138
f964490f
RM
139long double
140__ieee754_expl (long double x)
141{
41e8926a
AZ
142 long double result, x22;
143 union ibm_extended_long_double ex2_u, scale_u;
144 int unsafe;
145
f964490f
RM
146 /* Check for usual case. */
147 if (isless (x, himark) && isgreater (x, lomark))
148 {
41e8926a
AZ
149 int tval1, tval2, n_i, exponent2;
150 long double n, xl;
151
152 SET_RESTORE_ROUND (FE_TONEAREST);
f964490f 153
9755bc46 154 n = roundl (x*M_1_LN2);
f964490f
RM
155 x = x-n*M_LN2_0;
156 xl = n*M_LN2_1;
157
9755bc46 158 tval1 = roundl (x*TWO8);
f964490f
RM
159 x -= __expl_table[T_EXPL_ARG1+2*tval1];
160 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
161
9755bc46 162 tval2 = roundl (x*TWO15);
f964490f
RM
163 x -= __expl_table[T_EXPL_ARG2+2*tval2];
164 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
165
166 x = x + xl;
167
168 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
9605ca6c
AM
169 ex2_u.ld = (__expl_table[T_EXPL_RES1 + tval1]
170 * __expl_table[T_EXPL_RES2 + tval2]);
f964490f
RM
171 n_i = (int)n;
172 /* 'unsafe' is 1 iff n_1 != 0. */
d1cdd051 173 unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
9605ca6c 174 ex2_u.d[0].ieee.exponent += n_i >> unsafe;
f964490f
RM
175 /* Fortunately, there are no subnormal lowpart doubles in
176 __expl_table, only normal values and zeros.
177 But after scaling it can be subnormal. */
9605ca6c
AM
178 exponent2 = ex2_u.d[1].ieee.exponent + (n_i >> unsafe);
179 if (ex2_u.d[1].ieee.exponent == 0)
180 /* assert ((ex2_u.d[1].ieee.mantissa0|ex2_u.d[1].ieee.mantissa1) == 0) */;
f964490f 181 else if (exponent2 > 0)
9605ca6c 182 ex2_u.d[1].ieee.exponent = exponent2;
f964490f
RM
183 else if (exponent2 <= -54)
184 {
9605ca6c
AM
185 ex2_u.d[1].ieee.exponent = 0;
186 ex2_u.d[1].ieee.mantissa0 = 0;
187 ex2_u.d[1].ieee.mantissa1 = 0;
f964490f
RM
188 }
189 else
190 {
191 static const double
192 two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
193 twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
9605ca6c
AM
194 ex2_u.d[1].d *= two54;
195 ex2_u.d[1].ieee.exponent += n_i >> unsafe;
196 ex2_u.d[1].d *= twom54;
f964490f
RM
197 }
198
199 /* Compute scale = 2^n_1. */
9605ca6c
AM
200 scale_u.ld = 1.0L;
201 scale_u.d[0].ieee.exponent += n_i - (n_i >> unsafe);
f964490f
RM
202
203 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
204 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
205 less than 4.8e-39. */
206 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
207
f964490f
RM
208 /* Now we can test whether the result is ultimate or if we are unsure.
209 In the later case we should probably call a mpn based routine to give
210 the ultimate result.
211 Empirically, this routine is already ultimate in about 99.9986% of
212 cases, the test below for the round to nearest case will be false
213 in ~ 99.9963% of cases.
214 Without proc2 routine maximum error which has been seen is
215 0.5000262 ulp.
216
217 union ieee854_long_double ex3_u;
218
219 #ifdef FE_TONEAREST
220 fesetround (FE_TONEAREST);
221 #endif
222 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
223 ex2_u.d = result;
224 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
350635a5 225 - ex2_u.ieee.exponent;
f964490f
RM
226 n_i = abs (ex3_u.d);
227 n_i = (n_i + 1) / 2;
228 fesetenv (&oldenv);
229 #ifdef FE_TONEAREST
230 if (fegetround () == FE_TONEAREST)
231 n_i -= 0x4000;
232 #endif
233 if (!n_i) {
234 return __ieee754_expl_proc2 (origx);
235 }
236 */
f964490f
RM
237 }
238 /* Exceptional cases: */
239 else if (isless (x, himark))
240 {
d81f90cc 241 if (isinf (x))
f964490f
RM
242 /* e^-inf == 0, with no error. */
243 return 0;
244 else
245 /* Underflow */
246 return TINY * TINY;
247 }
248 else
249 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
250 return TWO1023*x;
41e8926a
AZ
251
252 result = x22 * ex2_u.ld + ex2_u.ld;
253 if (!unsafe)
254 return result;
255 return result * scale_u.ld;
f964490f 256}
220622dd 257libm_alias_finite (__ieee754_expl, __expl)