]> git.ipfire.org Git - thirdparty/bird.git/blame_incremental - filter/f-inst.c
Filter: Clean up function call instruction
[thirdparty/bird.git] / filter / f-inst.c
... / ...
CommitLineData
1/*
2 * Filters: Instructions themselves
3 *
4 * Copyright 1998 Pavel Machek <pavel@ucw.cz>
5 * Copyright 2018 Maria Matejka <mq@jmq.cz>
6 * Copyright 2018 CZ.NIC z.s.p.o.
7 *
8 * Can be freely distributed and used under the terms of the GNU GPL.
9 *
10 * The filter code goes through several phases:
11 *
12 * 1 Parsing
13 * Flex- and Bison-generated parser decodes the human-readable data into
14 * a struct f_inst tree. This is an infix tree that was interpreted by
15 * depth-first search execution in previous versions of the interpreter.
16 * All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
17 * translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
18 * compile time. If the result of the instruction is always the same,
19 * it's reduced to FI_CONSTANT directly in constructor. This phase also
20 * counts how many instructions are underlying in means of f_line_item
21 * fields to know how much we have to allocate in the next phase.
22 *
23 * 2 Linearize before interpreting
24 * The infix tree is always interpreted in the same order. Therefore we
25 * sort the instructions one after another into struct f_line. Results
26 * and arguments of these instructions are implicitly put on a value
27 * stack; e.g. the + operation just takes two arguments from the value
28 * stack and puts the result on there.
29 *
30 * 3 Interpret
31 * The given line is put on a custom execution stack. If needed (FI_CALL,
32 * FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
33 * of the stack; when that line finishes, the execution continues on the
34 * older lines on the stack where it stopped before.
35 *
36 * 4 Same
37 * On config reload, the filters have to be compared whether channel
38 * reload is needed or not. The comparison is done by comparing the
39 * struct f_line's recursively.
40 *
41 * The main purpose of this rework was to improve filter performance
42 * by making the interpreter non-recursive.
43 *
44 * The other outcome is concentration of instruction definitions to
45 * one place -- right here. You shall define your instruction only here
46 * and nowhere else.
47 *
48 * Beware. This file is interpreted by M4 macros. These macros
49 * may be more stupid than you could imagine. If something strange
50 * happens after changing this file, compare the results before and
51 * after your change (see the Makefile to find out where the results are)
52 * and see what really happened.
53 *
54 * This file is not directly a C source code -> it is a generator input
55 * for several C sources; every instruction block gets expanded into many
56 * different places.
57 *
58 * All the arguments are processed literally; if you need an argument including comma,
59 * you have to quote it by [[ ... ]]
60 *
61 * What is the syntax here?
62 * m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
63 * m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
64 * m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
65 * m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
66 * m4_dnl LINE(num, unused); this argument has to be converted to its own f_line
67 * m4_dnl SYMBOL; symbol handed from config
68 * m4_dnl STATIC_ATTR; static attribute definition
69 * m4_dnl DYNAMIC_ATTR; dynamic attribute definition
70 * m4_dnl RTC; route table config
71 * m4_dnl ACCESS_RTE; this instruction needs route
72 * m4_dnl ACCESS_EATTRS; this instruction needs extended attributes
73 *
74 * m4_dnl FID_MEMBER( custom instruction member
75 * m4_dnl C type, for storage in structs
76 * m4_dnl name, how the member is named
77 * m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
78 * m4_dnl dump format string debug -> format string for bvsnprintf
79 * m4_dnl dump format args appropriate args
80 * m4_dnl )
81 *
82 * m4_dnl RESULT(type, union-field, value); putting this on value stack
83 * m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
84 * m4_dnl RESULT_VOID; return undef
85 * m4_dnl }
86 *
87 * Also note that the { ... } blocks are not respected by M4 at all.
88 * If you get weird unmatched-brace-pair errors, check what it generated and why.
89 * What is really considered as one instruction is not the { ... } block
90 * after m4_dnl INST() but all the code between them.
91 *
92 * Other code is just copied into the interpreter part.
93 *
94 * If you are satisfied with this, you don't need to read the following
95 * detailed description of what is really done with the instruction definitions.
96 *
97 * m4_dnl Now let's look under the cover. The code between each INST()
98 * m4_dnl is copied to several places, namely these (numbered by the M4 diversions
99 * m4_dnl used in filter/decl.m4):
100 *
101 * m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
102 * m4_dnl {
103 * m4_dnl ... (common code)
104 * m4_dnl (103) [[ put it here ]]
105 * m4_dnl ...
106 * m4_dnl if (all arguments are constant)
107 * m4_dnl (108) [[ put it here ]]
108 * m4_dnl }
109 * m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
110 * m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
111 * m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
112 *
113 * m4_dnl struct f_inst {
114 * m4_dnl ... (common fields)
115 * m4_dnl union {
116 * m4_dnl struct {
117 * m4_dnl (101) [[ put it here ]]
118 * m4_dnl } i_FI_EXAMPLE;
119 * m4_dnl ...
120 * m4_dnl };
121 * m4_dnl };
122 * m4_dnl This structure is returned from constructor.
123 * m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
124 *
125 * m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
126 * m4_dnl ...
127 * m4_dnl switch (what->fi_code) {
128 * m4_dnl case FI_EXAMPLE:
129 * m4_dnl (105) [[ put it here ]]
130 * m4_dnl break;
131 * m4_dnl }
132 * m4_dnl }
133 * m4_dnl This is called when translating from struct f_inst to struct f_line_item.
134 * m4_dnl For accessing your custom instruction data, use following macros:
135 * m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
136 * m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
137 * m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
138 *
139 * m4_dnl (107) struct f_line_item {
140 * m4_dnl ... (common fields)
141 * m4_dnl union {
142 * m4_dnl struct {
143 * m4_dnl (101) [[ put it here ]]
144 * m4_dnl } i_FI_EXAMPLE;
145 * m4_dnl ...
146 * m4_dnl };
147 * m4_dnl };
148 * m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
149 * m4_dnl This structure is returned from the linearizer (105).
150 * m4_dnl For writing directly to this structure, use FID_LINE_IN.
151 *
152 * m4_dnl f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
153 * m4_dnl {
154 * m4_dnl (104) [[ put it here ]]
155 * m4_dnl }
156 * m4_dnl This code dumps the instruction on debug. Note that the argument
157 * m4_dnl is the linearized instruction; if the instruction has arguments,
158 * m4_dnl their code has already been linearized and their value is taken
159 * m4_dnl from the value stack.
160 * m4_dnl For writing directly here, use FID_DUMP_BODY.
161 *
162 * m4_dnl f_same(...)
163 * m4_dnl {
164 * m4_dnl switch (f1_->fi_code) {
165 * m4_dnl case FI_EXAMPLE:
166 * m4_dnl (106) [[ put it here ]]
167 * m4_dnl break;
168 * m4_dnl }
169 * m4_dnl }
170 * m4_dnl This code compares the two given instrucions (f1_ and f2_)
171 * m4_dnl on reconfigure. For accessing your custom instruction data,
172 * m4_dnl use macros f1 and f2.
173 * m4_dnl For writing directly here, use FID_SAME_BODY.
174 *
175 * m4_dnl f_add_lines(...)
176 * m4_dnl {
177 * m4_dnl switch (what_->fi_code) {
178 * m4_dnl case FI_EXAMPLE:
179 * m4_dnl (109) [[ put it here ]]
180 * m4_dnl break;
181 * m4_dnl }
182 * m4_dnl }
183 * m4_dnl This code adds new filter lines reachable from the instruction
184 * m4_dnl to the filter iterator line buffer. This is for instructions
185 * m4_dnl that changes conrol flow, like FI_CONDITION or FI_CALL, most
186 * m4_dnl instructions do not need to update it. It is used in generic
187 * m4_dnl filter iteration code (FILTER_ITERATE*). For accessing your
188 * m4_dnl custom instruction data, use macros f1 and f2. For writing
189 * m4_dnl directly here, use FID_ITERATE_BODY.
190 *
191 * m4_dnl interpret(...)
192 * m4_dnl {
193 * m4_dnl switch (what->fi_code) {
194 * m4_dnl case FI_EXAMPLE:
195 * m4_dnl (108) [[ put it here ]]
196 * m4_dnl break;
197 * m4_dnl }
198 * m4_dnl }
199 * m4_dnl This code executes the instruction. Every pre-defined macro
200 * m4_dnl resets the output here. For setting it explicitly,
201 * m4_dnl use FID_INTERPRET_BODY.
202 * m4_dnl This code is put on two places; one is the interpreter, the other
203 * m4_dnl is instruction constructor. If you need to distinguish between
204 * m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
205 * m4_dnl To address the difference between interpreter and constructor
206 * m4_dnl environments, there are several convenience macros defined:
207 * m4_dnl runtime() -> for spitting out runtime error like division by zero
208 * m4_dnl RESULT(...) -> declare result; may overwrite arguments
209 * m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
210 * m4_dnl falloc(size) -> allocate memory from the appropriate linpool
211 * m4_dnl fpool -> the current linpool
212 * m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
213 * m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
214 * m4_dnl ACCESS_EATTRS -> pre-cache the eattrs; use only with ACCESS_RTE
215 * m4_dnl f_rta_cow(fs) -> function to call before any change to route should be done
216 *
217 * m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
218 * m4_dnl the mentioned macros in this file to see what is happening there in wild.
219 */
220
221/* Binary operators */
222 INST(FI_ADD, 2, 1) {
223 ARG(1,T_INT);
224 ARG(2,T_INT);
225 RESULT(T_INT, i, v1.val.i + v2.val.i);
226 }
227 INST(FI_SUBTRACT, 2, 1) {
228 ARG(1,T_INT);
229 ARG(2,T_INT);
230 RESULT(T_INT, i, v1.val.i - v2.val.i);
231 }
232 INST(FI_MULTIPLY, 2, 1) {
233 ARG(1,T_INT);
234 ARG(2,T_INT);
235 RESULT(T_INT, i, v1.val.i * v2.val.i);
236 }
237 INST(FI_DIVIDE, 2, 1) {
238 ARG(1,T_INT);
239 ARG(2,T_INT);
240 if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
241 RESULT(T_INT, i, v1.val.i / v2.val.i);
242 }
243 INST(FI_AND, 1, 1) {
244 ARG(1,T_BOOL);
245 ARG_TYPE_STATIC(2,T_BOOL);
246 RESULT_TYPE(T_BOOL);
247
248 if (v1.val.i)
249 LINE(2,0);
250 else
251 RESULT_VAL(v1);
252 }
253 INST(FI_OR, 1, 1) {
254 ARG(1,T_BOOL);
255 ARG_TYPE_STATIC(2,T_BOOL);
256 RESULT_TYPE(T_BOOL);
257
258 if (!v1.val.i)
259 LINE(2,0);
260 else
261 RESULT_VAL(v1);
262 }
263
264 INST(FI_PAIR_CONSTRUCT, 2, 1) {
265 ARG(1,T_INT);
266 ARG(2,T_INT);
267 uint u1 = v1.val.i;
268 uint u2 = v2.val.i;
269 if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
270 runtime( "Can't operate with value out of bounds in pair constructor" );
271 RESULT(T_PAIR, i, (u1 << 16) | u2);
272 }
273
274 INST(FI_EC_CONSTRUCT, 2, 1) {
275 ARG_ANY(1);
276 ARG(2, T_INT);
277
278 FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
279
280 int ipv4_used;
281 u32 key, val;
282
283 if (v1.type == T_INT) {
284 ipv4_used = 0; key = v1.val.i;
285 }
286 else if (v1.type == T_QUAD) {
287 ipv4_used = 1; key = v1.val.i;
288 }
289 /* IP->Quad implicit conversion */
290 else if (val_is_ip4(&v1)) {
291 ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
292 }
293 else
294 runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
295
296 val = v2.val.i;
297
298 if (ecs == EC_GENERIC)
299 RESULT(T_EC, ec, ec_generic(key, val));
300 else if (ipv4_used)
301 if (val <= 0xFFFF)
302 RESULT(T_EC, ec, ec_ip4(ecs, key, val));
303 else
304 runtime("4-byte value %u can't be used with IP-address key in extended community", val);
305 else if (key < 0x10000)
306 RESULT(T_EC, ec, ec_as2(ecs, key, val));
307 else
308 if (val <= 0xFFFF)
309 RESULT(T_EC, ec, ec_as4(ecs, key, val));
310 else
311 runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
312 }
313
314 INST(FI_LC_CONSTRUCT, 3, 1) {
315 ARG(1, T_INT);
316 ARG(2, T_INT);
317 ARG(3, T_INT);
318 RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
319 }
320
321 INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
322 VARARG;
323
324 struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
325 pm->len = whati->varcount;
326
327 for (uint i=0; i<whati->varcount; i++) {
328 switch (vv(i).type) {
329 case T_PATH_MASK_ITEM:
330 if (vv(i).val.pmi.kind == PM_LOOP)
331 {
332 if (i == 0)
333 runtime("Path mask iterator '+' cannot be first");
334
335 /* We want PM_LOOP as prefix operator */
336 pm->item[i] = pm->item[i - 1];
337 pm->item[i - 1] = vv(i).val.pmi;
338 break;
339 }
340
341 pm->item[i] = vv(i).val.pmi;
342 break;
343
344 case T_INT:
345 pm->item[i] = (struct f_path_mask_item) {
346 .asn = vv(i).val.i,
347 .kind = PM_ASN,
348 };
349 break;
350
351 case T_SET:
352 if (vv(i).val.t->from.type != T_INT)
353 runtime("Only integer sets allowed in path mask");
354
355 pm->item[i] = (struct f_path_mask_item) {
356 .set = vv(i).val.t,
357 .kind = PM_ASN_SET,
358 };
359 break;
360
361 default:
362 runtime( "Error resolving path mask template: value not an integer" );
363 }
364 }
365
366 RESULT(T_PATH_MASK, path_mask, pm);
367 }
368
369/* Relational operators */
370
371 INST(FI_NEQ, 2, 1) {
372 ARG_ANY(1);
373 ARG_ANY(2);
374 RESULT(T_BOOL, i, !val_same(&v1, &v2));
375 }
376
377 INST(FI_EQ, 2, 1) {
378 ARG_ANY(1);
379 ARG_ANY(2);
380 RESULT(T_BOOL, i, val_same(&v1, &v2));
381 }
382
383 INST(FI_LT, 2, 1) {
384 ARG_ANY(1);
385 ARG_ANY(2);
386 ARG_SAME_TYPE(1, 2);
387
388 int i = val_compare(&v1, &v2);
389 if (i == F_CMP_ERROR)
390 runtime( "Can't compare values of incompatible types" );
391 RESULT(T_BOOL, i, (i == -1));
392 }
393
394 INST(FI_LTE, 2, 1) {
395 ARG_ANY(1);
396 ARG_ANY(2);
397 ARG_SAME_TYPE(1, 2);
398
399 int i = val_compare(&v1, &v2);
400 if (i == F_CMP_ERROR)
401 runtime( "Can't compare values of incompatible types" );
402 RESULT(T_BOOL, i, (i != 1));
403 }
404
405 INST(FI_NOT, 1, 1) {
406 ARG(1,T_BOOL);
407 RESULT(T_BOOL, i, !v1.val.i);
408 }
409
410 INST(FI_MATCH, 2, 1) {
411 ARG_ANY(1);
412 ARG_ANY(2);
413 int i = val_in_range(&v1, &v2);
414 if (i == F_CMP_ERROR)
415 runtime( "~ applied on unknown type pair" );
416 RESULT(T_BOOL, i, !!i);
417 }
418
419 INST(FI_NOT_MATCH, 2, 1) {
420 ARG_ANY(1);
421 ARG_ANY(2);
422 int i = val_in_range(&v1, &v2);
423 if (i == F_CMP_ERROR)
424 runtime( "!~ applied on unknown type pair" );
425 RESULT(T_BOOL, i, !i);
426 }
427
428 INST(FI_DEFINED, 1, 1) {
429 ARG_ANY(1);
430 RESULT(T_BOOL, i, (v1.type != T_VOID) && !undef_value(v1));
431 }
432
433 INST(FI_TYPE, 1, 1) {
434 ARG_ANY(1); /* There may be more types supporting this operation */
435 switch (v1.type)
436 {
437 case T_NET:
438 RESULT(T_ENUM_NETTYPE, i, v1.val.net->type);
439 break;
440 default:
441 runtime( "Can't determine type of this item" );
442 }
443 }
444
445 INST(FI_IS_V4, 1, 1) {
446 ARG(1, T_IP);
447 RESULT(T_BOOL, i, ipa_is_ip4(v1.val.ip));
448 }
449
450 /* Set to indirect value prepared in v1 */
451 INST(FI_VAR_SET, 1, 0) {
452 NEVER_CONSTANT;
453 ARG_ANY(1);
454 SYMBOL;
455 ARG_TYPE(1, sym->class & 0xff);
456
457 fstk->vstk[curline.vbase + sym->offset] = v1;
458 }
459
460 INST(FI_VAR_GET, 0, 1) {
461 SYMBOL;
462 NEVER_CONSTANT;
463 RESULT_TYPE(sym->class & 0xff);
464 RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
465 }
466
467 INST(FI_CONSTANT, 0, 1) {
468 FID_MEMBER(
469 struct f_val,
470 val,
471 [[ !val_same(&(f1->val), &(f2->val)) ]],
472 "value %s",
473 val_dump(&(item->val))
474 );
475
476 RESULT_TYPE(val.type);
477 RESULT_VAL(val);
478 }
479
480 INST(FI_CONDITION, 1, 0) {
481 ARG(1, T_BOOL);
482 if (v1.val.i)
483 LINE(2,0);
484 else
485 LINE(3,1);
486 }
487
488 INST(FI_PRINT, 0, 0) {
489 NEVER_CONSTANT;
490 VARARG;
491
492 if (whati->varcount && !(fs->flags & FF_SILENT))
493 for (uint i=0; i<whati->varcount; i++)
494 val_format(&(vv(i)), &fs->buf);
495 }
496
497 INST(FI_FLUSH, 0, 0) {
498 NEVER_CONSTANT;
499 if (!(fs->flags & FF_SILENT))
500 /* After log_commit, the buffer is reset */
501 log_commit(*L_INFO, &fs->buf);
502 }
503
504 INST(FI_DIE, 0, 0) {
505 NEVER_CONSTANT;
506 FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
507
508 switch (whati->fret) {
509 case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
510 case F_ERROR:
511 case F_REJECT: /* Maybe print complete route along with reason to reject route? */
512 return fret; /* We have to return now, no more processing. */
513 default:
514 bug( "unknown return type: Can't happen");
515 }
516 }
517
518 INST(FI_RTA_GET, 0, 1) {
519 {
520 STATIC_ATTR;
521 ACCESS_RTE;
522 struct rta *rta = (*fs->rte)->attrs;
523
524 switch (sa.sa_code)
525 {
526 case SA_FROM: RESULT(sa.f_type, ip, rta->from); break;
527 case SA_GW: RESULT(sa.f_type, ip, rta->nh.gw); break;
528 case SA_NET: RESULT(sa.f_type, net, (*fs->rte)->net->n.addr); break;
529 case SA_PROTO: RESULT(sa.f_type, s, rta->src->proto->name); break;
530 case SA_SOURCE: RESULT(sa.f_type, i, rta->source); break;
531 case SA_SCOPE: RESULT(sa.f_type, i, rta->scope); break;
532 case SA_DEST: RESULT(sa.f_type, i, rta->dest); break;
533 case SA_IFNAME: RESULT(sa.f_type, s, rta->nh.iface ? rta->nh.iface->name : ""); break;
534 case SA_IFINDEX: RESULT(sa.f_type, i, rta->nh.iface ? rta->nh.iface->index : 0); break;
535 case SA_WEIGHT: RESULT(sa.f_type, i, rta->nh.weight + 1); break;
536 case SA_GW_MPLS: RESULT(sa.f_type, i, rta->nh.labels ? rta->nh.label[0] : MPLS_NULL); break;
537
538 default:
539 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
540 }
541 }
542 }
543
544 INST(FI_RTA_SET, 1, 0) {
545 ACCESS_RTE;
546 ARG_ANY(1);
547 STATIC_ATTR;
548 ARG_TYPE(1, sa.f_type);
549
550 f_rta_cow(fs);
551 {
552 struct rta *rta = (*fs->rte)->attrs;
553
554 switch (sa.sa_code)
555 {
556 case SA_FROM:
557 rta->from = v1.val.ip;
558 break;
559
560 case SA_GW:
561 {
562 ip_addr ip = v1.val.ip;
563 struct iface *ifa = ipa_is_link_local(ip) ? rta->nh.iface : NULL;
564 neighbor *n = neigh_find(rta->src->proto, ip, ifa, 0);
565 if (!n || (n->scope == SCOPE_HOST))
566 runtime( "Invalid gw address" );
567
568 rta->dest = RTD_UNICAST;
569 rta->nh.gw = ip;
570 rta->nh.iface = n->iface;
571 rta->nh.next = NULL;
572 rta->hostentry = NULL;
573 rta->nh.labels = 0;
574 }
575 break;
576
577 case SA_SCOPE:
578 rta->scope = v1.val.i;
579 break;
580
581 case SA_DEST:
582 {
583 int i = v1.val.i;
584 if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
585 runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
586
587 rta->dest = i;
588 rta->nh.gw = IPA_NONE;
589 rta->nh.iface = NULL;
590 rta->nh.next = NULL;
591 rta->hostentry = NULL;
592 rta->nh.labels = 0;
593 }
594 break;
595
596 case SA_IFNAME:
597 {
598 struct iface *ifa = if_find_by_name(v1.val.s);
599 if (!ifa)
600 runtime( "Invalid iface name" );
601
602 rta->dest = RTD_UNICAST;
603 rta->nh.gw = IPA_NONE;
604 rta->nh.iface = ifa;
605 rta->nh.next = NULL;
606 rta->hostentry = NULL;
607 rta->nh.labels = 0;
608 }
609 break;
610
611 case SA_GW_MPLS:
612 {
613 if (v1.val.i >= 0x100000)
614 runtime( "Invalid MPLS label" );
615
616 if (v1.val.i != MPLS_NULL)
617 {
618 rta->nh.label[0] = v1.val.i;
619 rta->nh.labels = 1;
620 }
621 else
622 rta->nh.labels = 0;
623 }
624 break;
625
626 case SA_WEIGHT:
627 {
628 int i = v1.val.i;
629 if (i < 1 || i > 256)
630 runtime( "Setting weight value out of bounds" );
631 if (rta->dest != RTD_UNICAST)
632 runtime( "Setting weight needs regular nexthop " );
633
634 /* Set weight on all next hops */
635 for (struct nexthop *nh = &rta->nh; nh; nh = nh->next)
636 nh->weight = i - 1;
637 }
638 break;
639
640 default:
641 bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
642 }
643 }
644 }
645
646 INST(FI_EA_GET, 0, 1) { /* Access to extended attributes */
647 DYNAMIC_ATTR;
648 ACCESS_RTE;
649 ACCESS_EATTRS;
650 RESULT_TYPE(da.f_type);
651 {
652 eattr *e = ea_find(*fs->eattrs, da.ea_code);
653
654 if (!e) {
655 /* A special case: undefined as_path looks like empty as_path */
656 if (da.type == EAF_TYPE_AS_PATH) {
657 RESULT_(T_PATH, ad, &null_adata);
658 break;
659 }
660
661 /* The same special case for int_set */
662 if (da.type == EAF_TYPE_INT_SET) {
663 RESULT_(T_CLIST, ad, &null_adata);
664 break;
665 }
666
667 /* The same special case for ec_set */
668 if (da.type == EAF_TYPE_EC_SET) {
669 RESULT_(T_ECLIST, ad, &null_adata);
670 break;
671 }
672
673 /* The same special case for lc_set */
674 if (da.type == EAF_TYPE_LC_SET) {
675 RESULT_(T_LCLIST, ad, &null_adata);
676 break;
677 }
678
679 /* Undefined value */
680 RESULT_VOID;
681 break;
682 }
683
684 switch (e->type & EAF_TYPE_MASK) {
685 case EAF_TYPE_INT:
686 RESULT_(da.f_type, i, e->u.data);
687 break;
688 case EAF_TYPE_ROUTER_ID:
689 RESULT_(T_QUAD, i, e->u.data);
690 break;
691 case EAF_TYPE_OPAQUE:
692 RESULT_(T_ENUM_EMPTY, i, 0);
693 break;
694 case EAF_TYPE_IP_ADDRESS:
695 RESULT_(T_IP, ip, *((ip_addr *) e->u.ptr->data));
696 break;
697 case EAF_TYPE_AS_PATH:
698 RESULT_(T_PATH, ad, e->u.ptr);
699 break;
700 case EAF_TYPE_BITFIELD:
701 RESULT_(T_BOOL, i, !!(e->u.data & (1u << da.bit)));
702 break;
703 case EAF_TYPE_INT_SET:
704 RESULT_(T_CLIST, ad, e->u.ptr);
705 break;
706 case EAF_TYPE_EC_SET:
707 RESULT_(T_ECLIST, ad, e->u.ptr);
708 break;
709 case EAF_TYPE_LC_SET:
710 RESULT_(T_LCLIST, ad, e->u.ptr);
711 break;
712 case EAF_TYPE_UNDEF:
713 RESULT_VOID;
714 break;
715 default:
716 bug("Unknown dynamic attribute type");
717 }
718 }
719 }
720
721 INST(FI_EA_SET, 1, 0) {
722 ACCESS_RTE;
723 ACCESS_EATTRS;
724 ARG_ANY(1);
725 DYNAMIC_ATTR;
726 ARG_TYPE(1, da.f_type);
727 {
728 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
729
730 l->next = NULL;
731 l->flags = EALF_SORTED;
732 l->count = 1;
733 l->attrs[0].id = da.ea_code;
734 l->attrs[0].flags = 0;
735 l->attrs[0].type = da.type | EAF_ORIGINATED | EAF_FRESH;
736
737 switch (da.type) {
738 case EAF_TYPE_INT:
739 case EAF_TYPE_ROUTER_ID:
740 l->attrs[0].u.data = v1.val.i;
741 break;
742
743 case EAF_TYPE_OPAQUE:
744 runtime( "Setting opaque attribute is not allowed" );
745 break;
746
747 case EAF_TYPE_IP_ADDRESS:;
748 int len = sizeof(ip_addr);
749 struct adata *ad = lp_alloc(fs->pool, sizeof(struct adata) + len);
750 ad->length = len;
751 (* (ip_addr *) ad->data) = v1.val.ip;
752 l->attrs[0].u.ptr = ad;
753 break;
754
755 case EAF_TYPE_AS_PATH:
756 case EAF_TYPE_INT_SET:
757 case EAF_TYPE_EC_SET:
758 case EAF_TYPE_LC_SET:
759 l->attrs[0].u.ptr = v1.val.ad;
760 break;
761
762 case EAF_TYPE_BITFIELD:
763 {
764 /* First, we have to find the old value */
765 eattr *e = ea_find(*fs->eattrs, da.ea_code);
766 u32 data = e ? e->u.data : 0;
767
768 if (v1.val.i)
769 l->attrs[0].u.data = data | (1u << da.bit);
770 else
771 l->attrs[0].u.data = data & ~(1u << da.bit);
772 }
773 break;
774
775 default:
776 bug("Unknown dynamic attribute type");
777 }
778
779 f_rta_cow(fs);
780 l->next = *fs->eattrs;
781 *fs->eattrs = l;
782 }
783 }
784
785 INST(FI_EA_UNSET, 0, 0) {
786 DYNAMIC_ATTR;
787 ACCESS_RTE;
788 ACCESS_EATTRS;
789
790 {
791 struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
792
793 l->next = NULL;
794 l->flags = EALF_SORTED;
795 l->count = 1;
796 l->attrs[0].id = da.ea_code;
797 l->attrs[0].flags = 0;
798 l->attrs[0].type = EAF_TYPE_UNDEF | EAF_ORIGINATED | EAF_FRESH;
799 l->attrs[0].u.data = 0;
800
801 f_rta_cow(fs);
802 l->next = *fs->eattrs;
803 *fs->eattrs = l;
804 }
805 }
806
807 INST(FI_PREF_GET, 0, 1) {
808 ACCESS_RTE;
809 RESULT(T_INT, i, (*fs->rte)->pref);
810 }
811
812 INST(FI_PREF_SET, 1, 0) {
813 ACCESS_RTE;
814 ARG(1,T_INT);
815 if (v1.val.i > 0xFFFF)
816 runtime( "Setting preference value out of bounds" );
817 f_rte_cow(fs);
818 (*fs->rte)->pref = v1.val.i;
819 }
820
821 INST(FI_LENGTH, 1, 1) { /* Get length of */
822 ARG_ANY(1);
823 switch(v1.type) {
824 case T_NET: RESULT(T_INT, i, net_pxlen(v1.val.net)); break;
825 case T_PATH: RESULT(T_INT, i, as_path_getlen(v1.val.ad)); break;
826 case T_CLIST: RESULT(T_INT, i, int_set_get_size(v1.val.ad)); break;
827 case T_ECLIST: RESULT(T_INT, i, ec_set_get_size(v1.val.ad)); break;
828 case T_LCLIST: RESULT(T_INT, i, lc_set_get_size(v1.val.ad)); break;
829 default: runtime( "Prefix, path, clist or eclist expected" );
830 }
831 }
832
833 INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
834 ARG(1, T_NET);
835
836 net_addr_union *net = (void *) v1.val.net;
837 net_addr *src = falloc(sizeof(net_addr_ip6));
838 const byte *part;
839
840 switch(v1.val.net->type) {
841 case NET_FLOW4:
842 part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
843 if (part)
844 net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
845 else
846 net_fill_ip4(src, IP4_NONE, 0);
847 break;
848
849 case NET_FLOW6:
850 part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
851 if (part)
852 net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
853 else
854 net_fill_ip6(src, IP6_NONE, 0);
855 break;
856
857 case NET_IP6_SADR:
858 net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
859 break;
860
861 default:
862 runtime( "Flow or SADR expected" );
863 }
864
865 RESULT(T_NET, net, src);
866 }
867
868 INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
869 ARG(1, T_NET);
870
871 net_addr_union *net = (void *) v1.val.net;
872 net_addr *dst = falloc(sizeof(net_addr_ip6));
873 const byte *part;
874
875 switch(v1.val.net->type) {
876 case NET_FLOW4:
877 part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
878 if (part)
879 net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
880 else
881 net_fill_ip4(dst, IP4_NONE, 0);
882 break;
883
884 case NET_FLOW6:
885 part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
886 if (part)
887 net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
888 else
889 net_fill_ip6(dst, IP6_NONE, 0);
890 break;
891
892 case NET_IP6_SADR:
893 net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
894 break;
895
896 default:
897 runtime( "Flow or SADR expected" );
898 }
899
900 RESULT(T_NET, net, dst);
901 }
902
903 INST(FI_ROA_MAXLEN, 1, 1) { /* Get ROA max prefix length */
904 ARG(1, T_NET);
905 if (!net_is_roa(v1.val.net))
906 runtime( "ROA expected" );
907
908 RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
909 ((net_addr_roa4 *) v1.val.net)->max_pxlen :
910 ((net_addr_roa6 *) v1.val.net)->max_pxlen);
911 }
912
913 INST(FI_ASN, 1, 1) { /* Get ROA ASN or community ASN part */
914 ARG_ANY(1);
915 RESULT_TYPE(T_INT);
916 switch(v1.type)
917 {
918 case T_NET:
919 if (!net_is_roa(v1.val.net))
920 runtime( "ROA expected" );
921
922 RESULT_(T_INT, i, (v1.val.net->type == NET_ROA4) ?
923 ((net_addr_roa4 *) v1.val.net)->asn :
924 ((net_addr_roa6 *) v1.val.net)->asn);
925 break;
926
927 case T_PAIR:
928 RESULT_(T_INT, i, v1.val.i >> 16);
929 break;
930
931 case T_LC:
932 RESULT_(T_INT, i, v1.val.lc.asn);
933 break;
934
935 default:
936 runtime( "Net, pair or lc expected" );
937 }
938 }
939
940 INST(FI_IP, 1, 1) { /* Convert prefix to ... */
941 ARG(1, T_NET);
942 RESULT(T_IP, ip, net_prefix(v1.val.net));
943 }
944
945 INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
946 ARG(1, T_NET);
947 if (!net_is_vpn(v1.val.net))
948 runtime( "VPN address expected" );
949 RESULT(T_RD, ec, net_rd(v1.val.net));
950 }
951
952 INST(FI_AS_PATH_FIRST, 1, 1) { /* Get first ASN from AS PATH */
953 ARG(1, T_PATH);
954 u32 as = 0;
955 as_path_get_first(v1.val.ad, &as);
956 RESULT(T_INT, i, as);
957 }
958
959 INST(FI_AS_PATH_LAST, 1, 1) { /* Get last ASN from AS PATH */
960 ARG(1, T_PATH);
961 u32 as = 0;
962 as_path_get_last(v1.val.ad, &as);
963 RESULT(T_INT, i, as);
964 }
965
966 INST(FI_AS_PATH_LAST_NAG, 1, 1) { /* Get last ASN from non-aggregated part of AS PATH */
967 ARG(1, T_PATH);
968 RESULT(T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
969 }
970
971 INST(FI_PAIR_DATA, 1, 1) { /* Get data part from the standard community */
972 ARG(1, T_PAIR);
973 RESULT(T_INT, i, v1.val.i & 0xFFFF);
974 }
975
976 INST(FI_LC_DATA1, 1, 1) { /* Get data1 part from the large community */
977 ARG(1, T_LC);
978 RESULT(T_INT, i, v1.val.lc.ldp1);
979 }
980
981 INST(FI_LC_DATA2, 1, 1) { /* Get data2 part from the large community */
982 ARG(1, T_LC);
983 RESULT(T_INT, i, v1.val.lc.ldp2);
984 }
985
986 INST(FI_MIN, 1, 1) { /* Get minimum element from set */
987 ARG_ANY(1);
988 RESULT_TYPE(f_type_element_type(v1.type));
989 switch(v1.type)
990 {
991 case T_CLIST:
992 {
993 u32 val = 0;
994 int_set_min(v1.val.ad, &val);
995 RESULT_(T_PAIR, i, val);
996 }
997 break;
998
999 case T_ECLIST:
1000 {
1001 u64 val = 0;
1002 ec_set_min(v1.val.ad, &val);
1003 RESULT_(T_EC, ec, val);
1004 }
1005 break;
1006
1007 case T_LCLIST:
1008 {
1009 lcomm val = { 0, 0, 0 };
1010 lc_set_min(v1.val.ad, &val);
1011 RESULT_(T_LC, lc, val);
1012 }
1013 break;
1014
1015 default:
1016 runtime( "Clist or lclist expected" );
1017 }
1018 }
1019
1020 INST(FI_MAX, 1, 1) { /* Get maximum element from set */
1021 ARG_ANY(1);
1022 RESULT_TYPE(f_type_element_type(v1.type));
1023 switch(v1.type)
1024 {
1025 case T_CLIST:
1026 {
1027 u32 val = 0;
1028 int_set_max(v1.val.ad, &val);
1029 RESULT_(T_PAIR, i, val);
1030 }
1031 break;
1032
1033 case T_ECLIST:
1034 {
1035 u64 val = 0;
1036 ec_set_max(v1.val.ad, &val);
1037 RESULT_(T_EC, ec, val);
1038 }
1039 break;
1040
1041 case T_LCLIST:
1042 {
1043 lcomm val = { 0, 0, 0 };
1044 lc_set_max(v1.val.ad, &val);
1045 RESULT_(T_LC, lc, val);
1046 }
1047 break;
1048
1049 default:
1050 runtime( "Clist or lclist expected" );
1051 }
1052 }
1053
1054 INST(FI_RETURN, 1, 1) {
1055 NEVER_CONSTANT;
1056 /* Acquire the return value */
1057 ARG_ANY(1);
1058 uint retpos = fstk->vcnt;
1059
1060 /* Drop every sub-block including ourselves */
1061 do fstk->ecnt--;
1062 while ((fstk->ecnt > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN));
1063
1064 /* Now we are at the caller frame; if no such, try to convert to accept/reject. */
1065 if (!fstk->ecnt)
1066 {
1067 if (fstk->vstk[retpos].type == T_BOOL)
1068 return (fstk->vstk[retpos].val.i) ? F_ACCEPT : F_REJECT;
1069 else
1070 runtime("Can't return non-bool from non-function");
1071 }
1072
1073 /* Set the value stack position, overwriting the former implicit void */
1074 fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
1075
1076 /* Copy the return value */
1077 RESULT_VAL(fstk->vstk[retpos]);
1078 }
1079
1080 INST(FI_CALL, 0, 1) {
1081 NEVER_CONSTANT;
1082 VARARG;
1083 SYMBOL;
1084
1085 FID_NEW_BODY()
1086 ASSERT(sym->class == SYM_FUNCTION);
1087
1088 if (whati->varcount != sym->function->args)
1089 cf_error("Function '%s' expects %u arguments, got %u arguments",
1090 sym->name, sym->function->args, whati->varcount);
1091
1092 /* Add implicit void slot for the return value */
1093 struct f_inst *tmp = f_new_inst(FI_CONSTANT, (struct f_val) { .type = T_VOID });
1094 tmp->next = whati->fvar;
1095 whati->fvar = tmp;
1096 what->size += tmp->size;
1097
1098 FID_SAME_BODY()
1099 if (!(f1->sym->flags & SYM_FLAG_SAME))
1100 return 0;
1101
1102 FID_ITERATE_BODY()
1103 BUFFER_PUSH(fit->lines) = whati->sym->function;
1104
1105 FID_INTERPRET_BODY()
1106
1107 /* Push the body on stack */
1108 LINEX(sym->function);
1109 curline.vbase = curline.ventry;
1110 curline.emask |= FE_RETURN;
1111
1112 /* Arguments on stack */
1113 fstk->vcnt += sym->function->args;
1114
1115 /* Storage for local variables */
1116 memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
1117 fstk->vcnt += sym->function->vars;
1118 }
1119
1120 INST(FI_DROP_RESULT, 1, 0) {
1121 NEVER_CONSTANT;
1122 ARG_ANY(1);
1123 }
1124
1125 INST(FI_SWITCH, 1, 0) {
1126 ARG_ANY(1);
1127
1128 FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
1129
1130 FID_ITERATE_BODY()
1131 tree_walk(whati->tree, f_add_tree_lines, fit);
1132
1133 FID_INTERPRET_BODY()
1134 const struct f_tree *t = find_tree(tree, &v1);
1135 if (!t) {
1136 v1.type = T_VOID;
1137 t = find_tree(tree, &v1);
1138 if (!t) {
1139 debug( "No else statement?\n");
1140 FID_HIC(,break,return NULL);
1141 }
1142 }
1143 /* It is actually possible to have t->data NULL */
1144
1145 LINEX(t->data);
1146 }
1147
1148 INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
1149 ARG(1, T_IP);
1150 ARG(2, T_INT);
1151 RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
1152 ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
1153 ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
1154 }
1155
1156 INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
1157 ARG(1, T_PATH);
1158 ARG(2, T_INT);
1159 RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
1160 }
1161
1162 INST(FI_CLIST_ADD, 2, 1) { /* (Extended) Community list add */
1163 ARG_ANY(1);
1164 ARG_ANY(2);
1165 RESULT_TYPE(f1->type);
1166
1167 if (v1.type == T_PATH)
1168 runtime("Can't add to path");
1169
1170 else if (v1.type == T_CLIST)
1171 {
1172 /* Community (or cluster) list */
1173 struct f_val dummy;
1174
1175 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
1176 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
1177 /* IP->Quad implicit conversion */
1178 else if (val_is_ip4(&v2))
1179 RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1180 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
1181 runtime("Can't add set");
1182 else if (v2.type == T_CLIST)
1183 RESULT_(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1184 else
1185 runtime("Can't add non-pair");
1186 }
1187
1188 else if (v1.type == T_ECLIST)
1189 {
1190 /* v2.val is either EC or EC-set */
1191 if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
1192 runtime("Can't add set");
1193 else if (v2.type == T_ECLIST)
1194 RESULT_(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1195 else if (v2.type != T_EC)
1196 runtime("Can't add non-ec");
1197 else
1198 RESULT_(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
1199 }
1200
1201 else if (v1.type == T_LCLIST)
1202 {
1203 /* v2.val is either LC or LC-set */
1204 if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
1205 runtime("Can't add set");
1206 else if (v2.type == T_LCLIST)
1207 RESULT_(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
1208 else if (v2.type != T_LC)
1209 runtime("Can't add non-lc");
1210 else
1211 RESULT_(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
1212
1213 }
1214
1215 else
1216 runtime("Can't add to non-[e|l]clist");
1217 }
1218
1219 INST(FI_CLIST_DEL, 2, 1) { /* (Extended) Community list add or delete */
1220 ARG_ANY(1);
1221 ARG_ANY(2);
1222 RESULT_TYPE(f1->type);
1223
1224 if (v1.type == T_PATH)
1225 {
1226 const struct f_tree *set = NULL;
1227 u32 key = 0;
1228
1229 if (v2.type == T_INT)
1230 key = v2.val.i;
1231 else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1232 set = v2.val.t;
1233 else
1234 runtime("Can't delete non-integer (set)");
1235
1236 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, set, key, 0) ]]);
1237 }
1238
1239 else if (v1.type == T_CLIST)
1240 {
1241 /* Community (or cluster) list */
1242 struct f_val dummy;
1243
1244 if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
1245 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
1246 /* IP->Quad implicit conversion */
1247 else if (val_is_ip4(&v2))
1248 RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
1249 else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1250 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1251 else
1252 runtime("Can't delete non-pair");
1253 }
1254
1255 else if (v1.type == T_ECLIST)
1256 {
1257 /* v2.val is either EC or EC-set */
1258 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1259 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1260 else if (v2.type != T_EC)
1261 runtime("Can't delete non-ec");
1262 else
1263 RESULT_(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
1264 }
1265
1266 else if (v1.type == T_LCLIST)
1267 {
1268 /* v2.val is either LC or LC-set */
1269 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1270 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
1271 else if (v2.type != T_LC)
1272 runtime("Can't delete non-lc");
1273 else
1274 RESULT_(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
1275 }
1276
1277 else
1278 runtime("Can't delete in non-[e|l]clist");
1279 }
1280
1281 INST(FI_CLIST_FILTER, 2, 1) { /* (Extended) Community list add or delete */
1282 ARG_ANY(1);
1283 ARG_ANY(2);
1284 RESULT_TYPE(f1->type);
1285
1286 if (v1.type == T_PATH)
1287 {
1288 u32 key = 0;
1289
1290 if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
1291 RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, v2.val.t, key, 1) ]]);
1292 else
1293 runtime("Can't filter integer");
1294 }
1295
1296 else if (v1.type == T_CLIST)
1297 {
1298 /* Community (or cluster) list */
1299 struct f_val dummy;
1300
1301 if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
1302 RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1303 else
1304 runtime("Can't filter pair");
1305 }
1306
1307 else if (v1.type == T_ECLIST)
1308 {
1309 /* v2.val is either EC or EC-set */
1310 if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
1311 RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1312 else
1313 runtime("Can't filter ec");
1314 }
1315
1316 else if (v1.type == T_LCLIST)
1317 {
1318 /* v2.val is either LC or LC-set */
1319 if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
1320 RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
1321 else
1322 runtime("Can't filter lc");
1323 }
1324
1325 else
1326 runtime("Can't filter non-[e|l]clist");
1327 }
1328
1329 INST(FI_ROA_CHECK_IMPLICIT, 0, 1) { /* ROA Check */
1330 NEVER_CONSTANT;
1331 RTC(1);
1332 struct rtable *table = rtc->table;
1333 ACCESS_RTE;
1334 ACCESS_EATTRS;
1335 const net_addr *net = (*fs->rte)->net->n.addr;
1336
1337 /* We ignore temporary attributes, probably not a problem here */
1338 /* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
1339 eattr *e = ea_find(*fs->eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
1340
1341 if (!e || ((e->type & EAF_TYPE_MASK) != EAF_TYPE_AS_PATH))
1342 runtime("Missing AS_PATH attribute");
1343
1344 u32 as = 0;
1345 as_path_get_last(e->u.ptr, &as);
1346
1347 if (!table)
1348 runtime("Missing ROA table");
1349
1350 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1351 runtime("Table type must be either ROA4 or ROA6");
1352
1353 if (table->addr_type != (net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1354 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1355 else
1356 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, net, as) ]]);
1357 }
1358
1359 INST(FI_ROA_CHECK_EXPLICIT, 2, 1) { /* ROA Check */
1360 NEVER_CONSTANT;
1361 ARG(1, T_NET);
1362 ARG(2, T_INT);
1363 RTC(3);
1364 struct rtable *table = rtc->table;
1365
1366 u32 as = v2.val.i;
1367
1368 if (!table)
1369 runtime("Missing ROA table");
1370
1371 if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
1372 runtime("Table type must be either ROA4 or ROA6");
1373
1374 if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
1375 RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
1376 else
1377 RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
1378
1379 }
1380
1381 INST(FI_FORMAT, 1, 0) { /* Format */
1382 ARG_ANY(1);
1383 RESULT(T_STRING, s, val_format_str(fpool, &v1));
1384 }
1385
1386 INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
1387 NEVER_CONSTANT;
1388 ARG(1, T_BOOL);
1389
1390 FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
1391
1392 ASSERT(s);
1393
1394 if (!bt_assert_hook)
1395 runtime("No bt_assert hook registered, can't assert");
1396
1397 bt_assert_hook(v1.val.i, what);
1398 }