]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. | |
3 | * | |
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use | |
5 | * this file except in compliance with the License. You can obtain a copy | |
6 | * in the file LICENSE in the source distribution or at | |
7 | * https://www.openssl.org/source/license.html | |
8 | */ | |
9 | ||
10 | /* | |
11 | * RSA low level APIs are deprecated for public use, but still ok for | |
12 | * internal use. | |
13 | */ | |
14 | #include "internal/deprecated.h" | |
15 | ||
16 | #include <openssl/crypto.h> | |
17 | #include <openssl/core_names.h> | |
18 | #ifndef FIPS_MODULE | |
19 | # include <openssl/engine.h> | |
20 | #endif | |
21 | #include <openssl/evp.h> | |
22 | #include <openssl/param_build.h> | |
23 | #include "internal/cryptlib.h" | |
24 | #include "internal/refcount.h" | |
25 | #include "crypto/bn.h" | |
26 | #include "crypto/evp.h" | |
27 | #include "crypto/rsa.h" | |
28 | #include "crypto/sparse_array.h" | |
29 | #include "crypto/security_bits.h" | |
30 | #include "rsa_local.h" | |
31 | ||
32 | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx); | |
33 | ||
34 | #ifndef FIPS_MODULE | |
35 | RSA *RSA_new(void) | |
36 | { | |
37 | return rsa_new_intern(NULL, NULL); | |
38 | } | |
39 | ||
40 | const RSA_METHOD *RSA_get_method(const RSA *rsa) | |
41 | { | |
42 | return rsa->meth; | |
43 | } | |
44 | ||
45 | int RSA_set_method(RSA *rsa, const RSA_METHOD *meth) | |
46 | { | |
47 | /* | |
48 | * NB: The caller is specifically setting a method, so it's not up to us | |
49 | * to deal with which ENGINE it comes from. | |
50 | */ | |
51 | const RSA_METHOD *mtmp; | |
52 | mtmp = rsa->meth; | |
53 | if (mtmp->finish) | |
54 | mtmp->finish(rsa); | |
55 | #ifndef OPENSSL_NO_ENGINE | |
56 | ENGINE_finish(rsa->engine); | |
57 | rsa->engine = NULL; | |
58 | #endif | |
59 | rsa->meth = meth; | |
60 | if (meth->init) | |
61 | meth->init(rsa); | |
62 | return 1; | |
63 | } | |
64 | ||
65 | RSA *RSA_new_method(ENGINE *engine) | |
66 | { | |
67 | return rsa_new_intern(engine, NULL); | |
68 | } | |
69 | #endif | |
70 | ||
71 | RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx) | |
72 | { | |
73 | return rsa_new_intern(NULL, libctx); | |
74 | } | |
75 | ||
76 | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx) | |
77 | { | |
78 | RSA *ret = OPENSSL_zalloc(sizeof(*ret)); | |
79 | ||
80 | if (ret == NULL) | |
81 | return NULL; | |
82 | ||
83 | ret->lock = CRYPTO_THREAD_lock_new(); | |
84 | if (ret->lock == NULL) { | |
85 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); | |
86 | OPENSSL_free(ret); | |
87 | return NULL; | |
88 | } | |
89 | ||
90 | if (!CRYPTO_NEW_REF(&ret->references, 1)) { | |
91 | CRYPTO_THREAD_lock_free(ret->lock); | |
92 | OPENSSL_free(ret); | |
93 | return NULL; | |
94 | } | |
95 | ||
96 | ret->blindings_sa = ossl_rsa_alloc_blinding(); | |
97 | if (ret->blindings_sa == NULL) | |
98 | goto err; | |
99 | ||
100 | ret->libctx = libctx; | |
101 | ret->meth = RSA_get_default_method(); | |
102 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) | |
103 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; | |
104 | if (engine) { | |
105 | if (!ENGINE_init(engine)) { | |
106 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); | |
107 | goto err; | |
108 | } | |
109 | ret->engine = engine; | |
110 | } else { | |
111 | ret->engine = ENGINE_get_default_RSA(); | |
112 | } | |
113 | if (ret->engine) { | |
114 | ret->meth = ENGINE_get_RSA(ret->engine); | |
115 | if (ret->meth == NULL) { | |
116 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB); | |
117 | goto err; | |
118 | } | |
119 | } | |
120 | #endif | |
121 | ||
122 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW; | |
123 | #ifndef FIPS_MODULE | |
124 | if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) { | |
125 | goto err; | |
126 | } | |
127 | #endif | |
128 | ||
129 | if ((ret->meth->init != NULL) && !ret->meth->init(ret)) { | |
130 | ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL); | |
131 | goto err; | |
132 | } | |
133 | ||
134 | return ret; | |
135 | ||
136 | err: | |
137 | RSA_free(ret); | |
138 | return NULL; | |
139 | } | |
140 | ||
141 | void RSA_free(RSA *r) | |
142 | { | |
143 | int i; | |
144 | ||
145 | if (r == NULL) | |
146 | return; | |
147 | ||
148 | CRYPTO_DOWN_REF(&r->references, &i); | |
149 | REF_PRINT_COUNT("RSA", i, r); | |
150 | if (i > 0) | |
151 | return; | |
152 | REF_ASSERT_ISNT(i < 0); | |
153 | ||
154 | if (r->meth != NULL && r->meth->finish != NULL) | |
155 | r->meth->finish(r); | |
156 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) | |
157 | ENGINE_finish(r->engine); | |
158 | #endif | |
159 | ||
160 | #ifndef FIPS_MODULE | |
161 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data); | |
162 | #endif | |
163 | ||
164 | CRYPTO_THREAD_lock_free(r->lock); | |
165 | CRYPTO_FREE_REF(&r->references); | |
166 | ||
167 | #ifdef OPENSSL_PEDANTIC_ZEROIZATION | |
168 | BN_clear_free(r->n); | |
169 | BN_clear_free(r->e); | |
170 | #else | |
171 | BN_free(r->n); | |
172 | BN_free(r->e); | |
173 | #endif | |
174 | BN_clear_free(r->d); | |
175 | BN_clear_free(r->p); | |
176 | BN_clear_free(r->q); | |
177 | BN_clear_free(r->dmp1); | |
178 | BN_clear_free(r->dmq1); | |
179 | BN_clear_free(r->iqmp); | |
180 | ||
181 | #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) | |
182 | ossl_rsa_acvp_test_free(r->acvp_test); | |
183 | #endif | |
184 | ||
185 | #ifndef FIPS_MODULE | |
186 | RSA_PSS_PARAMS_free(r->pss); | |
187 | sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free); | |
188 | #endif | |
189 | ossl_rsa_free_blinding(r); | |
190 | OPENSSL_free(r); | |
191 | } | |
192 | ||
193 | int RSA_up_ref(RSA *r) | |
194 | { | |
195 | int i; | |
196 | ||
197 | if (CRYPTO_UP_REF(&r->references, &i) <= 0) | |
198 | return 0; | |
199 | ||
200 | REF_PRINT_COUNT("RSA", i, r); | |
201 | REF_ASSERT_ISNT(i < 2); | |
202 | return i > 1 ? 1 : 0; | |
203 | } | |
204 | ||
205 | OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r) | |
206 | { | |
207 | return r->libctx; | |
208 | } | |
209 | ||
210 | void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx) | |
211 | { | |
212 | r->libctx = libctx; | |
213 | } | |
214 | ||
215 | #ifndef FIPS_MODULE | |
216 | int RSA_set_ex_data(RSA *r, int idx, void *arg) | |
217 | { | |
218 | return CRYPTO_set_ex_data(&r->ex_data, idx, arg); | |
219 | } | |
220 | ||
221 | void *RSA_get_ex_data(const RSA *r, int idx) | |
222 | { | |
223 | return CRYPTO_get_ex_data(&r->ex_data, idx); | |
224 | } | |
225 | #endif | |
226 | ||
227 | /* | |
228 | * Define a scaling constant for our fixed point arithmetic. | |
229 | * This value must be a power of two because the base two logarithm code | |
230 | * makes this assumption. The exponent must also be a multiple of three so | |
231 | * that the scale factor has an exact cube root. Finally, the scale factor | |
232 | * should not be so large that a multiplication of two scaled numbers | |
233 | * overflows a 64 bit unsigned integer. | |
234 | */ | |
235 | static const unsigned int scale = 1 << 18; | |
236 | static const unsigned int cbrt_scale = 1 << (2 * 18 / 3); | |
237 | ||
238 | /* Define some constants, none exceed 32 bits */ | |
239 | static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */ | |
240 | static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */ | |
241 | static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */ | |
242 | static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */ | |
243 | ||
244 | /* | |
245 | * Multiply two scaled integers together and rescale the result. | |
246 | */ | |
247 | static ossl_inline uint64_t mul2(uint64_t a, uint64_t b) | |
248 | { | |
249 | return a * b / scale; | |
250 | } | |
251 | ||
252 | /* | |
253 | * Calculate the cube root of a 64 bit scaled integer. | |
254 | * Although the cube root of a 64 bit number does fit into a 32 bit unsigned | |
255 | * integer, this is not guaranteed after scaling, so this function has a | |
256 | * 64 bit return. This uses the shifting nth root algorithm with some | |
257 | * algebraic simplifications. | |
258 | */ | |
259 | static uint64_t icbrt64(uint64_t x) | |
260 | { | |
261 | uint64_t r = 0; | |
262 | uint64_t b; | |
263 | int s; | |
264 | ||
265 | for (s = 63; s >= 0; s -= 3) { | |
266 | r <<= 1; | |
267 | b = 3 * r * (r + 1) + 1; | |
268 | if ((x >> s) >= b) { | |
269 | x -= b << s; | |
270 | r++; | |
271 | } | |
272 | } | |
273 | return r * cbrt_scale; | |
274 | } | |
275 | ||
276 | /* | |
277 | * Calculate the natural logarithm of a 64 bit scaled integer. | |
278 | * This is done by calculating a base two logarithm and scaling. | |
279 | * The maximum logarithm (base 2) is 64 and this reduces base e, so | |
280 | * a 32 bit result should not overflow. The argument passed must be | |
281 | * greater than unity so we don't need to handle negative results. | |
282 | */ | |
283 | static uint32_t ilog_e(uint64_t v) | |
284 | { | |
285 | uint32_t i, r = 0; | |
286 | ||
287 | /* | |
288 | * Scale down the value into the range 1 .. 2. | |
289 | * | |
290 | * If fractional numbers need to be processed, another loop needs | |
291 | * to go here that checks v < scale and if so multiplies it by 2 and | |
292 | * reduces r by scale. This also means making r signed. | |
293 | */ | |
294 | while (v >= 2 * scale) { | |
295 | v >>= 1; | |
296 | r += scale; | |
297 | } | |
298 | for (i = scale / 2; i != 0; i /= 2) { | |
299 | v = mul2(v, v); | |
300 | if (v >= 2 * scale) { | |
301 | v >>= 1; | |
302 | r += i; | |
303 | } | |
304 | } | |
305 | r = (r * (uint64_t)scale) / log_e; | |
306 | return r; | |
307 | } | |
308 | ||
309 | /* | |
310 | * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC | |
311 | * Modulus Lengths. | |
312 | * | |
313 | * Note that this formula is also referred to in SP800-56A rev3 Appendix D: | |
314 | * for FFC safe prime groups for modp and ffdhe. | |
315 | * After Table 25 and Table 26 it refers to | |
316 | * "The maximum security strength estimates were calculated using the formula in | |
317 | * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight | |
318 | * bits". | |
319 | * | |
320 | * The formula is: | |
321 | * | |
322 | * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)} | |
323 | * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)} | |
324 | * The two cube roots are merged together here. | |
325 | */ | |
326 | uint16_t ossl_ifc_ffc_compute_security_bits(int n) | |
327 | { | |
328 | uint64_t x; | |
329 | uint32_t lx; | |
330 | uint16_t y, cap; | |
331 | ||
332 | /* | |
333 | * Look for common values as listed in standards. | |
334 | * These values are not exactly equal to the results from the formulae in | |
335 | * the standards but are defined to be canonical. | |
336 | */ | |
337 | switch (n) { | |
338 | case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ | |
339 | return 112; | |
340 | case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */ | |
341 | return 128; | |
342 | case 4096: /* SP 800-56B rev 2 Appendix D */ | |
343 | return 152; | |
344 | case 6144: /* SP 800-56B rev 2 Appendix D */ | |
345 | return 176; | |
346 | case 7680: /* FIPS 140-2 IG 7.5 */ | |
347 | return 192; | |
348 | case 8192: /* SP 800-56B rev 2 Appendix D */ | |
349 | return 200; | |
350 | case 15360: /* FIPS 140-2 IG 7.5 */ | |
351 | return 256; | |
352 | } | |
353 | ||
354 | /* | |
355 | * The first incorrect result (i.e. not accurate or off by one low) occurs | |
356 | * for n = 699668. The true value here is 1200. Instead of using this n | |
357 | * as the check threshold, the smallest n such that the correct result is | |
358 | * 1200 is used instead. | |
359 | */ | |
360 | if (n >= 687737) | |
361 | return 1200; | |
362 | if (n < 8) | |
363 | return 0; | |
364 | ||
365 | /* | |
366 | * To ensure that the output is non-decreasing with respect to n, | |
367 | * a cap needs to be applied to the two values where the function over | |
368 | * estimates the strength (according to the above fast path). | |
369 | */ | |
370 | if (n <= 7680) | |
371 | cap = 192; | |
372 | else if (n <= 15360) | |
373 | cap = 256; | |
374 | else | |
375 | cap = 1200; | |
376 | ||
377 | x = n * (uint64_t)log_2; | |
378 | lx = ilog_e(x); | |
379 | y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690) | |
380 | / log_2); | |
381 | y = (y + 4) & ~7; | |
382 | if (y > cap) | |
383 | y = cap; | |
384 | return y; | |
385 | } | |
386 | ||
387 | ||
388 | ||
389 | int RSA_security_bits(const RSA *rsa) | |
390 | { | |
391 | int bits = BN_num_bits(rsa->n); | |
392 | ||
393 | #ifndef FIPS_MODULE | |
394 | if (rsa->version == RSA_ASN1_VERSION_MULTI) { | |
395 | /* This ought to mean that we have private key at hand. */ | |
396 | int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos); | |
397 | ||
398 | if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits)) | |
399 | return 0; | |
400 | } | |
401 | #endif | |
402 | return ossl_ifc_ffc_compute_security_bits(bits); | |
403 | } | |
404 | ||
405 | int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) | |
406 | { | |
407 | /* If the fields n and e in r are NULL, the corresponding input | |
408 | * parameters MUST be non-NULL for n and e. d may be | |
409 | * left NULL (in case only the public key is used). | |
410 | */ | |
411 | if ((r->n == NULL && n == NULL) | |
412 | || (r->e == NULL && e == NULL)) | |
413 | return 0; | |
414 | ||
415 | if (n != NULL) { | |
416 | BN_free(r->n); | |
417 | r->n = n; | |
418 | } | |
419 | if (e != NULL) { | |
420 | BN_free(r->e); | |
421 | r->e = e; | |
422 | } | |
423 | if (d != NULL) { | |
424 | BN_clear_free(r->d); | |
425 | r->d = d; | |
426 | BN_set_flags(r->d, BN_FLG_CONSTTIME); | |
427 | } | |
428 | r->dirty_cnt++; | |
429 | ||
430 | return 1; | |
431 | } | |
432 | ||
433 | int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q) | |
434 | { | |
435 | /* If the fields p and q in r are NULL, the corresponding input | |
436 | * parameters MUST be non-NULL. | |
437 | */ | |
438 | if ((r->p == NULL && p == NULL) | |
439 | || (r->q == NULL && q == NULL)) | |
440 | return 0; | |
441 | ||
442 | if (p != NULL) { | |
443 | BN_clear_free(r->p); | |
444 | r->p = p; | |
445 | BN_set_flags(r->p, BN_FLG_CONSTTIME); | |
446 | } | |
447 | if (q != NULL) { | |
448 | BN_clear_free(r->q); | |
449 | r->q = q; | |
450 | BN_set_flags(r->q, BN_FLG_CONSTTIME); | |
451 | } | |
452 | r->dirty_cnt++; | |
453 | ||
454 | return 1; | |
455 | } | |
456 | ||
457 | int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) | |
458 | { | |
459 | /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input | |
460 | * parameters MUST be non-NULL. | |
461 | */ | |
462 | if ((r->dmp1 == NULL && dmp1 == NULL) | |
463 | || (r->dmq1 == NULL && dmq1 == NULL) | |
464 | || (r->iqmp == NULL && iqmp == NULL)) | |
465 | return 0; | |
466 | ||
467 | if (dmp1 != NULL) { | |
468 | BN_clear_free(r->dmp1); | |
469 | r->dmp1 = dmp1; | |
470 | BN_set_flags(r->dmp1, BN_FLG_CONSTTIME); | |
471 | } | |
472 | if (dmq1 != NULL) { | |
473 | BN_clear_free(r->dmq1); | |
474 | r->dmq1 = dmq1; | |
475 | BN_set_flags(r->dmq1, BN_FLG_CONSTTIME); | |
476 | } | |
477 | if (iqmp != NULL) { | |
478 | BN_clear_free(r->iqmp); | |
479 | r->iqmp = iqmp; | |
480 | BN_set_flags(r->iqmp, BN_FLG_CONSTTIME); | |
481 | } | |
482 | r->dirty_cnt++; | |
483 | ||
484 | return 1; | |
485 | } | |
486 | ||
487 | #ifndef FIPS_MODULE | |
488 | /* | |
489 | * Is it better to export RSA_PRIME_INFO structure | |
490 | * and related functions to let user pass a triplet? | |
491 | */ | |
492 | int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[], | |
493 | BIGNUM *coeffs[], int pnum) | |
494 | { | |
495 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL; | |
496 | RSA_PRIME_INFO *pinfo; | |
497 | int i; | |
498 | ||
499 | if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0) | |
500 | return 0; | |
501 | ||
502 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); | |
503 | if (prime_infos == NULL) | |
504 | return 0; | |
505 | ||
506 | if (r->prime_infos != NULL) | |
507 | old = r->prime_infos; | |
508 | ||
509 | for (i = 0; i < pnum; i++) { | |
510 | pinfo = ossl_rsa_multip_info_new(); | |
511 | if (pinfo == NULL) | |
512 | goto err; | |
513 | if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) { | |
514 | BN_clear_free(pinfo->r); | |
515 | BN_clear_free(pinfo->d); | |
516 | BN_clear_free(pinfo->t); | |
517 | pinfo->r = primes[i]; | |
518 | pinfo->d = exps[i]; | |
519 | pinfo->t = coeffs[i]; | |
520 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); | |
521 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); | |
522 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); | |
523 | } else { | |
524 | ossl_rsa_multip_info_free(pinfo); | |
525 | goto err; | |
526 | } | |
527 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); | |
528 | } | |
529 | ||
530 | r->prime_infos = prime_infos; | |
531 | ||
532 | if (!ossl_rsa_multip_calc_product(r)) { | |
533 | r->prime_infos = old; | |
534 | goto err; | |
535 | } | |
536 | ||
537 | if (old != NULL) { | |
538 | /* | |
539 | * This is hard to deal with, since the old infos could | |
540 | * also be set by this function and r, d, t should not | |
541 | * be freed in that case. So currently, stay consistent | |
542 | * with other *set0* functions: just free it... | |
543 | */ | |
544 | sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free); | |
545 | } | |
546 | ||
547 | r->version = RSA_ASN1_VERSION_MULTI; | |
548 | r->dirty_cnt++; | |
549 | ||
550 | return 1; | |
551 | err: | |
552 | /* r, d, t should not be freed */ | |
553 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); | |
554 | return 0; | |
555 | } | |
556 | #endif | |
557 | ||
558 | void RSA_get0_key(const RSA *r, | |
559 | const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) | |
560 | { | |
561 | if (n != NULL) | |
562 | *n = r->n; | |
563 | if (e != NULL) | |
564 | *e = r->e; | |
565 | if (d != NULL) | |
566 | *d = r->d; | |
567 | } | |
568 | ||
569 | void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q) | |
570 | { | |
571 | if (p != NULL) | |
572 | *p = r->p; | |
573 | if (q != NULL) | |
574 | *q = r->q; | |
575 | } | |
576 | ||
577 | #ifndef FIPS_MODULE | |
578 | int RSA_get_multi_prime_extra_count(const RSA *r) | |
579 | { | |
580 | int pnum; | |
581 | ||
582 | pnum = sk_RSA_PRIME_INFO_num(r->prime_infos); | |
583 | if (pnum <= 0) | |
584 | pnum = 0; | |
585 | return pnum; | |
586 | } | |
587 | ||
588 | int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[]) | |
589 | { | |
590 | int pnum, i; | |
591 | RSA_PRIME_INFO *pinfo; | |
592 | ||
593 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) | |
594 | return 0; | |
595 | ||
596 | /* | |
597 | * return other primes | |
598 | * it's caller's responsibility to allocate oth_primes[pnum] | |
599 | */ | |
600 | for (i = 0; i < pnum; i++) { | |
601 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); | |
602 | primes[i] = pinfo->r; | |
603 | } | |
604 | ||
605 | return 1; | |
606 | } | |
607 | #endif | |
608 | ||
609 | void RSA_get0_crt_params(const RSA *r, | |
610 | const BIGNUM **dmp1, const BIGNUM **dmq1, | |
611 | const BIGNUM **iqmp) | |
612 | { | |
613 | if (dmp1 != NULL) | |
614 | *dmp1 = r->dmp1; | |
615 | if (dmq1 != NULL) | |
616 | *dmq1 = r->dmq1; | |
617 | if (iqmp != NULL) | |
618 | *iqmp = r->iqmp; | |
619 | } | |
620 | ||
621 | #ifndef FIPS_MODULE | |
622 | int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[], | |
623 | const BIGNUM *coeffs[]) | |
624 | { | |
625 | int pnum; | |
626 | ||
627 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0) | |
628 | return 0; | |
629 | ||
630 | /* return other primes */ | |
631 | if (exps != NULL || coeffs != NULL) { | |
632 | RSA_PRIME_INFO *pinfo; | |
633 | int i; | |
634 | ||
635 | /* it's the user's job to guarantee the buffer length */ | |
636 | for (i = 0; i < pnum; i++) { | |
637 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); | |
638 | if (exps != NULL) | |
639 | exps[i] = pinfo->d; | |
640 | if (coeffs != NULL) | |
641 | coeffs[i] = pinfo->t; | |
642 | } | |
643 | } | |
644 | ||
645 | return 1; | |
646 | } | |
647 | #endif | |
648 | ||
649 | const BIGNUM *RSA_get0_n(const RSA *r) | |
650 | { | |
651 | return r->n; | |
652 | } | |
653 | ||
654 | const BIGNUM *RSA_get0_e(const RSA *r) | |
655 | { | |
656 | return r->e; | |
657 | } | |
658 | ||
659 | const BIGNUM *RSA_get0_d(const RSA *r) | |
660 | { | |
661 | return r->d; | |
662 | } | |
663 | ||
664 | const BIGNUM *RSA_get0_p(const RSA *r) | |
665 | { | |
666 | return r->p; | |
667 | } | |
668 | ||
669 | const BIGNUM *RSA_get0_q(const RSA *r) | |
670 | { | |
671 | return r->q; | |
672 | } | |
673 | ||
674 | const BIGNUM *RSA_get0_dmp1(const RSA *r) | |
675 | { | |
676 | return r->dmp1; | |
677 | } | |
678 | ||
679 | const BIGNUM *RSA_get0_dmq1(const RSA *r) | |
680 | { | |
681 | return r->dmq1; | |
682 | } | |
683 | ||
684 | const BIGNUM *RSA_get0_iqmp(const RSA *r) | |
685 | { | |
686 | return r->iqmp; | |
687 | } | |
688 | ||
689 | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r) | |
690 | { | |
691 | #ifdef FIPS_MODULE | |
692 | return NULL; | |
693 | #else | |
694 | return r->pss; | |
695 | #endif | |
696 | } | |
697 | ||
698 | /* Internal */ | |
699 | int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss) | |
700 | { | |
701 | #ifdef FIPS_MODULE | |
702 | return 0; | |
703 | #else | |
704 | RSA_PSS_PARAMS_free(r->pss); | |
705 | r->pss = pss; | |
706 | return 1; | |
707 | #endif | |
708 | } | |
709 | ||
710 | /* Internal */ | |
711 | RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r) | |
712 | { | |
713 | return &r->pss_params; | |
714 | } | |
715 | ||
716 | void RSA_clear_flags(RSA *r, int flags) | |
717 | { | |
718 | r->flags &= ~flags; | |
719 | } | |
720 | ||
721 | int RSA_test_flags(const RSA *r, int flags) | |
722 | { | |
723 | return r->flags & flags; | |
724 | } | |
725 | ||
726 | void RSA_set_flags(RSA *r, int flags) | |
727 | { | |
728 | r->flags |= flags; | |
729 | } | |
730 | ||
731 | int RSA_get_version(RSA *r) | |
732 | { | |
733 | /* { two-prime(0), multi(1) } */ | |
734 | return r->version; | |
735 | } | |
736 | ||
737 | #ifndef FIPS_MODULE | |
738 | ENGINE *RSA_get0_engine(const RSA *r) | |
739 | { | |
740 | return r->engine; | |
741 | } | |
742 | ||
743 | int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2) | |
744 | { | |
745 | /* If key type not RSA or RSA-PSS return error */ | |
746 | if (ctx != NULL && ctx->pmeth != NULL | |
747 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA | |
748 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) | |
749 | return -1; | |
750 | return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2); | |
751 | } | |
752 | #endif | |
753 | ||
754 | DEFINE_STACK_OF(BIGNUM) | |
755 | ||
756 | /* | |
757 | * Note: This function deletes values from the parameter | |
758 | * stack values as they are consumed and set in the RSA key. | |
759 | */ | |
760 | int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes, | |
761 | STACK_OF(BIGNUM) *exps, | |
762 | STACK_OF(BIGNUM) *coeffs) | |
763 | { | |
764 | #ifndef FIPS_MODULE | |
765 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL; | |
766 | #endif | |
767 | int pnum; | |
768 | ||
769 | if (primes == NULL || exps == NULL || coeffs == NULL) | |
770 | return 0; | |
771 | ||
772 | pnum = sk_BIGNUM_num(primes); | |
773 | ||
774 | /* we need at least 2 primes */ | |
775 | if (pnum < 2) | |
776 | return 0; | |
777 | ||
778 | if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0), | |
779 | sk_BIGNUM_value(primes, 1))) | |
780 | return 0; | |
781 | ||
782 | /* | |
783 | * if we managed to set everything above, remove those elements from the | |
784 | * stack | |
785 | * Note, we do this after the above all to ensure that we have taken | |
786 | * ownership of all the elements in the RSA key to avoid memory leaks | |
787 | * we also use delete 0 here as we are grabbing items from the end of the | |
788 | * stack rather than the start, otherwise we could use pop | |
789 | */ | |
790 | sk_BIGNUM_delete(primes, 0); | |
791 | sk_BIGNUM_delete(primes, 0); | |
792 | ||
793 | if (pnum == sk_BIGNUM_num(exps) | |
794 | && pnum == sk_BIGNUM_num(coeffs) + 1) { | |
795 | ||
796 | if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0), | |
797 | sk_BIGNUM_value(exps, 1), | |
798 | sk_BIGNUM_value(coeffs, 0))) | |
799 | return 0; | |
800 | ||
801 | /* as above, once we consume the above params, delete them from the list */ | |
802 | sk_BIGNUM_delete(exps, 0); | |
803 | sk_BIGNUM_delete(exps, 0); | |
804 | sk_BIGNUM_delete(coeffs, 0); | |
805 | } | |
806 | ||
807 | #ifndef FIPS_MODULE | |
808 | old_infos = r->prime_infos; | |
809 | #endif | |
810 | ||
811 | if (pnum > 2) { | |
812 | #ifndef FIPS_MODULE | |
813 | int i; | |
814 | ||
815 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum); | |
816 | if (prime_infos == NULL) | |
817 | return 0; | |
818 | ||
819 | for (i = 2; i < pnum; i++) { | |
820 | BIGNUM *prime = sk_BIGNUM_pop(primes); | |
821 | BIGNUM *exp = sk_BIGNUM_pop(exps); | |
822 | BIGNUM *coeff = sk_BIGNUM_pop(coeffs); | |
823 | RSA_PRIME_INFO *pinfo = NULL; | |
824 | ||
825 | if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL)) | |
826 | goto err; | |
827 | ||
828 | /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */ | |
829 | if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL) | |
830 | goto err; | |
831 | ||
832 | pinfo->r = prime; | |
833 | pinfo->d = exp; | |
834 | pinfo->t = coeff; | |
835 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME); | |
836 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME); | |
837 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME); | |
838 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo); | |
839 | } | |
840 | ||
841 | r->prime_infos = prime_infos; | |
842 | ||
843 | if (!ossl_rsa_multip_calc_product(r)) { | |
844 | r->prime_infos = old_infos; | |
845 | goto err; | |
846 | } | |
847 | #else | |
848 | return 0; | |
849 | #endif | |
850 | } | |
851 | ||
852 | #ifndef FIPS_MODULE | |
853 | if (old_infos != NULL) { | |
854 | /* | |
855 | * This is hard to deal with, since the old infos could | |
856 | * also be set by this function and r, d, t should not | |
857 | * be freed in that case. So currently, stay consistent | |
858 | * with other *set0* functions: just free it... | |
859 | */ | |
860 | sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free); | |
861 | } | |
862 | #endif | |
863 | ||
864 | r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT; | |
865 | r->dirty_cnt++; | |
866 | ||
867 | return 1; | |
868 | #ifndef FIPS_MODULE | |
869 | err: | |
870 | /* r, d, t should not be freed */ | |
871 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex); | |
872 | return 0; | |
873 | #endif | |
874 | } | |
875 | ||
876 | DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM) | |
877 | ||
878 | int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes, | |
879 | STACK_OF(BIGNUM_const) *exps, | |
880 | STACK_OF(BIGNUM_const) *coeffs) | |
881 | { | |
882 | #ifndef FIPS_MODULE | |
883 | RSA_PRIME_INFO *pinfo; | |
884 | int i, pnum; | |
885 | #endif | |
886 | ||
887 | if (r == NULL) | |
888 | return 0; | |
889 | ||
890 | /* If |p| is NULL, there are no CRT parameters */ | |
891 | if (RSA_get0_p(r) == NULL) | |
892 | return 1; | |
893 | ||
894 | sk_BIGNUM_const_push(primes, RSA_get0_p(r)); | |
895 | sk_BIGNUM_const_push(primes, RSA_get0_q(r)); | |
896 | sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r)); | |
897 | sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r)); | |
898 | sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r)); | |
899 | ||
900 | #ifndef FIPS_MODULE | |
901 | pnum = RSA_get_multi_prime_extra_count(r); | |
902 | for (i = 0; i < pnum; i++) { | |
903 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i); | |
904 | sk_BIGNUM_const_push(primes, pinfo->r); | |
905 | sk_BIGNUM_const_push(exps, pinfo->d); | |
906 | sk_BIGNUM_const_push(coeffs, pinfo->t); | |
907 | } | |
908 | #endif | |
909 | ||
910 | return 1; | |
911 | } | |
912 | ||
913 | #define safe_BN_num_bits(_k_) (((_k_) == NULL) ? 0 : BN_num_bits((_k_))) | |
914 | int ossl_rsa_check_factors(RSA *r) | |
915 | { | |
916 | int valid = 0; | |
917 | int n, i, bits; | |
918 | STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null(); | |
919 | STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null(); | |
920 | STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null(); | |
921 | ||
922 | if (factors == NULL || exps == NULL || coeffs == NULL) | |
923 | goto done; | |
924 | ||
925 | /* | |
926 | * Simple sanity check for RSA key. All RSA key parameters | |
927 | * must be less-than/equal-to RSA parameter n. | |
928 | */ | |
929 | ossl_rsa_get0_all_params(r, factors, exps, coeffs); | |
930 | n = safe_BN_num_bits(RSA_get0_n(r)); | |
931 | ||
932 | if (safe_BN_num_bits(RSA_get0_d(r)) > n) | |
933 | goto done; | |
934 | ||
935 | for (i = 0; i < sk_BIGNUM_const_num(exps); i++) { | |
936 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i)); | |
937 | if (bits > n) | |
938 | goto done; | |
939 | } | |
940 | ||
941 | for (i = 0; i < sk_BIGNUM_const_num(factors); i++) { | |
942 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i)); | |
943 | if (bits > n) | |
944 | goto done; | |
945 | } | |
946 | ||
947 | for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) { | |
948 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i)); | |
949 | if (bits > n) | |
950 | goto done; | |
951 | } | |
952 | ||
953 | valid = 1; | |
954 | ||
955 | done: | |
956 | sk_BIGNUM_const_free(factors); | |
957 | sk_BIGNUM_const_free(exps); | |
958 | sk_BIGNUM_const_free(coeffs); | |
959 | ||
960 | return valid; | |
961 | } | |
962 | ||
963 | #ifndef FIPS_MODULE | |
964 | /* Helpers to set or get diverse hash algorithm names */ | |
965 | static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx, | |
966 | /* For checks */ | |
967 | int keytype, int optype, | |
968 | /* For EVP_PKEY_CTX_set_params() */ | |
969 | const char *mdkey, const char *mdname, | |
970 | const char *propkey, const char *mdprops) | |
971 | { | |
972 | OSSL_PARAM params[3], *p = params; | |
973 | ||
974 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { | |
975 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
976 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
977 | return -2; | |
978 | } | |
979 | ||
980 | /* If key type not RSA return error */ | |
981 | switch (keytype) { | |
982 | case -1: | |
983 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") | |
984 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) | |
985 | return -1; | |
986 | break; | |
987 | default: | |
988 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) | |
989 | return -1; | |
990 | break; | |
991 | } | |
992 | ||
993 | /* Cast away the const. This is read only so should be safe */ | |
994 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0); | |
995 | if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) { | |
996 | /* Cast away the const. This is read only so should be safe */ | |
997 | *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0); | |
998 | } | |
999 | *p++ = OSSL_PARAM_construct_end(); | |
1000 | ||
1001 | return evp_pkey_ctx_set_params_strict(ctx, params); | |
1002 | } | |
1003 | ||
1004 | /* Helpers to set or get diverse hash algorithm names */ | |
1005 | static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx, | |
1006 | /* For checks */ | |
1007 | int keytype, int optype, | |
1008 | /* For EVP_PKEY_CTX_get_params() */ | |
1009 | const char *mdkey, | |
1010 | char *mdname, size_t mdnamesize) | |
1011 | { | |
1012 | OSSL_PARAM params[2], *p = params; | |
1013 | ||
1014 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) { | |
1015 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1016 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1017 | return -2; | |
1018 | } | |
1019 | ||
1020 | /* If key type not RSA return error */ | |
1021 | switch (keytype) { | |
1022 | case -1: | |
1023 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") | |
1024 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) | |
1025 | return -1; | |
1026 | break; | |
1027 | default: | |
1028 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype))) | |
1029 | return -1; | |
1030 | break; | |
1031 | } | |
1032 | ||
1033 | /* Cast away the const. This is read only so should be safe */ | |
1034 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize); | |
1035 | *p++ = OSSL_PARAM_construct_end(); | |
1036 | ||
1037 | return evp_pkey_ctx_get_params_strict(ctx, params); | |
1038 | } | |
1039 | ||
1040 | /* | |
1041 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1042 | * simply because that's easier. | |
1043 | */ | |
1044 | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode) | |
1045 | { | |
1046 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, | |
1047 | pad_mode, NULL); | |
1048 | } | |
1049 | ||
1050 | /* | |
1051 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1052 | * simply because that's easier. | |
1053 | */ | |
1054 | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode) | |
1055 | { | |
1056 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, | |
1057 | 0, pad_mode); | |
1058 | } | |
1059 | ||
1060 | /* | |
1061 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1062 | * simply because that's easier. | |
1063 | */ | |
1064 | int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) | |
1065 | { | |
1066 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, | |
1067 | EVP_PKEY_CTRL_MD, 0, (void *)(md)); | |
1068 | } | |
1069 | ||
1070 | int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx, | |
1071 | const char *mdname, | |
1072 | const char *mdprops) | |
1073 | { | |
1074 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, | |
1075 | OSSL_PKEY_PARAM_RSA_DIGEST, mdname, | |
1076 | OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops); | |
1077 | } | |
1078 | ||
1079 | /* | |
1080 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1081 | * simply because that's easier. | |
1082 | */ | |
1083 | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) | |
1084 | { | |
1085 | /* If key type not RSA return error */ | |
1086 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) | |
1087 | return -1; | |
1088 | ||
1089 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | |
1090 | EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md)); | |
1091 | } | |
1092 | ||
1093 | int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname, | |
1094 | const char *mdprops) | |
1095 | { | |
1096 | return | |
1097 | int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | |
1098 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname, | |
1099 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops); | |
1100 | } | |
1101 | ||
1102 | int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name, | |
1103 | size_t namesize) | |
1104 | { | |
1105 | return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | |
1106 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, | |
1107 | name, namesize); | |
1108 | } | |
1109 | ||
1110 | /* | |
1111 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1112 | * simply because that's easier. | |
1113 | */ | |
1114 | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) | |
1115 | { | |
1116 | /* If key type not RSA return error */ | |
1117 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) | |
1118 | return -1; | |
1119 | ||
1120 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | |
1121 | EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md); | |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1126 | * simply because that's easier. | |
1127 | */ | |
1128 | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) | |
1129 | { | |
1130 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, | |
1131 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); | |
1132 | } | |
1133 | ||
1134 | int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname, | |
1135 | const char *mdprops) | |
1136 | { | |
1137 | return int_set_rsa_md_name(ctx, -1, | |
1138 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, | |
1139 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, | |
1140 | OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops); | |
1141 | } | |
1142 | ||
1143 | int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name, | |
1144 | size_t namesize) | |
1145 | { | |
1146 | return int_get_rsa_md_name(ctx, -1, | |
1147 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, | |
1148 | OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize); | |
1149 | } | |
1150 | ||
1151 | /* | |
1152 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1153 | * simply because that's easier. | |
1154 | */ | |
1155 | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) | |
1156 | { | |
1157 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, | |
1158 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md)); | |
1159 | } | |
1160 | ||
1161 | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx, | |
1162 | const char *mdname) | |
1163 | { | |
1164 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, | |
1165 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname, | |
1166 | NULL, NULL); | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1171 | * simply because that's easier. | |
1172 | */ | |
1173 | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md) | |
1174 | { | |
1175 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, | |
1176 | EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md)); | |
1177 | } | |
1178 | ||
1179 | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen) | |
1180 | { | |
1181 | OSSL_PARAM rsa_params[2], *p = rsa_params; | |
1182 | const char *empty = ""; | |
1183 | /* | |
1184 | * Needed as we swap label with empty if it is NULL, and label is | |
1185 | * freed at the end of this function. | |
1186 | */ | |
1187 | void *plabel = label; | |
1188 | int ret; | |
1189 | ||
1190 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { | |
1191 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1192 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1193 | return -2; | |
1194 | } | |
1195 | ||
1196 | /* If key type not RSA return error */ | |
1197 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) | |
1198 | return -1; | |
1199 | ||
1200 | /* Accept NULL for backward compatibility */ | |
1201 | if (label == NULL && llen == 0) | |
1202 | plabel = (void *)empty; | |
1203 | ||
1204 | /* Cast away the const. This is read only so should be safe */ | |
1205 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, | |
1206 | (void *)plabel, (size_t)llen); | |
1207 | *p++ = OSSL_PARAM_construct_end(); | |
1208 | ||
1209 | ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params); | |
1210 | if (ret <= 0) | |
1211 | return ret; | |
1212 | ||
1213 | /* Ownership is supposed to be transferred to the callee. */ | |
1214 | OPENSSL_free(label); | |
1215 | return 1; | |
1216 | } | |
1217 | ||
1218 | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label) | |
1219 | { | |
1220 | OSSL_PARAM rsa_params[2], *p = rsa_params; | |
1221 | size_t labellen; | |
1222 | ||
1223 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) { | |
1224 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1225 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1226 | return -2; | |
1227 | } | |
1228 | ||
1229 | /* If key type not RSA return error */ | |
1230 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")) | |
1231 | return -1; | |
1232 | ||
1233 | *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, | |
1234 | (void **)label, 0); | |
1235 | *p++ = OSSL_PARAM_construct_end(); | |
1236 | ||
1237 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params)) | |
1238 | return -1; | |
1239 | ||
1240 | labellen = rsa_params[0].return_size; | |
1241 | if (labellen > INT_MAX) | |
1242 | return -1; | |
1243 | ||
1244 | return (int)labellen; | |
1245 | } | |
1246 | ||
1247 | /* | |
1248 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1249 | * simply because that's easier. | |
1250 | */ | |
1251 | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen) | |
1252 | { | |
1253 | /* | |
1254 | * For some reason, the optype was set to this: | |
1255 | * | |
1256 | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY | |
1257 | * | |
1258 | * However, we do use RSA-PSS with the whole gamut of diverse signature | |
1259 | * and verification operations, so the optype gets upgraded to this: | |
1260 | * | |
1261 | * EVP_PKEY_OP_TYPE_SIG | |
1262 | */ | |
1263 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, | |
1264 | EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL); | |
1265 | } | |
1266 | ||
1267 | /* | |
1268 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper, | |
1269 | * simply because that's easier. | |
1270 | */ | |
1271 | int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen) | |
1272 | { | |
1273 | /* | |
1274 | * Because of circumstances, the optype is updated from: | |
1275 | * | |
1276 | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY | |
1277 | * | |
1278 | * to: | |
1279 | * | |
1280 | * EVP_PKEY_OP_TYPE_SIG | |
1281 | */ | |
1282 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG, | |
1283 | EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen); | |
1284 | } | |
1285 | ||
1286 | int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen) | |
1287 | { | |
1288 | OSSL_PARAM pad_params[2], *p = pad_params; | |
1289 | ||
1290 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | |
1291 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1292 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1293 | return -2; | |
1294 | } | |
1295 | ||
1296 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) | |
1297 | return -1; | |
1298 | ||
1299 | *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN, | |
1300 | &saltlen); | |
1301 | *p++ = OSSL_PARAM_construct_end(); | |
1302 | ||
1303 | return evp_pkey_ctx_set_params_strict(ctx, pad_params); | |
1304 | } | |
1305 | ||
1306 | int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) | |
1307 | { | |
1308 | OSSL_PARAM params[2], *p = params; | |
1309 | size_t bits2 = bits; | |
1310 | ||
1311 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | |
1312 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1313 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1314 | return -2; | |
1315 | } | |
1316 | ||
1317 | /* If key type not RSA return error */ | |
1318 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") | |
1319 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) | |
1320 | return -1; | |
1321 | ||
1322 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2); | |
1323 | *p++ = OSSL_PARAM_construct_end(); | |
1324 | ||
1325 | return evp_pkey_ctx_set_params_strict(ctx, params); | |
1326 | } | |
1327 | ||
1328 | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) | |
1329 | { | |
1330 | int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN, | |
1331 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); | |
1332 | ||
1333 | /* | |
1334 | * Satisfy memory semantics for pre-3.0 callers of | |
1335 | * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input | |
1336 | * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success. | |
1337 | */ | |
1338 | if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) { | |
1339 | BN_free(ctx->rsa_pubexp); | |
1340 | ctx->rsa_pubexp = pubexp; | |
1341 | } | |
1342 | ||
1343 | return ret; | |
1344 | } | |
1345 | ||
1346 | int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp) | |
1347 | { | |
1348 | int ret = 0; | |
1349 | ||
1350 | /* | |
1351 | * When we're dealing with a provider, there's no need to duplicate | |
1352 | * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway. | |
1353 | */ | |
1354 | if (evp_pkey_ctx_is_legacy(ctx)) { | |
1355 | pubexp = BN_dup(pubexp); | |
1356 | if (pubexp == NULL) | |
1357 | return 0; | |
1358 | } | |
1359 | ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, | |
1360 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp); | |
1361 | if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0) | |
1362 | BN_free(pubexp); | |
1363 | return ret; | |
1364 | } | |
1365 | ||
1366 | int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes) | |
1367 | { | |
1368 | OSSL_PARAM params[2], *p = params; | |
1369 | size_t primes2 = primes; | |
1370 | ||
1371 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) { | |
1372 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); | |
1373 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */ | |
1374 | return -2; | |
1375 | } | |
1376 | ||
1377 | /* If key type not RSA return error */ | |
1378 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA") | |
1379 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS")) | |
1380 | return -1; | |
1381 | ||
1382 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2); | |
1383 | *p++ = OSSL_PARAM_construct_end(); | |
1384 | ||
1385 | return evp_pkey_ctx_set_params_strict(ctx, params); | |
1386 | } | |
1387 | ||
1388 | #endif |