]> git.ipfire.org Git - thirdparty/gcc.git/blame - zlib/crc32.c
[ARC] Emit blockage regardless to avoid delay slot scheduling.
[thirdparty/gcc.git] / zlib / crc32.c
CommitLineData
d8b6dda4 1/* crc32.c -- compute the CRC-32 of a data stream
1e5dce21 2 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
87a2b23a 3 * For conditions of distribution and use, see copyright notice in zlib.h
4 *
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7 * tables for updating the shift register in one step with three exclusive-ors
d919a5db 8 * instead of four steps with four exclusive-ors. This results in about a
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
d8b6dda4 10 */
11
8c16c8c7 12/* @(#) $Id: crc32.c,v 1.1.1.2 2002/03/11 21:53:23 tromey Exp $ */
d8b6dda4 13
d919a5db 14/*
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16 protection on the static variables used to control the first-use generation
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18 first call get_crc_table() to initialize the tables before allowing more than
19 one thread to use crc32().
75e1829f 20
21 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
d919a5db 22 */
23
87a2b23a 24#ifdef MAKECRCH
25# include <stdio.h>
26# ifndef DYNAMIC_CRC_TABLE
27# define DYNAMIC_CRC_TABLE
28# endif /* !DYNAMIC_CRC_TABLE */
29#endif /* MAKECRCH */
30
31#include "zutil.h" /* for STDC and FAR definitions */
d8b6dda4 32
87a2b23a 33/* Definitions for doing the crc four data bytes at a time. */
75e1829f 34#if !defined(NOBYFOUR) && defined(Z_U4)
35# define BYFOUR
36#endif
87a2b23a 37#ifdef BYFOUR
87a2b23a 38 local unsigned long crc32_little OF((unsigned long,
1e5dce21 39 const unsigned char FAR *, z_size_t));
87a2b23a 40 local unsigned long crc32_big OF((unsigned long,
1e5dce21 41 const unsigned char FAR *, z_size_t));
87a2b23a 42# define TBLS 8
43#else
44# define TBLS 1
45#endif /* BYFOUR */
46
d919a5db 47/* Local functions for crc concatenation */
48local unsigned long gf2_matrix_times OF((unsigned long *mat,
49 unsigned long vec));
50local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
75e1829f 51local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
1f54c5b6 52
d919a5db 53
d8b6dda4 54#ifdef DYNAMIC_CRC_TABLE
55
d919a5db 56local volatile int crc_table_empty = 1;
75e1829f 57local z_crc_t FAR crc_table[TBLS][256];
d8b6dda4 58local void make_crc_table OF((void));
87a2b23a 59#ifdef MAKECRCH
75e1829f 60 local void write_table OF((FILE *, const z_crc_t FAR *));
87a2b23a 61#endif /* MAKECRCH */
d8b6dda4 62/*
87a2b23a 63 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
d8b6dda4 64 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
65
66 Polynomials over GF(2) are represented in binary, one bit per coefficient,
67 with the lowest powers in the most significant bit. Then adding polynomials
68 is just exclusive-or, and multiplying a polynomial by x is a right shift by
69 one. If we call the above polynomial p, and represent a byte as the
70 polynomial q, also with the lowest power in the most significant bit (so the
71 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
72 where a mod b means the remainder after dividing a by b.
73
74 This calculation is done using the shift-register method of multiplying and
75 taking the remainder. The register is initialized to zero, and for each
76 incoming bit, x^32 is added mod p to the register if the bit is a one (where
77 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
78 x (which is shifting right by one and adding x^32 mod p if the bit shifted
79 out is a one). We start with the highest power (least significant bit) of
80 q and repeat for all eight bits of q.
81
87a2b23a 82 The first table is simply the CRC of all possible eight bit values. This is
83 all the information needed to generate CRCs on data a byte at a time for all
84 combinations of CRC register values and incoming bytes. The remaining tables
85 allow for word-at-a-time CRC calculation for both big-endian and little-
86 endian machines, where a word is four bytes.
d8b6dda4 87*/
88local void make_crc_table()
89{
75e1829f 90 z_crc_t c;
87a2b23a 91 int n, k;
75e1829f 92 z_crc_t poly; /* polynomial exclusive-or pattern */
87a2b23a 93 /* terms of polynomial defining this crc (except x^32): */
d919a5db 94 static volatile int first = 1; /* flag to limit concurrent making */
87a2b23a 95 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
96
d919a5db 97 /* See if another task is already doing this (not thread-safe, but better
98 than nothing -- significantly reduces duration of vulnerability in
99 case the advice about DYNAMIC_CRC_TABLE is ignored) */
100 if (first) {
101 first = 0;
102
103 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
75e1829f 104 poly = 0;
105 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
106 poly |= (z_crc_t)1 << (31 - p[n]);
d919a5db 107
108 /* generate a crc for every 8-bit value */
109 for (n = 0; n < 256; n++) {
75e1829f 110 c = (z_crc_t)n;
d919a5db 111 for (k = 0; k < 8; k++)
112 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
113 crc_table[0][n] = c;
114 }
87a2b23a 115
116#ifdef BYFOUR
d919a5db 117 /* generate crc for each value followed by one, two, and three zeros,
118 and then the byte reversal of those as well as the first table */
119 for (n = 0; n < 256; n++) {
120 c = crc_table[0][n];
75e1829f 121 crc_table[4][n] = ZSWAP32(c);
d919a5db 122 for (k = 1; k < 4; k++) {
123 c = crc_table[0][c & 0xff] ^ (c >> 8);
124 crc_table[k][n] = c;
75e1829f 125 crc_table[k + 4][n] = ZSWAP32(c);
d919a5db 126 }
87a2b23a 127 }
87a2b23a 128#endif /* BYFOUR */
129
d919a5db 130 crc_table_empty = 0;
131 }
132 else { /* not first */
133 /* wait for the other guy to finish (not efficient, but rare) */
134 while (crc_table_empty)
135 ;
136 }
87a2b23a 137
138#ifdef MAKECRCH
139 /* write out CRC tables to crc32.h */
140 {
141 FILE *out;
142
143 out = fopen("crc32.h", "w");
144 if (out == NULL) return;
145 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
146 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
75e1829f 147 fprintf(out, "local const z_crc_t FAR ");
87a2b23a 148 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
149 write_table(out, crc_table[0]);
150# ifdef BYFOUR
151 fprintf(out, "#ifdef BYFOUR\n");
152 for (k = 1; k < 8; k++) {
153 fprintf(out, " },\n {\n");
154 write_table(out, crc_table[k]);
155 }
156 fprintf(out, "#endif\n");
157# endif /* BYFOUR */
158 fprintf(out, " }\n};\n");
159 fclose(out);
160 }
161#endif /* MAKECRCH */
d8b6dda4 162}
87a2b23a 163
164#ifdef MAKECRCH
165local void write_table(out, table)
166 FILE *out;
75e1829f 167 const z_crc_t FAR *table;
87a2b23a 168{
169 int n;
170
171 for (n = 0; n < 256; n++)
75e1829f 172 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
173 (unsigned long)(table[n]),
87a2b23a 174 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
175}
176#endif /* MAKECRCH */
177
178#else /* !DYNAMIC_CRC_TABLE */
d8b6dda4 179/* ========================================================================
87a2b23a 180 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
d8b6dda4 181 */
87a2b23a 182#include "crc32.h"
183#endif /* DYNAMIC_CRC_TABLE */
d8b6dda4 184
185/* =========================================================================
186 * This function can be used by asm versions of crc32()
187 */
75e1829f 188const z_crc_t FAR * ZEXPORT get_crc_table()
d8b6dda4 189{
190#ifdef DYNAMIC_CRC_TABLE
d919a5db 191 if (crc_table_empty)
192 make_crc_table();
87a2b23a 193#endif /* DYNAMIC_CRC_TABLE */
75e1829f 194 return (const z_crc_t FAR *)crc_table;
d8b6dda4 195}
196
197/* ========================================================================= */
87a2b23a 198#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
199#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
d8b6dda4 200
201/* ========================================================================= */
1e5dce21 202unsigned long ZEXPORT crc32_z(crc, buf, len)
87a2b23a 203 unsigned long crc;
204 const unsigned char FAR *buf;
1e5dce21 205 z_size_t len;
d8b6dda4 206{
87a2b23a 207 if (buf == Z_NULL) return 0UL;
208
d8b6dda4 209#ifdef DYNAMIC_CRC_TABLE
210 if (crc_table_empty)
87a2b23a 211 make_crc_table();
212#endif /* DYNAMIC_CRC_TABLE */
213
214#ifdef BYFOUR
215 if (sizeof(void *) == sizeof(ptrdiff_t)) {
75e1829f 216 z_crc_t endian;
87a2b23a 217
218 endian = 1;
219 if (*((unsigned char *)(&endian)))
220 return crc32_little(crc, buf, len);
221 else
222 return crc32_big(crc, buf, len);
223 }
224#endif /* BYFOUR */
225 crc = crc ^ 0xffffffffUL;
226 while (len >= 8) {
227 DO8;
228 len -= 8;
d8b6dda4 229 }
230 if (len) do {
87a2b23a 231 DO1;
d8b6dda4 232 } while (--len);
87a2b23a 233 return crc ^ 0xffffffffUL;
d8b6dda4 234}
87a2b23a 235
1e5dce21 236/* ========================================================================= */
237unsigned long ZEXPORT crc32(crc, buf, len)
238 unsigned long crc;
239 const unsigned char FAR *buf;
240 uInt len;
241{
242 return crc32_z(crc, buf, len);
243}
244
87a2b23a 245#ifdef BYFOUR
246
1e5dce21 247/*
248 This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
249 integer pointer type. This violates the strict aliasing rule, where a
250 compiler can assume, for optimization purposes, that two pointers to
251 fundamentally different types won't ever point to the same memory. This can
252 manifest as a problem only if one of the pointers is written to. This code
253 only reads from those pointers. So long as this code remains isolated in
254 this compilation unit, there won't be a problem. For this reason, this code
255 should not be copied and pasted into a compilation unit in which other code
256 writes to the buffer that is passed to these routines.
257 */
258
87a2b23a 259/* ========================================================================= */
260#define DOLIT4 c ^= *buf4++; \
261 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
262 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
263#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
264
265/* ========================================================================= */
266local unsigned long crc32_little(crc, buf, len)
267 unsigned long crc;
268 const unsigned char FAR *buf;
1e5dce21 269 z_size_t len;
87a2b23a 270{
75e1829f 271 register z_crc_t c;
272 register const z_crc_t FAR *buf4;
87a2b23a 273
75e1829f 274 c = (z_crc_t)crc;
87a2b23a 275 c = ~c;
276 while (len && ((ptrdiff_t)buf & 3)) {
277 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
278 len--;
279 }
280
75e1829f 281 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
87a2b23a 282 while (len >= 32) {
283 DOLIT32;
284 len -= 32;
285 }
286 while (len >= 4) {
287 DOLIT4;
288 len -= 4;
289 }
290 buf = (const unsigned char FAR *)buf4;
291
292 if (len) do {
293 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
294 } while (--len);
295 c = ~c;
296 return (unsigned long)c;
297}
298
299/* ========================================================================= */
1e5dce21 300#define DOBIG4 c ^= *buf4++; \
87a2b23a 301 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
302 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
303#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
304
305/* ========================================================================= */
306local unsigned long crc32_big(crc, buf, len)
307 unsigned long crc;
308 const unsigned char FAR *buf;
1e5dce21 309 z_size_t len;
87a2b23a 310{
75e1829f 311 register z_crc_t c;
312 register const z_crc_t FAR *buf4;
87a2b23a 313
75e1829f 314 c = ZSWAP32((z_crc_t)crc);
87a2b23a 315 c = ~c;
316 while (len && ((ptrdiff_t)buf & 3)) {
317 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
318 len--;
319 }
320
75e1829f 321 buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
87a2b23a 322 while (len >= 32) {
323 DOBIG32;
324 len -= 32;
325 }
326 while (len >= 4) {
327 DOBIG4;
328 len -= 4;
329 }
87a2b23a 330 buf = (const unsigned char FAR *)buf4;
331
332 if (len) do {
333 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
334 } while (--len);
335 c = ~c;
75e1829f 336 return (unsigned long)(ZSWAP32(c));
87a2b23a 337}
338
339#endif /* BYFOUR */
d919a5db 340
341#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
342
343/* ========================================================================= */
344local unsigned long gf2_matrix_times(mat, vec)
345 unsigned long *mat;
346 unsigned long vec;
347{
348 unsigned long sum;
349
350 sum = 0;
351 while (vec) {
352 if (vec & 1)
353 sum ^= *mat;
354 vec >>= 1;
355 mat++;
356 }
357 return sum;
358}
359
360/* ========================================================================= */
361local void gf2_matrix_square(square, mat)
362 unsigned long *square;
363 unsigned long *mat;
364{
365 int n;
366
367 for (n = 0; n < GF2_DIM; n++)
368 square[n] = gf2_matrix_times(mat, mat[n]);
369}
370
371/* ========================================================================= */
1f54c5b6 372local uLong crc32_combine_(crc1, crc2, len2)
d919a5db 373 uLong crc1;
374 uLong crc2;
1f54c5b6 375 z_off64_t len2;
d919a5db 376{
377 int n;
378 unsigned long row;
379 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
380 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
381
1f54c5b6 382 /* degenerate case (also disallow negative lengths) */
383 if (len2 <= 0)
d919a5db 384 return crc1;
385
386 /* put operator for one zero bit in odd */
1f54c5b6 387 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
d919a5db 388 row = 1;
389 for (n = 1; n < GF2_DIM; n++) {
390 odd[n] = row;
391 row <<= 1;
392 }
393
394 /* put operator for two zero bits in even */
395 gf2_matrix_square(even, odd);
396
397 /* put operator for four zero bits in odd */
398 gf2_matrix_square(odd, even);
399
400 /* apply len2 zeros to crc1 (first square will put the operator for one
401 zero byte, eight zero bits, in even) */
402 do {
403 /* apply zeros operator for this bit of len2 */
404 gf2_matrix_square(even, odd);
405 if (len2 & 1)
406 crc1 = gf2_matrix_times(even, crc1);
407 len2 >>= 1;
408
409 /* if no more bits set, then done */
410 if (len2 == 0)
411 break;
412
413 /* another iteration of the loop with odd and even swapped */
414 gf2_matrix_square(odd, even);
415 if (len2 & 1)
416 crc1 = gf2_matrix_times(odd, crc1);
417 len2 >>= 1;
418
419 /* if no more bits set, then done */
420 } while (len2 != 0);
421
422 /* return combined crc */
423 crc1 ^= crc2;
424 return crc1;
425}
1f54c5b6 426
427/* ========================================================================= */
428uLong ZEXPORT crc32_combine(crc1, crc2, len2)
429 uLong crc1;
430 uLong crc2;
431 z_off_t len2;
432{
433 return crc32_combine_(crc1, crc2, len2);
434}
435
436uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
437 uLong crc1;
438 uLong crc2;
439 z_off64_t len2;
440{
441 return crc32_combine_(crc1, crc2, len2);
442}