]>
Commit | Line | Data |
---|---|---|
1 | /* Run time dynamic linker. | |
2 | Copyright (C) 1995-2025 Free Software Foundation, Inc. | |
3 | This file is part of the GNU C Library. | |
4 | ||
5 | The GNU C Library is free software; you can redistribute it and/or | |
6 | modify it under the terms of the GNU Lesser General Public | |
7 | License as published by the Free Software Foundation; either | |
8 | version 2.1 of the License, or (at your option) any later version. | |
9 | ||
10 | The GNU C Library is distributed in the hope that it will be useful, | |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 | Lesser General Public License for more details. | |
14 | ||
15 | You should have received a copy of the GNU Lesser General Public | |
16 | License along with the GNU C Library; if not, see | |
17 | <https://www.gnu.org/licenses/>. */ | |
18 | ||
19 | #include <errno.h> | |
20 | #include <dlfcn.h> | |
21 | #include <fcntl.h> | |
22 | #include <stdbool.h> | |
23 | #include <stdlib.h> | |
24 | #include <string.h> | |
25 | #include <unistd.h> | |
26 | #include <sys/mman.h> | |
27 | #include <sys/param.h> | |
28 | #include <sys/stat.h> | |
29 | #include <ldsodefs.h> | |
30 | #include <_itoa.h> | |
31 | #include <entry.h> | |
32 | #include <fpu_control.h> | |
33 | #include <hp-timing.h> | |
34 | #include <libc-lock.h> | |
35 | #include <unsecvars.h> | |
36 | #include <dl-cache.h> | |
37 | #include <dl-osinfo.h> | |
38 | #include <dl-prop.h> | |
39 | #include <dl-vdso.h> | |
40 | #include <dl-vdso-setup.h> | |
41 | #include <tls.h> | |
42 | #include <stap-probe.h> | |
43 | #include <stackinfo.h> | |
44 | #include <not-cancel.h> | |
45 | #include <array_length.h> | |
46 | #include <libc-early-init.h> | |
47 | #include <dl-main.h> | |
48 | #include <gnu/lib-names.h> | |
49 | #include <dl-tunables.h> | |
50 | #include <get-dynamic-info.h> | |
51 | #include <dl-execve.h> | |
52 | #include <dl-find_object.h> | |
53 | #include <dl-audit-check.h> | |
54 | #include <dl-call_tls_init_tp.h> | |
55 | ||
56 | #include <assert.h> | |
57 | ||
58 | /* This #define produces dynamic linking inline functions for | |
59 | bootstrap relocation instead of general-purpose relocation. | |
60 | Since ld.so must not have any undefined symbols the result | |
61 | is trivial: always the map of ld.so itself. */ | |
62 | #define RTLD_BOOTSTRAP | |
63 | #define RESOLVE_MAP(map, scope, sym, version, flags) map | |
64 | #include "dynamic-link.h" | |
65 | ||
66 | /* Must include after <dl-machine.h> for DT_MIPS definition. */ | |
67 | #include <dl-debug.h> | |
68 | ||
69 | /* Only enables rtld profiling for architectures which provides non generic | |
70 | hp-timing support. The generic support requires either syscall | |
71 | (clock_gettime), which will incur in extra overhead on loading time. | |
72 | Using vDSO is also an option, but it will require extra support on loader | |
73 | to setup the vDSO pointer before its usage. */ | |
74 | #if HP_TIMING_INLINE | |
75 | # define RLTD_TIMING_DECLARE(var, classifier,...) \ | |
76 | classifier hp_timing_t var __VA_ARGS__ | |
77 | # define RTLD_TIMING_VAR(var) RLTD_TIMING_DECLARE (var, ) | |
78 | # define RTLD_TIMING_SET(var, value) (var) = (value) | |
79 | # define RTLD_TIMING_REF(var) &(var) | |
80 | ||
81 | static inline void | |
82 | rtld_timer_start (hp_timing_t *var) | |
83 | { | |
84 | HP_TIMING_NOW (*var); | |
85 | } | |
86 | ||
87 | static inline void | |
88 | rtld_timer_stop (hp_timing_t *var, hp_timing_t start) | |
89 | { | |
90 | hp_timing_t stop; | |
91 | HP_TIMING_NOW (stop); | |
92 | HP_TIMING_DIFF (*var, start, stop); | |
93 | } | |
94 | ||
95 | static inline void | |
96 | rtld_timer_accum (hp_timing_t *sum, hp_timing_t start) | |
97 | { | |
98 | hp_timing_t stop; | |
99 | rtld_timer_stop (&stop, start); | |
100 | HP_TIMING_ACCUM_NT(*sum, stop); | |
101 | } | |
102 | #else | |
103 | # define RLTD_TIMING_DECLARE(var, classifier...) | |
104 | # define RTLD_TIMING_SET(var, value) | |
105 | # define RTLD_TIMING_VAR(var) | |
106 | # define RTLD_TIMING_REF(var) 0 | |
107 | # define rtld_timer_start(var) | |
108 | # define rtld_timer_stop(var, start) | |
109 | # define rtld_timer_accum(sum, start) | |
110 | #endif | |
111 | ||
112 | /* Avoid PLT use for our local calls at startup. */ | |
113 | extern __typeof (__mempcpy) __mempcpy attribute_hidden; | |
114 | ||
115 | /* GCC has mental blocks about _exit. */ | |
116 | extern __typeof (_exit) exit_internal asm ("_exit") attribute_hidden; | |
117 | #define _exit exit_internal | |
118 | ||
119 | /* Helper function to handle errors while resolving symbols. */ | |
120 | static void print_unresolved (int errcode, const char *objname, | |
121 | const char *errsting); | |
122 | ||
123 | /* Helper function to handle errors when a version is missing. */ | |
124 | static void print_missing_version (int errcode, const char *objname, | |
125 | const char *errsting); | |
126 | ||
127 | /* Print the various times we collected. */ | |
128 | static void print_statistics (const hp_timing_t *total_timep); | |
129 | ||
130 | /* Creates an empty audit list. */ | |
131 | static void audit_list_init (struct audit_list *); | |
132 | ||
133 | /* Add a string to the end of the audit list, for later parsing. Must | |
134 | not be called after audit_list_next. */ | |
135 | static void audit_list_add_string (struct audit_list *, const char *); | |
136 | ||
137 | /* Add the audit strings from the link map, found in the dynamic | |
138 | segment at TG (either DT_AUDIT and DT_DEPAUDIT). Must be called | |
139 | before audit_list_next. */ | |
140 | static void audit_list_add_dynamic_tag (struct audit_list *, | |
141 | struct link_map *, | |
142 | unsigned int tag); | |
143 | ||
144 | /* Extract the next audit module from the audit list. Only modules | |
145 | for which dso_name_valid_for_suid is true are returned. Must be | |
146 | called after all the audit_list_add_string, | |
147 | audit_list_add_dynamic_tags calls. */ | |
148 | static const char *audit_list_next (struct audit_list *); | |
149 | ||
150 | /* Initialize *STATE with the defaults. */ | |
151 | static void dl_main_state_init (struct dl_main_state *state); | |
152 | ||
153 | /* Process all environments variables the dynamic linker must recognize. | |
154 | Since all of them start with `LD_' we are a bit smarter while finding | |
155 | all the entries. */ | |
156 | extern char **_environ attribute_hidden; | |
157 | static int process_envvars (struct dl_main_state *state); | |
158 | ||
159 | int _dl_argc attribute_relro attribute_hidden; | |
160 | char **_dl_argv attribute_relro = NULL; | |
161 | rtld_hidden_data_def (_dl_argv) | |
162 | ||
163 | #ifndef THREAD_SET_STACK_GUARD | |
164 | /* Only exported for architectures that don't store the stack guard canary | |
165 | in thread local area. */ | |
166 | uintptr_t __stack_chk_guard attribute_relro; | |
167 | #endif | |
168 | ||
169 | /* Only exported for architectures that don't store the pointer guard | |
170 | value in thread local area. */ | |
171 | uintptr_t __pointer_chk_guard_local attribute_relro attribute_hidden; | |
172 | #ifndef THREAD_SET_POINTER_GUARD | |
173 | strong_alias (__pointer_chk_guard_local, __pointer_chk_guard) | |
174 | #endif | |
175 | ||
176 | /* Check that AT_SECURE=0, or that the passed name does not contain | |
177 | directories and is not overly long. Reject empty names | |
178 | unconditionally. */ | |
179 | static bool | |
180 | dso_name_valid_for_suid (const char *p) | |
181 | { | |
182 | if (__glibc_unlikely (__libc_enable_secure)) | |
183 | { | |
184 | /* Ignore pathnames with directories for AT_SECURE=1 | |
185 | programs, and also skip overlong names. */ | |
186 | size_t len = strlen (p); | |
187 | if (len >= SECURE_NAME_LIMIT || memchr (p, '/', len) != NULL) | |
188 | return false; | |
189 | } | |
190 | return *p != '\0'; | |
191 | } | |
192 | ||
193 | static void | |
194 | audit_list_init (struct audit_list *list) | |
195 | { | |
196 | list->length = 0; | |
197 | list->current_index = 0; | |
198 | list->current_tail = NULL; | |
199 | } | |
200 | ||
201 | static void | |
202 | audit_list_add_string (struct audit_list *list, const char *string) | |
203 | { | |
204 | /* Empty strings do not load anything. */ | |
205 | if (*string == '\0') | |
206 | return; | |
207 | ||
208 | if (list->length == array_length (list->audit_strings)) | |
209 | _dl_fatal_printf ("Fatal glibc error: Too many audit modules requested\n"); | |
210 | ||
211 | list->audit_strings[list->length++] = string; | |
212 | ||
213 | /* Initialize processing of the first string for | |
214 | audit_list_next. */ | |
215 | if (list->length == 1) | |
216 | list->current_tail = string; | |
217 | } | |
218 | ||
219 | static void | |
220 | audit_list_add_dynamic_tag (struct audit_list *list, struct link_map *main_map, | |
221 | unsigned int tag) | |
222 | { | |
223 | ElfW(Dyn) *info = main_map->l_info[ADDRIDX (tag)]; | |
224 | const char *strtab = (const char *) D_PTR (main_map, l_info[DT_STRTAB]); | |
225 | if (info != NULL) | |
226 | audit_list_add_string (list, strtab + info->d_un.d_val); | |
227 | } | |
228 | ||
229 | static const char * | |
230 | audit_list_next (struct audit_list *list) | |
231 | { | |
232 | if (list->current_tail == NULL) | |
233 | return NULL; | |
234 | ||
235 | while (true) | |
236 | { | |
237 | /* Advance to the next string in audit_strings if the current | |
238 | string has been exhausted. */ | |
239 | while (*list->current_tail == '\0') | |
240 | { | |
241 | ++list->current_index; | |
242 | if (list->current_index == list->length) | |
243 | { | |
244 | list->current_tail = NULL; | |
245 | return NULL; | |
246 | } | |
247 | list->current_tail = list->audit_strings[list->current_index]; | |
248 | } | |
249 | ||
250 | /* Split the in-string audit list at the next colon colon. */ | |
251 | size_t len = strcspn (list->current_tail, ":"); | |
252 | if (len > 0 && len < sizeof (list->fname)) | |
253 | { | |
254 | memcpy (list->fname, list->current_tail, len); | |
255 | list->fname[len] = '\0'; | |
256 | } | |
257 | else | |
258 | /* Mark the name as unusable for dso_name_valid_for_suid. */ | |
259 | list->fname[0] = '\0'; | |
260 | ||
261 | /* Skip over the substring and the following delimiter. */ | |
262 | list->current_tail += len; | |
263 | if (*list->current_tail == ':') | |
264 | ++list->current_tail; | |
265 | ||
266 | /* If the name is valid, return it. */ | |
267 | if (dso_name_valid_for_suid (list->fname)) | |
268 | return list->fname; | |
269 | ||
270 | /* Otherwise wrap around to find the next list element. . */ | |
271 | } | |
272 | } | |
273 | ||
274 | /* Count audit modules before they are loaded so GLRO(dl_naudit) | |
275 | is not yet usable. */ | |
276 | static size_t | |
277 | audit_list_count (struct audit_list *list) | |
278 | { | |
279 | /* Restore the audit_list iterator state at the end. */ | |
280 | const char *saved_tail = list->current_tail; | |
281 | size_t naudit = 0; | |
282 | ||
283 | assert (list->current_index == 0); | |
284 | while (audit_list_next (list) != NULL) | |
285 | naudit++; | |
286 | list->current_tail = saved_tail; | |
287 | list->current_index = 0; | |
288 | return naudit; | |
289 | } | |
290 | ||
291 | static void | |
292 | dl_main_state_init (struct dl_main_state *state) | |
293 | { | |
294 | audit_list_init (&state->audit_list); | |
295 | state->library_path = NULL; | |
296 | state->library_path_source = NULL; | |
297 | state->preloadlist = NULL; | |
298 | state->preloadarg = NULL; | |
299 | state->glibc_hwcaps_prepend = NULL; | |
300 | state->glibc_hwcaps_mask = NULL; | |
301 | state->mode = rtld_mode_normal; | |
302 | state->version_info = false; | |
303 | } | |
304 | ||
305 | #ifndef HAVE_INLINED_SYSCALLS | |
306 | /* Set nonzero during loading and initialization of executable and | |
307 | libraries, cleared before the executable's entry point runs. This | |
308 | must not be initialized to nonzero, because the unused dynamic | |
309 | linker loaded in for libc.so's "ld.so.1" dep will provide the | |
310 | definition seen by libc.so's initializer; that value must be zero, | |
311 | and will be since that dynamic linker's _dl_start and dl_main will | |
312 | never be called. */ | |
313 | int _dl_starting_up = 0; | |
314 | rtld_hidden_def (_dl_starting_up) | |
315 | #endif | |
316 | ||
317 | /* This is the structure which defines all variables global to ld.so | |
318 | (except those which cannot be added for some reason). */ | |
319 | struct rtld_global _rtld_global = | |
320 | { | |
321 | /* Get architecture specific initializer. */ | |
322 | #include <dl-procruntime.c> | |
323 | /* Generally the default presumption without further information is an | |
324 | * executable stack but this is not true for all platforms. */ | |
325 | ._dl_stack_flags = DEFAULT_STACK_PERMS, | |
326 | #ifdef _LIBC_REENTRANT | |
327 | ._dl_load_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER, | |
328 | ._dl_load_write_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER, | |
329 | ._dl_load_tls_lock = _RTLD_LOCK_RECURSIVE_INITIALIZER, | |
330 | #endif | |
331 | ._dl_nns = 1, | |
332 | ._dl_ns = | |
333 | { | |
334 | #ifdef _LIBC_REENTRANT | |
335 | [LM_ID_BASE] = { ._ns_unique_sym_table | |
336 | = { .lock = _RTLD_LOCK_RECURSIVE_INITIALIZER } } | |
337 | #endif | |
338 | } | |
339 | }; | |
340 | /* If we would use strong_alias here the compiler would see a | |
341 | non-hidden definition. This would undo the effect of the previous | |
342 | declaration. So spell out what strong_alias does plus add the | |
343 | visibility attribute. */ | |
344 | extern struct rtld_global _rtld_local | |
345 | __attribute__ ((alias ("_rtld_global"), visibility ("hidden"))); | |
346 | ||
347 | ||
348 | /* This variable is similar to _rtld_local, but all values are | |
349 | read-only after relocation. */ | |
350 | struct rtld_global_ro _rtld_global_ro attribute_relro = | |
351 | { | |
352 | /* Get architecture specific initializer. */ | |
353 | #include <dl-procinfo.c> | |
354 | #ifdef NEED_DL_SYSINFO | |
355 | ._dl_sysinfo = DL_SYSINFO_DEFAULT, | |
356 | #endif | |
357 | ._dl_debug_fd = STDERR_FILENO, | |
358 | ._dl_lazy = 1, | |
359 | ._dl_fpu_control = _FPU_DEFAULT, | |
360 | ._dl_pagesize = EXEC_PAGESIZE, | |
361 | ._dl_inhibit_cache = 0, | |
362 | ._dl_profile_output = "/var/tmp", | |
363 | ||
364 | /* Function pointers. */ | |
365 | ._dl_debug_printf = _dl_debug_printf, | |
366 | ._dl_mcount = _dl_mcount, | |
367 | ._dl_lookup_symbol_x = _dl_lookup_symbol_x, | |
368 | ._dl_open = _dl_open, | |
369 | ._dl_close = _dl_close, | |
370 | ._dl_catch_error = _dl_catch_error, | |
371 | ._dl_error_free = _dl_error_free, | |
372 | ._dl_tls_get_addr_soft = _dl_tls_get_addr_soft, | |
373 | ._dl_libc_freeres = __rtld_libc_freeres, | |
374 | ._dl_readonly_area = _dl_readonly_area, | |
375 | }; | |
376 | /* If we would use strong_alias here the compiler would see a | |
377 | non-hidden definition. This would undo the effect of the previous | |
378 | declaration. So spell out was strong_alias does plus add the | |
379 | visibility attribute. */ | |
380 | extern struct rtld_global_ro _rtld_local_ro | |
381 | __attribute__ ((alias ("_rtld_global_ro"), visibility ("hidden"))); | |
382 | ||
383 | struct link_map _dl_rtld_map; | |
384 | struct auditstate _dl_rtld_auditstate[DL_NNS]; | |
385 | ||
386 | static void dl_main (const ElfW(Phdr) *phdr, ElfW(Word) phnum, | |
387 | ElfW(Addr) *user_entry, ElfW(auxv_t) *auxv); | |
388 | ||
389 | /* These two variables cannot be moved into .data.rel.ro. */ | |
390 | static struct libname_list _dl_rtld_libname; | |
391 | ||
392 | /* Variable for statistics. */ | |
393 | RLTD_TIMING_DECLARE (relocate_time, static); | |
394 | RLTD_TIMING_DECLARE (load_time, static, attribute_relro); | |
395 | RLTD_TIMING_DECLARE (start_time, static, attribute_relro); | |
396 | ||
397 | /* Additional definitions needed by TLS initialization. */ | |
398 | #ifdef TLS_INIT_HELPER | |
399 | TLS_INIT_HELPER | |
400 | #endif | |
401 | ||
402 | /* Helper function for syscall implementation. */ | |
403 | #ifdef DL_SYSINFO_IMPLEMENTATION | |
404 | DL_SYSINFO_IMPLEMENTATION | |
405 | #endif | |
406 | ||
407 | /* Before ld.so is relocated we must not access variables which need | |
408 | relocations. This means variables which are exported. Variables | |
409 | declared as static are fine. If we can mark a variable hidden this | |
410 | is fine, too. The latter is important here. We can avoid setting | |
411 | up a temporary link map for ld.so if we can mark _rtld_global as | |
412 | hidden. */ | |
413 | #ifndef HIDDEN_VAR_NEEDS_DYNAMIC_RELOC | |
414 | # define DONT_USE_BOOTSTRAP_MAP 1 | |
415 | #endif | |
416 | ||
417 | #ifdef DONT_USE_BOOTSTRAP_MAP | |
418 | static ElfW(Addr) _dl_start_final (void *arg); | |
419 | #else | |
420 | struct dl_start_final_info | |
421 | { | |
422 | struct link_map l; | |
423 | RTLD_TIMING_VAR (start_time); | |
424 | }; | |
425 | static ElfW(Addr) _dl_start_final (void *arg, | |
426 | struct dl_start_final_info *info); | |
427 | #endif | |
428 | ||
429 | /* These are defined magically by the linker. */ | |
430 | extern const ElfW(Ehdr) __ehdr_start attribute_hidden; | |
431 | extern char _end[] attribute_hidden; | |
432 | ||
433 | ||
434 | #ifdef RTLD_START | |
435 | RTLD_START | |
436 | #else | |
437 | # error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START" | |
438 | #endif | |
439 | ||
440 | /* This is the second half of _dl_start (below). It can be inlined safely | |
441 | under DONT_USE_BOOTSTRAP_MAP, where it is careful not to make any GOT | |
442 | references. When the tools don't permit us to avoid using a GOT entry | |
443 | for _dl_rtld_global (no attribute_hidden support), we must make sure | |
444 | this function is not inlined (see below). */ | |
445 | ||
446 | #ifdef DONT_USE_BOOTSTRAP_MAP | |
447 | static inline ElfW(Addr) __attribute__ ((always_inline)) | |
448 | _dl_start_final (void *arg) | |
449 | #else | |
450 | static ElfW(Addr) __attribute__ ((noinline)) | |
451 | _dl_start_final (void *arg, struct dl_start_final_info *info) | |
452 | #endif | |
453 | { | |
454 | ElfW(Addr) start_addr; | |
455 | ||
456 | __rtld_malloc_init_stubs (); | |
457 | ||
458 | /* Do not use an initializer for these members because it would | |
459 | interfere with __rtld_static_init. */ | |
460 | GLRO (dl_find_object) = &_dl_find_object; | |
461 | ||
462 | /* If it hasn't happen yet record the startup time. */ | |
463 | rtld_timer_start (&start_time); | |
464 | #if !defined DONT_USE_BOOTSTRAP_MAP | |
465 | RTLD_TIMING_SET (start_time, info->start_time); | |
466 | #endif | |
467 | ||
468 | /* Transfer data about ourselves to the permanent link_map structure. */ | |
469 | #ifndef DONT_USE_BOOTSTRAP_MAP | |
470 | _dl_rtld_map.l_addr = info->l.l_addr; | |
471 | _dl_rtld_map.l_ld = info->l.l_ld; | |
472 | _dl_rtld_map.l_ld_readonly = info->l.l_ld_readonly; | |
473 | memcpy (_dl_rtld_map.l_info, info->l.l_info, sizeof _dl_rtld_map.l_info); | |
474 | _dl_rtld_map.l_mach = info->l.l_mach; | |
475 | _dl_rtld_map.l_relocated = 1; | |
476 | #endif | |
477 | _dl_setup_hash (&_dl_rtld_map); | |
478 | _dl_rtld_map.l_real = &_dl_rtld_map; | |
479 | _dl_rtld_map.l_map_start | |
480 | = (ElfW(Addr)) DL_ADDRESS_WITHOUT_RELOC (&__ehdr_start); | |
481 | _dl_rtld_map.l_map_end | |
482 | = (ElfW(Addr)) DL_ADDRESS_WITHOUT_RELOC (_end); | |
483 | /* Copy the TLS related data if necessary. */ | |
484 | #ifndef DONT_USE_BOOTSTRAP_MAP | |
485 | # if NO_TLS_OFFSET != 0 | |
486 | _dl_rtld_map.l_tls_offset = NO_TLS_OFFSET; | |
487 | # endif | |
488 | #endif | |
489 | ||
490 | /* Initialize the stack end variable. */ | |
491 | __libc_stack_end = __builtin_frame_address (0); | |
492 | ||
493 | /* Call the OS-dependent function to set up life so we can do things like | |
494 | file access. It will call `dl_main' (below) to do all the real work | |
495 | of the dynamic linker, and then unwind our frame and run the user | |
496 | entry point on the same stack we entered on. */ | |
497 | start_addr = _dl_sysdep_start (arg, &dl_main); | |
498 | ||
499 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_STATISTICS)) | |
500 | { | |
501 | RTLD_TIMING_VAR (rtld_total_time); | |
502 | rtld_timer_stop (&rtld_total_time, start_time); | |
503 | print_statistics (RTLD_TIMING_REF(rtld_total_time)); | |
504 | } | |
505 | ||
506 | #ifndef ELF_MACHINE_START_ADDRESS | |
507 | # define ELF_MACHINE_START_ADDRESS(map, start) (start) | |
508 | #endif | |
509 | return ELF_MACHINE_START_ADDRESS (GL(dl_ns)[LM_ID_BASE]._ns_loaded, start_addr); | |
510 | } | |
511 | ||
512 | #ifdef DONT_USE_BOOTSTRAP_MAP | |
513 | # define bootstrap_map _dl_rtld_map | |
514 | #else | |
515 | # define bootstrap_map info.l | |
516 | #endif | |
517 | ||
518 | static ElfW(Addr) __attribute_used__ | |
519 | _dl_start (void *arg) | |
520 | { | |
521 | #ifdef DONT_USE_BOOTSTRAP_MAP | |
522 | rtld_timer_start (&start_time); | |
523 | #else | |
524 | struct dl_start_final_info info; | |
525 | rtld_timer_start (&info.start_time); | |
526 | #endif | |
527 | ||
528 | /* Partly clean the `bootstrap_map' structure up. Don't use | |
529 | `memset' since it might not be built in or inlined and we cannot | |
530 | make function calls at this point. Use '__builtin_memset' if we | |
531 | know it is available. We do not have to clear the memory if we | |
532 | do not have to use the temporary bootstrap_map. Global variables | |
533 | are initialized to zero by default. */ | |
534 | #ifndef DONT_USE_BOOTSTRAP_MAP | |
535 | # ifdef HAVE_BUILTIN_MEMSET | |
536 | __builtin_memset (bootstrap_map.l_info, '\0', sizeof (bootstrap_map.l_info)); | |
537 | # else | |
538 | for (size_t cnt = 0; | |
539 | cnt < sizeof (bootstrap_map.l_info) / sizeof (bootstrap_map.l_info[0]); | |
540 | ++cnt) | |
541 | bootstrap_map.l_info[cnt] = 0; | |
542 | # endif | |
543 | #endif | |
544 | ||
545 | /* Figure out the run-time load address of the dynamic linker itself. */ | |
546 | bootstrap_map.l_addr = elf_machine_load_address (); | |
547 | ||
548 | /* Read our own dynamic section and fill in the info array. */ | |
549 | bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + elf_machine_dynamic (); | |
550 | bootstrap_map.l_ld_readonly = DL_RO_DYN_SECTION; | |
551 | elf_get_dynamic_info (&bootstrap_map, true, false); | |
552 | ||
553 | #if NO_TLS_OFFSET != 0 | |
554 | bootstrap_map.l_tls_offset = NO_TLS_OFFSET; | |
555 | #endif | |
556 | ||
557 | #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC | |
558 | ELF_MACHINE_BEFORE_RTLD_RELOC (&bootstrap_map, bootstrap_map.l_info); | |
559 | #endif | |
560 | ||
561 | if (bootstrap_map.l_addr) | |
562 | { | |
563 | /* Relocate ourselves so we can do normal function calls and | |
564 | data access using the global offset table. */ | |
565 | ||
566 | ELF_DYNAMIC_RELOCATE (&bootstrap_map, NULL, 0, 0, 0); | |
567 | } | |
568 | bootstrap_map.l_relocated = 1; | |
569 | ||
570 | /* Please note that we don't allow profiling of this object and | |
571 | therefore need not test whether we have to allocate the array | |
572 | for the relocation results (as done in dl-reloc.c). */ | |
573 | ||
574 | /* Now life is sane; we can call functions and access global data. | |
575 | Set up to use the operating system facilities, and find out from | |
576 | the operating system's program loader where to find the program | |
577 | header table in core. Put the rest of _dl_start into a separate | |
578 | function, that way the compiler cannot put accesses to the GOT | |
579 | before ELF_DYNAMIC_RELOCATE. */ | |
580 | ||
581 | #ifdef DONT_USE_BOOTSTRAP_MAP | |
582 | return _dl_start_final (arg); | |
583 | #else | |
584 | return _dl_start_final (arg, &info); | |
585 | #endif | |
586 | } | |
587 | ||
588 | ||
589 | ||
590 | /* Now life is peachy; we can do all normal operations. | |
591 | On to the real work. */ | |
592 | ||
593 | /* Some helper functions. */ | |
594 | ||
595 | /* Arguments to relocate_doit. */ | |
596 | struct relocate_args | |
597 | { | |
598 | struct link_map *l; | |
599 | int reloc_mode; | |
600 | }; | |
601 | ||
602 | struct map_args | |
603 | { | |
604 | /* Argument to map_doit. */ | |
605 | const char *str; | |
606 | struct link_map *loader; | |
607 | int mode; | |
608 | /* Return value of map_doit. */ | |
609 | struct link_map *map; | |
610 | }; | |
611 | ||
612 | struct dlmopen_args | |
613 | { | |
614 | const char *fname; | |
615 | struct link_map *map; | |
616 | }; | |
617 | ||
618 | struct lookup_args | |
619 | { | |
620 | const char *name; | |
621 | struct link_map *map; | |
622 | void *result; | |
623 | }; | |
624 | ||
625 | /* Arguments to version_check_doit. */ | |
626 | struct version_check_args | |
627 | { | |
628 | int doexit; | |
629 | int dotrace; | |
630 | }; | |
631 | ||
632 | static void | |
633 | relocate_doit (void *a) | |
634 | { | |
635 | struct relocate_args *args = (struct relocate_args *) a; | |
636 | ||
637 | _dl_relocate_object (args->l, args->l->l_scope, args->reloc_mode, 0); | |
638 | } | |
639 | ||
640 | static void | |
641 | map_doit (void *a) | |
642 | { | |
643 | struct map_args *args = (struct map_args *) a; | |
644 | int type = (args->mode == __RTLD_OPENEXEC) ? lt_executable : lt_library; | |
645 | args->map = _dl_map_object (args->loader, args->str, type, 0, | |
646 | args->mode, LM_ID_BASE); | |
647 | } | |
648 | ||
649 | static void | |
650 | dlmopen_doit (void *a) | |
651 | { | |
652 | struct dlmopen_args *args = (struct dlmopen_args *) a; | |
653 | args->map = _dl_open (args->fname, | |
654 | (RTLD_LAZY | __RTLD_DLOPEN | __RTLD_AUDIT | |
655 | | __RTLD_SECURE), | |
656 | dl_main, LM_ID_NEWLM, _dl_argc, _dl_argv, | |
657 | __environ); | |
658 | } | |
659 | ||
660 | static void | |
661 | lookup_doit (void *a) | |
662 | { | |
663 | struct lookup_args *args = (struct lookup_args *) a; | |
664 | const ElfW(Sym) *ref = NULL; | |
665 | args->result = NULL; | |
666 | lookup_t l = _dl_lookup_symbol_x (args->name, args->map, &ref, | |
667 | args->map->l_local_scope, NULL, 0, | |
668 | DL_LOOKUP_RETURN_NEWEST, NULL); | |
669 | if (ref != NULL) | |
670 | args->result = DL_SYMBOL_ADDRESS (l, ref); | |
671 | } | |
672 | ||
673 | static void | |
674 | version_check_doit (void *a) | |
675 | { | |
676 | struct version_check_args *args = (struct version_check_args *) a; | |
677 | if (_dl_check_all_versions (GL(dl_ns)[LM_ID_BASE]._ns_loaded, 1, | |
678 | args->dotrace) && args->doexit) | |
679 | /* We cannot start the application. Abort now. */ | |
680 | _exit (1); | |
681 | } | |
682 | ||
683 | ||
684 | static inline struct link_map * | |
685 | find_needed (const char *name) | |
686 | { | |
687 | struct r_scope_elem *scope = &GL(dl_ns)[LM_ID_BASE]._ns_loaded->l_searchlist; | |
688 | unsigned int n = scope->r_nlist; | |
689 | ||
690 | while (n-- > 0) | |
691 | if (_dl_name_match_p (name, scope->r_list[n])) | |
692 | return scope->r_list[n]; | |
693 | ||
694 | /* Should never happen. */ | |
695 | return NULL; | |
696 | } | |
697 | ||
698 | static int | |
699 | match_version (const char *string, struct link_map *map) | |
700 | { | |
701 | const char *strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]); | |
702 | ElfW(Verdef) *def; | |
703 | ||
704 | #define VERDEFTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERDEF)) | |
705 | if (map->l_info[VERDEFTAG] == NULL) | |
706 | /* The file has no symbol versioning. */ | |
707 | return 0; | |
708 | ||
709 | def = (ElfW(Verdef) *) ((char *) map->l_addr | |
710 | + map->l_info[VERDEFTAG]->d_un.d_ptr); | |
711 | while (1) | |
712 | { | |
713 | ElfW(Verdaux) *aux = (ElfW(Verdaux) *) ((char *) def + def->vd_aux); | |
714 | ||
715 | /* Compare the version strings. */ | |
716 | if (strcmp (string, strtab + aux->vda_name) == 0) | |
717 | /* Bingo! */ | |
718 | return 1; | |
719 | ||
720 | /* If no more definitions we failed to find what we want. */ | |
721 | if (def->vd_next == 0) | |
722 | break; | |
723 | ||
724 | /* Next definition. */ | |
725 | def = (ElfW(Verdef) *) ((char *) def + def->vd_next); | |
726 | } | |
727 | ||
728 | return 0; | |
729 | } | |
730 | ||
731 | bool __rtld_tls_init_tp_called; | |
732 | ||
733 | static void * | |
734 | init_tls (size_t naudit) | |
735 | { | |
736 | /* Number of elements in the static TLS block. */ | |
737 | GL(dl_tls_static_nelem) = GL(dl_tls_max_dtv_idx); | |
738 | ||
739 | /* Do not do this twice. The audit interface might have required | |
740 | the DTV interfaces to be set up early. */ | |
741 | if (GL(dl_initial_dtv) != NULL) | |
742 | return NULL; | |
743 | ||
744 | /* Allocate the array which contains the information about the | |
745 | dtv slots. We allocate a few entries more than needed to | |
746 | avoid the need for reallocation. */ | |
747 | size_t nelem = GL(dl_tls_max_dtv_idx) + 1 + TLS_SLOTINFO_SURPLUS; | |
748 | ||
749 | /* Allocate. */ | |
750 | GL(dl_tls_dtv_slotinfo_list) = (struct dtv_slotinfo_list *) | |
751 | calloc (sizeof (struct dtv_slotinfo_list) | |
752 | + nelem * sizeof (struct dtv_slotinfo), 1); | |
753 | /* No need to check the return value. If memory allocation failed | |
754 | the program would have been terminated. */ | |
755 | ||
756 | GL(dl_tls_dtv_slotinfo_list)->len = nelem; | |
757 | GL(dl_tls_dtv_slotinfo_list)->next = NULL; | |
758 | ||
759 | /* Calculate the size of the static TLS surplus. */ | |
760 | _dl_tls_static_surplus_init (naudit); | |
761 | ||
762 | /* Compute the TLS offsets for the various blocks. */ | |
763 | _dl_determine_tlsoffset (); | |
764 | ||
765 | /* Construct the static TLS block and the dtv for the initial | |
766 | thread. For some platforms this will include allocating memory | |
767 | for the thread descriptor. The memory for the TLS block will | |
768 | never be freed. It should be allocated accordingly. The dtv | |
769 | array can be changed if dynamic loading requires it. */ | |
770 | void *tcbp = _dl_allocate_tls_storage (); | |
771 | if (tcbp == NULL) | |
772 | _dl_fatal_printf ("\ | |
773 | cannot allocate TLS data structures for initial thread\n"); | |
774 | ||
775 | /* Store for detection of the special case by __tls_get_addr | |
776 | so it knows not to pass this dtv to the normal realloc. */ | |
777 | GL(dl_initial_dtv) = GET_DTV (tcbp); | |
778 | ||
779 | /* And finally install it for the main thread. */ | |
780 | call_tls_init_tp (tcbp); | |
781 | __rtld_tls_init_tp_called = true; | |
782 | ||
783 | return tcbp; | |
784 | } | |
785 | ||
786 | static unsigned int | |
787 | do_preload (const char *fname, struct link_map *main_map, const char *where) | |
788 | { | |
789 | const char *objname; | |
790 | const char *err_str = NULL; | |
791 | struct map_args args; | |
792 | bool malloced; | |
793 | ||
794 | args.str = fname; | |
795 | args.loader = main_map; | |
796 | args.mode = __RTLD_SECURE; | |
797 | ||
798 | unsigned int old_nloaded = GL(dl_ns)[LM_ID_BASE]._ns_nloaded; | |
799 | ||
800 | (void) _dl_catch_error (&objname, &err_str, &malloced, map_doit, &args); | |
801 | if (__glibc_unlikely (err_str != NULL)) | |
802 | { | |
803 | _dl_error_printf ("\ | |
804 | ERROR: ld.so: object '%s' from %s cannot be preloaded (%s): ignored.\n", | |
805 | fname, where, err_str); | |
806 | /* No need to call free, this is still before | |
807 | the libc's malloc is used. */ | |
808 | } | |
809 | else if (GL(dl_ns)[LM_ID_BASE]._ns_nloaded != old_nloaded) | |
810 | /* It is no duplicate. */ | |
811 | return 1; | |
812 | ||
813 | /* Nothing loaded. */ | |
814 | return 0; | |
815 | } | |
816 | ||
817 | static void | |
818 | security_init (void) | |
819 | { | |
820 | /* Set up the stack checker's canary. */ | |
821 | uintptr_t stack_chk_guard = _dl_setup_stack_chk_guard (_dl_random); | |
822 | #ifdef THREAD_SET_STACK_GUARD | |
823 | THREAD_SET_STACK_GUARD (stack_chk_guard); | |
824 | #else | |
825 | __stack_chk_guard = stack_chk_guard; | |
826 | #endif | |
827 | ||
828 | /* Set up the pointer guard as well, if necessary. */ | |
829 | uintptr_t pointer_chk_guard | |
830 | = _dl_setup_pointer_guard (_dl_random, stack_chk_guard); | |
831 | #ifdef THREAD_SET_POINTER_GUARD | |
832 | THREAD_SET_POINTER_GUARD (pointer_chk_guard); | |
833 | #endif | |
834 | __pointer_chk_guard_local = pointer_chk_guard; | |
835 | ||
836 | /* We do not need the _dl_random value anymore. The less | |
837 | information we leave behind, the better, so clear the | |
838 | variable. */ | |
839 | _dl_random = NULL; | |
840 | } | |
841 | ||
842 | #include <setup-vdso.h> | |
843 | ||
844 | /* The LD_PRELOAD environment variable gives list of libraries | |
845 | separated by white space or colons that are loaded before the | |
846 | executable's dependencies and prepended to the global scope list. | |
847 | (If the binary is running setuid all elements containing a '/' are | |
848 | ignored since it is insecure.) Return the number of preloads | |
849 | performed. Ditto for --preload command argument. */ | |
850 | unsigned int | |
851 | handle_preload_list (const char *preloadlist, struct link_map *main_map, | |
852 | const char *where) | |
853 | { | |
854 | unsigned int npreloads = 0; | |
855 | const char *p = preloadlist; | |
856 | char fname[SECURE_PATH_LIMIT]; | |
857 | ||
858 | while (*p != '\0') | |
859 | { | |
860 | /* Split preload list at space/colon. */ | |
861 | size_t len = strcspn (p, " :"); | |
862 | if (len > 0 && len < sizeof (fname)) | |
863 | { | |
864 | memcpy (fname, p, len); | |
865 | fname[len] = '\0'; | |
866 | } | |
867 | else | |
868 | fname[0] = '\0'; | |
869 | ||
870 | /* Skip over the substring and the following delimiter. */ | |
871 | p += len; | |
872 | if (*p != '\0') | |
873 | ++p; | |
874 | ||
875 | if (dso_name_valid_for_suid (fname)) | |
876 | npreloads += do_preload (fname, main_map, where); | |
877 | } | |
878 | return npreloads; | |
879 | } | |
880 | ||
881 | /* Called if the audit DSO cannot be used: if it does not have the | |
882 | appropriate interfaces, or it expects a more recent version library | |
883 | version than what the dynamic linker provides. */ | |
884 | static void | |
885 | unload_audit_module (struct link_map *map, int original_tls_idx) | |
886 | { | |
887 | #ifndef NDEBUG | |
888 | Lmid_t ns = map->l_ns; | |
889 | #endif | |
890 | _dl_close (map); | |
891 | ||
892 | /* Make sure the namespace has been cleared entirely. */ | |
893 | assert (GL(dl_ns)[ns]._ns_loaded == NULL); | |
894 | assert (GL(dl_ns)[ns]._ns_nloaded == 0); | |
895 | ||
896 | GL(dl_tls_max_dtv_idx) = original_tls_idx; | |
897 | } | |
898 | ||
899 | /* Called to print an error message if loading of an audit module | |
900 | failed. */ | |
901 | static void | |
902 | report_audit_module_load_error (const char *name, const char *err_str, | |
903 | bool malloced) | |
904 | { | |
905 | _dl_error_printf ("\ | |
906 | ERROR: ld.so: object '%s' cannot be loaded as audit interface: %s; ignored.\n", | |
907 | name, err_str); | |
908 | if (malloced) | |
909 | free ((char *) err_str); | |
910 | } | |
911 | ||
912 | /* Load one audit module. */ | |
913 | static void | |
914 | load_audit_module (const char *name, struct audit_ifaces **last_audit) | |
915 | { | |
916 | int original_tls_idx = GL(dl_tls_max_dtv_idx); | |
917 | ||
918 | struct dlmopen_args dlmargs; | |
919 | dlmargs.fname = name; | |
920 | dlmargs.map = NULL; | |
921 | ||
922 | const char *objname; | |
923 | const char *err_str = NULL; | |
924 | bool malloced; | |
925 | _dl_catch_error (&objname, &err_str, &malloced, dlmopen_doit, &dlmargs); | |
926 | if (__glibc_unlikely (err_str != NULL)) | |
927 | { | |
928 | report_audit_module_load_error (name, err_str, malloced); | |
929 | return; | |
930 | } | |
931 | ||
932 | struct lookup_args largs; | |
933 | largs.name = "la_version"; | |
934 | largs.map = dlmargs.map; | |
935 | _dl_catch_error (&objname, &err_str, &malloced, lookup_doit, &largs); | |
936 | if (__glibc_likely (err_str != NULL)) | |
937 | { | |
938 | unload_audit_module (dlmargs.map, original_tls_idx); | |
939 | report_audit_module_load_error (name, err_str, malloced); | |
940 | return; | |
941 | } | |
942 | ||
943 | unsigned int (*laversion) (unsigned int) = largs.result; | |
944 | ||
945 | /* A null symbol indicates that something is very wrong with the | |
946 | loaded object because defined symbols are supposed to have a | |
947 | valid, non-null address. */ | |
948 | assert (laversion != NULL); | |
949 | ||
950 | unsigned int lav = laversion (LAV_CURRENT); | |
951 | if (lav == 0) | |
952 | { | |
953 | /* Only print an error message if debugging because this can | |
954 | happen deliberately. */ | |
955 | if (GLRO(dl_debug_mask) & DL_DEBUG_FILES) | |
956 | _dl_debug_printf ("\ | |
957 | file=%s [%lu]; audit interface function la_version returned zero; ignored.\n", | |
958 | dlmargs.map->l_name, dlmargs.map->l_ns); | |
959 | unload_audit_module (dlmargs.map, original_tls_idx); | |
960 | return; | |
961 | } | |
962 | ||
963 | if (!_dl_audit_check_version (lav)) | |
964 | { | |
965 | _dl_debug_printf ("\ | |
966 | ERROR: audit interface '%s' requires version %d (maximum supported version %d); ignored.\n", | |
967 | name, lav, LAV_CURRENT); | |
968 | unload_audit_module (dlmargs.map, original_tls_idx); | |
969 | return; | |
970 | } | |
971 | ||
972 | enum { naudit_ifaces = 8 }; | |
973 | union | |
974 | { | |
975 | struct audit_ifaces ifaces; | |
976 | void (*fptr[naudit_ifaces]) (void); | |
977 | } *newp = malloc (sizeof (*newp)); | |
978 | if (newp == NULL) | |
979 | _dl_fatal_printf ("Out of memory while loading audit modules\n"); | |
980 | ||
981 | /* Names of the auditing interfaces. All in one | |
982 | long string. */ | |
983 | static const char audit_iface_names[] = | |
984 | "la_activity\0" | |
985 | "la_objsearch\0" | |
986 | "la_objopen\0" | |
987 | "la_preinit\0" | |
988 | LA_SYMBIND "\0" | |
989 | #define STRING(s) __STRING (s) | |
990 | "la_" STRING (ARCH_LA_PLTENTER) "\0" | |
991 | "la_" STRING (ARCH_LA_PLTEXIT) "\0" | |
992 | "la_objclose\0"; | |
993 | unsigned int cnt = 0; | |
994 | const char *cp = audit_iface_names; | |
995 | do | |
996 | { | |
997 | largs.name = cp; | |
998 | _dl_catch_error (&objname, &err_str, &malloced, lookup_doit, &largs); | |
999 | ||
1000 | /* Store the pointer. */ | |
1001 | if (err_str == NULL && largs.result != NULL) | |
1002 | newp->fptr[cnt] = largs.result; | |
1003 | else | |
1004 | newp->fptr[cnt] = NULL; | |
1005 | ++cnt; | |
1006 | ||
1007 | cp = strchr (cp, '\0') + 1; | |
1008 | } | |
1009 | while (*cp != '\0'); | |
1010 | assert (cnt == naudit_ifaces); | |
1011 | ||
1012 | /* Now append the new auditing interface to the list. */ | |
1013 | newp->ifaces.next = NULL; | |
1014 | if (*last_audit == NULL) | |
1015 | *last_audit = GLRO(dl_audit) = &newp->ifaces; | |
1016 | else | |
1017 | *last_audit = (*last_audit)->next = &newp->ifaces; | |
1018 | ||
1019 | /* The dynamic linker link map is statically allocated, so the | |
1020 | cookie in _dl_new_object has not happened. */ | |
1021 | link_map_audit_state (&_dl_rtld_map, GLRO (dl_naudit))->cookie | |
1022 | = (intptr_t) &_dl_rtld_map; | |
1023 | ||
1024 | ++GLRO(dl_naudit); | |
1025 | ||
1026 | /* Mark the DSO as being used for auditing. */ | |
1027 | dlmargs.map->l_auditing = 1; | |
1028 | } | |
1029 | ||
1030 | /* Load all audit modules. */ | |
1031 | static void | |
1032 | load_audit_modules (struct link_map *main_map, struct audit_list *audit_list) | |
1033 | { | |
1034 | struct audit_ifaces *last_audit = NULL; | |
1035 | ||
1036 | while (true) | |
1037 | { | |
1038 | const char *name = audit_list_next (audit_list); | |
1039 | if (name == NULL) | |
1040 | break; | |
1041 | load_audit_module (name, &last_audit); | |
1042 | } | |
1043 | ||
1044 | /* Notify audit modules of the initially loaded modules (the main | |
1045 | program and the dynamic linker itself). */ | |
1046 | if (GLRO(dl_naudit) > 0) | |
1047 | { | |
1048 | _dl_audit_objopen (main_map, LM_ID_BASE); | |
1049 | _dl_audit_objopen (&_dl_rtld_map, LM_ID_BASE); | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | /* Check if the executable is not actually dynamically linked, and | |
1054 | invoke it directly in that case. */ | |
1055 | static void | |
1056 | rtld_chain_load (struct link_map *main_map, char *argv0) | |
1057 | { | |
1058 | /* The dynamic loader run against itself. */ | |
1059 | const char *rtld_soname = l_soname (&_dl_rtld_map); | |
1060 | if (l_soname (main_map) != NULL | |
1061 | && strcmp (rtld_soname, l_soname (main_map)) == 0) | |
1062 | _dl_fatal_printf ("%s: loader cannot load itself\n", rtld_soname); | |
1063 | ||
1064 | /* With DT_NEEDED dependencies, the executable is dynamically | |
1065 | linked. */ | |
1066 | if (__glibc_unlikely (main_map->l_info[DT_NEEDED] != NULL)) | |
1067 | return; | |
1068 | ||
1069 | /* If the executable has program interpreter, it is dynamically | |
1070 | linked. */ | |
1071 | for (size_t i = 0; i < main_map->l_phnum; ++i) | |
1072 | if (main_map->l_phdr[i].p_type == PT_INTERP) | |
1073 | return; | |
1074 | ||
1075 | const char *pathname = _dl_argv[0]; | |
1076 | if (argv0 != NULL) | |
1077 | _dl_argv[0] = argv0; | |
1078 | int errcode = __rtld_execve (pathname, _dl_argv, _environ); | |
1079 | const char *errname = strerrorname_np (errcode); | |
1080 | if (errname != NULL) | |
1081 | _dl_fatal_printf("%s: cannot execute %s: %s\n", | |
1082 | rtld_soname, pathname, errname); | |
1083 | else | |
1084 | _dl_fatal_printf("%s: cannot execute %s: %d\n", | |
1085 | rtld_soname, pathname, errcode); | |
1086 | } | |
1087 | ||
1088 | /* Called to complete the initialization of the link map for the main | |
1089 | executable. Returns true if there is a PT_INTERP segment. */ | |
1090 | static bool | |
1091 | rtld_setup_main_map (struct link_map *main_map) | |
1092 | { | |
1093 | /* This have already been filled in right after _dl_new_object, or | |
1094 | as part of _dl_map_object. */ | |
1095 | const ElfW(Phdr) *phdr = main_map->l_phdr; | |
1096 | ElfW(Word) phnum = main_map->l_phnum; | |
1097 | ||
1098 | bool has_interp = false; | |
1099 | ||
1100 | main_map->l_map_end = 0; | |
1101 | /* Perhaps the executable has no PT_LOAD header entries at all. */ | |
1102 | main_map->l_map_start = ~0; | |
1103 | /* And it was opened directly. */ | |
1104 | ++main_map->l_direct_opencount; | |
1105 | main_map->l_contiguous = 1; | |
1106 | ||
1107 | /* A PT_LOAD segment at an unexpected address will clear the | |
1108 | l_contiguous flag. The ELF specification says that PT_LOAD | |
1109 | segments need to be sorted in in increasing order, but perhaps | |
1110 | not all executables follow this requirement. Having l_contiguous | |
1111 | equal to 1 is just an optimization, so the code below does not | |
1112 | try to sort the segments in case they are unordered. | |
1113 | ||
1114 | There is one corner case in which l_contiguous is not set to 1, | |
1115 | but where it could be set: If a PIE (ET_DYN) binary is loaded by | |
1116 | glibc itself (not the kernel), it is always contiguous due to the | |
1117 | way the glibc loader works. However, the kernel loader may still | |
1118 | create holes in this case, and the code here still uses 0 | |
1119 | conservatively for the glibc-loaded case, too. */ | |
1120 | ElfW(Addr) expected_load_address = 0; | |
1121 | ||
1122 | /* Scan the program header table for the dynamic section. */ | |
1123 | for (const ElfW(Phdr) *ph = phdr; ph < &phdr[phnum]; ++ph) | |
1124 | switch (ph->p_type) | |
1125 | { | |
1126 | case PT_PHDR: | |
1127 | /* Find out the load address. */ | |
1128 | main_map->l_addr = (ElfW(Addr)) phdr - ph->p_vaddr; | |
1129 | break; | |
1130 | case PT_DYNAMIC: | |
1131 | /* This tells us where to find the dynamic section, | |
1132 | which tells us everything we need to do. */ | |
1133 | main_map->l_ld = (void *) main_map->l_addr + ph->p_vaddr; | |
1134 | main_map->l_ld_readonly = (ph->p_flags & PF_W) == 0; | |
1135 | break; | |
1136 | case PT_INTERP: | |
1137 | /* This "interpreter segment" was used by the program loader to | |
1138 | find the program interpreter, which is this program itself, the | |
1139 | dynamic linker. We note what name finds us, so that a future | |
1140 | dlopen call or DT_NEEDED entry, for something that wants to link | |
1141 | against the dynamic linker as a shared library, will know that | |
1142 | the shared object is already loaded. */ | |
1143 | _dl_rtld_libname.name = ((const char *) main_map->l_addr | |
1144 | + ph->p_vaddr); | |
1145 | /* _dl_rtld_libname.next = NULL; Already zero. */ | |
1146 | _dl_rtld_map.l_libname = &_dl_rtld_libname; | |
1147 | ||
1148 | has_interp = true; | |
1149 | break; | |
1150 | case PT_LOAD: | |
1151 | { | |
1152 | ElfW(Addr) mapstart; | |
1153 | ElfW(Addr) allocend; | |
1154 | ||
1155 | /* Remember where the main program starts in memory. */ | |
1156 | mapstart = (main_map->l_addr | |
1157 | + (ph->p_vaddr & ~(GLRO(dl_pagesize) - 1))); | |
1158 | if (main_map->l_map_start > mapstart) | |
1159 | main_map->l_map_start = mapstart; | |
1160 | ||
1161 | if (main_map->l_contiguous && expected_load_address != 0 | |
1162 | && expected_load_address != mapstart) | |
1163 | main_map->l_contiguous = 0; | |
1164 | ||
1165 | /* Also where it ends. */ | |
1166 | allocend = main_map->l_addr + ph->p_vaddr + ph->p_memsz; | |
1167 | if (main_map->l_map_end < allocend) | |
1168 | main_map->l_map_end = allocend; | |
1169 | ||
1170 | /* The next expected address is the page following this load | |
1171 | segment. */ | |
1172 | expected_load_address = ((allocend + GLRO(dl_pagesize) - 1) | |
1173 | & ~(GLRO(dl_pagesize) - 1)); | |
1174 | } | |
1175 | break; | |
1176 | ||
1177 | case PT_TLS: | |
1178 | if (ph->p_memsz > 0) | |
1179 | { | |
1180 | /* Note that in the case the dynamic linker we duplicate work | |
1181 | here since we read the PT_TLS entry already in | |
1182 | _dl_start_final. But the result is repeatable so do not | |
1183 | check for this special but unimportant case. */ | |
1184 | main_map->l_tls_blocksize = ph->p_memsz; | |
1185 | main_map->l_tls_align = ph->p_align; | |
1186 | if (ph->p_align == 0) | |
1187 | main_map->l_tls_firstbyte_offset = 0; | |
1188 | else | |
1189 | main_map->l_tls_firstbyte_offset = (ph->p_vaddr | |
1190 | & (ph->p_align - 1)); | |
1191 | main_map->l_tls_initimage_size = ph->p_filesz; | |
1192 | main_map->l_tls_initimage = (void *) ph->p_vaddr; | |
1193 | ||
1194 | /* This image gets the ID one. */ | |
1195 | GL(dl_tls_max_dtv_idx) = main_map->l_tls_modid = 1; | |
1196 | } | |
1197 | break; | |
1198 | ||
1199 | case PT_GNU_STACK: | |
1200 | GL(dl_stack_flags) = ph->p_flags; | |
1201 | break; | |
1202 | ||
1203 | case PT_GNU_RELRO: | |
1204 | main_map->l_relro_addr = ph->p_vaddr; | |
1205 | main_map->l_relro_size = ph->p_memsz; | |
1206 | break; | |
1207 | } | |
1208 | /* Process program headers again, but scan them backwards so | |
1209 | that PT_NOTE can be skipped if PT_GNU_PROPERTY exits. */ | |
1210 | for (const ElfW(Phdr) *ph = &phdr[phnum]; ph != phdr; --ph) | |
1211 | switch (ph[-1].p_type) | |
1212 | { | |
1213 | case PT_NOTE: | |
1214 | _dl_process_pt_note (main_map, -1, &ph[-1]); | |
1215 | break; | |
1216 | case PT_GNU_PROPERTY: | |
1217 | _dl_process_pt_gnu_property (main_map, -1, &ph[-1]); | |
1218 | break; | |
1219 | } | |
1220 | ||
1221 | /* Adjust the address of the TLS initialization image in case | |
1222 | the executable is actually an ET_DYN object. */ | |
1223 | if (main_map->l_tls_initimage != NULL) | |
1224 | main_map->l_tls_initimage | |
1225 | = (char *) main_map->l_tls_initimage + main_map->l_addr; | |
1226 | if (! main_map->l_map_end) | |
1227 | main_map->l_map_end = ~0; | |
1228 | if (! _dl_rtld_map.l_libname && _dl_rtld_map.l_name) | |
1229 | { | |
1230 | /* We were invoked directly, so the program might not have a | |
1231 | PT_INTERP. */ | |
1232 | _dl_rtld_libname.name = _dl_rtld_map.l_name; | |
1233 | /* _dl_rtld_libname.next = NULL; Already zero. */ | |
1234 | _dl_rtld_map.l_libname = &_dl_rtld_libname; | |
1235 | } | |
1236 | else | |
1237 | assert (_dl_rtld_map.l_libname); /* How else did we get here? */ | |
1238 | ||
1239 | return has_interp; | |
1240 | } | |
1241 | ||
1242 | /* Adjusts the contents of the stack and related globals for the user | |
1243 | entry point. The ld.so processed skip_args arguments and bumped | |
1244 | _dl_argv and _dl_argc accordingly. Those arguments are removed from | |
1245 | argv here. */ | |
1246 | static void | |
1247 | _dl_start_args_adjust (int skip_args, int skip_env) | |
1248 | { | |
1249 | void **sp = (void **) (_dl_argv - skip_args - 1); | |
1250 | void **p = sp + skip_args; | |
1251 | ||
1252 | if (skip_args == 0) | |
1253 | return; | |
1254 | ||
1255 | /* Sanity check. */ | |
1256 | intptr_t argc __attribute__ ((unused)) = (intptr_t) sp[0] - skip_args; | |
1257 | assert (argc == _dl_argc); | |
1258 | ||
1259 | /* Adjust argc on stack. */ | |
1260 | sp[0] = (void *) (intptr_t) _dl_argc; | |
1261 | ||
1262 | /* Update globals in rtld. */ | |
1263 | _dl_argv -= skip_args; | |
1264 | _environ -= skip_args; | |
1265 | ||
1266 | /* Shuffle argv down. */ | |
1267 | do | |
1268 | *++sp = *++p; | |
1269 | while (*p != NULL); | |
1270 | ||
1271 | assert (_environ == (char **) (sp + 1)); | |
1272 | ||
1273 | /* Shuffle envp down. */ | |
1274 | do | |
1275 | *++sp = *++p; | |
1276 | while (*p != NULL); | |
1277 | ||
1278 | #ifdef HAVE_AUX_VECTOR | |
1279 | void **auxv = (void **) GLRO(dl_auxv) - skip_args - skip_env; | |
1280 | GLRO(dl_auxv) = (ElfW(auxv_t) *) auxv; /* Aliasing violation. */ | |
1281 | assert (auxv == sp + 1); | |
1282 | ||
1283 | /* Shuffle auxv down. */ | |
1284 | ElfW(auxv_t) ax; | |
1285 | char *oldp = (char *) (p + 1 + skip_env); | |
1286 | char *newp = (char *) (sp + 1); | |
1287 | do | |
1288 | { | |
1289 | memcpy (&ax, oldp, sizeof (ax)); | |
1290 | memcpy (newp, &ax, sizeof (ax)); | |
1291 | oldp += sizeof (ax); | |
1292 | newp += sizeof (ax); | |
1293 | } | |
1294 | while (ax.a_type != AT_NULL); | |
1295 | #endif | |
1296 | } | |
1297 | ||
1298 | static void | |
1299 | dl_main (const ElfW(Phdr) *phdr, | |
1300 | ElfW(Word) phnum, | |
1301 | ElfW(Addr) *user_entry, | |
1302 | ElfW(auxv_t) *auxv) | |
1303 | { | |
1304 | struct link_map *main_map; | |
1305 | size_t file_size; | |
1306 | char *file; | |
1307 | unsigned int i; | |
1308 | bool rtld_is_main = false; | |
1309 | void *tcbp = NULL; | |
1310 | int skip_env = 0; | |
1311 | ||
1312 | struct dl_main_state state; | |
1313 | dl_main_state_init (&state); | |
1314 | ||
1315 | __tls_pre_init_tp (); | |
1316 | ||
1317 | /* Process the environment variable which control the behaviour. */ | |
1318 | skip_env = process_envvars (&state); | |
1319 | ||
1320 | #ifndef HAVE_INLINED_SYSCALLS | |
1321 | /* Set up a flag which tells we are just starting. */ | |
1322 | _dl_starting_up = 1; | |
1323 | #endif | |
1324 | ||
1325 | const char *ld_so_name = _dl_argv[0]; | |
1326 | if (*user_entry == (ElfW(Addr)) ENTRY_POINT) | |
1327 | { | |
1328 | /* Ho ho. We are not the program interpreter! We are the program | |
1329 | itself! This means someone ran ld.so as a command. Well, that | |
1330 | might be convenient to do sometimes. We support it by | |
1331 | interpreting the args like this: | |
1332 | ||
1333 | ld.so PROGRAM ARGS... | |
1334 | ||
1335 | The first argument is the name of a file containing an ELF | |
1336 | executable we will load and run with the following arguments. | |
1337 | To simplify life here, PROGRAM is searched for using the | |
1338 | normal rules for shared objects, rather than $PATH or anything | |
1339 | like that. We just load it and use its entry point; we don't | |
1340 | pay attention to its PT_INTERP command (we are the interpreter | |
1341 | ourselves). This is an easy way to test a new ld.so before | |
1342 | installing it. */ | |
1343 | rtld_is_main = true; | |
1344 | ||
1345 | char *argv0 = NULL; | |
1346 | char **orig_argv = _dl_argv; | |
1347 | ||
1348 | /* Note the place where the dynamic linker actually came from. */ | |
1349 | _dl_rtld_map.l_name = rtld_progname; | |
1350 | ||
1351 | while (_dl_argc > 1) | |
1352 | if (! strcmp (_dl_argv[1], "--list")) | |
1353 | { | |
1354 | if (state.mode != rtld_mode_help) | |
1355 | { | |
1356 | state.mode = rtld_mode_list; | |
1357 | /* This means do no dependency analysis. */ | |
1358 | GLRO(dl_lazy) = -1; | |
1359 | } | |
1360 | ||
1361 | --_dl_argc; | |
1362 | ++_dl_argv; | |
1363 | } | |
1364 | else if (! strcmp (_dl_argv[1], "--verify")) | |
1365 | { | |
1366 | if (state.mode != rtld_mode_help) | |
1367 | state.mode = rtld_mode_verify; | |
1368 | ||
1369 | --_dl_argc; | |
1370 | ++_dl_argv; | |
1371 | } | |
1372 | else if (! strcmp (_dl_argv[1], "--inhibit-cache")) | |
1373 | { | |
1374 | GLRO(dl_inhibit_cache) = 1; | |
1375 | --_dl_argc; | |
1376 | ++_dl_argv; | |
1377 | } | |
1378 | else if (! strcmp (_dl_argv[1], "--library-path") | |
1379 | && _dl_argc > 2) | |
1380 | { | |
1381 | state.library_path = _dl_argv[2]; | |
1382 | state.library_path_source = "--library-path"; | |
1383 | ||
1384 | _dl_argc -= 2; | |
1385 | _dl_argv += 2; | |
1386 | } | |
1387 | else if (! strcmp (_dl_argv[1], "--inhibit-rpath") | |
1388 | && _dl_argc > 2) | |
1389 | { | |
1390 | GLRO(dl_inhibit_rpath) = _dl_argv[2]; | |
1391 | ||
1392 | _dl_argc -= 2; | |
1393 | _dl_argv += 2; | |
1394 | } | |
1395 | else if (! strcmp (_dl_argv[1], "--audit") && _dl_argc > 2) | |
1396 | { | |
1397 | audit_list_add_string (&state.audit_list, _dl_argv[2]); | |
1398 | ||
1399 | _dl_argc -= 2; | |
1400 | _dl_argv += 2; | |
1401 | } | |
1402 | else if (! strcmp (_dl_argv[1], "--preload") && _dl_argc > 2) | |
1403 | { | |
1404 | state.preloadarg = _dl_argv[2]; | |
1405 | _dl_argc -= 2; | |
1406 | _dl_argv += 2; | |
1407 | } | |
1408 | else if (! strcmp (_dl_argv[1], "--argv0") && _dl_argc > 2) | |
1409 | { | |
1410 | argv0 = _dl_argv[2]; | |
1411 | ||
1412 | _dl_argc -= 2; | |
1413 | _dl_argv += 2; | |
1414 | } | |
1415 | else if (strcmp (_dl_argv[1], "--glibc-hwcaps-prepend") == 0 | |
1416 | && _dl_argc > 2) | |
1417 | { | |
1418 | state.glibc_hwcaps_prepend = _dl_argv[2]; | |
1419 | _dl_argc -= 2; | |
1420 | _dl_argv += 2; | |
1421 | } | |
1422 | else if (strcmp (_dl_argv[1], "--glibc-hwcaps-mask") == 0 | |
1423 | && _dl_argc > 2) | |
1424 | { | |
1425 | state.glibc_hwcaps_mask = _dl_argv[2]; | |
1426 | _dl_argc -= 2; | |
1427 | _dl_argv += 2; | |
1428 | } | |
1429 | else if (! strcmp (_dl_argv[1], "--list-tunables")) | |
1430 | { | |
1431 | state.mode = rtld_mode_list_tunables; | |
1432 | ||
1433 | --_dl_argc; | |
1434 | ++_dl_argv; | |
1435 | } | |
1436 | else if (! strcmp (_dl_argv[1], "--list-diagnostics")) | |
1437 | { | |
1438 | state.mode = rtld_mode_list_diagnostics; | |
1439 | ||
1440 | --_dl_argc; | |
1441 | ++_dl_argv; | |
1442 | } | |
1443 | else if (strcmp (_dl_argv[1], "--help") == 0) | |
1444 | { | |
1445 | state.mode = rtld_mode_help; | |
1446 | --_dl_argc; | |
1447 | ++_dl_argv; | |
1448 | } | |
1449 | else if (strcmp (_dl_argv[1], "--version") == 0) | |
1450 | _dl_version (); | |
1451 | else if (_dl_argv[1][0] == '-' && _dl_argv[1][1] == '-') | |
1452 | { | |
1453 | if (_dl_argv[1][2] == '\0') | |
1454 | { | |
1455 | /* End of option list. */ | |
1456 | --_dl_argc; | |
1457 | ++_dl_argv; | |
1458 | break; | |
1459 | } | |
1460 | else | |
1461 | /* Unrecognized option. */ | |
1462 | _dl_usage (ld_so_name, _dl_argv[1]); | |
1463 | } | |
1464 | else | |
1465 | break; | |
1466 | ||
1467 | if (__glibc_unlikely (state.mode == rtld_mode_list_tunables)) | |
1468 | { | |
1469 | __tunables_print (); | |
1470 | _exit (0); | |
1471 | } | |
1472 | ||
1473 | if (state.mode == rtld_mode_list_diagnostics) | |
1474 | _dl_print_diagnostics (_environ); | |
1475 | ||
1476 | /* If we have no further argument the program was called incorrectly. | |
1477 | Grant the user some education. */ | |
1478 | if (_dl_argc < 2) | |
1479 | { | |
1480 | if (state.mode == rtld_mode_help) | |
1481 | /* --help without an executable is not an error. */ | |
1482 | _dl_help (ld_so_name, &state); | |
1483 | else | |
1484 | _dl_usage (ld_so_name, NULL); | |
1485 | } | |
1486 | ||
1487 | --_dl_argc; | |
1488 | ++_dl_argv; | |
1489 | ||
1490 | /* The initialization of _dl_stack_flags done below assumes the | |
1491 | executable's PT_GNU_STACK may have been honored by the kernel, and | |
1492 | so a PT_GNU_STACK with PF_X set means the stack started out with | |
1493 | execute permission. However, this is not really true if the | |
1494 | dynamic linker is the executable the kernel loaded. For this | |
1495 | case, we must reinitialize _dl_stack_flags to match the dynamic | |
1496 | linker itself. If the dynamic linker was built with a | |
1497 | PT_GNU_STACK, then the kernel may have loaded us with a | |
1498 | nonexecutable stack that we will have to make executable when we | |
1499 | load the program below unless it has a PT_GNU_STACK indicating | |
1500 | nonexecutable stack is ok. */ | |
1501 | ||
1502 | for (const ElfW(Phdr) *ph = phdr; ph < &phdr[phnum]; ++ph) | |
1503 | if (ph->p_type == PT_GNU_STACK) | |
1504 | { | |
1505 | GL(dl_stack_flags) = ph->p_flags; | |
1506 | break; | |
1507 | } | |
1508 | ||
1509 | if (__glibc_unlikely (state.mode == rtld_mode_verify | |
1510 | || state.mode == rtld_mode_help)) | |
1511 | { | |
1512 | const char *objname; | |
1513 | const char *err_str = NULL; | |
1514 | struct map_args args; | |
1515 | bool malloced; | |
1516 | ||
1517 | args.str = rtld_progname; | |
1518 | args.loader = NULL; | |
1519 | args.mode = __RTLD_OPENEXEC; | |
1520 | (void) _dl_catch_error (&objname, &err_str, &malloced, map_doit, | |
1521 | &args); | |
1522 | if (__glibc_unlikely (err_str != NULL)) | |
1523 | { | |
1524 | /* We don't free the returned string, the programs stops | |
1525 | anyway. */ | |
1526 | if (state.mode == rtld_mode_help) | |
1527 | /* Mask the failure to load the main object. The help | |
1528 | message contains less information in this case. */ | |
1529 | _dl_help (ld_so_name, &state); | |
1530 | else | |
1531 | _exit (EXIT_FAILURE); | |
1532 | } | |
1533 | } | |
1534 | else | |
1535 | { | |
1536 | RTLD_TIMING_VAR (start); | |
1537 | rtld_timer_start (&start); | |
1538 | _dl_map_object (NULL, rtld_progname, lt_executable, 0, | |
1539 | __RTLD_OPENEXEC, LM_ID_BASE); | |
1540 | rtld_timer_stop (&load_time, start); | |
1541 | } | |
1542 | ||
1543 | /* Now the map for the main executable is available. */ | |
1544 | main_map = GL(dl_ns)[LM_ID_BASE]._ns_loaded; | |
1545 | ||
1546 | if (__glibc_likely (state.mode == rtld_mode_normal)) | |
1547 | rtld_chain_load (main_map, argv0); | |
1548 | ||
1549 | phdr = main_map->l_phdr; | |
1550 | phnum = main_map->l_phnum; | |
1551 | /* We overwrite here a pointer to a malloc()ed string. But since | |
1552 | the malloc() implementation used at this point is the dummy | |
1553 | implementations which has no real free() function it does not | |
1554 | makes sense to free the old string first. */ | |
1555 | main_map->l_name = (char *) ""; | |
1556 | *user_entry = main_map->l_entry; | |
1557 | ||
1558 | /* Set bit indicating this is the main program map. */ | |
1559 | main_map->l_main_map = 1; | |
1560 | ||
1561 | #ifdef HAVE_AUX_VECTOR | |
1562 | /* Adjust the on-stack auxiliary vector so that it looks like the | |
1563 | binary was executed directly. */ | |
1564 | for (ElfW(auxv_t) *av = auxv; av->a_type != AT_NULL; av++) | |
1565 | switch (av->a_type) | |
1566 | { | |
1567 | case AT_PHDR: | |
1568 | av->a_un.a_val = (uintptr_t) phdr; | |
1569 | break; | |
1570 | case AT_PHNUM: | |
1571 | av->a_un.a_val = phnum; | |
1572 | break; | |
1573 | case AT_ENTRY: | |
1574 | av->a_un.a_val = *user_entry; | |
1575 | break; | |
1576 | case AT_EXECFN: | |
1577 | av->a_un.a_val = (uintptr_t) _dl_argv[0]; | |
1578 | break; | |
1579 | } | |
1580 | #endif | |
1581 | ||
1582 | /* Set the argv[0] string now that we've processed the executable. */ | |
1583 | if (argv0 != NULL) | |
1584 | _dl_argv[0] = argv0; | |
1585 | ||
1586 | /* Adjust arguments for the application entry point. */ | |
1587 | _dl_start_args_adjust (_dl_argv - orig_argv, skip_env); | |
1588 | } | |
1589 | else | |
1590 | { | |
1591 | /* Create a link_map for the executable itself. | |
1592 | This will be what dlopen on "" returns. */ | |
1593 | main_map = _dl_new_object ((char *) "", "", lt_executable, NULL, | |
1594 | __RTLD_OPENEXEC, LM_ID_BASE); | |
1595 | assert (main_map != NULL); | |
1596 | main_map->l_phdr = phdr; | |
1597 | main_map->l_phnum = phnum; | |
1598 | main_map->l_entry = *user_entry; | |
1599 | ||
1600 | /* Even though the link map is not yet fully initialized we can add | |
1601 | it to the map list since there are no possible users running yet. */ | |
1602 | _dl_add_to_namespace_list (main_map, LM_ID_BASE); | |
1603 | assert (main_map == GL(dl_ns)[LM_ID_BASE]._ns_loaded); | |
1604 | ||
1605 | /* At this point we are in a bit of trouble. We would have to | |
1606 | fill in the values for l_dev and l_ino. But in general we | |
1607 | do not know where the file is. We also do not handle AT_EXECFD | |
1608 | even if it would be passed up. | |
1609 | ||
1610 | We leave the values here defined to 0. This is normally no | |
1611 | problem as the program code itself is normally no shared | |
1612 | object and therefore cannot be loaded dynamically. Nothing | |
1613 | prevent the use of dynamic binaries and in these situations | |
1614 | we might get problems. We might not be able to find out | |
1615 | whether the object is already loaded. But since there is no | |
1616 | easy way out and because the dynamic binary must also not | |
1617 | have an SONAME we ignore this program for now. If it becomes | |
1618 | a problem we can force people using SONAMEs. */ | |
1619 | ||
1620 | /* We delay initializing the path structure until we got the dynamic | |
1621 | information for the program. */ | |
1622 | } | |
1623 | ||
1624 | bool has_interp = rtld_setup_main_map (main_map); | |
1625 | ||
1626 | /* Handle this after PT_GNU_STACK parse, because it updates dl_stack_flags | |
1627 | if required. */ | |
1628 | _dl_handle_execstack_tunable (); | |
1629 | ||
1630 | /* If the current libname is different from the SONAME, add the | |
1631 | latter as well. */ | |
1632 | { | |
1633 | const char *soname = l_soname (&_dl_rtld_map); | |
1634 | if (soname != NULL | |
1635 | && strcmp (_dl_rtld_map.l_libname->name, soname) != 0) | |
1636 | { | |
1637 | static struct libname_list newname; | |
1638 | newname.name = soname; | |
1639 | newname.next = NULL; | |
1640 | newname.dont_free = 1; | |
1641 | ||
1642 | assert (_dl_rtld_map.l_libname->next == NULL); | |
1643 | _dl_rtld_map.l_libname->next = &newname; | |
1644 | } | |
1645 | } | |
1646 | /* The ld.so must be relocated since otherwise loading audit modules | |
1647 | will fail since they reuse the very same ld.so. */ | |
1648 | assert (_dl_rtld_map.l_relocated); | |
1649 | ||
1650 | if (! rtld_is_main) | |
1651 | { | |
1652 | /* Extract the contents of the dynamic section for easy access. */ | |
1653 | elf_get_dynamic_info (main_map, false, false); | |
1654 | ||
1655 | /* If the main map is libc.so, update the base namespace to | |
1656 | refer to this map. If libc.so is loaded later, this happens | |
1657 | in _dl_map_object_from_fd. */ | |
1658 | if (l_soname (main_map) != NULL | |
1659 | && strcmp (l_soname (main_map), LIBC_SO) == 0) | |
1660 | GL(dl_ns)[LM_ID_BASE].libc_map = main_map; | |
1661 | ||
1662 | /* Set up our cache of pointers into the hash table. */ | |
1663 | _dl_setup_hash (main_map); | |
1664 | } | |
1665 | ||
1666 | if (__glibc_unlikely (state.mode == rtld_mode_verify)) | |
1667 | { | |
1668 | /* We were called just to verify that this is a dynamic | |
1669 | executable using us as the program interpreter. Exit with an | |
1670 | error if we were not able to load the binary or no interpreter | |
1671 | is specified (i.e., this is no dynamically linked binary. */ | |
1672 | if (main_map->l_ld == NULL) | |
1673 | _exit (1); | |
1674 | ||
1675 | _exit (has_interp ? 0 : 2); | |
1676 | } | |
1677 | ||
1678 | struct link_map **first_preload = &_dl_rtld_map.l_next; | |
1679 | /* Set up the data structures for the system-supplied DSO early, | |
1680 | so they can influence _dl_init_paths. */ | |
1681 | setup_vdso (main_map, &first_preload); | |
1682 | ||
1683 | /* With vDSO setup we can initialize the function pointers. */ | |
1684 | setup_vdso_pointers (); | |
1685 | ||
1686 | /* Initialize the data structures for the search paths for shared | |
1687 | objects. */ | |
1688 | call_init_paths (&state); | |
1689 | ||
1690 | /* Initialize _r_debug_extended. */ | |
1691 | struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr, | |
1692 | LM_ID_BASE); | |
1693 | r->r_state = RT_CONSISTENT; | |
1694 | ||
1695 | /* Put the link_map for ourselves on the chain so it can be found by | |
1696 | name. Note that at this point the global chain of link maps contains | |
1697 | exactly one element, which is pointed to by dl_loaded. */ | |
1698 | if (! _dl_rtld_map.l_name) | |
1699 | /* If not invoked directly, the dynamic linker shared object file was | |
1700 | found by the PT_INTERP name. */ | |
1701 | _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname->name; | |
1702 | _dl_rtld_map.l_type = lt_library; | |
1703 | main_map->l_next = &_dl_rtld_map; | |
1704 | _dl_rtld_map.l_prev = main_map; | |
1705 | ++GL(dl_ns)[LM_ID_BASE]._ns_nloaded; | |
1706 | ++GL(dl_load_adds); | |
1707 | ||
1708 | /* Starting from binutils-2.23, the linker will define the magic symbol | |
1709 | __ehdr_start to point to our own ELF header if it is visible in a | |
1710 | segment that also includes the phdrs. If that's not available, we use | |
1711 | the old method that assumes the beginning of the file is part of the | |
1712 | lowest-addressed PT_LOAD segment. */ | |
1713 | ||
1714 | /* Set up the program header information for the dynamic linker | |
1715 | itself. It is needed in the dl_iterate_phdr callbacks. */ | |
1716 | const ElfW(Ehdr) *rtld_ehdr = &__ehdr_start; | |
1717 | assert (rtld_ehdr->e_ehsize == sizeof *rtld_ehdr); | |
1718 | assert (rtld_ehdr->e_phentsize == sizeof (ElfW(Phdr))); | |
1719 | ||
1720 | const ElfW(Phdr) *rtld_phdr = (const void *) rtld_ehdr + rtld_ehdr->e_phoff; | |
1721 | ||
1722 | _dl_rtld_map.l_phdr = rtld_phdr; | |
1723 | _dl_rtld_map.l_phnum = rtld_ehdr->e_phnum; | |
1724 | ||
1725 | ||
1726 | /* PT_GNU_RELRO is usually the last phdr. */ | |
1727 | size_t cnt = rtld_ehdr->e_phnum; | |
1728 | while (cnt-- > 0) | |
1729 | if (rtld_phdr[cnt].p_type == PT_GNU_RELRO) | |
1730 | { | |
1731 | _dl_rtld_map.l_relro_addr = rtld_phdr[cnt].p_vaddr; | |
1732 | _dl_rtld_map.l_relro_size = rtld_phdr[cnt].p_memsz; | |
1733 | break; | |
1734 | } | |
1735 | ||
1736 | /* Add the dynamic linker to the TLS list if it also uses TLS. */ | |
1737 | if (_dl_rtld_map.l_tls_blocksize != 0) | |
1738 | /* Assign a module ID. Do this before loading any audit modules. */ | |
1739 | _dl_assign_tls_modid (&_dl_rtld_map); | |
1740 | ||
1741 | audit_list_add_dynamic_tag (&state.audit_list, main_map, DT_AUDIT); | |
1742 | audit_list_add_dynamic_tag (&state.audit_list, main_map, DT_DEPAUDIT); | |
1743 | ||
1744 | /* At this point, all data has been obtained that is included in the | |
1745 | --help output. */ | |
1746 | if (__glibc_unlikely (state.mode == rtld_mode_help)) | |
1747 | _dl_help (ld_so_name, &state); | |
1748 | ||
1749 | /* If we have auditing DSOs to load, do it now. */ | |
1750 | bool need_security_init = true; | |
1751 | if (state.audit_list.length > 0) | |
1752 | { | |
1753 | size_t naudit = audit_list_count (&state.audit_list); | |
1754 | ||
1755 | /* Since we start using the auditing DSOs right away we need to | |
1756 | initialize the data structures now. */ | |
1757 | tcbp = init_tls (naudit); | |
1758 | ||
1759 | /* Initialize security features. We need to do it this early | |
1760 | since otherwise the constructors of the audit libraries will | |
1761 | use different values (especially the pointer guard) and will | |
1762 | fail later on. */ | |
1763 | security_init (); | |
1764 | need_security_init = false; | |
1765 | ||
1766 | load_audit_modules (main_map, &state.audit_list); | |
1767 | ||
1768 | /* The count based on audit strings may overestimate the number | |
1769 | of audit modules that got loaded, but not underestimate. */ | |
1770 | assert (GLRO(dl_naudit) <= naudit); | |
1771 | } | |
1772 | ||
1773 | /* Keep track of the currently loaded modules to count how many | |
1774 | non-audit modules which use TLS are loaded. */ | |
1775 | size_t count_modids = _dl_count_modids (); | |
1776 | ||
1777 | /* Set up debugging before the debugger is notified for the first time. */ | |
1778 | elf_setup_debug_entry (main_map, r); | |
1779 | ||
1780 | /* We start adding objects. */ | |
1781 | r->r_state = RT_ADD; | |
1782 | _dl_debug_state (); | |
1783 | LIBC_PROBE (init_start, 2, LM_ID_BASE, r); | |
1784 | ||
1785 | /* Auditing checkpoint: we are ready to signal that the initial map | |
1786 | is being constructed. */ | |
1787 | _dl_audit_activity_map (main_map, LA_ACT_ADD); | |
1788 | ||
1789 | /* We have two ways to specify objects to preload: via environment | |
1790 | variable and via the file /etc/ld.so.preload. The latter can also | |
1791 | be used when security is enabled. */ | |
1792 | assert (*first_preload == NULL); | |
1793 | struct link_map **preloads = NULL; | |
1794 | unsigned int npreloads = 0; | |
1795 | ||
1796 | if (__glibc_unlikely (state.preloadlist != NULL)) | |
1797 | { | |
1798 | RTLD_TIMING_VAR (start); | |
1799 | rtld_timer_start (&start); | |
1800 | npreloads += handle_preload_list (state.preloadlist, main_map, | |
1801 | "LD_PRELOAD"); | |
1802 | rtld_timer_accum (&load_time, start); | |
1803 | } | |
1804 | ||
1805 | if (__glibc_unlikely (state.preloadarg != NULL)) | |
1806 | { | |
1807 | RTLD_TIMING_VAR (start); | |
1808 | rtld_timer_start (&start); | |
1809 | npreloads += handle_preload_list (state.preloadarg, main_map, | |
1810 | "--preload"); | |
1811 | rtld_timer_accum (&load_time, start); | |
1812 | } | |
1813 | ||
1814 | /* There usually is no ld.so.preload file, it should only be used | |
1815 | for emergencies and testing. So the open call etc should usually | |
1816 | fail. Using access() on a non-existing file is faster than using | |
1817 | open(). So we do this first. If it succeeds we do almost twice | |
1818 | the work but this does not matter, since it is not for production | |
1819 | use. */ | |
1820 | static const char preload_file[] = "/etc/ld.so.preload"; | |
1821 | if (__glibc_unlikely (__access (preload_file, R_OK) == 0)) | |
1822 | { | |
1823 | /* Read the contents of the file. */ | |
1824 | file = _dl_sysdep_read_whole_file (preload_file, &file_size, | |
1825 | PROT_READ | PROT_WRITE); | |
1826 | if (__glibc_unlikely (file != MAP_FAILED)) | |
1827 | { | |
1828 | /* Parse the file. It contains names of libraries to be loaded, | |
1829 | separated by white spaces or `:'. It may also contain | |
1830 | comments introduced by `#'. */ | |
1831 | char *problem; | |
1832 | char *runp; | |
1833 | size_t rest; | |
1834 | ||
1835 | /* Eliminate comments. */ | |
1836 | runp = file; | |
1837 | rest = file_size; | |
1838 | while (rest > 0) | |
1839 | { | |
1840 | char *comment = memchr (runp, '#', rest); | |
1841 | if (comment == NULL) | |
1842 | break; | |
1843 | ||
1844 | rest -= comment - runp; | |
1845 | do | |
1846 | *comment = ' '; | |
1847 | while (--rest > 0 && *++comment != '\n'); | |
1848 | } | |
1849 | ||
1850 | /* We have one problematic case: if we have a name at the end of | |
1851 | the file without a trailing terminating characters, we cannot | |
1852 | place the \0. Handle the case separately. */ | |
1853 | if (file[file_size - 1] != ' ' && file[file_size - 1] != '\t' | |
1854 | && file[file_size - 1] != '\n' && file[file_size - 1] != ':') | |
1855 | { | |
1856 | problem = &file[file_size]; | |
1857 | while (problem > file && problem[-1] != ' ' | |
1858 | && problem[-1] != '\t' | |
1859 | && problem[-1] != '\n' && problem[-1] != ':') | |
1860 | --problem; | |
1861 | ||
1862 | if (problem > file) | |
1863 | problem[-1] = '\0'; | |
1864 | } | |
1865 | else | |
1866 | { | |
1867 | problem = NULL; | |
1868 | file[file_size - 1] = '\0'; | |
1869 | } | |
1870 | ||
1871 | RTLD_TIMING_VAR (start); | |
1872 | rtld_timer_start (&start); | |
1873 | ||
1874 | if (file != problem) | |
1875 | { | |
1876 | char *p; | |
1877 | runp = file; | |
1878 | while ((p = strsep (&runp, ": \t\n")) != NULL) | |
1879 | if (p[0] != '\0') | |
1880 | npreloads += do_preload (p, main_map, preload_file); | |
1881 | } | |
1882 | ||
1883 | if (problem != NULL) | |
1884 | { | |
1885 | char *p = strndupa (problem, file_size - (problem - file)); | |
1886 | ||
1887 | npreloads += do_preload (p, main_map, preload_file); | |
1888 | } | |
1889 | ||
1890 | rtld_timer_accum (&load_time, start); | |
1891 | ||
1892 | /* We don't need the file anymore. */ | |
1893 | __munmap (file, file_size); | |
1894 | } | |
1895 | } | |
1896 | ||
1897 | if (__glibc_unlikely (*first_preload != NULL)) | |
1898 | { | |
1899 | /* Set up PRELOADS with a vector of the preloaded libraries. */ | |
1900 | struct link_map *l = *first_preload; | |
1901 | preloads = __alloca (npreloads * sizeof preloads[0]); | |
1902 | i = 0; | |
1903 | do | |
1904 | { | |
1905 | preloads[i++] = l; | |
1906 | l = l->l_next; | |
1907 | } while (l); | |
1908 | assert (i == npreloads); | |
1909 | } | |
1910 | ||
1911 | #ifdef NEED_DL_SYSINFO_DSO | |
1912 | /* Now that the audit modules are opened, call la_objopen for the vDSO. */ | |
1913 | if (GLRO(dl_sysinfo_map) != NULL) | |
1914 | _dl_audit_objopen (GLRO(dl_sysinfo_map), LM_ID_BASE); | |
1915 | #endif | |
1916 | ||
1917 | /* Load all the libraries specified by DT_NEEDED entries. If LD_PRELOAD | |
1918 | specified some libraries to load, these are inserted before the actual | |
1919 | dependencies in the executable's searchlist for symbol resolution. */ | |
1920 | { | |
1921 | RTLD_TIMING_VAR (start); | |
1922 | rtld_timer_start (&start); | |
1923 | _dl_map_object_deps (main_map, preloads, npreloads, | |
1924 | state.mode == rtld_mode_trace, 0); | |
1925 | rtld_timer_accum (&load_time, start); | |
1926 | } | |
1927 | ||
1928 | /* Mark all objects as being in the global scope. */ | |
1929 | for (i = main_map->l_searchlist.r_nlist; i > 0; ) | |
1930 | main_map->l_searchlist.r_list[--i]->l_global = 1; | |
1931 | ||
1932 | /* Remove _dl_rtld_map from the chain. */ | |
1933 | _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next; | |
1934 | if (_dl_rtld_map.l_next != NULL) | |
1935 | _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev; | |
1936 | ||
1937 | for (i = 1; i < main_map->l_searchlist.r_nlist; ++i) | |
1938 | if (is_rtld_link_map (main_map->l_searchlist.r_list[i])) | |
1939 | break; | |
1940 | ||
1941 | /* Insert the link map for the dynamic loader into the chain in | |
1942 | symbol search order because gdb uses the chain's order as its | |
1943 | symbol search order. */ | |
1944 | ||
1945 | _dl_rtld_map.l_prev = main_map->l_searchlist.r_list[i - 1]; | |
1946 | if (__glibc_likely (state.mode == rtld_mode_normal)) | |
1947 | { | |
1948 | _dl_rtld_map.l_next = (i + 1 < main_map->l_searchlist.r_nlist | |
1949 | ? main_map->l_searchlist.r_list[i + 1] | |
1950 | : NULL); | |
1951 | #ifdef NEED_DL_SYSINFO_DSO | |
1952 | if (GLRO(dl_sysinfo_map) != NULL | |
1953 | && _dl_rtld_map.l_prev->l_next == GLRO(dl_sysinfo_map) | |
1954 | && _dl_rtld_map.l_next != GLRO(dl_sysinfo_map)) | |
1955 | _dl_rtld_map.l_prev = GLRO(dl_sysinfo_map); | |
1956 | #endif | |
1957 | } | |
1958 | else | |
1959 | /* In trace mode there might be an invisible object (which we | |
1960 | could not find) after the previous one in the search list. | |
1961 | In this case it doesn't matter much where we put the | |
1962 | interpreter object, so we just initialize the list pointer so | |
1963 | that the assertion below holds. */ | |
1964 | _dl_rtld_map.l_next = _dl_rtld_map.l_prev->l_next; | |
1965 | ||
1966 | assert (_dl_rtld_map.l_prev->l_next == _dl_rtld_map.l_next); | |
1967 | _dl_rtld_map.l_prev->l_next = &_dl_rtld_map; | |
1968 | if (_dl_rtld_map.l_next != NULL) | |
1969 | { | |
1970 | assert (_dl_rtld_map.l_next->l_prev == _dl_rtld_map.l_prev); | |
1971 | _dl_rtld_map.l_next->l_prev = &_dl_rtld_map; | |
1972 | } | |
1973 | ||
1974 | /* Now let us see whether all libraries are available in the | |
1975 | versions we need. */ | |
1976 | { | |
1977 | struct version_check_args args; | |
1978 | args.doexit = state.mode == rtld_mode_normal; | |
1979 | args.dotrace = state.mode == rtld_mode_trace; | |
1980 | _dl_receive_error (print_missing_version, version_check_doit, &args); | |
1981 | } | |
1982 | ||
1983 | /* We do not initialize any of the TLS functionality unless any of the | |
1984 | initial modules uses TLS. This makes dynamic loading of modules with | |
1985 | TLS impossible, but to support it requires either eagerly doing setup | |
1986 | now or lazily doing it later. Doing it now makes us incompatible with | |
1987 | an old kernel that can't perform TLS_INIT_TP, even if no TLS is ever | |
1988 | used. Trying to do it lazily is too hairy to try when there could be | |
1989 | multiple threads (from a non-TLS-using libpthread). */ | |
1990 | bool was_tls_init_tp_called = __rtld_tls_init_tp_called; | |
1991 | if (tcbp == NULL) | |
1992 | tcbp = init_tls (0); | |
1993 | ||
1994 | if (__glibc_likely (need_security_init)) | |
1995 | /* Initialize security features. But only if we have not done it | |
1996 | earlier. */ | |
1997 | security_init (); | |
1998 | ||
1999 | if (__glibc_unlikely (state.mode != rtld_mode_normal)) | |
2000 | { | |
2001 | /* We were run just to list the shared libraries. It is | |
2002 | important that we do this before real relocation, because the | |
2003 | functions we call below for output may no longer work properly | |
2004 | after relocation. */ | |
2005 | struct link_map *l; | |
2006 | ||
2007 | if (GLRO(dl_debug_mask) & DL_DEBUG_UNUSED) | |
2008 | { | |
2009 | /* Look through the dependencies of the main executable | |
2010 | and determine which of them is not actually | |
2011 | required. */ | |
2012 | struct link_map *l = main_map; | |
2013 | ||
2014 | /* Relocate the main executable. */ | |
2015 | struct relocate_args args = { .l = l, | |
2016 | .reloc_mode = ((GLRO(dl_lazy) | |
2017 | ? RTLD_LAZY : 0) | |
2018 | | __RTLD_NOIFUNC) }; | |
2019 | _dl_receive_error (print_unresolved, relocate_doit, &args); | |
2020 | ||
2021 | /* This loop depends on the dependencies of the executable to | |
2022 | correspond in number and order to the DT_NEEDED entries. */ | |
2023 | ElfW(Dyn) *dyn = main_map->l_ld; | |
2024 | bool first = true; | |
2025 | while (dyn->d_tag != DT_NULL) | |
2026 | { | |
2027 | if (dyn->d_tag == DT_NEEDED) | |
2028 | { | |
2029 | l = l->l_next; | |
2030 | #ifdef NEED_DL_SYSINFO_DSO | |
2031 | /* Skip the VDSO since it's not part of the list | |
2032 | of objects we brought in via DT_NEEDED entries. */ | |
2033 | if (l == GLRO(dl_sysinfo_map)) | |
2034 | l = l->l_next; | |
2035 | #endif | |
2036 | if (!l->l_used) | |
2037 | { | |
2038 | if (first) | |
2039 | { | |
2040 | _dl_printf ("Unused direct dependencies:\n"); | |
2041 | first = false; | |
2042 | } | |
2043 | ||
2044 | _dl_printf ("\t%s\n", l->l_name); | |
2045 | } | |
2046 | } | |
2047 | ||
2048 | ++dyn; | |
2049 | } | |
2050 | ||
2051 | _exit (first != true); | |
2052 | } | |
2053 | else if (! main_map->l_info[DT_NEEDED]) | |
2054 | _dl_printf ("\tstatically linked\n"); | |
2055 | else | |
2056 | { | |
2057 | for (l = state.mode_trace_program ? main_map : main_map->l_next; | |
2058 | l; l = l->l_next) { | |
2059 | if (l->l_faked) | |
2060 | /* The library was not found. */ | |
2061 | _dl_printf ("\t%s => not found\n", l->l_libname->name); | |
2062 | else if (strcmp (l->l_libname->name, l->l_name) == 0) | |
2063 | /* Print vDSO like libraries without duplicate name. Some | |
2064 | consumers depend of this format. */ | |
2065 | _dl_printf ("\t%s (0x%0*zx)\n", l->l_libname->name, | |
2066 | (int) sizeof l->l_map_start * 2, | |
2067 | (size_t) l->l_map_start); | |
2068 | else | |
2069 | _dl_printf ("\t%s => %s (0x%0*zx)\n", | |
2070 | DSO_FILENAME (l->l_libname->name), | |
2071 | DSO_FILENAME (l->l_name), | |
2072 | (int) sizeof l->l_map_start * 2, | |
2073 | (size_t) l->l_map_start); | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | if (__glibc_unlikely (state.mode != rtld_mode_trace)) | |
2078 | for (i = 1; i < (unsigned int) _dl_argc; ++i) | |
2079 | { | |
2080 | const ElfW(Sym) *ref = NULL; | |
2081 | ElfW(Addr) loadbase; | |
2082 | lookup_t result; | |
2083 | ||
2084 | result = _dl_lookup_symbol_x (_dl_argv[i], main_map, | |
2085 | &ref, main_map->l_scope, | |
2086 | NULL, ELF_RTYPE_CLASS_PLT, | |
2087 | DL_LOOKUP_ADD_DEPENDENCY, NULL); | |
2088 | ||
2089 | loadbase = LOOKUP_VALUE_ADDRESS (result, false); | |
2090 | ||
2091 | _dl_printf ("%s found at 0x%0*zd in object at 0x%0*zd\n", | |
2092 | _dl_argv[i], | |
2093 | (int) sizeof ref->st_value * 2, | |
2094 | (size_t) ref->st_value, | |
2095 | (int) sizeof loadbase * 2, (size_t) loadbase); | |
2096 | } | |
2097 | else | |
2098 | { | |
2099 | /* If LD_WARN is set, warn about undefined symbols. */ | |
2100 | if (GLRO(dl_lazy) >= 0 && GLRO(dl_verbose)) | |
2101 | { | |
2102 | /* We have to do symbol dependency testing. */ | |
2103 | struct relocate_args args; | |
2104 | unsigned int i; | |
2105 | ||
2106 | args.reloc_mode = ((GLRO(dl_lazy) ? RTLD_LAZY : 0) | |
2107 | | __RTLD_NOIFUNC); | |
2108 | ||
2109 | i = main_map->l_searchlist.r_nlist; | |
2110 | while (i-- > 0) | |
2111 | { | |
2112 | struct link_map *l = main_map->l_initfini[i]; | |
2113 | if (l != &_dl_rtld_map && ! l->l_faked) | |
2114 | { | |
2115 | args.l = l; | |
2116 | _dl_receive_error (print_unresolved, relocate_doit, | |
2117 | &args); | |
2118 | } | |
2119 | } | |
2120 | ||
2121 | } | |
2122 | #define VERNEEDTAG (DT_NUM + DT_THISPROCNUM + DT_VERSIONTAGIDX (DT_VERNEED)) | |
2123 | if (state.version_info) | |
2124 | { | |
2125 | /* Print more information. This means here, print information | |
2126 | about the versions needed. */ | |
2127 | int first = 1; | |
2128 | struct link_map *map; | |
2129 | ||
2130 | for (map = main_map; map != NULL; map = map->l_next) | |
2131 | { | |
2132 | const char *strtab; | |
2133 | ElfW(Dyn) *dyn = map->l_info[VERNEEDTAG]; | |
2134 | ElfW(Verneed) *ent; | |
2135 | ||
2136 | if (dyn == NULL) | |
2137 | continue; | |
2138 | ||
2139 | strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]); | |
2140 | ent = (ElfW(Verneed) *) (map->l_addr + dyn->d_un.d_ptr); | |
2141 | ||
2142 | if (first) | |
2143 | { | |
2144 | _dl_printf ("\n\tVersion information:\n"); | |
2145 | first = 0; | |
2146 | } | |
2147 | ||
2148 | _dl_printf ("\t%s:\n", DSO_FILENAME (map->l_name)); | |
2149 | ||
2150 | while (1) | |
2151 | { | |
2152 | ElfW(Vernaux) *aux; | |
2153 | struct link_map *needed; | |
2154 | ||
2155 | needed = find_needed (strtab + ent->vn_file); | |
2156 | aux = (ElfW(Vernaux) *) ((char *) ent + ent->vn_aux); | |
2157 | ||
2158 | while (1) | |
2159 | { | |
2160 | const char *fname = NULL; | |
2161 | ||
2162 | if (needed != NULL | |
2163 | && match_version (strtab + aux->vna_name, | |
2164 | needed)) | |
2165 | fname = needed->l_name; | |
2166 | ||
2167 | _dl_printf ("\t\t%s (%s) %s=> %s\n", | |
2168 | strtab + ent->vn_file, | |
2169 | strtab + aux->vna_name, | |
2170 | aux->vna_flags & VER_FLG_WEAK | |
2171 | ? "[WEAK] " : "", | |
2172 | fname ?: "not found"); | |
2173 | ||
2174 | if (aux->vna_next == 0) | |
2175 | /* No more symbols. */ | |
2176 | break; | |
2177 | ||
2178 | /* Next symbol. */ | |
2179 | aux = (ElfW(Vernaux) *) ((char *) aux | |
2180 | + aux->vna_next); | |
2181 | } | |
2182 | ||
2183 | if (ent->vn_next == 0) | |
2184 | /* No more dependencies. */ | |
2185 | break; | |
2186 | ||
2187 | /* Next dependency. */ | |
2188 | ent = (ElfW(Verneed) *) ((char *) ent + ent->vn_next); | |
2189 | } | |
2190 | } | |
2191 | } | |
2192 | } | |
2193 | ||
2194 | _exit (0); | |
2195 | } | |
2196 | ||
2197 | /* Now set up the variable which helps the assembler startup code. */ | |
2198 | GL(dl_ns)[LM_ID_BASE]._ns_main_searchlist = &main_map->l_searchlist; | |
2199 | ||
2200 | /* Save the information about the original global scope list since | |
2201 | we need it in the memory handling later. */ | |
2202 | GLRO(dl_initial_searchlist) = *GL(dl_ns)[LM_ID_BASE]._ns_main_searchlist; | |
2203 | ||
2204 | /* Remember the last search directory added at startup, now that | |
2205 | malloc will no longer be the one from dl-minimal.c. As a side | |
2206 | effect, this marks ld.so as initialized, so that the rtld_active | |
2207 | function returns true from now on. */ | |
2208 | GLRO(dl_init_all_dirs) = GL(dl_all_dirs); | |
2209 | ||
2210 | /* Print scope information. */ | |
2211 | if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_SCOPES)) | |
2212 | { | |
2213 | _dl_debug_printf ("\nInitial object scopes\n"); | |
2214 | ||
2215 | for (struct link_map *l = main_map; l != NULL; l = l->l_next) | |
2216 | _dl_show_scope (l, 0); | |
2217 | } | |
2218 | ||
2219 | _rtld_main_check (main_map, _dl_argv[0]); | |
2220 | ||
2221 | /* Now we have all the objects loaded. */ | |
2222 | ||
2223 | int consider_profiling = GLRO(dl_profile) != NULL; | |
2224 | ||
2225 | /* If we are profiling we also must do lazy reloaction. */ | |
2226 | GLRO(dl_lazy) |= consider_profiling; | |
2227 | ||
2228 | /* If libc.so has been loaded, relocate it early, after the dynamic | |
2229 | loader itself. The initial self-relocation of ld.so should be | |
2230 | sufficient for IFUNC resolvers in libc.so. */ | |
2231 | if (GL(dl_ns)[LM_ID_BASE].libc_map != NULL) | |
2232 | { | |
2233 | RTLD_TIMING_VAR (start); | |
2234 | rtld_timer_start (&start); | |
2235 | _dl_relocate_object (GL(dl_ns)[LM_ID_BASE].libc_map, | |
2236 | GL(dl_ns)[LM_ID_BASE].libc_map->l_scope, | |
2237 | GLRO(dl_lazy) ? RTLD_LAZY : 0, consider_profiling); | |
2238 | rtld_timer_accum (&relocate_time, start); | |
2239 | } | |
2240 | ||
2241 | RTLD_TIMING_VAR (start); | |
2242 | rtld_timer_start (&start); | |
2243 | { | |
2244 | unsigned i = main_map->l_searchlist.r_nlist; | |
2245 | while (i-- > 0) | |
2246 | { | |
2247 | struct link_map *l = main_map->l_initfini[i]; | |
2248 | ||
2249 | /* While we are at it, help the memory handling a bit. We have to | |
2250 | mark some data structures as allocated with the fake malloc() | |
2251 | implementation in ld.so. */ | |
2252 | struct libname_list *lnp = l->l_libname->next; | |
2253 | ||
2254 | while (__builtin_expect (lnp != NULL, 0)) | |
2255 | { | |
2256 | lnp->dont_free = 1; | |
2257 | lnp = lnp->next; | |
2258 | } | |
2259 | /* Also allocated with the fake malloc(). */ | |
2260 | l->l_free_initfini = 0; | |
2261 | ||
2262 | _dl_relocate_object (l, l->l_scope, GLRO(dl_lazy) ? RTLD_LAZY : 0, | |
2263 | consider_profiling); | |
2264 | ||
2265 | /* Add object to slot information data if necessasy. */ | |
2266 | if (l->l_tls_blocksize != 0 && __rtld_tls_init_tp_called) | |
2267 | _dl_add_to_slotinfo (l, true); | |
2268 | } | |
2269 | } | |
2270 | rtld_timer_stop (&relocate_time, start); | |
2271 | ||
2272 | /* This call must come after the slotinfo array has been filled in | |
2273 | using _dl_add_to_slotinfo. */ | |
2274 | _dl_tls_initial_modid_limit_setup (); | |
2275 | ||
2276 | /* Now enable profiling if needed. Like the previous call, | |
2277 | this has to go here because the calls it makes should use the | |
2278 | rtld versions of the functions (particularly calloc()), but it | |
2279 | needs to have _dl_profile_map set up by the relocator. */ | |
2280 | if (__glibc_unlikely (GL(dl_profile_map) != NULL)) | |
2281 | /* We must prepare the profiling. */ | |
2282 | _dl_start_profile (); | |
2283 | ||
2284 | if ((!was_tls_init_tp_called && GL(dl_tls_max_dtv_idx) > 0) | |
2285 | || count_modids != _dl_count_modids ()) | |
2286 | ++GL(dl_tls_generation); | |
2287 | ||
2288 | /* Now that we have completed relocation, the initializer data | |
2289 | for the TLS blocks has its final values and we can copy them | |
2290 | into the main thread's TLS area, which we allocated above. | |
2291 | Note: thread-local variables must only be accessed after completing | |
2292 | the next step. */ | |
2293 | _dl_allocate_tls_init (tcbp, true); | |
2294 | ||
2295 | /* And finally install it for the main thread. */ | |
2296 | if (! __rtld_tls_init_tp_called) | |
2297 | call_tls_init_tp (tcbp); | |
2298 | ||
2299 | /* Make sure no new search directories have been added. */ | |
2300 | assert (GLRO(dl_init_all_dirs) == GL(dl_all_dirs)); | |
2301 | ||
2302 | /* Set up the object lookup structures. */ | |
2303 | _dl_find_object_init (); | |
2304 | ||
2305 | /* If libc.so was loaded, relocate ld.so against it. Complete ld.so | |
2306 | initialization with mutex symbols from libc.so and malloc symbols | |
2307 | from the global scope. */ | |
2308 | if (GL(dl_ns)[LM_ID_BASE].libc_map != NULL) | |
2309 | { | |
2310 | RTLD_TIMING_VAR (start); | |
2311 | rtld_timer_start (&start); | |
2312 | _dl_relocate_object_no_relro (&_dl_rtld_map, main_map->l_scope, 0, 0); | |
2313 | rtld_timer_accum (&relocate_time, start); | |
2314 | ||
2315 | __rtld_mutex_init (); | |
2316 | __rtld_malloc_init_real (main_map); | |
2317 | } | |
2318 | ||
2319 | /* All ld.so initialization is complete. Apply RELRO. */ | |
2320 | _dl_protect_relro (&_dl_rtld_map); | |
2321 | ||
2322 | /* Relocation is complete. Perform early libc initialization. This | |
2323 | is the initial libc, even if audit modules have been loaded with | |
2324 | other libcs. */ | |
2325 | _dl_call_libc_early_init (GL(dl_ns)[LM_ID_BASE].libc_map, true); | |
2326 | ||
2327 | /* Do any necessary cleanups for the startup OS interface code. | |
2328 | We do these now so that no calls are made after rtld re-relocation | |
2329 | which might be resolved to different functions than we expect. | |
2330 | We cannot do this before relocating the other objects because | |
2331 | _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */ | |
2332 | _dl_sysdep_start_cleanup (); | |
2333 | ||
2334 | /* Notify the debugger all new objects are now ready to go. We must re-get | |
2335 | the address since by now the variable might be in another object. */ | |
2336 | r = _dl_debug_update (LM_ID_BASE); | |
2337 | r->r_state = RT_CONSISTENT; | |
2338 | _dl_debug_state (); | |
2339 | LIBC_PROBE (init_complete, 2, LM_ID_BASE, r); | |
2340 | ||
2341 | /* Auditing checkpoint: we have added all objects. */ | |
2342 | _dl_audit_activity_nsid (LM_ID_BASE, LA_ACT_CONSISTENT); | |
2343 | ||
2344 | #if defined USE_LDCONFIG && !defined MAP_COPY | |
2345 | /* We must munmap() the cache file. */ | |
2346 | _dl_unload_cache (); | |
2347 | #endif | |
2348 | ||
2349 | /* Once we return, _dl_sysdep_start will invoke | |
2350 | the DT_INIT functions and then *USER_ENTRY. */ | |
2351 | } | |
2352 | \f | |
2353 | /* This is a little helper function for resolving symbols while | |
2354 | tracing the binary. */ | |
2355 | static void | |
2356 | print_unresolved (int errcode __attribute__ ((unused)), const char *objname, | |
2357 | const char *errstring) | |
2358 | { | |
2359 | if (objname[0] == '\0') | |
2360 | objname = RTLD_PROGNAME; | |
2361 | _dl_error_printf ("%s (%s)\n", errstring, objname); | |
2362 | } | |
2363 | \f | |
2364 | /* This is a little helper function for resolving symbols while | |
2365 | tracing the binary. */ | |
2366 | static void | |
2367 | print_missing_version (int errcode __attribute__ ((unused)), | |
2368 | const char *objname, const char *errstring) | |
2369 | { | |
2370 | _dl_error_printf ("%s: %s: %s\n", RTLD_PROGNAME, | |
2371 | objname, errstring); | |
2372 | } | |
2373 | \f | |
2374 | /* Process the string given as the parameter which explains which debugging | |
2375 | options are enabled. */ | |
2376 | static void | |
2377 | process_dl_debug (struct dl_main_state *state, const char *dl_debug) | |
2378 | { | |
2379 | /* When adding new entries make sure that the maximal length of a name | |
2380 | is correctly handled in the LD_DEBUG_HELP code below. */ | |
2381 | static const struct | |
2382 | { | |
2383 | unsigned char len; | |
2384 | const char name[10]; | |
2385 | const char helptext[41]; | |
2386 | unsigned short int mask; | |
2387 | } debopts[] = | |
2388 | { | |
2389 | #define LEN_AND_STR(str) sizeof (str) - 1, str | |
2390 | { LEN_AND_STR ("libs"), "display library search paths", | |
2391 | DL_DEBUG_LIBS | DL_DEBUG_IMPCALLS }, | |
2392 | { LEN_AND_STR ("reloc"), "display relocation processing", | |
2393 | DL_DEBUG_RELOC | DL_DEBUG_IMPCALLS }, | |
2394 | { LEN_AND_STR ("files"), "display progress for input file", | |
2395 | DL_DEBUG_FILES | DL_DEBUG_IMPCALLS }, | |
2396 | { LEN_AND_STR ("symbols"), "display symbol table processing", | |
2397 | DL_DEBUG_SYMBOLS | DL_DEBUG_IMPCALLS }, | |
2398 | { LEN_AND_STR ("bindings"), "display information about symbol binding", | |
2399 | DL_DEBUG_BINDINGS | DL_DEBUG_IMPCALLS }, | |
2400 | { LEN_AND_STR ("versions"), "display version dependencies", | |
2401 | DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS }, | |
2402 | { LEN_AND_STR ("scopes"), "display scope information", | |
2403 | DL_DEBUG_SCOPES }, | |
2404 | { LEN_AND_STR ("all"), "all previous options combined", | |
2405 | DL_DEBUG_LIBS | DL_DEBUG_RELOC | DL_DEBUG_FILES | DL_DEBUG_SYMBOLS | |
2406 | | DL_DEBUG_BINDINGS | DL_DEBUG_VERSIONS | DL_DEBUG_IMPCALLS | |
2407 | | DL_DEBUG_SCOPES }, | |
2408 | { LEN_AND_STR ("statistics"), "display relocation statistics", | |
2409 | DL_DEBUG_STATISTICS }, | |
2410 | { LEN_AND_STR ("unused"), "determined unused DSOs", | |
2411 | DL_DEBUG_UNUSED }, | |
2412 | { LEN_AND_STR ("help"), "display this help message and exit", | |
2413 | DL_DEBUG_HELP }, | |
2414 | }; | |
2415 | #define ndebopts (sizeof (debopts) / sizeof (debopts[0])) | |
2416 | ||
2417 | /* Skip separating white spaces and commas. */ | |
2418 | while (*dl_debug != '\0') | |
2419 | { | |
2420 | if (*dl_debug != ' ' && *dl_debug != ',' && *dl_debug != ':') | |
2421 | { | |
2422 | size_t cnt; | |
2423 | size_t len = 1; | |
2424 | ||
2425 | while (dl_debug[len] != '\0' && dl_debug[len] != ' ' | |
2426 | && dl_debug[len] != ',' && dl_debug[len] != ':') | |
2427 | ++len; | |
2428 | ||
2429 | for (cnt = 0; cnt < ndebopts; ++cnt) | |
2430 | if (debopts[cnt].len == len | |
2431 | && memcmp (dl_debug, debopts[cnt].name, len) == 0) | |
2432 | { | |
2433 | GLRO(dl_debug_mask) |= debopts[cnt].mask; | |
2434 | break; | |
2435 | } | |
2436 | ||
2437 | if (cnt == ndebopts) | |
2438 | { | |
2439 | /* Display a warning and skip everything until next | |
2440 | separator. */ | |
2441 | char *copy = strndupa (dl_debug, len); | |
2442 | _dl_error_printf ("\ | |
2443 | warning: debug option `%s' unknown; try LD_DEBUG=help\n", copy); | |
2444 | } | |
2445 | ||
2446 | dl_debug += len; | |
2447 | continue; | |
2448 | } | |
2449 | ||
2450 | ++dl_debug; | |
2451 | } | |
2452 | ||
2453 | if (GLRO(dl_debug_mask) & DL_DEBUG_UNUSED) | |
2454 | { | |
2455 | /* In order to get an accurate picture of whether a particular | |
2456 | DT_NEEDED entry is actually used we have to process both | |
2457 | the PLT and non-PLT relocation entries. */ | |
2458 | GLRO(dl_lazy) = 0; | |
2459 | } | |
2460 | ||
2461 | if (GLRO(dl_debug_mask) & DL_DEBUG_HELP) | |
2462 | { | |
2463 | size_t cnt; | |
2464 | ||
2465 | _dl_printf ("\ | |
2466 | Valid options for the LD_DEBUG environment variable are:\n\n"); | |
2467 | ||
2468 | for (cnt = 0; cnt < ndebopts; ++cnt) | |
2469 | _dl_printf (" %.*s%s%s\n", debopts[cnt].len, debopts[cnt].name, | |
2470 | " " + debopts[cnt].len - 3, | |
2471 | debopts[cnt].helptext); | |
2472 | ||
2473 | _dl_printf ("\n\ | |
2474 | To direct the debugging output into a file instead of standard output\n\ | |
2475 | a filename can be specified using the LD_DEBUG_OUTPUT environment variable.\n"); | |
2476 | _exit (0); | |
2477 | } | |
2478 | } | |
2479 | \f | |
2480 | static int | |
2481 | process_envvars_secure (struct dl_main_state *state) | |
2482 | { | |
2483 | char **runp = _environ; | |
2484 | char *envline; | |
2485 | int skip_env = 0; | |
2486 | ||
2487 | while ((envline = _dl_next_ld_env_entry (&runp)) != NULL) | |
2488 | { | |
2489 | size_t len = 0; | |
2490 | ||
2491 | while (envline[len] != '\0' && envline[len] != '=') | |
2492 | ++len; | |
2493 | ||
2494 | if (envline[len] != '=') | |
2495 | /* This is a "LD_" variable at the end of the string without | |
2496 | a '=' character. Ignore it since otherwise we will access | |
2497 | invalid memory below. */ | |
2498 | continue; | |
2499 | ||
2500 | switch (len) | |
2501 | { | |
2502 | case 5: | |
2503 | /* For __libc_enable_secure mode, audit pathnames containing slashes | |
2504 | are ignored. Also, shared audit objects are only loaded only from | |
2505 | the standard search directories and only if they have set-user-ID | |
2506 | mode bit enabled. */ | |
2507 | if (memcmp (envline, "AUDIT", 5) == 0) | |
2508 | audit_list_add_string (&state->audit_list, &envline[6]); | |
2509 | break; | |
2510 | ||
2511 | case 7: | |
2512 | /* For __libc_enable_secure mode, preload pathnames containing slashes | |
2513 | are ignored. Also, shared objects are only preloaded from the | |
2514 | standard search directories and only if they have set-user-ID mode | |
2515 | bit enabled. */ | |
2516 | if (memcmp (envline, "PRELOAD", 7) == 0) | |
2517 | state->preloadlist = &envline[8]; | |
2518 | break; | |
2519 | } | |
2520 | } | |
2521 | ||
2522 | /* Extra security for SUID binaries. Remove all dangerous environment | |
2523 | variables. */ | |
2524 | const char *nextp = UNSECURE_ENVVARS; | |
2525 | do | |
2526 | { | |
2527 | /* Keep track of the number of environment variables that were set in | |
2528 | the environment and are unset below. Use getenv() which returns | |
2529 | non-NULL if the variable is set in the environment. This count is | |
2530 | needed if we need to adjust the location of the AUX vector on the | |
2531 | stack when running ld.so directly. */ | |
2532 | if (getenv (nextp) != NULL) | |
2533 | skip_env++; | |
2534 | ||
2535 | unsetenv (nextp); | |
2536 | nextp = strchr (nextp, '\0') + 1; | |
2537 | } | |
2538 | while (*nextp != '\0'); | |
2539 | ||
2540 | if (GLRO(dl_debug_mask) != 0 | |
2541 | || GLRO(dl_verbose) != 0 | |
2542 | || GLRO(dl_lazy) != 1 | |
2543 | || GLRO(dl_bind_not) != 0 | |
2544 | || state->mode != rtld_mode_normal | |
2545 | || state->version_info) | |
2546 | _exit (5); | |
2547 | ||
2548 | return skip_env; | |
2549 | } | |
2550 | ||
2551 | static void | |
2552 | process_envvars_default (struct dl_main_state *state) | |
2553 | { | |
2554 | char **runp = _environ; | |
2555 | char *envline; | |
2556 | char *debug_output = NULL; | |
2557 | ||
2558 | while ((envline = _dl_next_ld_env_entry (&runp)) != NULL) | |
2559 | { | |
2560 | size_t len = 0; | |
2561 | ||
2562 | while (envline[len] != '\0' && envline[len] != '=') | |
2563 | ++len; | |
2564 | ||
2565 | if (envline[len] != '=') | |
2566 | /* This is a "LD_" variable at the end of the string without | |
2567 | a '=' character. Ignore it since otherwise we will access | |
2568 | invalid memory below. */ | |
2569 | continue; | |
2570 | ||
2571 | switch (len) | |
2572 | { | |
2573 | case 4: | |
2574 | /* Warning level, verbose or not. */ | |
2575 | if (memcmp (envline, "WARN", 4) == 0) | |
2576 | GLRO(dl_verbose) = envline[5] != '\0'; | |
2577 | break; | |
2578 | ||
2579 | case 5: | |
2580 | /* Debugging of the dynamic linker? */ | |
2581 | if (memcmp (envline, "DEBUG", 5) == 0) | |
2582 | { | |
2583 | process_dl_debug (state, &envline[6]); | |
2584 | break; | |
2585 | } | |
2586 | /* For __libc_enable_secure mode, audit pathnames containing slashes | |
2587 | are ignored. Also, shared audit objects are only loaded only from | |
2588 | the standard search directories and only if they have set-user-ID | |
2589 | mode bit enabled. */ | |
2590 | if (memcmp (envline, "AUDIT", 5) == 0) | |
2591 | audit_list_add_string (&state->audit_list, &envline[6]); | |
2592 | break; | |
2593 | ||
2594 | case 7: | |
2595 | /* Print information about versions. */ | |
2596 | if (memcmp (envline, "VERBOSE", 7) == 0) | |
2597 | { | |
2598 | state->version_info = envline[8] != '\0'; | |
2599 | break; | |
2600 | } | |
2601 | ||
2602 | /* For __libc_enable_secure mode, preload pathnames containing slashes | |
2603 | are ignored. Also, shared objects are only preloaded from the | |
2604 | standard search directories and only if they have set-user-ID mode | |
2605 | bit enabled. */ | |
2606 | if (memcmp (envline, "PRELOAD", 7) == 0) | |
2607 | { | |
2608 | state->preloadlist = &envline[8]; | |
2609 | break; | |
2610 | } | |
2611 | ||
2612 | /* Which shared object shall be profiled. */ | |
2613 | if (memcmp (envline, "PROFILE", 7) == 0 && envline[8] != '\0') | |
2614 | GLRO(dl_profile) = &envline[8]; | |
2615 | break; | |
2616 | ||
2617 | case 8: | |
2618 | /* Do we bind early? */ | |
2619 | if (memcmp (envline, "BIND_NOW", 8) == 0) | |
2620 | { | |
2621 | GLRO(dl_lazy) = envline[9] == '\0'; | |
2622 | break; | |
2623 | } | |
2624 | if (memcmp (envline, "BIND_NOT", 8) == 0) | |
2625 | GLRO(dl_bind_not) = envline[9] != '\0'; | |
2626 | break; | |
2627 | ||
2628 | case 9: | |
2629 | /* Test whether we want to see the content of the auxiliary | |
2630 | array passed up from the kernel. */ | |
2631 | if (memcmp (envline, "SHOW_AUXV", 9) == 0) | |
2632 | _dl_show_auxv (); | |
2633 | break; | |
2634 | ||
2635 | case 11: | |
2636 | /* Path where the binary is found. */ | |
2637 | if (memcmp (envline, "ORIGIN_PATH", 11) == 0) | |
2638 | GLRO(dl_origin_path) = &envline[12]; | |
2639 | break; | |
2640 | ||
2641 | case 12: | |
2642 | /* The library search path. */ | |
2643 | if (memcmp (envline, "LIBRARY_PATH", 12) == 0) | |
2644 | { | |
2645 | state->library_path = &envline[13]; | |
2646 | state->library_path_source = "LD_LIBRARY_PATH"; | |
2647 | break; | |
2648 | } | |
2649 | ||
2650 | /* Where to place the profiling data file. */ | |
2651 | if (memcmp (envline, "DEBUG_OUTPUT", 12) == 0) | |
2652 | { | |
2653 | debug_output = &envline[13]; | |
2654 | break; | |
2655 | } | |
2656 | ||
2657 | if (memcmp (envline, "DYNAMIC_WEAK", 12) == 0) | |
2658 | GLRO(dl_dynamic_weak) = 1; | |
2659 | break; | |
2660 | ||
2661 | case 14: | |
2662 | /* Where to place the profiling data file. */ | |
2663 | if (memcmp (envline, "PROFILE_OUTPUT", 14) == 0 | |
2664 | && envline[15] != '\0') | |
2665 | GLRO(dl_profile_output) = &envline[15]; | |
2666 | break; | |
2667 | ||
2668 | case 20: | |
2669 | /* The mode of the dynamic linker can be set. */ | |
2670 | if (memcmp (envline, "TRACE_LOADED_OBJECTS", 20) == 0) | |
2671 | { | |
2672 | state->mode = rtld_mode_trace; | |
2673 | state->mode_trace_program | |
2674 | = _dl_strtoul (&envline[21], NULL) > 1; | |
2675 | } | |
2676 | break; | |
2677 | } | |
2678 | } | |
2679 | ||
2680 | /* If we have to run the dynamic linker in debugging mode and the | |
2681 | LD_DEBUG_OUTPUT environment variable is given, we write the debug | |
2682 | messages to this file. */ | |
2683 | if (GLRO(dl_debug_mask) != 0 && debug_output != NULL) | |
2684 | { | |
2685 | const int flags = O_WRONLY | O_APPEND | O_CREAT | O_NOFOLLOW; | |
2686 | size_t name_len = strlen (debug_output); | |
2687 | char buf[name_len + 12]; | |
2688 | char *startp; | |
2689 | ||
2690 | buf[name_len + 11] = '\0'; | |
2691 | startp = _itoa (__getpid (), &buf[name_len + 11], 10, 0); | |
2692 | *--startp = '.'; | |
2693 | startp = memcpy (startp - name_len, debug_output, name_len); | |
2694 | ||
2695 | GLRO(dl_debug_fd) = __open64_nocancel (startp, flags, DEFFILEMODE); | |
2696 | if (GLRO(dl_debug_fd) == -1) | |
2697 | /* We use standard output if opening the file failed. */ | |
2698 | GLRO(dl_debug_fd) = STDOUT_FILENO; | |
2699 | } | |
2700 | } | |
2701 | ||
2702 | static int | |
2703 | process_envvars (struct dl_main_state *state) | |
2704 | { | |
2705 | int skip_env = 0; | |
2706 | if (__glibc_unlikely (__libc_enable_secure)) | |
2707 | skip_env += process_envvars_secure (state); | |
2708 | else | |
2709 | process_envvars_default (state); | |
2710 | ||
2711 | return skip_env; | |
2712 | } | |
2713 | ||
2714 | #if HP_TIMING_INLINE | |
2715 | static void | |
2716 | print_statistics_item (const char *title, hp_timing_t time, | |
2717 | hp_timing_t total) | |
2718 | { | |
2719 | char cycles[HP_TIMING_PRINT_SIZE]; | |
2720 | HP_TIMING_PRINT (cycles, sizeof (cycles), time); | |
2721 | ||
2722 | char relative[3 * sizeof (hp_timing_t) + 2]; | |
2723 | char *cp = _itoa ((1000ULL * time) / total, relative + sizeof (relative), | |
2724 | 10, 0); | |
2725 | /* Sets the decimal point. */ | |
2726 | char *wp = relative; | |
2727 | switch (relative + sizeof (relative) - cp) | |
2728 | { | |
2729 | case 3: | |
2730 | *wp++ = *cp++; | |
2731 | /* Fall through. */ | |
2732 | case 2: | |
2733 | *wp++ = *cp++; | |
2734 | /* Fall through. */ | |
2735 | case 1: | |
2736 | *wp++ = '.'; | |
2737 | *wp++ = *cp++; | |
2738 | } | |
2739 | *wp = '\0'; | |
2740 | _dl_debug_printf ("%s: %s cycles (%s%%)\n", title, cycles, relative); | |
2741 | } | |
2742 | #endif | |
2743 | ||
2744 | /* Print the various times we collected. */ | |
2745 | static void | |
2746 | __attribute ((noinline)) | |
2747 | print_statistics (const hp_timing_t *rtld_total_timep) | |
2748 | { | |
2749 | #if HP_TIMING_INLINE | |
2750 | { | |
2751 | char cycles[HP_TIMING_PRINT_SIZE]; | |
2752 | HP_TIMING_PRINT (cycles, sizeof (cycles), *rtld_total_timep); | |
2753 | _dl_debug_printf ("\nruntime linker statistics:\n" | |
2754 | " total startup time in dynamic loader: %s cycles\n", | |
2755 | cycles); | |
2756 | print_statistics_item (" time needed for relocation", | |
2757 | relocate_time, *rtld_total_timep); | |
2758 | } | |
2759 | #endif | |
2760 | ||
2761 | unsigned long int num_relative_relocations = 0; | |
2762 | for (Lmid_t ns = 0; ns < GL(dl_nns); ++ns) | |
2763 | { | |
2764 | if (GL(dl_ns)[ns]._ns_loaded == NULL) | |
2765 | continue; | |
2766 | ||
2767 | struct r_scope_elem *scope = &GL(dl_ns)[ns]._ns_loaded->l_searchlist; | |
2768 | ||
2769 | for (unsigned int i = 0; i < scope->r_nlist; i++) | |
2770 | { | |
2771 | struct link_map *l = scope->r_list [i]; | |
2772 | ||
2773 | if (l->l_addr != 0 && l->l_info[VERSYMIDX (DT_RELCOUNT)]) | |
2774 | num_relative_relocations | |
2775 | += l->l_info[VERSYMIDX (DT_RELCOUNT)]->d_un.d_val; | |
2776 | #ifndef ELF_MACHINE_REL_RELATIVE | |
2777 | /* Relative relocations are always processed on these | |
2778 | architectures. */ | |
2779 | if (l->l_info[VERSYMIDX (DT_RELACOUNT)]) | |
2780 | #else | |
2781 | /* On e.g. IA-64 or Alpha, relative relocations are processed | |
2782 | only if library is loaded to different address than p_vaddr. */ | |
2783 | if (l->l_addr != 0 && l->l_info[VERSYMIDX (DT_RELACOUNT)]) | |
2784 | #endif | |
2785 | num_relative_relocations | |
2786 | += l->l_info[VERSYMIDX (DT_RELACOUNT)]->d_un.d_val; | |
2787 | } | |
2788 | } | |
2789 | ||
2790 | _dl_debug_printf (" number of relocations: %lu\n" | |
2791 | " number of relocations from cache: %lu\n" | |
2792 | " number of relative relocations: %lu\n", | |
2793 | GL(dl_num_relocations), | |
2794 | GL(dl_num_cache_relocations), | |
2795 | num_relative_relocations); | |
2796 | ||
2797 | #if HP_TIMING_INLINE | |
2798 | print_statistics_item (" time needed to load objects", | |
2799 | load_time, *rtld_total_timep); | |
2800 | #endif | |
2801 | } |