]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-128ibm/e_log2l.c
Optimize libm
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_log2l.c
CommitLineData
f964490f
RM
1/* log2l.c
2 * Base 2 logarithm, 128-bit long double precision
3 *
4 *
5 *
6 * SYNOPSIS:
7 *
8 * long double x, y, log2l();
9 *
10 * y = log2l( x );
11 *
12 *
13 *
14 * DESCRIPTION:
15 *
16 * Returns the base 2 logarithm of x.
17 *
18 * The argument is separated into its exponent and fractional
19 * parts. If the exponent is between -1 and +1, the (natural)
20 * logarithm of the fraction is approximated by
21 *
22 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23 *
24 * Otherwise, setting z = 2(x-1)/x+1),
25 *
26 * log(x) = z + z^3 P(z)/Q(z).
27 *
28 *
29 *
30 * ACCURACY:
31 *
32 * Relative error:
33 * arithmetic domain # trials peak rms
34 * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
36 *
37 * In the tests over the interval exp(+-10000), the logarithms
38 * of the random arguments were uniformly distributed over
39 * [-10000, +10000].
40 *
41 */
42
43/*
44 Cephes Math Library Release 2.2: January, 1991
45 Copyright 1984, 1991 by Stephen L. Moshier
46 Adapted for glibc November, 2001
47
48 This library is free software; you can redistribute it and/or
49 modify it under the terms of the GNU Lesser General Public
50 License as published by the Free Software Foundation; either
51 version 2.1 of the License, or (at your option) any later version.
52
53 This library is distributed in the hope that it will be useful,
54 but WITHOUT ANY WARRANTY; without even the implied warranty of
55 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56 Lesser General Public License for more details.
57
58 You should have received a copy of the GNU Lesser General Public
59 License along with this library; if not, write to the Free Software
60 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
61 */
62
63#include "math.h"
64#include "math_private.h"
65
66/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
67 * 1/sqrt(2) <= x < sqrt(2)
68 * Theoretical peak relative error = 5.3e-37,
69 * relative peak error spread = 2.3e-14
70 */
71static const long double P[13] =
72{
73 1.313572404063446165910279910527789794488E4L,
74 7.771154681358524243729929227226708890930E4L,
75 2.014652742082537582487669938141683759923E5L,
76 3.007007295140399532324943111654767187848E5L,
77 2.854829159639697837788887080758954924001E5L,
78 1.797628303815655343403735250238293741397E5L,
79 7.594356839258970405033155585486712125861E4L,
80 2.128857716871515081352991964243375186031E4L,
81 3.824952356185897735160588078446136783779E3L,
82 4.114517881637811823002128927449878962058E2L,
83 2.321125933898420063925789532045674660756E1L,
84 4.998469661968096229986658302195402690910E-1L,
85 1.538612243596254322971797716843006400388E-6L
86};
87static const long double Q[12] =
88{
89 3.940717212190338497730839731583397586124E4L,
90 2.626900195321832660448791748036714883242E5L,
91 7.777690340007566932935753241556479363645E5L,
92 1.347518538384329112529391120390701166528E6L,
93 1.514882452993549494932585972882995548426E6L,
94 1.158019977462989115839826904108208787040E6L,
95 6.132189329546557743179177159925690841200E5L,
96 2.248234257620569139969141618556349415120E5L,
97 5.605842085972455027590989944010492125825E4L,
98 9.147150349299596453976674231612674085381E3L,
99 9.104928120962988414618126155557301584078E2L,
100 4.839208193348159620282142911143429644326E1L
101/* 1.000000000000000000000000000000000000000E0L, */
102};
103
104/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
105 * where z = 2(x-1)/(x+1)
106 * 1/sqrt(2) <= x < sqrt(2)
107 * Theoretical peak relative error = 1.1e-35,
108 * relative peak error spread 1.1e-9
109 */
110static const long double R[6] =
111{
112 1.418134209872192732479751274970992665513E5L,
113 -8.977257995689735303686582344659576526998E4L,
114 2.048819892795278657810231591630928516206E4L,
115 -2.024301798136027039250415126250455056397E3L,
116 8.057002716646055371965756206836056074715E1L,
117 -8.828896441624934385266096344596648080902E-1L
118};
119static const long double S[6] =
120{
121 1.701761051846631278975701529965589676574E6L,
122 -1.332535117259762928288745111081235577029E6L,
123 4.001557694070773974936904547424676279307E5L,
124 -5.748542087379434595104154610899551484314E4L,
125 3.998526750980007367835804959888064681098E3L,
126 -1.186359407982897997337150403816839480438E2L
127/* 1.000000000000000000000000000000000000000E0L, */
128};
129
130static const long double
131/* log2(e) - 1 */
132LOG2EA = 4.4269504088896340735992468100189213742664595E-1L,
133/* sqrt(2)/2 */
134SQRTH = 7.071067811865475244008443621048490392848359E-1L;
135
136
137/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
138
139static long double
140neval (long double x, const long double *p, int n)
141{
142 long double y;
143
144 p += n;
145 y = *p--;
146 do
147 {
148 y = y * x + *p--;
149 }
150 while (--n > 0);
151 return y;
152}
153
154
155/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
156
157static long double
158deval (long double x, const long double *p, int n)
159{
160 long double y;
161
162 p += n;
163 y = x + *p--;
164 do
165 {
166 y = y * x + *p--;
167 }
168 while (--n > 0);
169 return y;
170}
171
172
173
174long double
175__ieee754_log2l (x)
176 long double x;
177{
178 long double z;
179 long double y;
180 int e;
181 int64_t hx, lx;
182
183/* Test for domain */
184 GET_LDOUBLE_WORDS64 (hx, lx, x);
185 if (((hx & 0x7fffffffffffffffLL) | (lx & 0x7fffffffffffffffLL)) == 0)
186 return (-1.0L / (x - x));
187 if (hx < 0)
188 return (x - x) / (x - x);
189 if (hx >= 0x7ff0000000000000LL)
190 return (x + x);
191
192/* separate mantissa from exponent */
193
194/* Note, frexp is used so that denormal numbers
195 * will be handled properly.
196 */
197 x = __frexpl (x, &e);
198
199
200/* logarithm using log(x) = z + z**3 P(z)/Q(z),
201 * where z = 2(x-1)/x+1)
202 */
203 if ((e > 2) || (e < -2))
204 {
205 if (x < SQRTH)
206 { /* 2( 2x-1 )/( 2x+1 ) */
207 e -= 1;
208 z = x - 0.5L;
209 y = 0.5L * z + 0.5L;
210 }
211 else
212 { /* 2 (x-1)/(x+1) */
213 z = x - 0.5L;
214 z -= 0.5L;
215 y = 0.5L * x + 0.5L;
216 }
217 x = z / y;
218 z = x * x;
219 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
220 goto done;
221 }
222
223
224/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
225
226 if (x < SQRTH)
227 {
228 e -= 1;
229 x = 2.0 * x - 1.0L; /* 2x - 1 */
230 }
231 else
232 {
233 x = x - 1.0L;
234 }
235 z = x * x;
236 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
237 y = y - 0.5 * z;
238
239done:
240
241/* Multiply log of fraction by log2(e)
242 * and base 2 exponent by 1
243 */
244 z = y * LOG2EA;
245 z += x * LOG2EA;
246 z += y;
247 z += x;
248 z += e;
249 return (z);
250}
0ac5ae23 251strong_alias (__ieee754_log2l, __log2l_finite)