]>
Commit | Line | Data |
---|---|---|
1 | /* Functions to support general ended bitmaps. | |
2 | Copyright (C) 1997-2025 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GCC. | |
5 | ||
6 | GCC is free software; you can redistribute it and/or modify it under | |
7 | the terms of the GNU General Public License as published by the Free | |
8 | Software Foundation; either version 3, or (at your option) any later | |
9 | version. | |
10 | ||
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 | for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GCC; see the file COPYING3. If not see | |
18 | <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #ifndef GCC_BITMAP_H | |
21 | #define GCC_BITMAP_H | |
22 | ||
23 | /* Implementation of sparse integer sets as a linked list or tree. | |
24 | ||
25 | This sparse set representation is suitable for sparse sets with an | |
26 | unknown (a priori) universe. | |
27 | ||
28 | Sets are represented as double-linked lists of container nodes of | |
29 | type "struct bitmap_element" or as a binary trees of the same | |
30 | container nodes. Each container node consists of an index for the | |
31 | first member that could be held in the container, a small array of | |
32 | integers that represent the members in the container, and pointers | |
33 | to the next and previous element in the linked list, or left and | |
34 | right children in the tree. In linked-list form, the container | |
35 | nodes in the list are sorted in ascending order, i.e. the head of | |
36 | the list holds the element with the smallest member of the set. | |
37 | In tree form, nodes to the left have a smaller container index. | |
38 | ||
39 | For a given member I in the set: | |
40 | - the element for I will have index is I / (bits per element) | |
41 | - the position for I within element is I % (bits per element) | |
42 | ||
43 | This representation is very space-efficient for large sparse sets, and | |
44 | the size of the set can be changed dynamically without much overhead. | |
45 | An important parameter is the number of bits per element. In this | |
46 | implementation, there are 128 bits per element. This results in a | |
47 | high storage overhead *per element*, but a small overall overhead if | |
48 | the set is very sparse. | |
49 | ||
50 | The storage requirements for linked-list sparse sets are O(E), with E->N | |
51 | in the worst case (a sparse set with large distances between the values | |
52 | of the set members). | |
53 | ||
54 | This representation also works well for data flow problems where the size | |
55 | of the set may grow dynamically, but care must be taken that the member_p, | |
56 | add_member, and remove_member operations occur with a suitable access | |
57 | pattern. | |
58 | ||
59 | The linked-list set representation works well for problems involving very | |
60 | sparse sets. The canonical example in GCC is, of course, the "set of | |
61 | sets" for some CFG-based data flow problems (liveness analysis, dominance | |
62 | frontiers, etc.). | |
63 | ||
64 | For random-access sparse sets of unknown universe, the binary tree | |
65 | representation is likely to be a more suitable choice. Theoretical | |
66 | access times for the binary tree representation are better than those | |
67 | for the linked-list, but in practice this is only true for truely | |
68 | random access. | |
69 | ||
70 | Often the most suitable representation during construction of the set | |
71 | is not the best choice for the usage of the set. For such cases, the | |
72 | "view" of the set can be changed from one representation to the other. | |
73 | This is an O(E) operation: | |
74 | ||
75 | * from list to tree view : bitmap_tree_view | |
76 | * from tree to list view : bitmap_list_view | |
77 | ||
78 | Traversing linked lists or trees can be cache-unfriendly. Performance | |
79 | can be improved by keeping container nodes in the set grouped together | |
80 | in memory, using a dedicated obstack for a set (or group of related | |
81 | sets). Elements allocated on obstacks are released to a free-list and | |
82 | taken off the free list. If multiple sets are allocated on the same | |
83 | obstack, elements freed from one set may be re-used for one of the other | |
84 | sets. This usually helps avoid cache misses. | |
85 | ||
86 | A single free-list is used for all sets allocated in GGC space. This is | |
87 | bad for persistent sets, so persistent sets should be allocated on an | |
88 | obstack whenever possible. | |
89 | ||
90 | For random-access sets with a known, relatively small universe size, the | |
91 | SparseSet or simple bitmap representations may be more efficient than a | |
92 | linked-list set. | |
93 | ||
94 | ||
95 | LINKED LIST FORM | |
96 | ================ | |
97 | ||
98 | In linked-list form, in-order iterations of the set can be executed | |
99 | efficiently. The downside is that many random-access operations are | |
100 | relatively slow, because the linked list has to be traversed to test | |
101 | membership (i.e. member_p/ add_member/remove_member). | |
102 | ||
103 | To improve the performance of this set representation, the last | |
104 | accessed element and its index are cached. For membership tests on | |
105 | members close to recently accessed members, the cached last element | |
106 | improves membership test to a constant-time operation. | |
107 | ||
108 | The following operations can always be performed in O(1) time in | |
109 | list view: | |
110 | ||
111 | * clear : bitmap_clear | |
112 | * smallest_member : bitmap_first_set_bit | |
113 | * pop_smallest : bitmap_clear_first_set_bit | |
114 | * choose_one : (not implemented, but could be | |
115 | in constant time) | |
116 | ||
117 | The following operations can be performed in O(E) time worst-case in | |
118 | list view (with E the number of elements in the linked list), but in | |
119 | O(1) time with a suitable access patterns: | |
120 | ||
121 | * member_p : bitmap_bit_p | |
122 | * add_member : bitmap_set_bit / bitmap_set_range | |
123 | * remove_member : bitmap_clear_bit / bitmap_clear_range | |
124 | ||
125 | The following operations can be performed in O(E) time in list view: | |
126 | ||
127 | * cardinality : bitmap_count_bits | |
128 | * largest_member : bitmap_last_set_bit (but this could | |
129 | in constant time with a pointer to | |
130 | the last element in the chain) | |
131 | * set_size : bitmap_last_set_bit | |
132 | ||
133 | In tree view the following operations can all be performed in O(log E) | |
134 | amortized time with O(E) worst-case behavior. | |
135 | ||
136 | * smallest_member | |
137 | * pop_smallest | |
138 | * largest_member | |
139 | * set_size | |
140 | * member_p | |
141 | * add_member | |
142 | * remove_member | |
143 | ||
144 | Additionally, the linked-list sparse set representation supports | |
145 | enumeration of the members in O(E) time: | |
146 | ||
147 | * forall : EXECUTE_IF_SET_IN_BITMAP | |
148 | * set_copy : bitmap_copy | |
149 | * set_intersection : bitmap_intersect_p / | |
150 | bitmap_and / bitmap_and_into / | |
151 | EXECUTE_IF_AND_IN_BITMAP | |
152 | * set_union : bitmap_ior / bitmap_ior_into | |
153 | * set_difference : bitmap_intersect_compl_p / | |
154 | bitmap_and_comp / bitmap_and_comp_into / | |
155 | EXECUTE_IF_AND_COMPL_IN_BITMAP | |
156 | * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into | |
157 | * set_compare : bitmap_equal_p | |
158 | ||
159 | Some operations on 3 sets that occur frequently in data flow problems | |
160 | are also implemented: | |
161 | ||
162 | * A | (B & C) : bitmap_ior_and_into | |
163 | * A | (B & ~C) : bitmap_ior_and_compl / | |
164 | bitmap_ior_and_compl_into | |
165 | ||
166 | ||
167 | BINARY TREE FORM | |
168 | ================ | |
169 | An alternate "view" of a bitmap is its binary tree representation. | |
170 | For this representation, splay trees are used because they can be | |
171 | implemented using the same data structures as the linked list, with | |
172 | no overhead for meta-data (like color, or rank) on the tree nodes. | |
173 | ||
174 | In binary tree form, random-access to the set is much more efficient | |
175 | than for the linked-list representation. Downsides are the high cost | |
176 | of clearing the set, and the relatively large number of operations | |
177 | necessary to balance the tree. Also, iterating the set members is | |
178 | not supported. | |
179 | ||
180 | As for the linked-list representation, the last accessed element and | |
181 | its index are cached, so that membership tests on the latest accessed | |
182 | members is a constant-time operation. Other lookups take O(logE) | |
183 | time amortized (but O(E) time worst-case). | |
184 | ||
185 | The following operations can always be performed in O(1) time: | |
186 | ||
187 | * choose_one : (not implemented, but could be | |
188 | implemented in constant time) | |
189 | ||
190 | The following operations can be performed in O(logE) time amortized | |
191 | but O(E) time worst-case, but in O(1) time if the same element is | |
192 | accessed. | |
193 | ||
194 | * member_p : bitmap_bit_p | |
195 | * add_member : bitmap_set_bit | |
196 | * remove_member : bitmap_clear_bit | |
197 | ||
198 | The following operations can be performed in O(logE) time amortized | |
199 | but O(E) time worst-case: | |
200 | ||
201 | * smallest_member : bitmap_first_set_bit | |
202 | * largest_member : bitmap_last_set_bit | |
203 | * set_size : bitmap_last_set_bit | |
204 | ||
205 | The following operations can be performed in O(E) time: | |
206 | ||
207 | * clear : bitmap_clear | |
208 | ||
209 | The binary tree sparse set representation does *not* support any form | |
210 | of enumeration, and does also *not* support logical operations on sets. | |
211 | The binary tree representation is only supposed to be used for sets | |
212 | on which many random-access membership tests will happen. */ | |
213 | ||
214 | #include "obstack.h" | |
215 | #include "array-traits.h" | |
216 | ||
217 | /* Bitmap memory usage. */ | |
218 | class bitmap_usage: public mem_usage | |
219 | { | |
220 | public: | |
221 | /* Default contructor. */ | |
222 | bitmap_usage (): m_nsearches (0), m_search_iter (0) {} | |
223 | /* Constructor. */ | |
224 | bitmap_usage (size_t allocated, size_t times, size_t peak, | |
225 | uint64_t nsearches, uint64_t search_iter) | |
226 | : mem_usage (allocated, times, peak), | |
227 | m_nsearches (nsearches), m_search_iter (search_iter) {} | |
228 | ||
229 | /* Sum the usage with SECOND usage. */ | |
230 | bitmap_usage | |
231 | operator+ (const bitmap_usage &second) | |
232 | { | |
233 | return bitmap_usage (m_allocated + second.m_allocated, | |
234 | m_times + second.m_times, | |
235 | m_peak + second.m_peak, | |
236 | m_nsearches + second.m_nsearches, | |
237 | m_search_iter + second.m_search_iter); | |
238 | } | |
239 | ||
240 | /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */ | |
241 | inline void | |
242 | dump (mem_location *loc, const mem_usage &total) const | |
243 | { | |
244 | char *location_string = loc->to_string (); | |
245 | ||
246 | fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%" | |
247 | PRsa (9) PRsa (9) ":%5.1f%%" | |
248 | PRsa (11) PRsa (11) "%10s\n", | |
249 | location_string, SIZE_AMOUNT (m_allocated), | |
250 | get_percent (m_allocated, total.m_allocated), | |
251 | SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times), | |
252 | get_percent (m_times, total.m_times), | |
253 | SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter), | |
254 | loc->m_ggc ? "ggc" : "heap"); | |
255 | ||
256 | free (location_string); | |
257 | } | |
258 | ||
259 | /* Dump header with NAME. */ | |
260 | static inline void | |
261 | dump_header (const char *name) | |
262 | { | |
263 | fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak", | |
264 | "Times", "N searches", "Search iter", "Type"); | |
265 | } | |
266 | ||
267 | /* Number search operations. */ | |
268 | uint64_t m_nsearches; | |
269 | /* Number of search iterations. */ | |
270 | uint64_t m_search_iter; | |
271 | }; | |
272 | ||
273 | /* Bitmap memory description. */ | |
274 | extern mem_alloc_description<bitmap_usage> bitmap_mem_desc; | |
275 | ||
276 | /* Fundamental storage type for bitmap. */ | |
277 | ||
278 | typedef unsigned long BITMAP_WORD; | |
279 | /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as | |
280 | it is used in preprocessor directives -- hence the 1u. */ | |
281 | #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u) | |
282 | ||
283 | /* Number of words to use for each element in the linked list. */ | |
284 | ||
285 | #ifndef BITMAP_ELEMENT_WORDS | |
286 | #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS) | |
287 | #endif | |
288 | ||
289 | /* Number of bits in each actual element of a bitmap. */ | |
290 | ||
291 | #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS) | |
292 | ||
293 | /* Obstack for allocating bitmaps and elements from. */ | |
294 | struct bitmap_obstack { | |
295 | struct bitmap_element *elements; | |
296 | bitmap_head *heads; | |
297 | struct obstack obstack; | |
298 | }; | |
299 | ||
300 | /* Bitmap set element. We use a linked list to hold only the bits that | |
301 | are set. This allows for use to grow the bitset dynamically without | |
302 | having to realloc and copy a giant bit array. | |
303 | ||
304 | The free list is implemented as a list of lists. There is one | |
305 | outer list connected together by prev fields. Each element of that | |
306 | outer is an inner list (that may consist only of the outer list | |
307 | element) that are connected by the next fields. The prev pointer | |
308 | is undefined for interior elements. This allows | |
309 | bitmap_elt_clear_from to be implemented in unit time rather than | |
310 | linear in the number of elements to be freed. */ | |
311 | ||
312 | struct GTY((chain_next ("%h.next"))) bitmap_element { | |
313 | /* In list form, the next element in the linked list; | |
314 | in tree form, the left child node in the tree. */ | |
315 | struct bitmap_element *next; | |
316 | /* In list form, the previous element in the linked list; | |
317 | in tree form, the right child node in the tree. */ | |
318 | struct bitmap_element *prev; | |
319 | /* regno/BITMAP_ELEMENT_ALL_BITS. */ | |
320 | unsigned int indx; | |
321 | /* Bits that are set, counting from INDX, inclusive */ | |
322 | BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; | |
323 | }; | |
324 | ||
325 | /* Head of bitmap linked list. The 'current' member points to something | |
326 | already pointed to by the chain started by first, so GTY((skip)) it. */ | |
327 | ||
328 | class GTY(()) bitmap_head { | |
329 | public: | |
330 | static bitmap_obstack crashme; | |
331 | /* Poison obstack to not make it not a valid initialized GC bitmap. */ | |
332 | CONSTEXPR bitmap_head() | |
333 | : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL), | |
334 | current (NULL), obstack (&crashme) | |
335 | {} | |
336 | /* Index of last element looked at. */ | |
337 | unsigned int indx; | |
338 | /* False if the bitmap is in list form; true if the bitmap is in tree form. | |
339 | Bitmap iterators only work on bitmaps in list form. */ | |
340 | unsigned tree_form: 1; | |
341 | /* Next integer is shifted, so padding is needed. */ | |
342 | unsigned padding: 2; | |
343 | /* Bitmap UID used for memory allocation statistics. */ | |
344 | unsigned alloc_descriptor: 29; | |
345 | /* In list form, the first element in the linked list; | |
346 | in tree form, the root of the tree. */ | |
347 | bitmap_element *first; | |
348 | /* Last element looked at. */ | |
349 | bitmap_element * GTY((skip(""))) current; | |
350 | /* Obstack to allocate elements from. If NULL, then use GGC allocation. */ | |
351 | bitmap_obstack * GTY((skip(""))) obstack; | |
352 | ||
353 | /* Dump bitmap. */ | |
354 | void dump (); | |
355 | ||
356 | /* Get bitmap descriptor UID casted to an unsigned integer pointer. | |
357 | Shift the descriptor because pointer_hash<Type>::hash is | |
358 | doing >> 3 shift operation. */ | |
359 | unsigned *get_descriptor () | |
360 | { | |
361 | return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3); | |
362 | } | |
363 | }; | |
364 | ||
365 | /* Global data */ | |
366 | extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */ | |
367 | extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */ | |
368 | ||
369 | /* Change the view of the bitmap to list, or tree. */ | |
370 | void bitmap_list_view (bitmap); | |
371 | void bitmap_tree_view (bitmap); | |
372 | ||
373 | /* Clear a bitmap by freeing up the linked list. */ | |
374 | extern void bitmap_clear (bitmap); | |
375 | ||
376 | /* Copy a bitmap to another bitmap. */ | |
377 | extern void bitmap_copy (bitmap, const_bitmap); | |
378 | ||
379 | /* Move a bitmap to another bitmap. */ | |
380 | extern void bitmap_move (bitmap, bitmap); | |
381 | ||
382 | /* True if two bitmaps are identical. */ | |
383 | extern bool bitmap_equal_p (const_bitmap, const_bitmap); | |
384 | ||
385 | /* True if the bitmaps intersect (their AND is non-empty). */ | |
386 | extern bool bitmap_intersect_p (const_bitmap, const_bitmap); | |
387 | ||
388 | /* True if the complement of the second intersects the first (their | |
389 | AND_COMPL is non-empty). */ | |
390 | extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap); | |
391 | ||
392 | /* True if MAP is an empty bitmap. */ | |
393 | inline bool bitmap_empty_p (const_bitmap map) | |
394 | { | |
395 | return !map->first; | |
396 | } | |
397 | ||
398 | /* True if the bitmap has only a single bit set. */ | |
399 | extern bool bitmap_single_bit_set_p (const_bitmap); | |
400 | ||
401 | /* Count the number of bits set in the bitmap. */ | |
402 | extern unsigned long bitmap_count_bits (const_bitmap); | |
403 | ||
404 | /* Count the number of unique bits set across the two bitmaps. */ | |
405 | extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap); | |
406 | ||
407 | /* Boolean operations on bitmaps. The _into variants are two operand | |
408 | versions that modify the first source operand. The other variants | |
409 | are three operand versions that to not destroy the source bitmaps. | |
410 | The operations supported are &, & ~, |, ^. */ | |
411 | extern void bitmap_and (bitmap, const_bitmap, const_bitmap); | |
412 | extern bool bitmap_and_into (bitmap, const_bitmap); | |
413 | extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap); | |
414 | extern bool bitmap_and_compl_into (bitmap, const_bitmap); | |
415 | #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A) | |
416 | extern void bitmap_compl_and_into (bitmap, const_bitmap); | |
417 | extern void bitmap_clear_range (bitmap, unsigned int, unsigned int); | |
418 | extern void bitmap_set_range (bitmap, unsigned int, unsigned int); | |
419 | extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap); | |
420 | extern bool bitmap_ior_into (bitmap, const_bitmap); | |
421 | extern bool bitmap_ior_into_and_free (bitmap, bitmap *); | |
422 | extern void bitmap_xor (bitmap, const_bitmap, const_bitmap); | |
423 | extern void bitmap_xor_into (bitmap, const_bitmap); | |
424 | ||
425 | /* DST = A | (B & C). Return true if DST changes. */ | |
426 | extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C); | |
427 | /* DST = A | (B & ~C). Return true if DST changes. */ | |
428 | extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A, | |
429 | const_bitmap B, const_bitmap C); | |
430 | /* A |= (B & ~C). Return true if A changes. */ | |
431 | extern bool bitmap_ior_and_compl_into (bitmap A, | |
432 | const_bitmap B, const_bitmap C); | |
433 | ||
434 | /* Clear a single bit in a bitmap. Return true if the bit changed. */ | |
435 | extern bool bitmap_clear_bit (bitmap, int); | |
436 | ||
437 | /* Set a single bit in a bitmap. Return true if the bit changed. */ | |
438 | extern bool bitmap_set_bit (bitmap, int); | |
439 | ||
440 | /* Return true if a bit is set in a bitmap. */ | |
441 | extern bool bitmap_bit_p (const_bitmap, int); | |
442 | ||
443 | /* Set and get multiple bit values in a sparse bitmap. This allows a bitmap to | |
444 | function as a sparse array of bit patterns where the patterns are | |
445 | multiples of power of 2. This is more efficient than performing this as | |
446 | multiple individual operations. */ | |
447 | void bitmap_set_aligned_chunk (bitmap, unsigned int, unsigned int, BITMAP_WORD); | |
448 | BITMAP_WORD bitmap_get_aligned_chunk (const_bitmap, unsigned int, unsigned int); | |
449 | ||
450 | /* Debug functions to print a bitmap. */ | |
451 | extern void debug_bitmap (const_bitmap); | |
452 | extern void debug_bitmap_file (FILE *, const_bitmap); | |
453 | ||
454 | /* Print a bitmap. */ | |
455 | extern void bitmap_print (FILE *, const_bitmap, const char *, const char *); | |
456 | ||
457 | /* Initialize and release a bitmap obstack. */ | |
458 | extern void bitmap_obstack_initialize (bitmap_obstack *); | |
459 | extern void bitmap_obstack_release (bitmap_obstack *); | |
460 | extern void bitmap_register (bitmap MEM_STAT_DECL); | |
461 | extern void dump_bitmap_statistics (void); | |
462 | ||
463 | /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack | |
464 | to allocate from, NULL for GC'd bitmap. */ | |
465 | ||
466 | inline void | |
467 | bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO) | |
468 | { | |
469 | head->first = head->current = NULL; | |
470 | head->indx = head->tree_form = 0; | |
471 | head->padding = 0; | |
472 | head->alloc_descriptor = 0; | |
473 | head->obstack = obstack; | |
474 | if (GATHER_STATISTICS) | |
475 | bitmap_register (head PASS_MEM_STAT); | |
476 | } | |
477 | ||
478 | /* Release a bitmap (but not its head). This is suitable for pairing with | |
479 | bitmap_initialize. */ | |
480 | ||
481 | inline void | |
482 | bitmap_release (bitmap head) | |
483 | { | |
484 | bitmap_clear (head); | |
485 | /* Poison the obstack pointer so the obstack can be safely released. | |
486 | Do not zero it as the bitmap then becomes initialized GC. */ | |
487 | head->obstack = &bitmap_head::crashme; | |
488 | } | |
489 | ||
490 | /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */ | |
491 | extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO); | |
492 | #define BITMAP_ALLOC bitmap_alloc | |
493 | extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO); | |
494 | #define BITMAP_GGC_ALLOC bitmap_gc_alloc | |
495 | extern void bitmap_obstack_free (bitmap); | |
496 | ||
497 | /* A few compatibility/functions macros for compatibility with sbitmaps */ | |
498 | inline void dump_bitmap (FILE *file, const_bitmap map) | |
499 | { | |
500 | bitmap_print (file, map, "", "\n"); | |
501 | } | |
502 | extern void debug (const bitmap_head &ref); | |
503 | extern void debug (const bitmap_head *ptr); | |
504 | ||
505 | extern unsigned bitmap_first_set_bit (const_bitmap); | |
506 | extern unsigned bitmap_clear_first_set_bit (bitmap); | |
507 | extern unsigned bitmap_last_set_bit (const_bitmap); | |
508 | ||
509 | /* Compute bitmap hash (for purposes of hashing etc.) */ | |
510 | extern hashval_t bitmap_hash (const_bitmap); | |
511 | ||
512 | /* Do any cleanup needed on a bitmap when it is no longer used. */ | |
513 | #define BITMAP_FREE(BITMAP) \ | |
514 | ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL)) | |
515 | ||
516 | /* Iterator for bitmaps. */ | |
517 | ||
518 | struct bitmap_iterator | |
519 | { | |
520 | /* Pointer to the current bitmap element. */ | |
521 | bitmap_element *elt1; | |
522 | ||
523 | /* Pointer to 2nd bitmap element when two are involved. */ | |
524 | bitmap_element *elt2; | |
525 | ||
526 | /* Word within the current element. */ | |
527 | unsigned word_no; | |
528 | ||
529 | /* Contents of the actually processed word. When finding next bit | |
530 | it is shifted right, so that the actual bit is always the least | |
531 | significant bit of ACTUAL. */ | |
532 | BITMAP_WORD bits; | |
533 | }; | |
534 | ||
535 | /* Initialize a single bitmap iterator. START_BIT is the first bit to | |
536 | iterate from. */ | |
537 | ||
538 | inline void | |
539 | bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map, | |
540 | unsigned start_bit, unsigned *bit_no) | |
541 | { | |
542 | bi->elt1 = map->first; | |
543 | bi->elt2 = NULL; | |
544 | ||
545 | gcc_checking_assert (!map->tree_form); | |
546 | ||
547 | /* Advance elt1 until it is not before the block containing start_bit. */ | |
548 | while (1) | |
549 | { | |
550 | if (!bi->elt1) | |
551 | { | |
552 | bi->elt1 = &bitmap_zero_bits; | |
553 | break; | |
554 | } | |
555 | ||
556 | if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS) | |
557 | break; | |
558 | bi->elt1 = bi->elt1->next; | |
559 | } | |
560 | ||
561 | /* We might have gone past the start bit, so reinitialize it. */ | |
562 | if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS) | |
563 | start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
564 | ||
565 | /* Initialize for what is now start_bit. */ | |
566 | bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; | |
567 | bi->bits = bi->elt1->bits[bi->word_no]; | |
568 | bi->bits >>= start_bit % BITMAP_WORD_BITS; | |
569 | ||
570 | /* If this word is zero, we must make sure we're not pointing at the | |
571 | first bit, otherwise our incrementing to the next word boundary | |
572 | will fail. It won't matter if this increment moves us into the | |
573 | next word. */ | |
574 | start_bit += !bi->bits; | |
575 | ||
576 | *bit_no = start_bit; | |
577 | } | |
578 | ||
579 | /* Initialize an iterator to iterate over the intersection of two | |
580 | bitmaps. START_BIT is the bit to commence from. */ | |
581 | ||
582 | inline void | |
583 | bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2, | |
584 | unsigned start_bit, unsigned *bit_no) | |
585 | { | |
586 | bi->elt1 = map1->first; | |
587 | bi->elt2 = map2->first; | |
588 | ||
589 | gcc_checking_assert (!map1->tree_form && !map2->tree_form); | |
590 | ||
591 | /* Advance elt1 until it is not before the block containing | |
592 | start_bit. */ | |
593 | while (1) | |
594 | { | |
595 | if (!bi->elt1) | |
596 | { | |
597 | bi->elt2 = NULL; | |
598 | break; | |
599 | } | |
600 | ||
601 | if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS) | |
602 | break; | |
603 | bi->elt1 = bi->elt1->next; | |
604 | } | |
605 | ||
606 | /* Advance elt2 until it is not before elt1. */ | |
607 | while (1) | |
608 | { | |
609 | if (!bi->elt2) | |
610 | { | |
611 | bi->elt1 = bi->elt2 = &bitmap_zero_bits; | |
612 | break; | |
613 | } | |
614 | ||
615 | if (bi->elt2->indx >= bi->elt1->indx) | |
616 | break; | |
617 | bi->elt2 = bi->elt2->next; | |
618 | } | |
619 | ||
620 | /* If we're at the same index, then we have some intersecting bits. */ | |
621 | if (bi->elt1->indx == bi->elt2->indx) | |
622 | { | |
623 | /* We might have advanced beyond the start_bit, so reinitialize | |
624 | for that. */ | |
625 | if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS) | |
626 | start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
627 | ||
628 | bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; | |
629 | bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no]; | |
630 | bi->bits >>= start_bit % BITMAP_WORD_BITS; | |
631 | } | |
632 | else | |
633 | { | |
634 | /* Otherwise we must immediately advance elt1, so initialize for | |
635 | that. */ | |
636 | bi->word_no = BITMAP_ELEMENT_WORDS - 1; | |
637 | bi->bits = 0; | |
638 | } | |
639 | ||
640 | /* If this word is zero, we must make sure we're not pointing at the | |
641 | first bit, otherwise our incrementing to the next word boundary | |
642 | will fail. It won't matter if this increment moves us into the | |
643 | next word. */ | |
644 | start_bit += !bi->bits; | |
645 | ||
646 | *bit_no = start_bit; | |
647 | } | |
648 | ||
649 | /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */ | |
650 | ||
651 | inline void | |
652 | bmp_iter_and_compl_init (bitmap_iterator *bi, | |
653 | const_bitmap map1, const_bitmap map2, | |
654 | unsigned start_bit, unsigned *bit_no) | |
655 | { | |
656 | bi->elt1 = map1->first; | |
657 | bi->elt2 = map2->first; | |
658 | ||
659 | gcc_checking_assert (!map1->tree_form && !map2->tree_form); | |
660 | ||
661 | /* Advance elt1 until it is not before the block containing start_bit. */ | |
662 | while (1) | |
663 | { | |
664 | if (!bi->elt1) | |
665 | { | |
666 | bi->elt1 = &bitmap_zero_bits; | |
667 | break; | |
668 | } | |
669 | ||
670 | if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS) | |
671 | break; | |
672 | bi->elt1 = bi->elt1->next; | |
673 | } | |
674 | ||
675 | /* Advance elt2 until it is not before elt1. */ | |
676 | while (bi->elt2 && bi->elt2->indx < bi->elt1->indx) | |
677 | bi->elt2 = bi->elt2->next; | |
678 | ||
679 | /* We might have advanced beyond the start_bit, so reinitialize for | |
680 | that. */ | |
681 | if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS) | |
682 | start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
683 | ||
684 | bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS; | |
685 | bi->bits = bi->elt1->bits[bi->word_no]; | |
686 | if (bi->elt2 && bi->elt1->indx == bi->elt2->indx) | |
687 | bi->bits &= ~bi->elt2->bits[bi->word_no]; | |
688 | bi->bits >>= start_bit % BITMAP_WORD_BITS; | |
689 | ||
690 | /* If this word is zero, we must make sure we're not pointing at the | |
691 | first bit, otherwise our incrementing to the next word boundary | |
692 | will fail. It won't matter if this increment moves us into the | |
693 | next word. */ | |
694 | start_bit += !bi->bits; | |
695 | ||
696 | *bit_no = start_bit; | |
697 | } | |
698 | ||
699 | /* Advance to the next bit in BI. We don't advance to the next | |
700 | nonzero bit yet. */ | |
701 | ||
702 | inline void | |
703 | bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no) | |
704 | { | |
705 | bi->bits >>= 1; | |
706 | *bit_no += 1; | |
707 | } | |
708 | ||
709 | /* Advance to first set bit in BI. */ | |
710 | ||
711 | inline void | |
712 | bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no) | |
713 | { | |
714 | #if (GCC_VERSION >= 3004) | |
715 | { | |
716 | unsigned int n = __builtin_ctzl (bi->bits); | |
717 | gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD)); | |
718 | bi->bits >>= n; | |
719 | *bit_no += n; | |
720 | } | |
721 | #else | |
722 | while (!(bi->bits & 1)) | |
723 | { | |
724 | bi->bits >>= 1; | |
725 | *bit_no += 1; | |
726 | } | |
727 | #endif | |
728 | } | |
729 | ||
730 | /* Advance to the next nonzero bit of a single bitmap, we will have | |
731 | already advanced past the just iterated bit. Return true if there | |
732 | is a bit to iterate. */ | |
733 | ||
734 | inline bool | |
735 | bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no) | |
736 | { | |
737 | /* If our current word is nonzero, it contains the bit we want. */ | |
738 | if (bi->bits) | |
739 | { | |
740 | next_bit: | |
741 | bmp_iter_next_bit (bi, bit_no); | |
742 | return true; | |
743 | } | |
744 | ||
745 | /* Round up to the word boundary. We might have just iterated past | |
746 | the end of the last word, hence the -1. It is not possible for | |
747 | bit_no to point at the beginning of the now last word. */ | |
748 | *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1) | |
749 | / BITMAP_WORD_BITS * BITMAP_WORD_BITS); | |
750 | bi->word_no++; | |
751 | ||
752 | while (1) | |
753 | { | |
754 | /* Find the next nonzero word in this elt. */ | |
755 | while (bi->word_no != BITMAP_ELEMENT_WORDS) | |
756 | { | |
757 | bi->bits = bi->elt1->bits[bi->word_no]; | |
758 | if (bi->bits) | |
759 | goto next_bit; | |
760 | *bit_no += BITMAP_WORD_BITS; | |
761 | bi->word_no++; | |
762 | } | |
763 | ||
764 | /* Make sure we didn't remove the element while iterating. */ | |
765 | gcc_checking_assert (bi->elt1->indx != -1U); | |
766 | ||
767 | /* Advance to the next element. */ | |
768 | bi->elt1 = bi->elt1->next; | |
769 | if (!bi->elt1) | |
770 | return false; | |
771 | *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
772 | bi->word_no = 0; | |
773 | } | |
774 | } | |
775 | ||
776 | /* Advance to the next nonzero bit of an intersecting pair of | |
777 | bitmaps. We will have already advanced past the just iterated bit. | |
778 | Return true if there is a bit to iterate. */ | |
779 | ||
780 | inline bool | |
781 | bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no) | |
782 | { | |
783 | /* If our current word is nonzero, it contains the bit we want. */ | |
784 | if (bi->bits) | |
785 | { | |
786 | next_bit: | |
787 | bmp_iter_next_bit (bi, bit_no); | |
788 | return true; | |
789 | } | |
790 | ||
791 | /* Round up to the word boundary. We might have just iterated past | |
792 | the end of the last word, hence the -1. It is not possible for | |
793 | bit_no to point at the beginning of the now last word. */ | |
794 | *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1) | |
795 | / BITMAP_WORD_BITS * BITMAP_WORD_BITS); | |
796 | bi->word_no++; | |
797 | ||
798 | while (1) | |
799 | { | |
800 | /* Find the next nonzero word in this elt. */ | |
801 | while (bi->word_no != BITMAP_ELEMENT_WORDS) | |
802 | { | |
803 | bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no]; | |
804 | if (bi->bits) | |
805 | goto next_bit; | |
806 | *bit_no += BITMAP_WORD_BITS; | |
807 | bi->word_no++; | |
808 | } | |
809 | ||
810 | /* Advance to the next identical element. */ | |
811 | do | |
812 | { | |
813 | /* Make sure we didn't remove the element while iterating. */ | |
814 | gcc_checking_assert (bi->elt1->indx != -1U); | |
815 | ||
816 | /* Advance elt1 while it is less than elt2. We always want | |
817 | to advance one elt. */ | |
818 | do | |
819 | { | |
820 | bi->elt1 = bi->elt1->next; | |
821 | if (!bi->elt1) | |
822 | return false; | |
823 | } | |
824 | while (bi->elt1->indx < bi->elt2->indx); | |
825 | ||
826 | /* Make sure we didn't remove the element while iterating. */ | |
827 | gcc_checking_assert (bi->elt2->indx != -1U); | |
828 | ||
829 | /* Advance elt2 to be no less than elt1. This might not | |
830 | advance. */ | |
831 | while (bi->elt2->indx < bi->elt1->indx) | |
832 | { | |
833 | bi->elt2 = bi->elt2->next; | |
834 | if (!bi->elt2) | |
835 | return false; | |
836 | } | |
837 | } | |
838 | while (bi->elt1->indx != bi->elt2->indx); | |
839 | ||
840 | *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
841 | bi->word_no = 0; | |
842 | } | |
843 | } | |
844 | ||
845 | /* Advance to the next nonzero bit in the intersection of | |
846 | complemented bitmaps. We will have already advanced past the just | |
847 | iterated bit. */ | |
848 | ||
849 | inline bool | |
850 | bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no) | |
851 | { | |
852 | /* If our current word is nonzero, it contains the bit we want. */ | |
853 | if (bi->bits) | |
854 | { | |
855 | next_bit: | |
856 | bmp_iter_next_bit (bi, bit_no); | |
857 | return true; | |
858 | } | |
859 | ||
860 | /* Round up to the word boundary. We might have just iterated past | |
861 | the end of the last word, hence the -1. It is not possible for | |
862 | bit_no to point at the beginning of the now last word. */ | |
863 | *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1) | |
864 | / BITMAP_WORD_BITS * BITMAP_WORD_BITS); | |
865 | bi->word_no++; | |
866 | ||
867 | while (1) | |
868 | { | |
869 | /* Find the next nonzero word in this elt. */ | |
870 | while (bi->word_no != BITMAP_ELEMENT_WORDS) | |
871 | { | |
872 | bi->bits = bi->elt1->bits[bi->word_no]; | |
873 | if (bi->elt2 && bi->elt2->indx == bi->elt1->indx) | |
874 | bi->bits &= ~bi->elt2->bits[bi->word_no]; | |
875 | if (bi->bits) | |
876 | goto next_bit; | |
877 | *bit_no += BITMAP_WORD_BITS; | |
878 | bi->word_no++; | |
879 | } | |
880 | ||
881 | /* Make sure we didn't remove the element while iterating. */ | |
882 | gcc_checking_assert (bi->elt1->indx != -1U); | |
883 | ||
884 | /* Advance to the next element of elt1. */ | |
885 | bi->elt1 = bi->elt1->next; | |
886 | if (!bi->elt1) | |
887 | return false; | |
888 | ||
889 | /* Make sure we didn't remove the element while iterating. */ | |
890 | gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U); | |
891 | ||
892 | /* Advance elt2 until it is no less than elt1. */ | |
893 | while (bi->elt2 && bi->elt2->indx < bi->elt1->indx) | |
894 | bi->elt2 = bi->elt2->next; | |
895 | ||
896 | *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS; | |
897 | bi->word_no = 0; | |
898 | } | |
899 | } | |
900 | ||
901 | /* If you are modifying a bitmap you are currently iterating over you | |
902 | have to ensure to | |
903 | - never remove the current bit; | |
904 | - if you set or clear a bit before the current bit this operation | |
905 | will not affect the set of bits you are visiting during the iteration; | |
906 | - if you set or clear a bit after the current bit it is unspecified | |
907 | whether that affects the set of bits you are visiting during the | |
908 | iteration. | |
909 | If you want to remove the current bit you can delay this to the next | |
910 | iteration (and after the iteration in case the last iteration is | |
911 | affected). */ | |
912 | ||
913 | /* Loop over all bits set in BITMAP, starting with MIN and setting | |
914 | BITNUM to the bit number. ITER is a bitmap iterator. BITNUM | |
915 | should be treated as a read-only variable as it contains loop | |
916 | state. */ | |
917 | ||
918 | #ifndef EXECUTE_IF_SET_IN_BITMAP | |
919 | /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */ | |
920 | #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \ | |
921 | for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \ | |
922 | bmp_iter_set (&(ITER), &(BITNUM)); \ | |
923 | bmp_iter_next (&(ITER), &(BITNUM))) | |
924 | #endif | |
925 | ||
926 | /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN | |
927 | and setting BITNUM to the bit number. ITER is a bitmap iterator. | |
928 | BITNUM should be treated as a read-only variable as it contains | |
929 | loop state. */ | |
930 | ||
931 | #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \ | |
932 | for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \ | |
933 | &(BITNUM)); \ | |
934 | bmp_iter_and (&(ITER), &(BITNUM)); \ | |
935 | bmp_iter_next (&(ITER), &(BITNUM))) | |
936 | ||
937 | /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN | |
938 | and setting BITNUM to the bit number. ITER is a bitmap iterator. | |
939 | BITNUM should be treated as a read-only variable as it contains | |
940 | loop state. */ | |
941 | ||
942 | #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \ | |
943 | for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \ | |
944 | &(BITNUM)); \ | |
945 | bmp_iter_and_compl (&(ITER), &(BITNUM)); \ | |
946 | bmp_iter_next (&(ITER), &(BITNUM))) | |
947 | ||
948 | /* A class that ties the lifetime of a bitmap to its scope. */ | |
949 | class auto_bitmap | |
950 | { | |
951 | public: | |
952 | auto_bitmap (ALONE_CXX_MEM_STAT_INFO) | |
953 | { bitmap_initialize (&m_bits, &bitmap_default_obstack PASS_MEM_STAT); } | |
954 | explicit auto_bitmap (bitmap_obstack *o CXX_MEM_STAT_INFO) | |
955 | { bitmap_initialize (&m_bits, o PASS_MEM_STAT); } | |
956 | ~auto_bitmap () { bitmap_clear (&m_bits); } | |
957 | // Allow calling bitmap functions on our bitmap. | |
958 | operator bitmap () { return &m_bits; } | |
959 | ||
960 | private: | |
961 | // Prevent making a copy that references our bitmap. | |
962 | auto_bitmap (const auto_bitmap &) = delete; | |
963 | auto_bitmap &operator = (const auto_bitmap &) = delete; | |
964 | auto_bitmap (auto_bitmap &&) = delete; | |
965 | auto_bitmap &operator = (auto_bitmap &&) = delete; | |
966 | ||
967 | bitmap_head m_bits; | |
968 | }; | |
969 | ||
970 | extern void debug (const auto_bitmap &ref); | |
971 | extern void debug (const auto_bitmap *ptr); | |
972 | ||
973 | /* Base class for bitmap_view; see there for details. */ | |
974 | template<typename T, typename Traits = array_traits<T> > | |
975 | class base_bitmap_view | |
976 | { | |
977 | public: | |
978 | typedef typename Traits::element_type array_element_type; | |
979 | ||
980 | base_bitmap_view (const T &, bitmap_element *); | |
981 | operator const_bitmap () const { return &m_head; } | |
982 | ||
983 | private: | |
984 | base_bitmap_view (const base_bitmap_view &); | |
985 | ||
986 | bitmap_head m_head; | |
987 | }; | |
988 | ||
989 | /* Provides a read-only bitmap view of a single integer bitmask or a | |
990 | constant-sized array of integer bitmasks, or of a wrapper around such | |
991 | bitmasks. */ | |
992 | template<typename T, typename Traits> | |
993 | class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits> | |
994 | { | |
995 | public: | |
996 | bitmap_view (const T &array) | |
997 | : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {} | |
998 | ||
999 | private: | |
1000 | /* How many bitmap_elements we need to hold a full T. */ | |
1001 | static const size_t num_bitmap_elements | |
1002 | = CEIL (CHAR_BIT | |
1003 | * sizeof (typename Traits::element_type) | |
1004 | * Traits::constant_size, | |
1005 | BITMAP_ELEMENT_ALL_BITS); | |
1006 | bitmap_element m_bitmap_elements[num_bitmap_elements]; | |
1007 | }; | |
1008 | ||
1009 | /* Initialize the view for array ARRAY, using the array of bitmap | |
1010 | elements in BITMAP_ELEMENTS (which is known to contain enough | |
1011 | entries). */ | |
1012 | template<typename T, typename Traits> | |
1013 | base_bitmap_view<T, Traits>::base_bitmap_view (const T &array, | |
1014 | bitmap_element *bitmap_elements) | |
1015 | { | |
1016 | m_head.obstack = NULL; | |
1017 | ||
1018 | /* The code currently assumes that each element of ARRAY corresponds | |
1019 | to exactly one bitmap_element. */ | |
1020 | const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type); | |
1021 | STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0); | |
1022 | size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits; | |
1023 | size_t array_size = Traits::size (array); | |
1024 | ||
1025 | /* Process each potential bitmap_element in turn. The loop is written | |
1026 | this way rather than per array element because usually there are | |
1027 | only a small number of array elements per bitmap element (typically | |
1028 | two or four). The inner loops should therefore unroll completely. */ | |
1029 | const array_element_type *array_elements = Traits::base (array); | |
1030 | unsigned int indx = 0; | |
1031 | for (size_t array_base = 0; | |
1032 | array_base < array_size; | |
1033 | array_base += array_step, indx += 1) | |
1034 | { | |
1035 | /* How many array elements are in this particular bitmap_element. */ | |
1036 | unsigned int array_count | |
1037 | = (STATIC_CONSTANT_P (array_size % array_step == 0) | |
1038 | ? array_step : MIN (array_step, array_size - array_base)); | |
1039 | ||
1040 | /* See whether we need this bitmap element. */ | |
1041 | array_element_type ior = array_elements[array_base]; | |
1042 | for (size_t i = 1; i < array_count; ++i) | |
1043 | ior |= array_elements[array_base + i]; | |
1044 | if (ior == 0) | |
1045 | continue; | |
1046 | ||
1047 | /* Grab the next bitmap element and chain it. */ | |
1048 | bitmap_element *bitmap_element = bitmap_elements++; | |
1049 | if (m_head.current) | |
1050 | m_head.current->next = bitmap_element; | |
1051 | else | |
1052 | m_head.first = bitmap_element; | |
1053 | bitmap_element->prev = m_head.current; | |
1054 | bitmap_element->next = NULL; | |
1055 | bitmap_element->indx = indx; | |
1056 | m_head.current = bitmap_element; | |
1057 | m_head.indx = indx; | |
1058 | ||
1059 | /* Fill in the bits of the bitmap element. */ | |
1060 | if (array_element_bits < BITMAP_WORD_BITS) | |
1061 | { | |
1062 | /* Multiple array elements fit in one element of | |
1063 | bitmap_element->bits. */ | |
1064 | size_t array_i = array_base; | |
1065 | for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS; | |
1066 | ++word_i) | |
1067 | { | |
1068 | BITMAP_WORD word = 0; | |
1069 | for (unsigned int shift = 0; | |
1070 | shift < BITMAP_WORD_BITS && array_i < array_size; | |
1071 | shift += array_element_bits) | |
1072 | word |= array_elements[array_i++] << shift; | |
1073 | bitmap_element->bits[word_i] = word; | |
1074 | } | |
1075 | } | |
1076 | else | |
1077 | { | |
1078 | /* Array elements are the same size as elements of | |
1079 | bitmap_element->bits, or are an exact multiple of that size. */ | |
1080 | unsigned int word_i = 0; | |
1081 | for (unsigned int i = 0; i < array_count; ++i) | |
1082 | for (unsigned int shift = 0; shift < array_element_bits; | |
1083 | shift += BITMAP_WORD_BITS) | |
1084 | bitmap_element->bits[word_i++] | |
1085 | = array_elements[array_base + i] >> shift; | |
1086 | while (word_i < BITMAP_ELEMENT_WORDS) | |
1087 | bitmap_element->bits[word_i++] = 0; | |
1088 | } | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | #endif /* GCC_BITMAP_H */ |