]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/ieee754/ldbl-96/s_fmal.c
Define lll_futex_timed_wait_bitset for MIPS.
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-96 / s_fmal.c
CommitLineData
3e692e05 1/* Compute x * y + z as ternary operation.
4842e4fe 2 Copyright (C) 2010-2012 Free Software Foundation, Inc.
3e692e05
JJ
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
3e692e05
JJ
19
20#include <float.h>
21#include <math.h>
22#include <fenv.h>
23#include <ieee754.h>
4842e4fe 24#include <math_private.h>
ef82f4da 25#include <tininess.h>
3e692e05
JJ
26
27/* This implementation uses rounding to odd to avoid problems with
28 double rounding. See a paper by Boldo and Melquiond:
29 http://www.lri.fr/~melquion/doc/08-tc.pdf */
30
31long double
32__fmal (long double x, long double y, long double z)
33{
34 union ieee854_long_double u, v, w;
35 int adjust = 0;
36 u.d = x;
37 v.d = y;
38 w.d = z;
39 if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
40 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS
41 - LDBL_MANT_DIG, 0)
42 || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
43 || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
44 || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
45 || __builtin_expect (u.ieee.exponent + v.ieee.exponent
46 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0))
47 {
48 /* If z is Inf, but x and y are finite, the result should be
49 z rather than NaN. */
50 if (w.ieee.exponent == 0x7fff
51 && u.ieee.exponent != 0x7fff
52 && v.ieee.exponent != 0x7fff)
53 return (z + x) + y;
bec749fd
JM
54 /* If z is zero and x are y are nonzero, compute the result
55 as x * y to avoid the wrong sign of a zero result if x * y
56 underflows to 0. */
57 if (z == 0 && x != 0 && y != 0)
58 return x * y;
a0c2940d
JM
59 /* If x or y or z is Inf/NaN, or if x * y is zero, compute as
60 x * y + z. */
3e692e05
JJ
61 if (u.ieee.exponent == 0x7fff
62 || v.ieee.exponent == 0x7fff
63 || w.ieee.exponent == 0x7fff
473611b2
JM
64 || x == 0
65 || y == 0)
3e692e05 66 return x * y + z;
a0c2940d
JM
67 /* If fma will certainly overflow, compute as x * y. */
68 if (u.ieee.exponent + v.ieee.exponent
69 > 0x7fff + IEEE854_LONG_DOUBLE_BIAS)
70 return x * y;
473611b2
JM
71 /* If x * y is less than 1/4 of LDBL_DENORM_MIN, neither the
72 result nor whether there is underflow depends on its exact
73 value, only on its sign. */
74 if (u.ieee.exponent + v.ieee.exponent
75 < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2)
76 {
77 int neg = u.ieee.negative ^ v.ieee.negative;
78 long double tiny = neg ? -0x1p-16445L : 0x1p-16445L;
79 if (w.ieee.exponent >= 3)
80 return tiny + z;
81 /* Scaling up, adding TINY and scaling down produces the
82 correct result, because in round-to-nearest mode adding
83 TINY has no effect and in other modes double rounding is
84 harmless. But it may not produce required underflow
85 exceptions. */
86 v.d = z * 0x1p65L + tiny;
87 if (TININESS_AFTER_ROUNDING
88 ? v.ieee.exponent < 66
89 : (w.ieee.exponent == 0
90 || (w.ieee.exponent == 1
91 && w.ieee.negative != neg
92 && w.ieee.mantissa1 == 0
93 && w.ieee.mantissa0 == 0x80000000)))
94 {
95 volatile long double force_underflow = x * y;
96 (void) force_underflow;
97 }
98 return v.d * 0x1p-65L;
99 }
3e692e05
JJ
100 if (u.ieee.exponent + v.ieee.exponent
101 >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG)
102 {
103 /* Compute 1p-64 times smaller result and multiply
104 at the end. */
105 if (u.ieee.exponent > v.ieee.exponent)
106 u.ieee.exponent -= LDBL_MANT_DIG;
107 else
108 v.ieee.exponent -= LDBL_MANT_DIG;
109 /* If x + y exponent is very large and z exponent is very small,
110 it doesn't matter if we don't adjust it. */
111 if (w.ieee.exponent > LDBL_MANT_DIG)
112 w.ieee.exponent -= LDBL_MANT_DIG;
113 adjust = 1;
114 }
115 else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
116 {
117 /* Similarly.
118 If z exponent is very large and x and y exponents are
119 very small, it doesn't matter if we don't adjust it. */
120 if (u.ieee.exponent > v.ieee.exponent)
121 {
122 if (u.ieee.exponent > LDBL_MANT_DIG)
123 u.ieee.exponent -= LDBL_MANT_DIG;
124 }
125 else if (v.ieee.exponent > LDBL_MANT_DIG)
126 v.ieee.exponent -= LDBL_MANT_DIG;
127 w.ieee.exponent -= LDBL_MANT_DIG;
128 adjust = 1;
129 }
130 else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
131 {
132 u.ieee.exponent -= LDBL_MANT_DIG;
133 if (v.ieee.exponent)
134 v.ieee.exponent += LDBL_MANT_DIG;
135 else
136 v.d *= 0x1p64L;
137 }
138 else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
139 {
140 v.ieee.exponent -= LDBL_MANT_DIG;
141 if (u.ieee.exponent)
142 u.ieee.exponent += LDBL_MANT_DIG;
143 else
144 u.d *= 0x1p64L;
145 }
146 else /* if (u.ieee.exponent + v.ieee.exponent
147 <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */
148 {
149 if (u.ieee.exponent > v.ieee.exponent)
150 u.ieee.exponent += 2 * LDBL_MANT_DIG;
151 else
152 v.ieee.exponent += 2 * LDBL_MANT_DIG;
153 if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 4)
154 {
155 if (w.ieee.exponent)
156 w.ieee.exponent += 2 * LDBL_MANT_DIG;
157 else
158 w.d *= 0x1p128L;
159 adjust = -1;
160 }
161 /* Otherwise x * y should just affect inexact
162 and nothing else. */
163 }
164 x = u.d;
165 y = v.d;
166 z = w.d;
167 }
8ec5b013
JM
168
169 /* Ensure correct sign of exact 0 + 0. */
170 if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0))
171 return x * y + z;
172
5b5b04d6
JM
173 fenv_t env;
174 feholdexcept (&env);
175 fesetround (FE_TONEAREST);
176
3e692e05
JJ
177 /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
178#define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
179 long double x1 = x * C;
180 long double y1 = y * C;
181 long double m1 = x * y;
182 x1 = (x - x1) + x1;
183 y1 = (y - y1) + y1;
184 long double x2 = x - x1;
185 long double y2 = y - y1;
186 long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
187
188 /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
189 long double a1 = z + m1;
190 long double t1 = a1 - z;
191 long double t2 = a1 - t1;
192 t1 = m1 - t1;
193 t2 = z - t2;
194 long double a2 = t1 + t2;
5b5b04d6
JM
195 feclearexcept (FE_INEXACT);
196
197 /* If the result is an exact zero, ensure it has the correct
198 sign. */
199 if (a1 == 0 && m2 == 0)
200 {
201 feupdateenv (&env);
202 /* Ensure that round-to-nearest value of z + m1 is not
203 reused. */
204 asm volatile ("" : "=m" (z) : "m" (z));
205 return z + m1;
206 }
3e692e05 207
3e692e05
JJ
208 fesetround (FE_TOWARDZERO);
209 /* Perform m2 + a2 addition with round to odd. */
210 u.d = a2 + m2;
211
212 if (__builtin_expect (adjust == 0, 1))
213 {
214 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
215 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
216 feupdateenv (&env);
217 /* Result is a1 + u.d. */
218 return a1 + u.d;
219 }
220 else if (__builtin_expect (adjust > 0, 1))
221 {
222 if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
223 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
224 feupdateenv (&env);
225 /* Result is a1 + u.d, scaled up. */
226 return (a1 + u.d) * 0x1p64L;
227 }
228 else
229 {
230 if ((u.ieee.mantissa1 & 1) == 0)
231 u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
232 v.d = a1 + u.d;
4842e4fe
JM
233 /* Ensure the addition is not scheduled after fetestexcept call. */
234 math_force_eval (v.d);
3e692e05
JJ
235 int j = fetestexcept (FE_INEXACT) != 0;
236 feupdateenv (&env);
237 /* Ensure the following computations are performed in default rounding
238 mode instead of just reusing the round to zero computation. */
239 asm volatile ("" : "=m" (u) : "m" (u));
240 /* If a1 + u.d is exact, the only rounding happens during
241 scaling down. */
242 if (j == 0)
243 return v.d * 0x1p-128L;
244 /* If result rounded to zero is not subnormal, no double
245 rounding will occur. */
246 if (v.ieee.exponent > 128)
247 return (a1 + u.d) * 0x1p-128L;
248 /* If v.d * 0x1p-128L with round to zero is a subnormal above
249 or equal to LDBL_MIN / 2, then v.d * 0x1p-128L shifts mantissa
250 down just by 1 bit, which means v.ieee.mantissa1 |= j would
251 change the round bit, not sticky or guard bit.
252 v.d * 0x1p-128L never normalizes by shifting up,
253 so round bit plus sticky bit should be already enough
254 for proper rounding. */
255 if (v.ieee.exponent == 128)
256 {
ef82f4da
JM
257 /* If the exponent would be in the normal range when
258 rounding to normal precision with unbounded exponent
259 range, the exact result is known and spurious underflows
260 must be avoided on systems detecting tininess after
261 rounding. */
262 if (TININESS_AFTER_ROUNDING)
263 {
264 w.d = a1 + u.d;
265 if (w.ieee.exponent == 129)
266 return w.d * 0x1p-128L;
267 }
3e692e05
JJ
268 /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
269 v.ieee.mantissa1 & 1 is the round bit and j is our sticky
8627a232
JM
270 bit. */
271 w.d = 0.0L;
272 w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
273 w.ieee.negative = v.ieee.negative;
274 v.ieee.mantissa1 &= ~3U;
275 v.d *= 0x1p-128L;
276 w.d *= 0x1p-2L;
277 return v.d + w.d;
3e692e05
JJ
278 }
279 v.ieee.mantissa1 |= j;
280 return v.d * 0x1p-128L;
281 }
282}
283weak_alias (__fmal, fmal)