]> git.ipfire.org Git - thirdparty/glibc.git/blame - sysdeps/unix/sysv/linux/ifaddrs.c
Update copyright dates with scripts/update-copyrights
[thirdparty/glibc.git] / sysdeps / unix / sysv / linux / ifaddrs.c
CommitLineData
e0c09a43 1/* getifaddrs -- get names and addresses of all network interfaces
6d7e8eda 2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
e0c09a43
UD
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
59ba27a6 16 License along with the GNU C Library; if not, see
5a82c748 17 <https://www.gnu.org/licenses/>. */
e0c09a43 18
c63d8f80 19#include <alloca.h>
e0c09a43
UD
20#include <assert.h>
21#include <errno.h>
22#include <ifaddrs.h>
23#include <net/if.h>
24#include <netinet/in.h>
25#include <netpacket/packet.h>
26#include <stdbool.h>
c63d8f80 27#include <stdint.h>
e0c09a43
UD
28#include <stdlib.h>
29#include <string.h>
30#include <sys/ioctl.h>
31#include <sys/socket.h>
32#include <sysdep.h>
33#include <time.h>
34#include <unistd.h>
35
f5164429 36#include "netlinkaccess.h"
e0c09a43 37
e0c09a43 38
c5671698
UD
39/* There is a problem with this type. The address length for
40 Infiniband sockets is much longer than the 8 bytes allocated in the
41 sockaddr_ll definition. Hence we use here a special
42 definition. */
43struct sockaddr_ll_max
44 {
45 unsigned short int sll_family;
46 unsigned short int sll_protocol;
47 int sll_ifindex;
48 unsigned short int sll_hatype;
49 unsigned char sll_pkttype;
50 unsigned char sll_halen;
51 unsigned char sll_addr[24];
52 };
53
54
e0c09a43
UD
55/* struct to hold the data for one ifaddrs entry, so we can allocate
56 everything at once. */
57struct ifaddrs_storage
58{
59 struct ifaddrs ifa;
60 union
61 {
62 /* Save space for the biggest of the four used sockaddr types and
63 avoid a lot of casts. */
64 struct sockaddr sa;
c5671698 65 struct sockaddr_ll_max sl;
e0c09a43
UD
66 struct sockaddr_in s4;
67 struct sockaddr_in6 s6;
68 } addr, netmask, broadaddr;
69 char name[IF_NAMESIZE + 1];
70};
71
72
f5164429
UD
73void
74__netlink_free_handle (struct netlink_handle *h)
e0c09a43
UD
75{
76 struct netlink_res *ptr;
77 int saved_errno = errno;
78
79 ptr = h->nlm_list;
80 while (ptr != NULL)
81 {
82 struct netlink_res *tmpptr;
83
e0c09a43
UD
84 tmpptr = ptr->next;
85 free (ptr);
86 ptr = tmpptr;
87 }
88
f5164429 89 __set_errno (saved_errno);
e0c09a43
UD
90}
91
92
c63d8f80 93static int
f5164429 94__netlink_sendreq (struct netlink_handle *h, int type)
e0c09a43 95{
429bb183 96 struct req
e0c09a43
UD
97 {
98 struct nlmsghdr nlh;
99 struct rtgenmsg g;
429bb183 100 char pad[0];
e0c09a43
UD
101 } req;
102 struct sockaddr_nl nladdr;
103
104 if (h->seq == 0)
f9a75540 105 h->seq = time_now ();
e0c09a43
UD
106
107 req.nlh.nlmsg_len = sizeof (req);
108 req.nlh.nlmsg_type = type;
109 req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
110 req.nlh.nlmsg_pid = 0;
111 req.nlh.nlmsg_seq = h->seq;
112 req.g.rtgen_family = AF_UNSPEC;
429bb183
UD
113 if (sizeof (req) != offsetof (struct req, pad))
114 memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
e0c09a43
UD
115
116 memset (&nladdr, '\0', sizeof (nladdr));
117 nladdr.nl_family = AF_NETLINK;
118
153da599
UD
119 return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
120 (struct sockaddr *) &nladdr,
121 sizeof (nladdr)));
e0c09a43
UD
122}
123
124
f5164429 125int
c63d8f80 126__netlink_request (struct netlink_handle *h, int type)
e0c09a43
UD
127{
128 struct netlink_res *nlm_next;
e0c09a43
UD
129 struct sockaddr_nl nladdr;
130 struct nlmsghdr *nlmh;
c63d8f80 131 ssize_t read_len;
e0c09a43 132 bool done = false;
c63d8f80 133
6cb988fa
UD
134#ifdef PAGE_SIZE
135 /* Help the compiler optimize out the malloc call if PAGE_SIZE
136 is constant and smaller or equal to PTHREAD_STACK_MIN/4. */
137 const size_t buf_size = PAGE_SIZE;
138#else
139 const size_t buf_size = __getpagesize ();
140#endif
141 bool use_malloc = false;
142 char *buf;
11bf311e 143
6cb988fa
UD
144 if (__libc_use_alloca (buf_size))
145 buf = alloca (buf_size);
c63d8f80
UD
146 else
147 {
6cb988fa 148 buf = malloc (buf_size);
c63d8f80
UD
149 if (buf != NULL)
150 use_malloc = true;
151 else
152 goto out_fail;
153 }
154
6cb988fa 155 struct iovec iov = { buf, buf_size };
c63d8f80 156
6cb988fa
UD
157 if (__netlink_sendreq (h, type) < 0)
158 goto out_fail;
e0c09a43
UD
159
160 while (! done)
161 {
162 struct msghdr msg =
163 {
af7f7c7e
AZ
164 .msg_name = (void *) &nladdr,
165 .msg_namelen = sizeof (nladdr),
166 .msg_iov = &iov,
167 .msg_iovlen = 1,
168 .msg_control = NULL,
169 .msg_controllen = 0,
170 .msg_flags = 0
e0c09a43
UD
171 };
172
153da599 173 read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
2eecc8af 174 __netlink_assert_response (h->fd, read_len);
e0c09a43 175 if (read_len < 0)
c63d8f80 176 goto out_fail;
e0c09a43 177
c63d8f80
UD
178 if (nladdr.nl_pid != 0)
179 continue;
e0c09a43 180
a1ffb40e 181 if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
6cb988fa 182 goto out_fail;
c63d8f80
UD
183
184 size_t count = 0;
185 size_t remaining_len = read_len;
e0c09a43 186 for (nlmh = (struct nlmsghdr *) buf;
c63d8f80
UD
187 NLMSG_OK (nlmh, remaining_len);
188 nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
e0c09a43 189 {
c63d8f80 190 if ((pid_t) nlmh->nlmsg_pid != h->pid
25ce4c6b 191 || nlmh->nlmsg_seq != h->seq)
e0c09a43
UD
192 continue;
193
c63d8f80 194 ++count;
e0c09a43
UD
195 if (nlmh->nlmsg_type == NLMSG_DONE)
196 {
5bdd77cb 197 /* We found the end, leave the loop. */
e0c09a43
UD
198 done = true;
199 break;
200 }
201 if (nlmh->nlmsg_type == NLMSG_ERROR)
202 {
203 struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
204 if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
205 errno = EIO;
206 else
207 errno = -nlerr->error;
c63d8f80 208 goto out_fail;
e0c09a43
UD
209 }
210 }
c63d8f80
UD
211
212 /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
213 there is no point to record it. */
214 if (count == 0)
215 continue;
216
217 nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
218 + read_len);
219 if (nlm_next == NULL)
220 goto out_fail;
221 nlm_next->next = NULL;
222 nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
223 nlm_next->size = read_len;
224 nlm_next->seq = h->seq;
225 if (h->nlm_list == NULL)
226 h->nlm_list = nlm_next;
227 else
228 h->end_ptr->next = nlm_next;
229 h->end_ptr = nlm_next;
e0c09a43 230 }
c63d8f80
UD
231
232 if (use_malloc)
233 free (buf);
e0c09a43 234 return 0;
c63d8f80
UD
235
236out_fail:
237 if (use_malloc)
238 free (buf);
239 return -1;
e0c09a43
UD
240}
241
242
f5164429
UD
243void
244__netlink_close (struct netlink_handle *h)
e0c09a43
UD
245{
246 /* Don't modify errno. */
bc2eb932 247 INTERNAL_SYSCALL_CALL (close, h->fd);
e0c09a43
UD
248}
249
250
251/* Open a NETLINK socket. */
f5164429
UD
252int
253__netlink_open (struct netlink_handle *h)
e0c09a43
UD
254{
255 struct sockaddr_nl nladdr;
256
2f83a729 257 h->fd = __socket (PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE);
e0c09a43 258 if (h->fd < 0)
f5164429 259 goto out;
e0c09a43
UD
260
261 memset (&nladdr, '\0', sizeof (nladdr));
262 nladdr.nl_family = AF_NETLINK;
153da599 263 if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
e0c09a43 264 {
332afd9e 265 close_and_out:
f5164429
UD
266 __netlink_close (h);
267 out:
e0c09a43
UD
268 return -1;
269 }
332afd9e
UD
270 /* Determine the ID the kernel assigned for this netlink connection.
271 It is not necessarily the PID if there is more than one socket
272 open. */
273 socklen_t addr_len = sizeof (nladdr);
274 if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
275 goto close_and_out;
276 h->pid = nladdr.nl_pid;
e0c09a43
UD
277 return 0;
278}
279
280
281/* We know the number of RTM_NEWLINK entries, so we reserve the first
282 # of entries for this type. All RTM_NEWADDR entries have an index
283 pointer to the RTM_NEWLINK entry. To find the entry, create
284 a table to map kernel index entries to our index numbers.
285 Since we get at first all RTM_NEWLINK entries, it can never happen
286 that a RTM_NEWADDR index is not known to this map. */
287static int
31dfab9e 288map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
e0c09a43
UD
289{
290 int i;
291
292 for (i = 0; i < max; i++)
293 {
294 if (map[i] == -1)
295 {
296 map[i] = index;
31dfab9e
UD
297 if (i > 0)
298 ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
e0c09a43
UD
299 return i;
300 }
301 else if (map[i] == index)
302 return i;
303 }
b8b14c4c 304
6f65e668 305 /* This means interfaces changed between the reading of the
b8b14c4c
UD
306 RTM_GETLINK and RTM_GETADDR information. We have to repeat
307 everything. */
308 return -1;
e0c09a43
UD
309}
310
311
312/* Create a linked list of `struct ifaddrs' structures, one for each
313 network interface on the host machine. If successful, store the
667712b8 314 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
b8b14c4c
UD
315static int
316getifaddrs_internal (struct ifaddrs **ifap)
e0c09a43
UD
317{
318 struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
319 struct netlink_res *nlp;
320 struct ifaddrs_storage *ifas;
321 unsigned int i, newlink, newaddr, newaddr_idx;
322 int *map_newlink_data;
323 size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
c63d8f80 324 char *ifa_data_ptr; /* Pointer to the unused part of memory for
e0c09a43 325 ifa_data. */
5bdd77cb 326 int result = 0;
e0c09a43 327
e7c8359e 328 *ifap = NULL;
e0c09a43 329
89b4b02f
JM
330 if (__netlink_open (&nh) < 0)
331 return -1;
e0c09a43 332
e0c09a43 333 /* Tell the kernel that we wish to get a list of all
c63d8f80
UD
334 active interfaces, collect all data for every interface. */
335 if (__netlink_request (&nh, RTM_GETLINK) < 0)
e0c09a43 336 {
5bdd77cb
UD
337 result = -1;
338 goto exit_free;
e0c09a43
UD
339 }
340
e0c09a43 341 /* Now ask the kernel for all addresses which are assigned
c63d8f80
UD
342 to an interface and collect all data for every interface.
343 Since we store the addresses after the interfaces in the
344 list, we will later always find the interface before the
345 corresponding addresses. */
e0c09a43 346 ++nh.seq;
c63d8f80 347 if (__netlink_request (&nh, RTM_GETADDR) < 0)
e0c09a43 348 {
5bdd77cb
UD
349 result = -1;
350 goto exit_free;
e0c09a43
UD
351 }
352
353 /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
354 enough memory. */
355 newlink = newaddr = 0;
356 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
357 {
358 struct nlmsghdr *nlh;
359 size_t size = nlp->size;
360
361 if (nlp->nlh == NULL)
362 continue;
363
364 /* Walk through all entries we got from the kernel and look, which
c63d8f80 365 message type they contain. */
e0c09a43
UD
366 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
367 {
f5164429 368 /* Check if the message is what we want. */
e0c09a43
UD
369 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
370 continue;
371
c1f86a33
DA
372 /* If the dump got interrupted, we can't rely on the results
373 so try again. */
374 if (nlh->nlmsg_flags & NLM_F_DUMP_INTR)
375 {
376 result = -EAGAIN;
377 goto exit_free;
378 }
379
e0c09a43
UD
380 if (nlh->nlmsg_type == NLMSG_DONE)
381 break; /* ok */
382
383 if (nlh->nlmsg_type == RTM_NEWLINK)
384 {
385 /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
386 know the size before creating the list to allocate enough
387 memory. */
388 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
389 struct rtattr *rta = IFLA_RTA (ifim);
390 size_t rtasize = IFLA_PAYLOAD (nlh);
391
392 while (RTA_OK (rta, rtasize))
393 {
394 size_t rta_payload = RTA_PAYLOAD (rta);
395
396 if (rta->rta_type == IFLA_STATS)
397 {
398 ifa_data_size += rta_payload;
399 break;
400 }
401 else
402 rta = RTA_NEXT (rta, rtasize);
403 }
404 ++newlink;
405 }
406 else if (nlh->nlmsg_type == RTM_NEWADDR)
407 ++newaddr;
408 }
409 }
410
411 /* Return if no interface is up. */
412 if ((newlink + newaddr) == 0)
5bdd77cb 413 goto exit_free;
e0c09a43 414
e0c09a43
UD
415 /* Allocate memory for all entries we have and initialize next
416 pointer. */
417 ifas = (struct ifaddrs_storage *) calloc (1,
418 (newlink + newaddr)
419 * sizeof (struct ifaddrs_storage)
420 + ifa_data_size);
421 if (ifas == NULL)
422 {
5bdd77cb
UD
423 result = -1;
424 goto exit_free;
e0c09a43
UD
425 }
426
31dfab9e
UD
427 /* Table for mapping kernel index to entry in our list. */
428 map_newlink_data = alloca (newlink * sizeof (int));
429 memset (map_newlink_data, '\xff', newlink * sizeof (int));
430
5bdd77cb 431 ifa_data_ptr = (char *) &ifas[newlink + newaddr];
e0c09a43
UD
432 newaddr_idx = 0; /* Counter for newaddr index. */
433
434 /* Walk through the list of data we got from the kernel. */
435 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
436 {
437 struct nlmsghdr *nlh;
438 size_t size = nlp->size;
439
440 if (nlp->nlh == NULL)
441 continue;
442
443 /* Walk through one message and look at the type: If it is our
444 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
445 the end or we find the end marker (in this case we ignore the
446 following data. */
447 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
448 {
449 int ifa_index = 0;
450
5bdd77cb 451 /* Check if the message is the one we want */
e0c09a43
UD
452 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
453 continue;
454
455 if (nlh->nlmsg_type == NLMSG_DONE)
456 break; /* ok */
5bdd77cb
UD
457
458 if (nlh->nlmsg_type == RTM_NEWLINK)
e0c09a43
UD
459 {
460 /* We found a new interface. Now extract everything from the
461 interface data we got and need. */
462 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
463 struct rtattr *rta = IFLA_RTA (ifim);
464 size_t rtasize = IFLA_PAYLOAD (nlh);
465
5bdd77cb 466 /* Interfaces are stored in the first "newlink" entries
e0c09a43
UD
467 of our list, starting in the order as we got from the
468 kernel. */
c63d8f80 469 ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
e0c09a43 470 map_newlink_data, newlink);
a1ffb40e 471 if (__glibc_unlikely (ifa_index == -1))
b8b14c4c
UD
472 {
473 try_again:
474 result = -EAGAIN;
475 free (ifas);
476 goto exit_free;
477 }
e0c09a43
UD
478 ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
479
480 while (RTA_OK (rta, rtasize))
481 {
482 char *rta_data = RTA_DATA (rta);
483 size_t rta_payload = RTA_PAYLOAD (rta);
484
485 switch (rta->rta_type)
486 {
487 case IFLA_ADDRESS:
31dfab9e
UD
488 if (rta_payload <= sizeof (ifas[ifa_index].addr))
489 {
490 ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
491 memcpy (ifas[ifa_index].addr.sl.sll_addr,
492 (char *) rta_data, rta_payload);
493 ifas[ifa_index].addr.sl.sll_halen = rta_payload;
494 ifas[ifa_index].addr.sl.sll_ifindex
495 = ifim->ifi_index;
496 ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
497
498 ifas[ifa_index].ifa.ifa_addr
499 = &ifas[ifa_index].addr.sa;
500 }
e0c09a43
UD
501 break;
502
503 case IFLA_BROADCAST:
31dfab9e
UD
504 if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
505 {
506 ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
507 memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
508 (char *) rta_data, rta_payload);
509 ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
510 ifas[ifa_index].broadaddr.sl.sll_ifindex
511 = ifim->ifi_index;
512 ifas[ifa_index].broadaddr.sl.sll_hatype
513 = ifim->ifi_type;
e0c09a43 514
31dfab9e
UD
515 ifas[ifa_index].ifa.ifa_broadaddr
516 = &ifas[ifa_index].broadaddr.sa;
517 }
e0c09a43
UD
518 break;
519
520 case IFLA_IFNAME: /* Name of Interface */
521 if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
522 {
523 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
31dfab9e
UD
524 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
525 rta_payload) = '\0';
e0c09a43
UD
526 }
527 break;
528
529 case IFLA_STATS: /* Statistics of Interface */
530 ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
531 ifa_data_ptr += rta_payload;
532 memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
533 rta_payload);
534 break;
535
536 case IFLA_UNSPEC:
537 break;
538 case IFLA_MTU:
539 break;
540 case IFLA_LINK:
541 break;
542 case IFLA_QDISC:
543 break;
544 default:
545 break;
546 }
547
548 rta = RTA_NEXT (rta, rtasize);
549 }
550 }
551 else if (nlh->nlmsg_type == RTM_NEWADDR)
552 {
553 struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
554 struct rtattr *rta = IFA_RTA (ifam);
555 size_t rtasize = IFA_PAYLOAD (nlh);
556
557 /* New Addresses are stored in the order we got them from
31dfab9e 558 the kernel after the interfaces. Theoretically it is possible
e0c09a43
UD
559 that we have holes in the interface part of the list,
560 but we always have already the interface for this address. */
561 ifa_index = newlink + newaddr_idx;
b8b14c4c
UD
562 int idx = map_newlink (ifam->ifa_index - 1, ifas,
563 map_newlink_data, newlink);
a1ffb40e 564 if (__glibc_unlikely (idx == -1))
b8b14c4c
UD
565 goto try_again;
566 ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
31dfab9e
UD
567 if (ifa_index > 0)
568 ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
e0c09a43
UD
569 ++newaddr_idx;
570
571 while (RTA_OK (rta, rtasize))
572 {
573 char *rta_data = RTA_DATA (rta);
574 size_t rta_payload = RTA_PAYLOAD (rta);
575
576 switch (rta->rta_type)
577 {
578 case IFA_ADDRESS:
579 {
580 struct sockaddr *sa;
581
582 if (ifas[ifa_index].ifa.ifa_addr != NULL)
583 {
584 /* In a point-to-poing network IFA_ADDRESS
585 contains the destination address, local
586 address is supplied in IFA_LOCAL attribute.
587 destination address and broadcast address
588 are stored in an union, so it doesn't matter
589 which name we use. */
590 ifas[ifa_index].ifa.ifa_broadaddr
591 = &ifas[ifa_index].broadaddr.sa;
592 sa = &ifas[ifa_index].broadaddr.sa;
593 }
594 else
595 {
596 ifas[ifa_index].ifa.ifa_addr
597 = &ifas[ifa_index].addr.sa;
598 sa = &ifas[ifa_index].addr.sa;
599 }
600
601 sa->sa_family = ifam->ifa_family;
602
603 switch (ifam->ifa_family)
604 {
605 case AF_INET:
31dfab9e
UD
606 /* Size must match that of an address for IPv4. */
607 if (rta_payload == 4)
608 memcpy (&((struct sockaddr_in *) sa)->sin_addr,
609 rta_data, rta_payload);
e0c09a43
UD
610 break;
611
612 case AF_INET6:
31dfab9e
UD
613 /* Size must match that of an address for IPv6. */
614 if (rta_payload == 16)
615 {
616 memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
617 rta_data, rta_payload);
618 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
619 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
620 ((struct sockaddr_in6 *) sa)->sin6_scope_id
5d79df57 621 = ifam->ifa_index;
31dfab9e 622 }
e0c09a43
UD
623 break;
624
625 default:
31dfab9e
UD
626 if (rta_payload <= sizeof (ifas[ifa_index].addr))
627 memcpy (sa->sa_data, rta_data, rta_payload);
e0c09a43
UD
628 break;
629 }
630 }
631 break;
632
633 case IFA_LOCAL:
634 if (ifas[ifa_index].ifa.ifa_addr != NULL)
635 {
636 /* If ifa_addr is set and we get IFA_LOCAL,
637 assume we have a point-to-point network.
638 Move address to correct field. */
639 ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
640 ifas[ifa_index].ifa.ifa_broadaddr
641 = &ifas[ifa_index].broadaddr.sa;
642 memset (&ifas[ifa_index].addr, '\0',
643 sizeof (ifas[ifa_index].addr));
644 }
645
646 ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
647 ifas[ifa_index].ifa.ifa_addr->sa_family
648 = ifam->ifa_family;
649
650 switch (ifam->ifa_family)
651 {
652 case AF_INET:
31dfab9e
UD
653 /* Size must match that of an address for IPv4. */
654 if (rta_payload == 4)
655 memcpy (&ifas[ifa_index].addr.s4.sin_addr,
e0c09a43
UD
656 rta_data, rta_payload);
657 break;
658
659 case AF_INET6:
31dfab9e
UD
660 /* Size must match that of an address for IPv6. */
661 if (rta_payload == 16)
662 {
663 memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
664 rta_data, rta_payload);
b4ae56bd
UD
665 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
666 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
31dfab9e 667 ifas[ifa_index].addr.s6.sin6_scope_id =
5d79df57 668 ifam->ifa_index;
31dfab9e 669 }
e0c09a43
UD
670 break;
671
672 default:
31dfab9e
UD
673 if (rta_payload <= sizeof (ifas[ifa_index].addr))
674 memcpy (ifas[ifa_index].addr.sa.sa_data,
675 rta_data, rta_payload);
e0c09a43
UD
676 break;
677 }
678 break;
679
680 case IFA_BROADCAST:
681 /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
682 if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
683 memset (&ifas[ifa_index].broadaddr, '\0',
684 sizeof (ifas[ifa_index].broadaddr));
685
686 ifas[ifa_index].ifa.ifa_broadaddr
687 = &ifas[ifa_index].broadaddr.sa;
688 ifas[ifa_index].ifa.ifa_broadaddr->sa_family
689 = ifam->ifa_family;
690
691 switch (ifam->ifa_family)
692 {
693 case AF_INET:
31dfab9e
UD
694 /* Size must match that of an address for IPv4. */
695 if (rta_payload == 4)
696 memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
697 rta_data, rta_payload);
e0c09a43
UD
698 break;
699
700 case AF_INET6:
31dfab9e
UD
701 /* Size must match that of an address for IPv6. */
702 if (rta_payload == 16)
703 {
704 memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
705 rta_data, rta_payload);
706 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
707 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
708 ifas[ifa_index].broadaddr.s6.sin6_scope_id
5d79df57 709 = ifam->ifa_index;
31dfab9e 710 }
e0c09a43
UD
711 break;
712
713 default:
31dfab9e
UD
714 if (rta_payload <= sizeof (ifas[ifa_index].addr))
715 memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
716 rta_data, rta_payload);
e0c09a43
UD
717 break;
718 }
719 break;
720
721 case IFA_LABEL:
722 if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
723 {
724 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
31dfab9e
UD
725 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
726 rta_payload) = '\0';
e0c09a43
UD
727 }
728 else
729 abort ();
730 break;
731
732 case IFA_UNSPEC:
733 break;
734 case IFA_CACHEINFO:
735 break;
736 default:
737 break;
738 }
739
740 rta = RTA_NEXT (rta, rtasize);
741 }
742
743 /* If we didn't get the interface name with the
744 address, use the name from the interface entry. */
745 if (ifas[ifa_index].ifa.ifa_name == NULL)
b8b14c4c
UD
746 {
747 int idx = map_newlink (ifam->ifa_index - 1, ifas,
748 map_newlink_data, newlink);
a1ffb40e 749 if (__glibc_unlikely (idx == -1))
b8b14c4c
UD
750 goto try_again;
751 ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
752 }
e0c09a43
UD
753
754 /* Calculate the netmask. */
755 if (ifas[ifa_index].ifa.ifa_addr
756 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
757 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
758 {
759 uint32_t max_prefixlen = 0;
760 char *cp = NULL;
761
762 ifas[ifa_index].ifa.ifa_netmask
763 = &ifas[ifa_index].netmask.sa;
764
765 switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
766 {
767 case AF_INET:
768 cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
769 max_prefixlen = 32;
770 break;
771
772 case AF_INET6:
773 cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
774 max_prefixlen = 128;
775 break;
776 }
777
778 ifas[ifa_index].ifa.ifa_netmask->sa_family
779 = ifas[ifa_index].ifa.ifa_addr->sa_family;
780
781 if (cp != NULL)
782 {
e0c09a43
UD
783 unsigned int preflen;
784
a7b87268 785 if (ifam->ifa_prefixlen > max_prefixlen)
e0c09a43
UD
786 preflen = max_prefixlen;
787 else
788 preflen = ifam->ifa_prefixlen;
789
a7b87268 790 for (i = 0; i < preflen / 8; i++)
e0c09a43 791 *cp++ = 0xff;
a7b87268
AS
792 if (preflen % 8)
793 *cp = 0xff << (8 - preflen % 8);
e0c09a43
UD
794 }
795 }
796 }
797 }
798 }
799
31dfab9e
UD
800 assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
801
802 if (newaddr_idx > 0)
803 {
804 for (i = 0; i < newlink; ++i)
805 if (map_newlink_data[i] == -1)
806 {
807 /* We have fewer links then we anticipated. Adjust the
808 forward pointer to the first address entry. */
809 ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
810 }
811
812 if (i == 0 && newlink > 0)
813 /* No valid link, but we allocated memory. We have to
814 populate the first entry. */
815 memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
816 }
817
e7c8359e 818 *ifap = &ifas[0].ifa;
5bdd77cb
UD
819
820 exit_free:
f5164429 821 __netlink_free_handle (&nh);
f5164429 822 __netlink_close (&nh);
e0c09a43 823
5bdd77cb 824 return result;
e0c09a43 825}
b8b14c4c
UD
826
827
828/* Create a linked list of `struct ifaddrs' structures, one for each
829 network interface on the host machine. If successful, store the
830 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
831int
7f994279 832__getifaddrs (struct ifaddrs **ifap)
b8b14c4c
UD
833{
834 int res;
835
836 do
837 res = getifaddrs_internal (ifap);
838 while (res == -EAGAIN);
839
840 return res;
841}
7f994279 842weak_alias (__getifaddrs, getifaddrs)
7edd0691 843libc_hidden_def (__getifaddrs)
7f994279 844libc_hidden_weak (getifaddrs)
e0c09a43
UD
845
846
e0c09a43 847void
7f994279 848__freeifaddrs (struct ifaddrs *ifa)
e0c09a43
UD
849{
850 free (ifa);
851}
7f994279 852weak_alias (__freeifaddrs, freeifaddrs)
7edd0691 853libc_hidden_def (__freeifaddrs)
7f994279 854libc_hidden_weak (freeifaddrs)