]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/powerpc/fpu/e_sqrt.c
Update copyright dates with scripts/update-copyrights.
[thirdparty/glibc.git] / sysdeps / powerpc / fpu / e_sqrt.c
CommitLineData
ffdd5e50 1/* Double-precision floating point square root.
688903eb 2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
ffdd5e50
UD
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
59ba27a6
PE
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
ffdd5e50
UD
18
19#include <math.h>
20#include <math_private.h>
21#include <fenv_libc.h>
22#include <inttypes.h>
e054f494 23#include <stdint.h>
ffdd5e50
UD
24#include <sysdep.h>
25#include <ldsodefs.h>
ffdd5e50 26
08cee2a4 27#ifndef _ARCH_PPCSQ
ffdd5e50
UD
28static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
29static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
30static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
31static const float two108 = 3.245185536584267269e+32;
32static const float twom54 = 5.551115123125782702e-17;
33extern const float __t_sqrt[1024];
34
35/* The method is based on a description in
36 Computation of elementary functions on the IBM RISC System/6000 processor,
37 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
868f7a40 38 Basically, it consists of two interleaved Newton-Raphson approximations,
ffdd5e50
UD
39 one to find the actual square root, and one to find its reciprocal
40 without the expense of a division operation. The tricky bit here
41 is the use of the POWER/PowerPC multiply-add operation to get the
42 required accuracy with high speed.
43
44 The argument reduction works by a combination of table lookup to
45 obtain the initial guesses, and some careful modification of the
46 generated guesses (which mostly runs on the integer unit, while the
868f7a40 47 Newton-Raphson is running on the FPU). */
ffdd5e50 48
ffdd5e50
UD
49double
50__slow_ieee754_sqrt (double x)
ffdd5e50
UD
51{
52 const float inf = a_inf.value;
53
54 if (x > 0)
55 {
56 /* schedule the EXTRACT_WORDS to get separation between the store
0ac5ae23 57 and the load. */
ffdd5e50
UD
58 ieee_double_shape_type ew_u;
59 ieee_double_shape_type iw_u;
60 ew_u.value = (x);
61 if (x != inf)
62 {
63 /* Variables named starting with 's' exist in the
64 argument-reduced space, so that 2 > sx >= 0.5,
65 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
66 Variables named ending with 'i' are integer versions of
67 floating-point values. */
68 double sx; /* The value of which we're trying to find the
69 square root. */
70 double sg, g; /* Guess of the square root of x. */
71 double sd, d; /* Difference between the square of the guess and x. */
72 double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
73 double sy2; /* 2*sy */
74 double e; /* Difference between y*g and 1/2 (se = e * fsy). */
75 double shx; /* == sx * fsg */
76 double fsg; /* sg*fsg == g. */
77 fenv_t fe; /* Saved floating-point environment (stores rounding
78 mode and whether the inexact exception is
79 enabled). */
80 uint32_t xi0, xi1, sxi, fsgi;
81 const float *t_sqrt;
82
83 fe = fegetenv_register ();
84 /* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
85 xi0 = ew_u.parts.msw;
86 xi1 = ew_u.parts.lsw;
87 relax_fenv_state ();
88 sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
89 /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
90 between the store and the load. */
91 iw_u.parts.msw = sxi;
92 iw_u.parts.lsw = xi1;
93 t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
94 sg = t_sqrt[0];
95 sy = t_sqrt[1];
96 /* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
97 sx = iw_u.value;
98
868f7a40 99 /* Here we have three Newton-Raphson iterations each of a
ffdd5e50
UD
100 division and a square root and the remainder of the
101 argument reduction, all interleaved. */
e8bd5286 102 sd = -__builtin_fma (sg, sg, -sx);
ffdd5e50
UD
103 fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
104 sy2 = sy + sy;
e8bd5286
JM
105 sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
106 sqrt(sx). */
ffdd5e50
UD
107
108 /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
109 between the store and the load. */
110 INSERT_WORDS (fsg, fsgi, 0);
111 iw_u.parts.msw = fsgi;
112 iw_u.parts.lsw = (0);
e8bd5286
JM
113 e = -__builtin_fma (sy, sg, -almost_half);
114 sd = -__builtin_fma (sg, sg, -sx);
ffdd5e50
UD
115 if ((xi0 & 0x7ff00000) == 0)
116 goto denorm;
e8bd5286
JM
117 sy = __builtin_fma (e, sy2, sy);
118 sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
119 sqrt(sx). */
ffdd5e50
UD
120 sy2 = sy + sy;
121 /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
122 fsg = iw_u.value;
e8bd5286
JM
123 e = -__builtin_fma (sy, sg, -almost_half);
124 sd = -__builtin_fma (sg, sg, -sx);
125 sy = __builtin_fma (e, sy2, sy);
ffdd5e50 126 shx = sx * fsg;
e8bd5286
JM
127 sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
128 sqrt(sx), but perhaps
129 rounded incorrectly. */
ffdd5e50
UD
130 sy2 = sy + sy;
131 g = sg * fsg;
e8bd5286
JM
132 e = -__builtin_fma (sy, sg, -almost_half);
133 d = -__builtin_fma (g, sg, -shx);
134 sy = __builtin_fma (e, sy2, sy);
ffdd5e50 135 fesetenv_register (fe);
e8bd5286 136 return __builtin_fma (sy, d, g);
ffdd5e50
UD
137 denorm:
138 /* For denormalised numbers, we normalise, calculate the
139 square root, and return an adjusted result. */
140 fesetenv_register (fe);
141 return __slow_ieee754_sqrt (x * two108) * twom54;
142 }
143 }
144 else if (x < 0)
145 {
146 /* For some reason, some PowerPC32 processors don't implement
0ac5ae23 147 FE_INVALID_SQRT. */
ffdd5e50 148#ifdef FE_INVALID_SQRT
0747f818 149 __feraiseexcept (FE_INVALID_SQRT);
c3a0ead4
UD
150
151 fenv_union_t u = { .fenv = fegetenv_register () };
4a28b3ca 152 if ((u.l & FE_INVALID) == 0)
ffdd5e50 153#endif
0747f818 154 __feraiseexcept (FE_INVALID);
ffdd5e50
UD
155 x = a_nan.value;
156 }
157 return f_wash (x);
158}
08cee2a4 159#endif /* _ARCH_PPCSQ */
ffdd5e50 160
8a6d5255 161#undef __ieee754_sqrt
ffdd5e50
UD
162double
163__ieee754_sqrt (double x)
ffdd5e50
UD
164{
165 double z;
166
08cee2a4
AZ
167#ifdef _ARCH_PPCSQ
168 asm ("fsqrt %0,%1\n" :"=f" (z):"f" (x));
169#else
170 z = __slow_ieee754_sqrt (x);
171#endif
ffdd5e50
UD
172
173 return z;
174}
0ac5ae23 175strong_alias (__ieee754_sqrt, __sqrt_finite)