]>
| Commit | Line | Data |
|---|---|---|
| 1 | /* | |
| 2 | * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved. | |
| 3 | * | |
| 4 | * Licensed under the Apache License 2.0 (the "License"). You may not use | |
| 5 | * this file except in compliance with the License. You can obtain a copy | |
| 6 | * in the file LICENSE in the source distribution or at | |
| 7 | * https://www.openssl.org/source/license.html | |
| 8 | */ | |
| 9 | ||
| 10 | /* | |
| 11 | * RSA low level APIs are deprecated for public use, but still ok for | |
| 12 | * internal use. | |
| 13 | */ | |
| 14 | #include "internal/deprecated.h" | |
| 15 | ||
| 16 | #include "internal/cryptlib.h" | |
| 17 | #include "crypto/bn.h" | |
| 18 | #include "crypto/sparse_array.h" | |
| 19 | #include "rsa_local.h" | |
| 20 | #include "internal/constant_time.h" | |
| 21 | #if defined(OPENSSL_SYS_TANDEM) | |
| 22 | # include "internal/tsan_assist.h" | |
| 23 | # include "internal/threads_common.h" | |
| 24 | #endif | |
| 25 | #include <openssl/evp.h> | |
| 26 | #include <openssl/sha.h> | |
| 27 | #include <openssl/hmac.h> | |
| 28 | ||
| 29 | DEFINE_SPARSE_ARRAY_OF(BN_BLINDING); | |
| 30 | ||
| 31 | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, | |
| 32 | unsigned char *to, RSA *rsa, int padding); | |
| 33 | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, | |
| 34 | unsigned char *to, RSA *rsa, int padding); | |
| 35 | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, | |
| 36 | unsigned char *to, RSA *rsa, int padding); | |
| 37 | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, | |
| 38 | unsigned char *to, RSA *rsa, int padding); | |
| 39 | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, | |
| 40 | BN_CTX *ctx); | |
| 41 | static int rsa_ossl_init(RSA *rsa); | |
| 42 | static int rsa_ossl_finish(RSA *rsa); | |
| 43 | #ifdef S390X_MOD_EXP | |
| 44 | static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, | |
| 45 | BN_CTX *ctx); | |
| 46 | static RSA_METHOD rsa_pkcs1_ossl_meth = { | |
| 47 | "OpenSSL PKCS#1 RSA", | |
| 48 | rsa_ossl_public_encrypt, | |
| 49 | rsa_ossl_public_decrypt, /* signature verification */ | |
| 50 | rsa_ossl_private_encrypt, /* signing */ | |
| 51 | rsa_ossl_private_decrypt, | |
| 52 | rsa_ossl_s390x_mod_exp, | |
| 53 | s390x_mod_exp, | |
| 54 | rsa_ossl_init, | |
| 55 | rsa_ossl_finish, | |
| 56 | RSA_FLAG_FIPS_METHOD, /* flags */ | |
| 57 | NULL, | |
| 58 | 0, /* rsa_sign */ | |
| 59 | 0, /* rsa_verify */ | |
| 60 | NULL, /* rsa_keygen */ | |
| 61 | NULL /* rsa_multi_prime_keygen */ | |
| 62 | }; | |
| 63 | #else | |
| 64 | static RSA_METHOD rsa_pkcs1_ossl_meth = { | |
| 65 | "OpenSSL PKCS#1 RSA", | |
| 66 | rsa_ossl_public_encrypt, | |
| 67 | rsa_ossl_public_decrypt, /* signature verification */ | |
| 68 | rsa_ossl_private_encrypt, /* signing */ | |
| 69 | rsa_ossl_private_decrypt, | |
| 70 | rsa_ossl_mod_exp, | |
| 71 | BN_mod_exp_mont, /* XXX probably we should not use Montgomery | |
| 72 | * if e == 3 */ | |
| 73 | rsa_ossl_init, | |
| 74 | rsa_ossl_finish, | |
| 75 | RSA_FLAG_FIPS_METHOD, /* flags */ | |
| 76 | NULL, | |
| 77 | 0, /* rsa_sign */ | |
| 78 | 0, /* rsa_verify */ | |
| 79 | NULL, /* rsa_keygen */ | |
| 80 | NULL /* rsa_multi_prime_keygen */ | |
| 81 | }; | |
| 82 | #endif | |
| 83 | ||
| 84 | static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; | |
| 85 | ||
| 86 | void RSA_set_default_method(const RSA_METHOD *meth) | |
| 87 | { | |
| 88 | default_RSA_meth = meth; | |
| 89 | } | |
| 90 | ||
| 91 | const RSA_METHOD *RSA_get_default_method(void) | |
| 92 | { | |
| 93 | return default_RSA_meth; | |
| 94 | } | |
| 95 | ||
| 96 | const RSA_METHOD *RSA_PKCS1_OpenSSL(void) | |
| 97 | { | |
| 98 | return &rsa_pkcs1_ossl_meth; | |
| 99 | } | |
| 100 | ||
| 101 | const RSA_METHOD *RSA_null_method(void) | |
| 102 | { | |
| 103 | return NULL; | |
| 104 | } | |
| 105 | ||
| 106 | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, | |
| 107 | unsigned char *to, RSA *rsa, int padding) | |
| 108 | { | |
| 109 | BIGNUM *f, *ret; | |
| 110 | int i, num = 0, r = -1; | |
| 111 | unsigned char *buf = NULL; | |
| 112 | BN_CTX *ctx = NULL; | |
| 113 | ||
| 114 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { | |
| 115 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); | |
| 116 | return -1; | |
| 117 | } | |
| 118 | ||
| 119 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { | |
| 120 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); | |
| 121 | return -1; | |
| 122 | } | |
| 123 | ||
| 124 | /* for large moduli, enforce exponent limit */ | |
| 125 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { | |
| 126 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { | |
| 127 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); | |
| 128 | return -1; | |
| 129 | } | |
| 130 | } | |
| 131 | ||
| 132 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) | |
| 133 | goto err; | |
| 134 | BN_CTX_start(ctx); | |
| 135 | f = BN_CTX_get(ctx); | |
| 136 | ret = BN_CTX_get(ctx); | |
| 137 | num = BN_num_bytes(rsa->n); | |
| 138 | buf = OPENSSL_malloc(num); | |
| 139 | if (ret == NULL || buf == NULL) | |
| 140 | goto err; | |
| 141 | ||
| 142 | switch (padding) { | |
| 143 | case RSA_PKCS1_PADDING: | |
| 144 | i = ossl_rsa_padding_add_PKCS1_type_2_ex(rsa->libctx, buf, num, | |
| 145 | from, flen); | |
| 146 | break; | |
| 147 | case RSA_PKCS1_OAEP_PADDING: | |
| 148 | i = ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(rsa->libctx, buf, num, | |
| 149 | from, flen, NULL, 0, | |
| 150 | NULL, NULL); | |
| 151 | break; | |
| 152 | case RSA_NO_PADDING: | |
| 153 | i = RSA_padding_add_none(buf, num, from, flen); | |
| 154 | break; | |
| 155 | default: | |
| 156 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); | |
| 157 | goto err; | |
| 158 | } | |
| 159 | if (i <= 0) | |
| 160 | goto err; | |
| 161 | ||
| 162 | if (BN_bin2bn(buf, num, f) == NULL) | |
| 163 | goto err; | |
| 164 | ||
| 165 | #ifdef FIPS_MODULE | |
| 166 | /* | |
| 167 | * See SP800-56Br2, section 7.1.1.1 | |
| 168 | * RSAEP: 1 < f < (n – 1). | |
| 169 | * (where f is the plaintext). | |
| 170 | */ | |
| 171 | if (padding == RSA_NO_PADDING) { | |
| 172 | BIGNUM *nminus1 = BN_CTX_get(ctx); | |
| 173 | ||
| 174 | if (BN_ucmp(f, BN_value_one()) <= 0) { | |
| 175 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); | |
| 176 | goto err; | |
| 177 | } | |
| 178 | if (nminus1 == NULL | |
| 179 | || BN_copy(nminus1, rsa->n) == NULL | |
| 180 | || !BN_sub_word(nminus1, 1)) | |
| 181 | goto err; | |
| 182 | if (BN_ucmp(f, nminus1) >= 0) { | |
| 183 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 184 | goto err; | |
| 185 | } | |
| 186 | } else | |
| 187 | #endif | |
| 188 | { | |
| 189 | if (BN_ucmp(f, rsa->n) >= 0) { | |
| 190 | /* usually the padding functions would catch this */ | |
| 191 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 192 | goto err; | |
| 193 | } | |
| 194 | } | |
| 195 | ||
| 196 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | |
| 197 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, | |
| 198 | rsa->n, ctx)) | |
| 199 | goto err; | |
| 200 | ||
| 201 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, | |
| 202 | rsa->_method_mod_n)) | |
| 203 | goto err; | |
| 204 | ||
| 205 | /* | |
| 206 | * BN_bn2binpad puts in leading 0 bytes if the number is less than | |
| 207 | * the length of the modulus. | |
| 208 | */ | |
| 209 | r = BN_bn2binpad(ret, to, num); | |
| 210 | err: | |
| 211 | BN_CTX_end(ctx); | |
| 212 | BN_CTX_free(ctx); | |
| 213 | OPENSSL_clear_free(buf, num); | |
| 214 | return r; | |
| 215 | } | |
| 216 | ||
| 217 | #if defined(OPENSSL_SYS_TANDEM) | |
| 218 | static TSAN_QUALIFIER uint64_t tsan_thread_id = 1; | |
| 219 | #endif | |
| 220 | ||
| 221 | static uintptr_t get_unique_thread_id(void) | |
| 222 | { | |
| 223 | #if defined(OPENSSL_SYS_TANDEM) | |
| 224 | uintptr_t thread_id = (uintptr_t)CRYPTO_THREAD_get_local_ex(CRYPTO_THREAD_LOCAL_TANDEM_ID_KEY, | |
| 225 | NULL); | |
| 226 | ||
| 227 | if (thread_id == 0) { | |
| 228 | thread_id = tsan_counter(&tsan_thread_id); | |
| 229 | CRYPTO_THREAD_set_local_ex(CRYPTO_THREAD_LOCAL_TANDEM_ID_KEY, NULL, (void *)thread_id); | |
| 230 | } | |
| 231 | return thread_id; | |
| 232 | #else | |
| 233 | return (uintptr_t)CRYPTO_THREAD_get_current_id(); | |
| 234 | #endif | |
| 235 | } | |
| 236 | ||
| 237 | static void free_bn_blinding(ossl_uintmax_t idx, BN_BLINDING *b, void *arg) | |
| 238 | { | |
| 239 | BN_BLINDING_free(b); | |
| 240 | } | |
| 241 | ||
| 242 | void ossl_rsa_free_blinding(RSA *rsa) | |
| 243 | { | |
| 244 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; | |
| 245 | ||
| 246 | ossl_sa_BN_BLINDING_doall_arg(blindings, free_bn_blinding, NULL); | |
| 247 | ossl_sa_BN_BLINDING_free(blindings); | |
| 248 | } | |
| 249 | ||
| 250 | void *ossl_rsa_alloc_blinding(void) | |
| 251 | { | |
| 252 | return ossl_sa_BN_BLINDING_new(); | |
| 253 | } | |
| 254 | ||
| 255 | static BN_BLINDING *ossl_rsa_get_thread_bn_blinding(RSA *rsa) | |
| 256 | { | |
| 257 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; | |
| 258 | uintptr_t tid = get_unique_thread_id(); | |
| 259 | ||
| 260 | return ossl_sa_BN_BLINDING_get(blindings, tid); | |
| 261 | } | |
| 262 | ||
| 263 | static int ossl_rsa_set_thread_bn_blinding(RSA *rsa, BN_BLINDING *b) | |
| 264 | { | |
| 265 | SPARSE_ARRAY_OF(BN_BLINDING) *blindings = rsa->blindings_sa; | |
| 266 | uintptr_t tid = get_unique_thread_id(); | |
| 267 | ||
| 268 | return ossl_sa_BN_BLINDING_set(blindings, tid, b); | |
| 269 | } | |
| 270 | ||
| 271 | static BN_BLINDING *rsa_get_blinding(RSA *rsa, BN_CTX *ctx) | |
| 272 | { | |
| 273 | BN_BLINDING *ret; | |
| 274 | ||
| 275 | if (!CRYPTO_THREAD_read_lock(rsa->lock)) | |
| 276 | return NULL; | |
| 277 | ||
| 278 | ret = ossl_rsa_get_thread_bn_blinding(rsa); | |
| 279 | CRYPTO_THREAD_unlock(rsa->lock); | |
| 280 | ||
| 281 | if (ret == NULL) { | |
| 282 | ret = RSA_setup_blinding(rsa, ctx); | |
| 283 | if (!CRYPTO_THREAD_write_lock(rsa->lock)) { | |
| 284 | BN_BLINDING_free(ret); | |
| 285 | ret = NULL; | |
| 286 | } else { | |
| 287 | if (!ossl_rsa_set_thread_bn_blinding(rsa, ret)) { | |
| 288 | BN_BLINDING_free(ret); | |
| 289 | ret = NULL; | |
| 290 | } | |
| 291 | CRYPTO_THREAD_unlock(rsa->lock); | |
| 292 | } | |
| 293 | } | |
| 294 | ||
| 295 | return ret; | |
| 296 | } | |
| 297 | ||
| 298 | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BN_CTX *ctx) | |
| 299 | { | |
| 300 | /* | |
| 301 | * Local blinding: store the unblinding factor in BN_BLINDING. | |
| 302 | */ | |
| 303 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); | |
| 304 | } | |
| 305 | ||
| 306 | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BN_CTX *ctx) | |
| 307 | { | |
| 308 | /* | |
| 309 | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex | |
| 310 | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING | |
| 311 | * is shared between threads, unblind must be non-null: | |
| 312 | * BN_BLINDING_invert_ex will then use the local unblinding factor, and | |
| 313 | * will only read the modulus from BN_BLINDING. In both cases it's safe | |
| 314 | * to access the blinding without a lock. | |
| 315 | */ | |
| 316 | BN_set_flags(f, BN_FLG_CONSTTIME); | |
| 317 | return BN_BLINDING_invert_ex(f, NULL, b, ctx); | |
| 318 | } | |
| 319 | ||
| 320 | /* signing */ | |
| 321 | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, | |
| 322 | unsigned char *to, RSA *rsa, int padding) | |
| 323 | { | |
| 324 | BIGNUM *f, *ret, *res; | |
| 325 | int i, num = 0, r = -1; | |
| 326 | unsigned char *buf = NULL; | |
| 327 | BN_CTX *ctx = NULL; | |
| 328 | BN_BLINDING *blinding = NULL; | |
| 329 | ||
| 330 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) | |
| 331 | goto err; | |
| 332 | BN_CTX_start(ctx); | |
| 333 | f = BN_CTX_get(ctx); | |
| 334 | ret = BN_CTX_get(ctx); | |
| 335 | num = BN_num_bytes(rsa->n); | |
| 336 | buf = OPENSSL_malloc(num); | |
| 337 | if (ret == NULL || buf == NULL) | |
| 338 | goto err; | |
| 339 | ||
| 340 | switch (padding) { | |
| 341 | case RSA_PKCS1_PADDING: | |
| 342 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); | |
| 343 | break; | |
| 344 | case RSA_X931_PADDING: | |
| 345 | i = RSA_padding_add_X931(buf, num, from, flen); | |
| 346 | break; | |
| 347 | case RSA_NO_PADDING: | |
| 348 | i = RSA_padding_add_none(buf, num, from, flen); | |
| 349 | break; | |
| 350 | default: | |
| 351 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); | |
| 352 | goto err; | |
| 353 | } | |
| 354 | if (i <= 0) | |
| 355 | goto err; | |
| 356 | ||
| 357 | if (BN_bin2bn(buf, num, f) == NULL) | |
| 358 | goto err; | |
| 359 | ||
| 360 | if (BN_ucmp(f, rsa->n) >= 0) { | |
| 361 | /* usually the padding functions would catch this */ | |
| 362 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 363 | goto err; | |
| 364 | } | |
| 365 | ||
| 366 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | |
| 367 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, | |
| 368 | rsa->n, ctx)) | |
| 369 | goto err; | |
| 370 | ||
| 371 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { | |
| 372 | blinding = rsa_get_blinding(rsa, ctx); | |
| 373 | if (blinding == NULL) { | |
| 374 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 375 | goto err; | |
| 376 | } | |
| 377 | ||
| 378 | if (!rsa_blinding_convert(blinding, f, ctx)) | |
| 379 | goto err; | |
| 380 | } | |
| 381 | ||
| 382 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || | |
| 383 | (rsa->version == RSA_ASN1_VERSION_MULTI) || | |
| 384 | ((rsa->p != NULL) && | |
| 385 | (rsa->q != NULL) && | |
| 386 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { | |
| 387 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) | |
| 388 | goto err; | |
| 389 | } else { | |
| 390 | BIGNUM *d = BN_new(); | |
| 391 | if (d == NULL) { | |
| 392 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); | |
| 393 | goto err; | |
| 394 | } | |
| 395 | if (rsa->d == NULL) { | |
| 396 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); | |
| 397 | BN_free(d); | |
| 398 | goto err; | |
| 399 | } | |
| 400 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | |
| 401 | ||
| 402 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, | |
| 403 | rsa->_method_mod_n)) { | |
| 404 | BN_free(d); | |
| 405 | goto err; | |
| 406 | } | |
| 407 | /* We MUST free d before any further use of rsa->d */ | |
| 408 | BN_free(d); | |
| 409 | } | |
| 410 | ||
| 411 | if (blinding) | |
| 412 | if (!rsa_blinding_invert(blinding, ret, ctx)) | |
| 413 | goto err; | |
| 414 | ||
| 415 | if (padding == RSA_X931_PADDING) { | |
| 416 | if (!BN_sub(f, rsa->n, ret)) | |
| 417 | goto err; | |
| 418 | if (BN_cmp(ret, f) > 0) | |
| 419 | res = f; | |
| 420 | else | |
| 421 | res = ret; | |
| 422 | } else { | |
| 423 | res = ret; | |
| 424 | } | |
| 425 | ||
| 426 | /* | |
| 427 | * BN_bn2binpad puts in leading 0 bytes if the number is less than | |
| 428 | * the length of the modulus. | |
| 429 | */ | |
| 430 | r = BN_bn2binpad(res, to, num); | |
| 431 | err: | |
| 432 | BN_CTX_end(ctx); | |
| 433 | BN_CTX_free(ctx); | |
| 434 | OPENSSL_clear_free(buf, num); | |
| 435 | return r; | |
| 436 | } | |
| 437 | ||
| 438 | static int derive_kdk(int flen, const unsigned char *from, RSA *rsa, | |
| 439 | unsigned char *buf, int num, unsigned char *kdk) | |
| 440 | { | |
| 441 | int ret = 0; | |
| 442 | HMAC_CTX *hmac = NULL; | |
| 443 | EVP_MD *md = NULL; | |
| 444 | unsigned int md_len = SHA256_DIGEST_LENGTH; | |
| 445 | unsigned char d_hash[SHA256_DIGEST_LENGTH] = {0}; | |
| 446 | /* | |
| 447 | * because we use d as a handle to rsa->d we need to keep it local and | |
| 448 | * free before any further use of rsa->d | |
| 449 | */ | |
| 450 | BIGNUM *d = BN_new(); | |
| 451 | ||
| 452 | if (d == NULL) { | |
| 453 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); | |
| 454 | goto err; | |
| 455 | } | |
| 456 | if (rsa->d == NULL) { | |
| 457 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); | |
| 458 | BN_free(d); | |
| 459 | goto err; | |
| 460 | } | |
| 461 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | |
| 462 | if (BN_bn2binpad(d, buf, num) < 0) { | |
| 463 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 464 | BN_free(d); | |
| 465 | goto err; | |
| 466 | } | |
| 467 | BN_free(d); | |
| 468 | ||
| 469 | /* | |
| 470 | * we use hardcoded hash so that migrating between versions that use | |
| 471 | * different hash doesn't provide a Bleichenbacher oracle: | |
| 472 | * if the attacker can see that different versions return different | |
| 473 | * messages for the same ciphertext, they'll know that the message is | |
| 474 | * synthetically generated, which means that the padding check failed | |
| 475 | */ | |
| 476 | md = EVP_MD_fetch(rsa->libctx, "sha256", NULL); | |
| 477 | if (md == NULL) { | |
| 478 | ERR_raise(ERR_LIB_RSA, ERR_R_FETCH_FAILED); | |
| 479 | goto err; | |
| 480 | } | |
| 481 | ||
| 482 | if (EVP_Digest(buf, num, d_hash, NULL, md, NULL) <= 0) { | |
| 483 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 484 | goto err; | |
| 485 | } | |
| 486 | ||
| 487 | hmac = HMAC_CTX_new(); | |
| 488 | if (hmac == NULL) { | |
| 489 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB); | |
| 490 | goto err; | |
| 491 | } | |
| 492 | ||
| 493 | if (HMAC_Init_ex(hmac, d_hash, sizeof(d_hash), md, NULL) <= 0) { | |
| 494 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 495 | goto err; | |
| 496 | } | |
| 497 | ||
| 498 | if (flen < num) { | |
| 499 | memset(buf, 0, num - flen); | |
| 500 | if (HMAC_Update(hmac, buf, num - flen) <= 0) { | |
| 501 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 502 | goto err; | |
| 503 | } | |
| 504 | } | |
| 505 | if (HMAC_Update(hmac, from, flen) <= 0) { | |
| 506 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 507 | goto err; | |
| 508 | } | |
| 509 | ||
| 510 | md_len = SHA256_DIGEST_LENGTH; | |
| 511 | if (HMAC_Final(hmac, kdk, &md_len) <= 0) { | |
| 512 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 513 | goto err; | |
| 514 | } | |
| 515 | ret = 1; | |
| 516 | ||
| 517 | err: | |
| 518 | HMAC_CTX_free(hmac); | |
| 519 | EVP_MD_free(md); | |
| 520 | return ret; | |
| 521 | } | |
| 522 | ||
| 523 | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, | |
| 524 | unsigned char *to, RSA *rsa, int padding) | |
| 525 | { | |
| 526 | BIGNUM *f, *ret; | |
| 527 | int j, num = 0, r = -1; | |
| 528 | unsigned char *buf = NULL; | |
| 529 | unsigned char kdk[SHA256_DIGEST_LENGTH] = {0}; | |
| 530 | BN_CTX *ctx = NULL; | |
| 531 | BN_BLINDING *blinding = NULL; | |
| 532 | ||
| 533 | /* | |
| 534 | * we need the value of the private exponent to perform implicit rejection | |
| 535 | */ | |
| 536 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) && (padding == RSA_PKCS1_PADDING)) | |
| 537 | padding = RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING; | |
| 538 | ||
| 539 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) | |
| 540 | goto err; | |
| 541 | BN_CTX_start(ctx); | |
| 542 | f = BN_CTX_get(ctx); | |
| 543 | ret = BN_CTX_get(ctx); | |
| 544 | if (ret == NULL) { | |
| 545 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); | |
| 546 | goto err; | |
| 547 | } | |
| 548 | num = BN_num_bytes(rsa->n); | |
| 549 | buf = OPENSSL_malloc(num); | |
| 550 | if (buf == NULL) | |
| 551 | goto err; | |
| 552 | ||
| 553 | /* | |
| 554 | * This check was for equality but PGP does evil things and chops off the | |
| 555 | * top '0' bytes | |
| 556 | */ | |
| 557 | if (flen > num) { | |
| 558 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); | |
| 559 | goto err; | |
| 560 | } | |
| 561 | ||
| 562 | if (flen < 1) { | |
| 563 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); | |
| 564 | goto err; | |
| 565 | } | |
| 566 | ||
| 567 | /* make data into a big number */ | |
| 568 | if (BN_bin2bn(from, (int)flen, f) == NULL) | |
| 569 | goto err; | |
| 570 | ||
| 571 | #ifdef FIPS_MODULE | |
| 572 | /* | |
| 573 | * See SP800-56Br2, section 7.1.2.1 | |
| 574 | * RSADP: 1 < f < (n – 1) | |
| 575 | * (where f is the ciphertext). | |
| 576 | */ | |
| 577 | if (padding == RSA_NO_PADDING) { | |
| 578 | BIGNUM *nminus1 = BN_CTX_get(ctx); | |
| 579 | ||
| 580 | if (BN_ucmp(f, BN_value_one()) <= 0) { | |
| 581 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_SMALL); | |
| 582 | goto err; | |
| 583 | } | |
| 584 | if (nminus1 == NULL | |
| 585 | || BN_copy(nminus1, rsa->n) == NULL | |
| 586 | || !BN_sub_word(nminus1, 1)) | |
| 587 | goto err; | |
| 588 | if (BN_ucmp(f, nminus1) >= 0) { | |
| 589 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 590 | goto err; | |
| 591 | } | |
| 592 | } else | |
| 593 | #endif | |
| 594 | { | |
| 595 | if (BN_ucmp(f, rsa->n) >= 0) { | |
| 596 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 597 | goto err; | |
| 598 | } | |
| 599 | } | |
| 600 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | |
| 601 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, | |
| 602 | rsa->n, ctx)) | |
| 603 | goto err; | |
| 604 | ||
| 605 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { | |
| 606 | blinding = rsa_get_blinding(rsa, ctx); | |
| 607 | if (blinding == NULL) { | |
| 608 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | |
| 609 | goto err; | |
| 610 | } | |
| 611 | ||
| 612 | if (!rsa_blinding_convert(blinding, f, ctx)) | |
| 613 | goto err; | |
| 614 | } | |
| 615 | ||
| 616 | /* do the decrypt */ | |
| 617 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || | |
| 618 | (rsa->version == RSA_ASN1_VERSION_MULTI) || | |
| 619 | ((rsa->p != NULL) && | |
| 620 | (rsa->q != NULL) && | |
| 621 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { | |
| 622 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) | |
| 623 | goto err; | |
| 624 | } else { | |
| 625 | BIGNUM *d = BN_new(); | |
| 626 | if (d == NULL) { | |
| 627 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); | |
| 628 | goto err; | |
| 629 | } | |
| 630 | if (rsa->d == NULL) { | |
| 631 | ERR_raise(ERR_LIB_RSA, RSA_R_MISSING_PRIVATE_KEY); | |
| 632 | BN_free(d); | |
| 633 | goto err; | |
| 634 | } | |
| 635 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | |
| 636 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, | |
| 637 | rsa->_method_mod_n)) { | |
| 638 | BN_free(d); | |
| 639 | goto err; | |
| 640 | } | |
| 641 | /* We MUST free d before any further use of rsa->d */ | |
| 642 | BN_free(d); | |
| 643 | } | |
| 644 | ||
| 645 | if (blinding) | |
| 646 | if (!rsa_blinding_invert(blinding, ret, ctx)) | |
| 647 | goto err; | |
| 648 | ||
| 649 | /* | |
| 650 | * derive the Key Derivation Key from private exponent and public | |
| 651 | * ciphertext | |
| 652 | */ | |
| 653 | if (padding == RSA_PKCS1_PADDING) { | |
| 654 | if (derive_kdk(flen, from, rsa, buf, num, kdk) == 0) | |
| 655 | goto err; | |
| 656 | } | |
| 657 | ||
| 658 | j = BN_bn2binpad(ret, buf, num); | |
| 659 | if (j < 0) | |
| 660 | goto err; | |
| 661 | ||
| 662 | switch (padding) { | |
| 663 | case RSA_PKCS1_NO_IMPLICIT_REJECT_PADDING: | |
| 664 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); | |
| 665 | break; | |
| 666 | case RSA_PKCS1_PADDING: | |
| 667 | r = ossl_rsa_padding_check_PKCS1_type_2(rsa->libctx, to, num, buf, j, num, kdk); | |
| 668 | break; | |
| 669 | case RSA_PKCS1_OAEP_PADDING: | |
| 670 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); | |
| 671 | break; | |
| 672 | case RSA_NO_PADDING: | |
| 673 | memcpy(to, buf, (r = j)); | |
| 674 | break; | |
| 675 | default: | |
| 676 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); | |
| 677 | goto err; | |
| 678 | } | |
| 679 | #ifndef FIPS_MODULE | |
| 680 | /* | |
| 681 | * This trick doesn't work in the FIPS provider because libcrypto manages | |
| 682 | * the error stack. Instead we opt not to put an error on the stack at all | |
| 683 | * in case of padding failure in the FIPS provider. | |
| 684 | */ | |
| 685 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); | |
| 686 | err_clear_last_constant_time(1 & ~constant_time_msb(r)); | |
| 687 | #endif | |
| 688 | ||
| 689 | err: | |
| 690 | BN_CTX_end(ctx); | |
| 691 | BN_CTX_free(ctx); | |
| 692 | OPENSSL_clear_free(buf, num); | |
| 693 | return r; | |
| 694 | } | |
| 695 | ||
| 696 | /* signature verification */ | |
| 697 | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, | |
| 698 | unsigned char *to, RSA *rsa, int padding) | |
| 699 | { | |
| 700 | BIGNUM *f, *ret; | |
| 701 | int i, num = 0, r = -1; | |
| 702 | unsigned char *buf = NULL; | |
| 703 | BN_CTX *ctx = NULL; | |
| 704 | ||
| 705 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { | |
| 706 | ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE); | |
| 707 | return -1; | |
| 708 | } | |
| 709 | ||
| 710 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { | |
| 711 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); | |
| 712 | return -1; | |
| 713 | } | |
| 714 | ||
| 715 | /* for large moduli, enforce exponent limit */ | |
| 716 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { | |
| 717 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { | |
| 718 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE); | |
| 719 | return -1; | |
| 720 | } | |
| 721 | } | |
| 722 | ||
| 723 | if ((ctx = BN_CTX_new_ex(rsa->libctx)) == NULL) | |
| 724 | goto err; | |
| 725 | BN_CTX_start(ctx); | |
| 726 | f = BN_CTX_get(ctx); | |
| 727 | ret = BN_CTX_get(ctx); | |
| 728 | if (ret == NULL) { | |
| 729 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB); | |
| 730 | goto err; | |
| 731 | } | |
| 732 | num = BN_num_bytes(rsa->n); | |
| 733 | buf = OPENSSL_malloc(num); | |
| 734 | if (buf == NULL) | |
| 735 | goto err; | |
| 736 | ||
| 737 | /* | |
| 738 | * This check was for equality but PGP does evil things and chops off the | |
| 739 | * top '0' bytes | |
| 740 | */ | |
| 741 | if (flen > num) { | |
| 742 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_GREATER_THAN_MOD_LEN); | |
| 743 | goto err; | |
| 744 | } | |
| 745 | ||
| 746 | if (BN_bin2bn(from, flen, f) == NULL) | |
| 747 | goto err; | |
| 748 | ||
| 749 | if (BN_ucmp(f, rsa->n) >= 0) { | |
| 750 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); | |
| 751 | goto err; | |
| 752 | } | |
| 753 | ||
| 754 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | |
| 755 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, | |
| 756 | rsa->n, ctx)) | |
| 757 | goto err; | |
| 758 | ||
| 759 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, | |
| 760 | rsa->_method_mod_n)) | |
| 761 | goto err; | |
| 762 | ||
| 763 | /* For X9.31: Assuming e is odd it does a 12 mod 16 test */ | |
| 764 | if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) | |
| 765 | if (!BN_sub(ret, rsa->n, ret)) | |
| 766 | goto err; | |
| 767 | ||
| 768 | i = BN_bn2binpad(ret, buf, num); | |
| 769 | if (i < 0) | |
| 770 | goto err; | |
| 771 | ||
| 772 | switch (padding) { | |
| 773 | case RSA_PKCS1_PADDING: | |
| 774 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); | |
| 775 | break; | |
| 776 | case RSA_X931_PADDING: | |
| 777 | r = RSA_padding_check_X931(to, num, buf, i, num); | |
| 778 | break; | |
| 779 | case RSA_NO_PADDING: | |
| 780 | memcpy(to, buf, (r = i)); | |
| 781 | break; | |
| 782 | default: | |
| 783 | ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE); | |
| 784 | goto err; | |
| 785 | } | |
| 786 | if (r < 0) | |
| 787 | ERR_raise(ERR_LIB_RSA, RSA_R_PADDING_CHECK_FAILED); | |
| 788 | ||
| 789 | err: | |
| 790 | BN_CTX_end(ctx); | |
| 791 | BN_CTX_free(ctx); | |
| 792 | OPENSSL_clear_free(buf, num); | |
| 793 | return r; | |
| 794 | } | |
| 795 | ||
| 796 | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) | |
| 797 | { | |
| 798 | BIGNUM *r1, *m1, *vrfy; | |
| 799 | int ret = 0, smooth = 0; | |
| 800 | #ifndef FIPS_MODULE | |
| 801 | BIGNUM *r2, *m[RSA_MAX_PRIME_NUM - 2]; | |
| 802 | int i, ex_primes = 0; | |
| 803 | RSA_PRIME_INFO *pinfo; | |
| 804 | #endif | |
| 805 | ||
| 806 | BN_CTX_start(ctx); | |
| 807 | ||
| 808 | r1 = BN_CTX_get(ctx); | |
| 809 | #ifndef FIPS_MODULE | |
| 810 | r2 = BN_CTX_get(ctx); | |
| 811 | #endif | |
| 812 | m1 = BN_CTX_get(ctx); | |
| 813 | vrfy = BN_CTX_get(ctx); | |
| 814 | if (vrfy == NULL) | |
| 815 | goto err; | |
| 816 | ||
| 817 | #ifndef FIPS_MODULE | |
| 818 | if (rsa->version == RSA_ASN1_VERSION_MULTI | |
| 819 | && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 | |
| 820 | || ex_primes > RSA_MAX_PRIME_NUM - 2)) | |
| 821 | goto err; | |
| 822 | #endif | |
| 823 | ||
| 824 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { | |
| 825 | BIGNUM *factor = BN_new(); | |
| 826 | ||
| 827 | if (factor == NULL) | |
| 828 | goto err; | |
| 829 | ||
| 830 | /* | |
| 831 | * Make sure BN_mod_inverse in Montgomery initialization uses the | |
| 832 | * BN_FLG_CONSTTIME flag | |
| 833 | */ | |
| 834 | if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), | |
| 835 | BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, | |
| 836 | factor, ctx)) | |
| 837 | || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), | |
| 838 | BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, | |
| 839 | factor, ctx))) { | |
| 840 | BN_free(factor); | |
| 841 | goto err; | |
| 842 | } | |
| 843 | #ifndef FIPS_MODULE | |
| 844 | for (i = 0; i < ex_primes; i++) { | |
| 845 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); | |
| 846 | BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); | |
| 847 | if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { | |
| 848 | BN_free(factor); | |
| 849 | goto err; | |
| 850 | } | |
| 851 | } | |
| 852 | #endif | |
| 853 | /* | |
| 854 | * We MUST free |factor| before any further use of the prime factors | |
| 855 | */ | |
| 856 | BN_free(factor); | |
| 857 | ||
| 858 | smooth = (rsa->meth->bn_mod_exp == BN_mod_exp_mont) | |
| 859 | #ifndef FIPS_MODULE | |
| 860 | && (ex_primes == 0) | |
| 861 | #endif | |
| 862 | && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); | |
| 863 | } | |
| 864 | ||
| 865 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) | |
| 866 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, | |
| 867 | rsa->n, ctx)) | |
| 868 | goto err; | |
| 869 | ||
| 870 | if (smooth) { | |
| 871 | /* | |
| 872 | * Conversion from Montgomery domain, a.k.a. Montgomery reduction, | |
| 873 | * accepts values in [0-m*2^w) range. w is m's bit width rounded up | |
| 874 | * to limb width. So that at the very least if |I| is fully reduced, | |
| 875 | * i.e. less than p*q, we can count on from-to round to perform | |
| 876 | * below modulo operations on |I|. Unlike BN_mod it's constant time. | |
| 877 | */ | |
| 878 | if (/* m1 = I moq q */ | |
| 879 | !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) | |
| 880 | || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) | |
| 881 | /* r1 = I mod p */ | |
| 882 | || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) | |
| 883 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) | |
| 884 | /* | |
| 885 | * Use parallel exponentiations optimization if possible, | |
| 886 | * otherwise fallback to two sequential exponentiations: | |
| 887 | * m1 = m1^dmq1 mod q | |
| 888 | * r1 = r1^dmp1 mod p | |
| 889 | */ | |
| 890 | || !BN_mod_exp_mont_consttime_x2(m1, m1, rsa->dmq1, rsa->q, | |
| 891 | rsa->_method_mod_q, | |
| 892 | r1, r1, rsa->dmp1, rsa->p, | |
| 893 | rsa->_method_mod_p, | |
| 894 | ctx) | |
| 895 | /* r1 = (r1 - m1) mod p */ | |
| 896 | /* | |
| 897 | * bn_mod_sub_fixed_top is not regular modular subtraction, | |
| 898 | * it can tolerate subtrahend to be larger than modulus, but | |
| 899 | * not bit-wise wider. This makes up for uncommon q>p case, | |
| 900 | * when |m1| can be larger than |rsa->p|. | |
| 901 | */ | |
| 902 | || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) | |
| 903 | ||
| 904 | /* r1 = r1 * iqmp mod p */ | |
| 905 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) | |
| 906 | || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, | |
| 907 | ctx) | |
| 908 | /* r0 = r1 * q + m1 */ | |
| 909 | || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) | |
| 910 | || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) | |
| 911 | goto err; | |
| 912 | ||
| 913 | goto tail; | |
| 914 | } | |
| 915 | ||
| 916 | /* compute I mod q */ | |
| 917 | { | |
| 918 | BIGNUM *c = BN_new(); | |
| 919 | if (c == NULL) | |
| 920 | goto err; | |
| 921 | BN_with_flags(c, I, BN_FLG_CONSTTIME); | |
| 922 | ||
| 923 | if (!BN_mod(r1, c, rsa->q, ctx)) { | |
| 924 | BN_free(c); | |
| 925 | goto err; | |
| 926 | } | |
| 927 | ||
| 928 | { | |
| 929 | BIGNUM *dmq1 = BN_new(); | |
| 930 | if (dmq1 == NULL) { | |
| 931 | BN_free(c); | |
| 932 | goto err; | |
| 933 | } | |
| 934 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); | |
| 935 | ||
| 936 | /* compute r1^dmq1 mod q */ | |
| 937 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, | |
| 938 | rsa->_method_mod_q)) { | |
| 939 | BN_free(c); | |
| 940 | BN_free(dmq1); | |
| 941 | goto err; | |
| 942 | } | |
| 943 | /* We MUST free dmq1 before any further use of rsa->dmq1 */ | |
| 944 | BN_free(dmq1); | |
| 945 | } | |
| 946 | ||
| 947 | /* compute I mod p */ | |
| 948 | if (!BN_mod(r1, c, rsa->p, ctx)) { | |
| 949 | BN_free(c); | |
| 950 | goto err; | |
| 951 | } | |
| 952 | /* We MUST free c before any further use of I */ | |
| 953 | BN_free(c); | |
| 954 | } | |
| 955 | ||
| 956 | { | |
| 957 | BIGNUM *dmp1 = BN_new(); | |
| 958 | if (dmp1 == NULL) | |
| 959 | goto err; | |
| 960 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); | |
| 961 | ||
| 962 | /* compute r1^dmp1 mod p */ | |
| 963 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, | |
| 964 | rsa->_method_mod_p)) { | |
| 965 | BN_free(dmp1); | |
| 966 | goto err; | |
| 967 | } | |
| 968 | /* We MUST free dmp1 before any further use of rsa->dmp1 */ | |
| 969 | BN_free(dmp1); | |
| 970 | } | |
| 971 | ||
| 972 | #ifndef FIPS_MODULE | |
| 973 | if (ex_primes > 0) { | |
| 974 | BIGNUM *di = BN_new(), *cc = BN_new(); | |
| 975 | ||
| 976 | if (cc == NULL || di == NULL) { | |
| 977 | BN_free(cc); | |
| 978 | BN_free(di); | |
| 979 | goto err; | |
| 980 | } | |
| 981 | ||
| 982 | for (i = 0; i < ex_primes; i++) { | |
| 983 | /* prepare m_i */ | |
| 984 | if ((m[i] = BN_CTX_get(ctx)) == NULL) { | |
| 985 | BN_free(cc); | |
| 986 | BN_free(di); | |
| 987 | goto err; | |
| 988 | } | |
| 989 | ||
| 990 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); | |
| 991 | ||
| 992 | /* prepare c and d_i */ | |
| 993 | BN_with_flags(cc, I, BN_FLG_CONSTTIME); | |
| 994 | BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); | |
| 995 | ||
| 996 | if (!BN_mod(r1, cc, pinfo->r, ctx)) { | |
| 997 | BN_free(cc); | |
| 998 | BN_free(di); | |
| 999 | goto err; | |
| 1000 | } | |
| 1001 | /* compute r1 ^ d_i mod r_i */ | |
| 1002 | if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { | |
| 1003 | BN_free(cc); | |
| 1004 | BN_free(di); | |
| 1005 | goto err; | |
| 1006 | } | |
| 1007 | } | |
| 1008 | ||
| 1009 | BN_free(cc); | |
| 1010 | BN_free(di); | |
| 1011 | } | |
| 1012 | #endif | |
| 1013 | ||
| 1014 | if (!BN_sub(r0, r0, m1)) | |
| 1015 | goto err; | |
| 1016 | /* | |
| 1017 | * This will help stop the size of r0 increasing, which does affect the | |
| 1018 | * multiply if it optimised for a power of 2 size | |
| 1019 | */ | |
| 1020 | if (BN_is_negative(r0)) | |
| 1021 | if (!BN_add(r0, r0, rsa->p)) | |
| 1022 | goto err; | |
| 1023 | ||
| 1024 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) | |
| 1025 | goto err; | |
| 1026 | ||
| 1027 | { | |
| 1028 | BIGNUM *pr1 = BN_new(); | |
| 1029 | if (pr1 == NULL) | |
| 1030 | goto err; | |
| 1031 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); | |
| 1032 | ||
| 1033 | if (!BN_mod(r0, pr1, rsa->p, ctx)) { | |
| 1034 | BN_free(pr1); | |
| 1035 | goto err; | |
| 1036 | } | |
| 1037 | /* We MUST free pr1 before any further use of r1 */ | |
| 1038 | BN_free(pr1); | |
| 1039 | } | |
| 1040 | ||
| 1041 | /* | |
| 1042 | * If p < q it is occasionally possible for the correction of adding 'p' | |
| 1043 | * if r0 is negative above to leave the result still negative. This can | |
| 1044 | * break the private key operations: the following second correction | |
| 1045 | * should *always* correct this rare occurrence. This will *never* happen | |
| 1046 | * with OpenSSL generated keys because they ensure p > q [steve] | |
| 1047 | */ | |
| 1048 | if (BN_is_negative(r0)) | |
| 1049 | if (!BN_add(r0, r0, rsa->p)) | |
| 1050 | goto err; | |
| 1051 | if (!BN_mul(r1, r0, rsa->q, ctx)) | |
| 1052 | goto err; | |
| 1053 | if (!BN_add(r0, r1, m1)) | |
| 1054 | goto err; | |
| 1055 | ||
| 1056 | #ifndef FIPS_MODULE | |
| 1057 | /* add m_i to m in multi-prime case */ | |
| 1058 | if (ex_primes > 0) { | |
| 1059 | BIGNUM *pr2 = BN_new(); | |
| 1060 | ||
| 1061 | if (pr2 == NULL) | |
| 1062 | goto err; | |
| 1063 | ||
| 1064 | for (i = 0; i < ex_primes; i++) { | |
| 1065 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); | |
| 1066 | if (!BN_sub(r1, m[i], r0)) { | |
| 1067 | BN_free(pr2); | |
| 1068 | goto err; | |
| 1069 | } | |
| 1070 | ||
| 1071 | if (!BN_mul(r2, r1, pinfo->t, ctx)) { | |
| 1072 | BN_free(pr2); | |
| 1073 | goto err; | |
| 1074 | } | |
| 1075 | ||
| 1076 | BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); | |
| 1077 | ||
| 1078 | if (!BN_mod(r1, pr2, pinfo->r, ctx)) { | |
| 1079 | BN_free(pr2); | |
| 1080 | goto err; | |
| 1081 | } | |
| 1082 | ||
| 1083 | if (BN_is_negative(r1)) | |
| 1084 | if (!BN_add(r1, r1, pinfo->r)) { | |
| 1085 | BN_free(pr2); | |
| 1086 | goto err; | |
| 1087 | } | |
| 1088 | if (!BN_mul(r1, r1, pinfo->pp, ctx)) { | |
| 1089 | BN_free(pr2); | |
| 1090 | goto err; | |
| 1091 | } | |
| 1092 | if (!BN_add(r0, r0, r1)) { | |
| 1093 | BN_free(pr2); | |
| 1094 | goto err; | |
| 1095 | } | |
| 1096 | } | |
| 1097 | BN_free(pr2); | |
| 1098 | } | |
| 1099 | #endif | |
| 1100 | ||
| 1101 | tail: | |
| 1102 | if (rsa->e && rsa->n) { | |
| 1103 | if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { | |
| 1104 | if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, | |
| 1105 | rsa->_method_mod_n)) | |
| 1106 | goto err; | |
| 1107 | } else { | |
| 1108 | bn_correct_top(r0); | |
| 1109 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, | |
| 1110 | rsa->_method_mod_n)) | |
| 1111 | goto err; | |
| 1112 | } | |
| 1113 | /* | |
| 1114 | * If 'I' was greater than (or equal to) rsa->n, the operation will | |
| 1115 | * be equivalent to using 'I mod n'. However, the result of the | |
| 1116 | * verify will *always* be less than 'n' so we don't check for | |
| 1117 | * absolute equality, just congruency. | |
| 1118 | */ | |
| 1119 | if (!BN_sub(vrfy, vrfy, I)) | |
| 1120 | goto err; | |
| 1121 | if (BN_is_zero(vrfy)) { | |
| 1122 | bn_correct_top(r0); | |
| 1123 | ret = 1; | |
| 1124 | goto err; /* not actually error */ | |
| 1125 | } | |
| 1126 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) | |
| 1127 | goto err; | |
| 1128 | if (BN_is_negative(vrfy)) | |
| 1129 | if (!BN_add(vrfy, vrfy, rsa->n)) | |
| 1130 | goto err; | |
| 1131 | if (!BN_is_zero(vrfy)) { | |
| 1132 | /* | |
| 1133 | * 'I' and 'vrfy' aren't congruent mod n. Don't leak | |
| 1134 | * miscalculated CRT output, just do a raw (slower) mod_exp and | |
| 1135 | * return that instead. | |
| 1136 | */ | |
| 1137 | ||
| 1138 | BIGNUM *d = BN_new(); | |
| 1139 | if (d == NULL) | |
| 1140 | goto err; | |
| 1141 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); | |
| 1142 | ||
| 1143 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, | |
| 1144 | rsa->_method_mod_n)) { | |
| 1145 | BN_free(d); | |
| 1146 | goto err; | |
| 1147 | } | |
| 1148 | /* We MUST free d before any further use of rsa->d */ | |
| 1149 | BN_free(d); | |
| 1150 | } | |
| 1151 | } | |
| 1152 | /* | |
| 1153 | * It's unfortunate that we have to bn_correct_top(r0). What hopefully | |
| 1154 | * saves the day is that correction is highly unlike, and private key | |
| 1155 | * operations are customarily performed on blinded message. Which means | |
| 1156 | * that attacker won't observe correlation with chosen plaintext. | |
| 1157 | * Secondly, remaining code would still handle it in same computational | |
| 1158 | * time and even conceal memory access pattern around corrected top. | |
| 1159 | */ | |
| 1160 | bn_correct_top(r0); | |
| 1161 | ret = 1; | |
| 1162 | err: | |
| 1163 | BN_CTX_end(ctx); | |
| 1164 | return ret; | |
| 1165 | } | |
| 1166 | ||
| 1167 | static int rsa_ossl_init(RSA *rsa) | |
| 1168 | { | |
| 1169 | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; | |
| 1170 | return 1; | |
| 1171 | } | |
| 1172 | ||
| 1173 | static int rsa_ossl_finish(RSA *rsa) | |
| 1174 | { | |
| 1175 | #ifndef FIPS_MODULE | |
| 1176 | int i; | |
| 1177 | RSA_PRIME_INFO *pinfo; | |
| 1178 | ||
| 1179 | for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { | |
| 1180 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); | |
| 1181 | BN_MONT_CTX_free(pinfo->m); | |
| 1182 | } | |
| 1183 | #endif | |
| 1184 | ||
| 1185 | BN_MONT_CTX_free(rsa->_method_mod_n); | |
| 1186 | BN_MONT_CTX_free(rsa->_method_mod_p); | |
| 1187 | BN_MONT_CTX_free(rsa->_method_mod_q); | |
| 1188 | return 1; | |
| 1189 | } | |
| 1190 | ||
| 1191 | #ifdef S390X_MOD_EXP | |
| 1192 | static int rsa_ossl_s390x_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, | |
| 1193 | BN_CTX *ctx) | |
| 1194 | { | |
| 1195 | if (rsa->version != RSA_ASN1_VERSION_MULTI) { | |
| 1196 | if (s390x_crt(r0, i, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, rsa->iqmp) == 1) | |
| 1197 | return 1; | |
| 1198 | } | |
| 1199 | return rsa_ossl_mod_exp(r0, i, rsa, ctx); | |
| 1200 | } | |
| 1201 | ||
| 1202 | #endif |