]> git.ipfire.org Git - thirdparty/gcc.git/blame_incremental - gcc/caller-save.c
Remove BB_HEAD, BB_END, BB_HEADER scaffolding
[thirdparty/gcc.git] / gcc / caller-save.c
... / ...
CommitLineData
1/* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "rtl.h"
25#include "regs.h"
26#include "insn-config.h"
27#include "flags.h"
28#include "hard-reg-set.h"
29#include "recog.h"
30#include "basic-block.h"
31#include "df.h"
32#include "reload.h"
33#include "function.h"
34#include "expr.h"
35#include "diagnostic-core.h"
36#include "tm_p.h"
37#include "addresses.h"
38#include "ggc.h"
39#include "dumpfile.h"
40
41#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
42
43#define regno_save_mode \
44 (this_target_reload->x_regno_save_mode)
45#define cached_reg_save_code \
46 (this_target_reload->x_cached_reg_save_code)
47#define cached_reg_restore_code \
48 (this_target_reload->x_cached_reg_restore_code)
49
50/* For each hard register, a place on the stack where it can be saved,
51 if needed. */
52
53static rtx
54 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
55
56/* The number of elements in the subsequent array. */
57static int save_slots_num;
58
59/* Allocated slots so far. */
60static rtx save_slots[FIRST_PSEUDO_REGISTER];
61
62/* Set of hard regs currently residing in save area (during insn scan). */
63
64static HARD_REG_SET hard_regs_saved;
65
66/* Number of registers currently in hard_regs_saved. */
67
68static int n_regs_saved;
69
70/* Computed by mark_referenced_regs, all regs referenced in a given
71 insn. */
72static HARD_REG_SET referenced_regs;
73
74
75typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
76 void *mark_arg);
77
78static int reg_save_code (int, enum machine_mode);
79static int reg_restore_code (int, enum machine_mode);
80
81struct saved_hard_reg;
82static void initiate_saved_hard_regs (void);
83static void new_saved_hard_reg (int, int);
84static void finish_saved_hard_regs (void);
85static int saved_hard_reg_compare_func (const void *, const void *);
86
87static void mark_set_regs (rtx, const_rtx, void *);
88static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
89static refmarker_fn mark_reg_as_referenced;
90static refmarker_fn replace_reg_with_saved_mem;
91static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
92 enum machine_mode *);
93static int insert_restore (struct insn_chain *, int, int, int,
94 enum machine_mode *);
95static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
96 rtx);
97static void add_stored_regs (rtx, const_rtx, void *);
98
99\f
100
101static GTY(()) rtx savepat;
102static GTY(()) rtx restpat;
103static GTY(()) rtx test_reg;
104static GTY(()) rtx test_mem;
105static GTY(()) rtx saveinsn;
106static GTY(()) rtx restinsn;
107
108/* Return the INSN_CODE used to save register REG in mode MODE. */
109static int
110reg_save_code (int reg, enum machine_mode mode)
111{
112 bool ok;
113 if (cached_reg_save_code[reg][mode])
114 return cached_reg_save_code[reg][mode];
115 if (!HARD_REGNO_MODE_OK (reg, mode))
116 {
117 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
118 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
119 below silences a warning. */
120 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
121 cached_reg_save_code[reg][mode] = -1;
122 cached_reg_restore_code[reg][mode] = -1;
123 return -1;
124 }
125
126 /* Update the register number and modes of the register
127 and memory operand. */
128 SET_REGNO_RAW (test_reg, reg);
129 PUT_MODE (test_reg, mode);
130 PUT_MODE (test_mem, mode);
131
132 /* Force re-recognition of the modified insns. */
133 INSN_CODE (saveinsn) = -1;
134 INSN_CODE (restinsn) = -1;
135
136 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
137 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
138
139 /* Now extract both insns and see if we can meet their
140 constraints. */
141 ok = (cached_reg_save_code[reg][mode] != -1
142 && cached_reg_restore_code[reg][mode] != -1);
143 if (ok)
144 {
145 extract_insn (saveinsn);
146 ok = constrain_operands (1);
147 extract_insn (restinsn);
148 ok &= constrain_operands (1);
149 }
150
151 if (! ok)
152 {
153 cached_reg_save_code[reg][mode] = -1;
154 cached_reg_restore_code[reg][mode] = -1;
155 }
156 gcc_assert (cached_reg_save_code[reg][mode]);
157 return cached_reg_save_code[reg][mode];
158}
159
160/* Return the INSN_CODE used to restore register REG in mode MODE. */
161static int
162reg_restore_code (int reg, enum machine_mode mode)
163{
164 if (cached_reg_restore_code[reg][mode])
165 return cached_reg_restore_code[reg][mode];
166 /* Populate our cache. */
167 reg_save_code (reg, mode);
168 return cached_reg_restore_code[reg][mode];
169}
170\f
171/* Initialize for caller-save.
172
173 Look at all the hard registers that are used by a call and for which
174 reginfo.c has not already excluded from being used across a call.
175
176 Ensure that we can find a mode to save the register and that there is a
177 simple insn to save and restore the register. This latter check avoids
178 problems that would occur if we tried to save the MQ register of some
179 machines directly into memory. */
180
181void
182init_caller_save (void)
183{
184 rtx addr_reg;
185 int offset;
186 rtx address;
187 int i, j;
188
189 if (caller_save_initialized_p)
190 return;
191
192 caller_save_initialized_p = true;
193
194 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
195 /* First find all the registers that we need to deal with and all
196 the modes that they can have. If we can't find a mode to use,
197 we can't have the register live over calls. */
198
199 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
200 {
201 if (call_used_regs[i]
202 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
203 {
204 for (j = 1; j <= MOVE_MAX_WORDS; j++)
205 {
206 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
207 VOIDmode);
208 if (regno_save_mode[i][j] == VOIDmode && j == 1)
209 {
210 SET_HARD_REG_BIT (call_fixed_reg_set, i);
211 }
212 }
213 }
214 else
215 regno_save_mode[i][1] = VOIDmode;
216 }
217
218 /* The following code tries to approximate the conditions under which
219 we can easily save and restore a register without scratch registers or
220 other complexities. It will usually work, except under conditions where
221 the validity of an insn operand is dependent on the address offset.
222 No such cases are currently known.
223
224 We first find a typical offset from some BASE_REG_CLASS register.
225 This address is chosen by finding the first register in the class
226 and by finding the smallest power of two that is a valid offset from
227 that register in every mode we will use to save registers. */
228
229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
230 if (TEST_HARD_REG_BIT
231 (reg_class_contents
232 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
233 PLUS, CONST_INT)], i))
234 break;
235
236 gcc_assert (i < FIRST_PSEUDO_REGISTER);
237
238 addr_reg = gen_rtx_REG (Pmode, i);
239
240 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
241 {
242 address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
243
244 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
245 if (regno_save_mode[i][1] != VOIDmode
246 && ! strict_memory_address_p (regno_save_mode[i][1], address))
247 break;
248
249 if (i == FIRST_PSEUDO_REGISTER)
250 break;
251 }
252
253 /* If we didn't find a valid address, we must use register indirect. */
254 if (offset == 0)
255 address = addr_reg;
256
257 /* Next we try to form an insn to save and restore the register. We
258 see if such an insn is recognized and meets its constraints.
259
260 To avoid lots of unnecessary RTL allocation, we construct all the RTL
261 once, then modify the memory and register operands in-place. */
262
263 test_reg = gen_rtx_REG (VOIDmode, 0);
264 test_mem = gen_rtx_MEM (VOIDmode, address);
265 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
266 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
267
268 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
269 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
270
271 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
272 for (j = 1; j <= MOVE_MAX_WORDS; j++)
273 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
274 {
275 regno_save_mode[i][j] = VOIDmode;
276 if (j == 1)
277 {
278 SET_HARD_REG_BIT (call_fixed_reg_set, i);
279 if (call_used_regs[i])
280 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
281 }
282 }
283}
284
285\f
286
287/* Initialize save areas by showing that we haven't allocated any yet. */
288
289void
290init_save_areas (void)
291{
292 int i, j;
293
294 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
295 for (j = 1; j <= MOVE_MAX_WORDS; j++)
296 regno_save_mem[i][j] = 0;
297 save_slots_num = 0;
298
299}
300
301/* The structure represents a hard register which should be saved
302 through the call. It is used when the integrated register
303 allocator (IRA) is used and sharing save slots is on. */
304struct saved_hard_reg
305{
306 /* Order number starting with 0. */
307 int num;
308 /* The hard regno. */
309 int hard_regno;
310 /* Execution frequency of all calls through which given hard
311 register should be saved. */
312 int call_freq;
313 /* Stack slot reserved to save the hard register through calls. */
314 rtx slot;
315 /* True if it is first hard register in the chain of hard registers
316 sharing the same stack slot. */
317 int first_p;
318 /* Order number of the next hard register structure with the same
319 slot in the chain. -1 represents end of the chain. */
320 int next;
321};
322
323/* Map: hard register number to the corresponding structure. */
324static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
325
326/* The number of all structures representing hard registers should be
327 saved, in order words, the number of used elements in the following
328 array. */
329static int saved_regs_num;
330
331/* Pointers to all the structures. Index is the order number of the
332 corresponding structure. */
333static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
334
335/* First called function for work with saved hard registers. */
336static void
337initiate_saved_hard_regs (void)
338{
339 int i;
340
341 saved_regs_num = 0;
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 hard_reg_map[i] = NULL;
344}
345
346/* Allocate and return new saved hard register with given REGNO and
347 CALL_FREQ. */
348static void
349new_saved_hard_reg (int regno, int call_freq)
350{
351 struct saved_hard_reg *saved_reg;
352
353 saved_reg
354 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
355 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
356 saved_reg->num = saved_regs_num++;
357 saved_reg->hard_regno = regno;
358 saved_reg->call_freq = call_freq;
359 saved_reg->first_p = FALSE;
360 saved_reg->next = -1;
361}
362
363/* Free memory allocated for the saved hard registers. */
364static void
365finish_saved_hard_regs (void)
366{
367 int i;
368
369 for (i = 0; i < saved_regs_num; i++)
370 free (all_saved_regs[i]);
371}
372
373/* The function is used to sort the saved hard register structures
374 according their frequency. */
375static int
376saved_hard_reg_compare_func (const void *v1p, const void *v2p)
377{
378 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
379 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
380
381 if (flag_omit_frame_pointer)
382 {
383 if (p1->call_freq - p2->call_freq != 0)
384 return p1->call_freq - p2->call_freq;
385 }
386 else if (p2->call_freq - p1->call_freq != 0)
387 return p2->call_freq - p1->call_freq;
388
389 return p1->num - p2->num;
390}
391
392/* Allocate save areas for any hard registers that might need saving.
393 We take a conservative approach here and look for call-clobbered hard
394 registers that are assigned to pseudos that cross calls. This may
395 overestimate slightly (especially if some of these registers are later
396 used as spill registers), but it should not be significant.
397
398 For IRA we use priority coloring to decrease stack slots needed for
399 saving hard registers through calls. We build conflicts for them
400 to do coloring.
401
402 Future work:
403
404 In the fallback case we should iterate backwards across all possible
405 modes for the save, choosing the largest available one instead of
406 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
407
408 We do not try to use "move multiple" instructions that exist
409 on some machines (such as the 68k moveml). It could be a win to try
410 and use them when possible. The hard part is doing it in a way that is
411 machine independent since they might be saving non-consecutive
412 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
413
414void
415setup_save_areas (void)
416{
417 int i, j, k, freq;
418 HARD_REG_SET hard_regs_used;
419 struct saved_hard_reg *saved_reg;
420 rtx insn;
421 struct insn_chain *chain, *next;
422 unsigned int regno;
423 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
424 reg_set_iterator rsi;
425
426 CLEAR_HARD_REG_SET (hard_regs_used);
427
428 /* Find every CALL_INSN and record which hard regs are live across the
429 call into HARD_REG_MAP and HARD_REGS_USED. */
430 initiate_saved_hard_regs ();
431 /* Create hard reg saved regs. */
432 for (chain = reload_insn_chain; chain != 0; chain = next)
433 {
434 rtx cheap;
435
436 insn = chain->insn;
437 next = chain->next;
438 if (!CALL_P (insn)
439 || find_reg_note (insn, REG_NORETURN, NULL))
440 continue;
441 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
442 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
443 &chain->live_throughout);
444 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
445
446 /* Record all registers set in this call insn. These don't
447 need to be saved. N.B. the call insn might set a subreg
448 of a multi-hard-reg pseudo; then the pseudo is considered
449 live during the call, but the subreg that is set
450 isn't. */
451 CLEAR_HARD_REG_SET (this_insn_sets);
452 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
453 /* Sibcalls are considered to set the return value. */
454 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
455 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
456
457 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
458 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
459 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
460 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
461 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
462 {
463 if (hard_reg_map[regno] != NULL)
464 hard_reg_map[regno]->call_freq += freq;
465 else
466 new_saved_hard_reg (regno, freq);
467 SET_HARD_REG_BIT (hard_regs_used, regno);
468 }
469 cheap = find_reg_note (insn, REG_RETURNED, NULL);
470 if (cheap)
471 cheap = XEXP (cheap, 0);
472 /* Look through all live pseudos, mark their hard registers. */
473 EXECUTE_IF_SET_IN_REG_SET
474 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
475 {
476 int r = reg_renumber[regno];
477 int bound;
478
479 if (r < 0 || regno_reg_rtx[regno] == cheap)
480 continue;
481
482 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
483 for (; r < bound; r++)
484 if (TEST_HARD_REG_BIT (used_regs, r))
485 {
486 if (hard_reg_map[r] != NULL)
487 hard_reg_map[r]->call_freq += freq;
488 else
489 new_saved_hard_reg (r, freq);
490 SET_HARD_REG_BIT (hard_regs_to_save, r);
491 SET_HARD_REG_BIT (hard_regs_used, r);
492 }
493 }
494 }
495
496 /* If requested, figure out which hard regs can share save slots. */
497 if (optimize && flag_ira_share_save_slots)
498 {
499 rtx slot;
500 char *saved_reg_conflicts;
501 int next_k;
502 struct saved_hard_reg *saved_reg2, *saved_reg3;
503 int call_saved_regs_num;
504 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
505 int best_slot_num;
506 int prev_save_slots_num;
507 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
508
509 /* Find saved hard register conflicts. */
510 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
511 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
512 for (chain = reload_insn_chain; chain != 0; chain = next)
513 {
514 rtx cheap;
515 call_saved_regs_num = 0;
516 insn = chain->insn;
517 next = chain->next;
518 if (!CALL_P (insn)
519 || find_reg_note (insn, REG_NORETURN, NULL))
520 continue;
521
522 cheap = find_reg_note (insn, REG_RETURNED, NULL);
523 if (cheap)
524 cheap = XEXP (cheap, 0);
525
526 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
527 &chain->live_throughout);
528 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
529
530 /* Record all registers set in this call insn. These don't
531 need to be saved. N.B. the call insn might set a subreg
532 of a multi-hard-reg pseudo; then the pseudo is considered
533 live during the call, but the subreg that is set
534 isn't. */
535 CLEAR_HARD_REG_SET (this_insn_sets);
536 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
537 /* Sibcalls are considered to set the return value,
538 compare df-scan.c:df_get_call_refs. */
539 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
540 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
541
542 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
543 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
544 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
545 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
546 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
547 {
548 gcc_assert (hard_reg_map[regno] != NULL);
549 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
550 }
551 /* Look through all live pseudos, mark their hard registers. */
552 EXECUTE_IF_SET_IN_REG_SET
553 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
554 {
555 int r = reg_renumber[regno];
556 int bound;
557
558 if (r < 0 || regno_reg_rtx[regno] == cheap)
559 continue;
560
561 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
562 for (; r < bound; r++)
563 if (TEST_HARD_REG_BIT (used_regs, r))
564 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
565 }
566 for (i = 0; i < call_saved_regs_num; i++)
567 {
568 saved_reg = call_saved_regs[i];
569 for (j = 0; j < call_saved_regs_num; j++)
570 if (i != j)
571 {
572 saved_reg2 = call_saved_regs[j];
573 saved_reg_conflicts[saved_reg->num * saved_regs_num
574 + saved_reg2->num]
575 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
576 + saved_reg->num]
577 = TRUE;
578 }
579 }
580 }
581 /* Sort saved hard regs. */
582 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
583 saved_hard_reg_compare_func);
584 /* Initiate slots available from the previous reload
585 iteration. */
586 prev_save_slots_num = save_slots_num;
587 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
588 save_slots_num = 0;
589 /* Allocate stack slots for the saved hard registers. */
590 for (i = 0; i < saved_regs_num; i++)
591 {
592 saved_reg = all_saved_regs[i];
593 regno = saved_reg->hard_regno;
594 for (j = 0; j < i; j++)
595 {
596 saved_reg2 = all_saved_regs[j];
597 if (! saved_reg2->first_p)
598 continue;
599 slot = saved_reg2->slot;
600 for (k = j; k >= 0; k = next_k)
601 {
602 saved_reg3 = all_saved_regs[k];
603 next_k = saved_reg3->next;
604 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
605 + saved_reg3->num])
606 break;
607 }
608 if (k < 0
609 && (GET_MODE_SIZE (regno_save_mode[regno][1])
610 <= GET_MODE_SIZE (regno_save_mode
611 [saved_reg2->hard_regno][1])))
612 {
613 saved_reg->slot
614 = adjust_address_nv
615 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
616 regno_save_mem[regno][1] = saved_reg->slot;
617 saved_reg->next = saved_reg2->next;
618 saved_reg2->next = i;
619 if (dump_file != NULL)
620 fprintf (dump_file, "%d uses slot of %d\n",
621 regno, saved_reg2->hard_regno);
622 break;
623 }
624 }
625 if (j == i)
626 {
627 saved_reg->first_p = TRUE;
628 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
629 {
630 slot = prev_save_slots[j];
631 if (slot == NULL_RTX)
632 continue;
633 if (GET_MODE_SIZE (regno_save_mode[regno][1])
634 <= GET_MODE_SIZE (GET_MODE (slot))
635 && best_slot_num < 0)
636 best_slot_num = j;
637 if (GET_MODE (slot) == regno_save_mode[regno][1])
638 break;
639 }
640 if (best_slot_num >= 0)
641 {
642 saved_reg->slot = prev_save_slots[best_slot_num];
643 saved_reg->slot
644 = adjust_address_nv
645 (saved_reg->slot,
646 regno_save_mode[saved_reg->hard_regno][1], 0);
647 if (dump_file != NULL)
648 fprintf (dump_file,
649 "%d uses a slot from prev iteration\n", regno);
650 prev_save_slots[best_slot_num] = NULL_RTX;
651 if (best_slot_num + 1 == prev_save_slots_num)
652 prev_save_slots_num--;
653 }
654 else
655 {
656 saved_reg->slot
657 = assign_stack_local_1
658 (regno_save_mode[regno][1],
659 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
660 ASLK_REDUCE_ALIGN);
661 if (dump_file != NULL)
662 fprintf (dump_file, "%d uses a new slot\n", regno);
663 }
664 regno_save_mem[regno][1] = saved_reg->slot;
665 save_slots[save_slots_num++] = saved_reg->slot;
666 }
667 }
668 free (saved_reg_conflicts);
669 finish_saved_hard_regs ();
670 }
671 else
672 {
673 /* We are not sharing slots.
674
675 Run through all the call-used hard-registers and allocate
676 space for each in the caller-save area. Try to allocate space
677 in a manner which allows multi-register saves/restores to be done. */
678
679 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
680 for (j = MOVE_MAX_WORDS; j > 0; j--)
681 {
682 int do_save = 1;
683
684 /* If no mode exists for this size, try another. Also break out
685 if we have already saved this hard register. */
686 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
687 continue;
688
689 /* See if any register in this group has been saved. */
690 for (k = 0; k < j; k++)
691 if (regno_save_mem[i + k][1])
692 {
693 do_save = 0;
694 break;
695 }
696 if (! do_save)
697 continue;
698
699 for (k = 0; k < j; k++)
700 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
701 {
702 do_save = 0;
703 break;
704 }
705 if (! do_save)
706 continue;
707
708 /* We have found an acceptable mode to store in. Since
709 hard register is always saved in the widest mode
710 available, the mode may be wider than necessary, it is
711 OK to reduce the alignment of spill space. We will
712 verify that it is equal to or greater than required
713 when we restore and save the hard register in
714 insert_restore and insert_save. */
715 regno_save_mem[i][j]
716 = assign_stack_local_1 (regno_save_mode[i][j],
717 GET_MODE_SIZE (regno_save_mode[i][j]),
718 0, ASLK_REDUCE_ALIGN);
719
720 /* Setup single word save area just in case... */
721 for (k = 0; k < j; k++)
722 /* This should not depend on WORDS_BIG_ENDIAN.
723 The order of words in regs is the same as in memory. */
724 regno_save_mem[i + k][1]
725 = adjust_address_nv (regno_save_mem[i][j],
726 regno_save_mode[i + k][1],
727 k * UNITS_PER_WORD);
728 }
729 }
730
731 /* Now loop again and set the alias set of any save areas we made to
732 the alias set used to represent frame objects. */
733 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
734 for (j = MOVE_MAX_WORDS; j > 0; j--)
735 if (regno_save_mem[i][j] != 0)
736 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
737}
738
739\f
740
741/* Find the places where hard regs are live across calls and save them. */
742
743void
744save_call_clobbered_regs (void)
745{
746 struct insn_chain *chain, *next, *last = NULL;
747 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
748
749 /* Computed in mark_set_regs, holds all registers set by the current
750 instruction. */
751 HARD_REG_SET this_insn_sets;
752
753 CLEAR_HARD_REG_SET (hard_regs_saved);
754 n_regs_saved = 0;
755
756 for (chain = reload_insn_chain; chain != 0; chain = next)
757 {
758 rtx_insn *insn = chain->insn;
759 enum rtx_code code = GET_CODE (insn);
760
761 next = chain->next;
762
763 gcc_assert (!chain->is_caller_save_insn);
764
765 if (NONDEBUG_INSN_P (insn))
766 {
767 /* If some registers have been saved, see if INSN references
768 any of them. We must restore them before the insn if so. */
769
770 if (n_regs_saved)
771 {
772 int regno;
773 HARD_REG_SET this_insn_sets;
774
775 if (code == JUMP_INSN)
776 /* Restore all registers if this is a JUMP_INSN. */
777 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
778 else
779 {
780 CLEAR_HARD_REG_SET (referenced_regs);
781 mark_referenced_regs (&PATTERN (insn),
782 mark_reg_as_referenced, NULL);
783 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
784 }
785
786 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
787 if (TEST_HARD_REG_BIT (referenced_regs, regno))
788 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
789 save_mode);
790 /* If a saved register is set after the call, this means we no
791 longer should restore it. This can happen when parts of a
792 multi-word pseudo do not conflict with other pseudos, so
793 IRA may allocate the same hard register for both. One may
794 be live across the call, while the other is set
795 afterwards. */
796 CLEAR_HARD_REG_SET (this_insn_sets);
797 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
798 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
799 }
800
801 if (code == CALL_INSN
802 && ! SIBLING_CALL_P (insn)
803 && ! find_reg_note (insn, REG_NORETURN, NULL))
804 {
805 unsigned regno;
806 HARD_REG_SET hard_regs_to_save;
807 HARD_REG_SET call_def_reg_set;
808 reg_set_iterator rsi;
809 rtx cheap;
810
811 cheap = find_reg_note (insn, REG_RETURNED, NULL);
812 if (cheap)
813 cheap = XEXP (cheap, 0);
814
815 /* Use the register life information in CHAIN to compute which
816 regs are live during the call. */
817 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
818 &chain->live_throughout);
819 /* Save hard registers always in the widest mode available. */
820 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
821 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
822 save_mode [regno] = regno_save_mode [regno][1];
823 else
824 save_mode [regno] = VOIDmode;
825
826 /* Look through all live pseudos, mark their hard registers
827 and choose proper mode for saving. */
828 EXECUTE_IF_SET_IN_REG_SET
829 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
830 {
831 int r = reg_renumber[regno];
832 int nregs;
833 enum machine_mode mode;
834
835 if (r < 0 || regno_reg_rtx[regno] == cheap)
836 continue;
837 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
838 mode = HARD_REGNO_CALLER_SAVE_MODE
839 (r, nregs, PSEUDO_REGNO_MODE (regno));
840 if (GET_MODE_BITSIZE (mode)
841 > GET_MODE_BITSIZE (save_mode[r]))
842 save_mode[r] = mode;
843 while (nregs-- > 0)
844 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
845 }
846
847 /* Record all registers set in this call insn. These don't need
848 to be saved. N.B. the call insn might set a subreg of a
849 multi-hard-reg pseudo; then the pseudo is considered live
850 during the call, but the subreg that is set isn't. */
851 CLEAR_HARD_REG_SET (this_insn_sets);
852 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
853
854 /* Compute which hard regs must be saved before this call. */
855 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
856 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
857 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
858 get_call_reg_set_usage (insn, &call_def_reg_set,
859 call_used_reg_set);
860 AND_HARD_REG_SET (hard_regs_to_save, call_def_reg_set);
861
862 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
863 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
864 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
865
866 /* Must recompute n_regs_saved. */
867 n_regs_saved = 0;
868 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
869 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
870 n_regs_saved++;
871
872 if (cheap
873 && HARD_REGISTER_P (cheap)
874 && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
875 {
876 rtx dest, newpat;
877 rtx pat = PATTERN (insn);
878 if (GET_CODE (pat) == PARALLEL)
879 pat = XVECEXP (pat, 0, 0);
880 dest = SET_DEST (pat);
881 newpat = gen_rtx_SET (VOIDmode, cheap, copy_rtx (dest));
882 chain = insert_one_insn (chain, 0, -1, newpat);
883 }
884 }
885 last = chain;
886 }
887 else if (DEBUG_INSN_P (insn) && n_regs_saved)
888 mark_referenced_regs (&PATTERN (insn),
889 replace_reg_with_saved_mem,
890 save_mode);
891
892 if (chain->next == 0 || chain->next->block != chain->block)
893 {
894 int regno;
895 /* At the end of the basic block, we must restore any registers that
896 remain saved. If the last insn in the block is a JUMP_INSN, put
897 the restore before the insn, otherwise, put it after the insn. */
898
899 if (n_regs_saved
900 && DEBUG_INSN_P (insn)
901 && last
902 && last->block == chain->block)
903 {
904 rtx_insn *ins, *prev;
905 basic_block bb = BLOCK_FOR_INSN (insn);
906
907 /* When adding hard reg restores after a DEBUG_INSN, move
908 all notes between last real insn and this DEBUG_INSN after
909 the DEBUG_INSN, otherwise we could get code
910 -g/-g0 differences. */
911 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
912 {
913 prev = PREV_INSN (ins);
914 if (NOTE_P (ins))
915 {
916 SET_NEXT_INSN (prev) = NEXT_INSN (ins);
917 SET_PREV_INSN (NEXT_INSN (ins)) = prev;
918 SET_PREV_INSN (ins) = insn;
919 SET_NEXT_INSN (ins) = NEXT_INSN (insn);
920 SET_NEXT_INSN (insn) = ins;
921 if (NEXT_INSN (ins))
922 SET_PREV_INSN (NEXT_INSN (ins)) = ins;
923 if (BB_END (bb) == insn)
924 BB_END (bb) = ins;
925 }
926 else
927 gcc_assert (DEBUG_INSN_P (ins));
928 }
929 }
930 last = NULL;
931
932 if (n_regs_saved)
933 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
934 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
935 regno += insert_restore (chain, JUMP_P (insn),
936 regno, MOVE_MAX_WORDS, save_mode);
937 }
938 }
939}
940
941/* Here from note_stores, or directly from save_call_clobbered_regs, when
942 an insn stores a value in a register.
943 Set the proper bit or bits in this_insn_sets. All pseudos that have
944 been assigned hard regs have had their register number changed already,
945 so we can ignore pseudos. */
946static void
947mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
948{
949 int regno, endregno, i;
950 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
951
952 if (GET_CODE (reg) == SUBREG)
953 {
954 rtx inner = SUBREG_REG (reg);
955 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
956 return;
957 regno = subreg_regno (reg);
958 endregno = regno + subreg_nregs (reg);
959 }
960 else if (REG_P (reg)
961 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
962 {
963 regno = REGNO (reg);
964 endregno = END_HARD_REGNO (reg);
965 }
966 else
967 return;
968
969 for (i = regno; i < endregno; i++)
970 SET_HARD_REG_BIT (*this_insn_sets, i);
971}
972
973/* Here from note_stores when an insn stores a value in a register.
974 Set the proper bit or bits in the passed regset. All pseudos that have
975 been assigned hard regs have had their register number changed already,
976 so we can ignore pseudos. */
977static void
978add_stored_regs (rtx reg, const_rtx setter, void *data)
979{
980 int regno, endregno, i;
981 enum machine_mode mode = GET_MODE (reg);
982 int offset = 0;
983
984 if (GET_CODE (setter) == CLOBBER)
985 return;
986
987 if (GET_CODE (reg) == SUBREG
988 && REG_P (SUBREG_REG (reg))
989 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
990 {
991 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
992 GET_MODE (SUBREG_REG (reg)),
993 SUBREG_BYTE (reg),
994 GET_MODE (reg));
995 regno = REGNO (SUBREG_REG (reg)) + offset;
996 endregno = regno + subreg_nregs (reg);
997 }
998 else
999 {
1000 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1001 return;
1002
1003 regno = REGNO (reg) + offset;
1004 endregno = end_hard_regno (mode, regno);
1005 }
1006
1007 for (i = regno; i < endregno; i++)
1008 SET_REGNO_REG_SET ((regset) data, i);
1009}
1010
1011/* Walk X and record all referenced registers in REFERENCED_REGS. */
1012static void
1013mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1014{
1015 enum rtx_code code = GET_CODE (*loc);
1016 const char *fmt;
1017 int i, j;
1018
1019 if (code == SET)
1020 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1021 if (code == SET || code == CLOBBER)
1022 {
1023 loc = &SET_DEST (*loc);
1024 code = GET_CODE (*loc);
1025 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1026 || code == PC || code == CC0
1027 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1028 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1029 /* If we're setting only part of a multi-word register,
1030 we shall mark it as referenced, because the words
1031 that are not being set should be restored. */
1032 && ((GET_MODE_SIZE (GET_MODE (*loc))
1033 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1034 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1035 <= UNITS_PER_WORD))))
1036 return;
1037 }
1038 if (code == MEM || code == SUBREG)
1039 {
1040 loc = &XEXP (*loc, 0);
1041 code = GET_CODE (*loc);
1042 }
1043
1044 if (code == REG)
1045 {
1046 int regno = REGNO (*loc);
1047 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1048 : reg_renumber[regno]);
1049
1050 if (hardregno >= 0)
1051 mark (loc, GET_MODE (*loc), hardregno, arg);
1052 else if (arg)
1053 /* ??? Will we ever end up with an equiv expression in a debug
1054 insn, that would have required restoring a reg, or will
1055 reload take care of it for us? */
1056 return;
1057 /* If this is a pseudo that did not get a hard register, scan its
1058 memory location, since it might involve the use of another
1059 register, which might be saved. */
1060 else if (reg_equiv_mem (regno) != 0)
1061 mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1062 else if (reg_equiv_address (regno) != 0)
1063 mark_referenced_regs (&reg_equiv_address (regno), mark, arg);
1064 return;
1065 }
1066
1067 fmt = GET_RTX_FORMAT (code);
1068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1069 {
1070 if (fmt[i] == 'e')
1071 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1072 else if (fmt[i] == 'E')
1073 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1074 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1075 }
1076}
1077
1078/* Parameter function for mark_referenced_regs() that adds registers
1079 present in the insn and in equivalent mems and addresses to
1080 referenced_regs. */
1081
1082static void
1083mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1084 enum machine_mode mode,
1085 int hardregno,
1086 void *arg ATTRIBUTE_UNUSED)
1087{
1088 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1089}
1090
1091/* Parameter function for mark_referenced_regs() that replaces
1092 registers referenced in a debug_insn that would have been restored,
1093 should it be a non-debug_insn, with their save locations. */
1094
1095static void
1096replace_reg_with_saved_mem (rtx *loc,
1097 enum machine_mode mode,
1098 int regno,
1099 void *arg)
1100{
1101 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1102 rtx mem;
1103 enum machine_mode *save_mode = (enum machine_mode *)arg;
1104
1105 for (i = 0; i < nregs; i++)
1106 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1107 break;
1108
1109 /* If none of the registers in the range would need restoring, we're
1110 all set. */
1111 if (i == nregs)
1112 return;
1113
1114 while (++i < nregs)
1115 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1116 break;
1117
1118 if (i == nregs
1119 && regno_save_mem[regno][nregs])
1120 {
1121 mem = copy_rtx (regno_save_mem[regno][nregs]);
1122
1123 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1124 mem = adjust_address_nv (mem, save_mode[regno], 0);
1125
1126 if (GET_MODE (mem) != mode)
1127 {
1128 /* This is gen_lowpart_if_possible(), but without validating
1129 the newly-formed address. */
1130 int offset = 0;
1131
1132 if (WORDS_BIG_ENDIAN)
1133 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1134 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1135 if (BYTES_BIG_ENDIAN)
1136 /* Adjust the address so that the address-after-the-data is
1137 unchanged. */
1138 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1139 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1140
1141 mem = adjust_address_nv (mem, mode, offset);
1142 }
1143 }
1144 else
1145 {
1146 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1147 for (i = 0; i < nregs; i++)
1148 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1149 {
1150 gcc_assert (regno_save_mem[regno + i][1]);
1151 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1152 }
1153 else
1154 {
1155 gcc_assert (save_mode[regno] != VOIDmode);
1156 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1157 regno + i);
1158 }
1159 }
1160
1161 gcc_assert (GET_MODE (mem) == mode);
1162 *loc = mem;
1163}
1164
1165\f
1166/* Insert a sequence of insns to restore. Place these insns in front of
1167 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1168 the maximum number of registers which should be restored during this call.
1169 It should never be less than 1 since we only work with entire registers.
1170
1171 Note that we have verified in init_caller_save that we can do this
1172 with a simple SET, so use it. Set INSN_CODE to what we save there
1173 since the address might not be valid so the insn might not be recognized.
1174 These insns will be reloaded and have register elimination done by
1175 find_reload, so we need not worry about that here.
1176
1177 Return the extra number of registers saved. */
1178
1179static int
1180insert_restore (struct insn_chain *chain, int before_p, int regno,
1181 int maxrestore, enum machine_mode *save_mode)
1182{
1183 int i, k;
1184 rtx pat = NULL_RTX;
1185 int code;
1186 unsigned int numregs = 0;
1187 struct insn_chain *new_chain;
1188 rtx mem;
1189
1190 /* A common failure mode if register status is not correct in the
1191 RTL is for this routine to be called with a REGNO we didn't
1192 expect to save. That will cause us to write an insn with a (nil)
1193 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1194 later, check for this common case here instead. This will remove
1195 one step in debugging such problems. */
1196 gcc_assert (regno_save_mem[regno][1]);
1197
1198 /* Get the pattern to emit and update our status.
1199
1200 See if we can restore `maxrestore' registers at once. Work
1201 backwards to the single register case. */
1202 for (i = maxrestore; i > 0; i--)
1203 {
1204 int j;
1205 int ok = 1;
1206
1207 if (regno_save_mem[regno][i] == 0)
1208 continue;
1209
1210 for (j = 0; j < i; j++)
1211 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1212 {
1213 ok = 0;
1214 break;
1215 }
1216 /* Must do this one restore at a time. */
1217 if (! ok)
1218 continue;
1219
1220 numregs = i;
1221 break;
1222 }
1223
1224 mem = regno_save_mem [regno][numregs];
1225 if (save_mode [regno] != VOIDmode
1226 && save_mode [regno] != GET_MODE (mem)
1227 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1228 /* Check that insn to restore REGNO in save_mode[regno] is
1229 correct. */
1230 && reg_save_code (regno, save_mode[regno]) >= 0)
1231 mem = adjust_address_nv (mem, save_mode[regno], 0);
1232 else
1233 mem = copy_rtx (mem);
1234
1235 /* Verify that the alignment of spill space is equal to or greater
1236 than required. */
1237 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1238 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1239
1240 pat = gen_rtx_SET (VOIDmode,
1241 gen_rtx_REG (GET_MODE (mem),
1242 regno), mem);
1243 code = reg_restore_code (regno, GET_MODE (mem));
1244 new_chain = insert_one_insn (chain, before_p, code, pat);
1245
1246 /* Clear status for all registers we restored. */
1247 for (k = 0; k < i; k++)
1248 {
1249 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1250 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1251 n_regs_saved--;
1252 }
1253
1254 /* Tell our callers how many extra registers we saved/restored. */
1255 return numregs - 1;
1256}
1257
1258/* Like insert_restore above, but save registers instead. */
1259
1260static int
1261insert_save (struct insn_chain *chain, int before_p, int regno,
1262 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1263{
1264 int i;
1265 unsigned int k;
1266 rtx pat = NULL_RTX;
1267 int code;
1268 unsigned int numregs = 0;
1269 struct insn_chain *new_chain;
1270 rtx mem;
1271
1272 /* A common failure mode if register status is not correct in the
1273 RTL is for this routine to be called with a REGNO we didn't
1274 expect to save. That will cause us to write an insn with a (nil)
1275 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1276 later, check for this common case here. This will remove one
1277 step in debugging such problems. */
1278 gcc_assert (regno_save_mem[regno][1]);
1279
1280 /* Get the pattern to emit and update our status.
1281
1282 See if we can save several registers with a single instruction.
1283 Work backwards to the single register case. */
1284 for (i = MOVE_MAX_WORDS; i > 0; i--)
1285 {
1286 int j;
1287 int ok = 1;
1288 if (regno_save_mem[regno][i] == 0)
1289 continue;
1290
1291 for (j = 0; j < i; j++)
1292 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1293 {
1294 ok = 0;
1295 break;
1296 }
1297 /* Must do this one save at a time. */
1298 if (! ok)
1299 continue;
1300
1301 numregs = i;
1302 break;
1303 }
1304
1305 mem = regno_save_mem [regno][numregs];
1306 if (save_mode [regno] != VOIDmode
1307 && save_mode [regno] != GET_MODE (mem)
1308 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1309 /* Check that insn to save REGNO in save_mode[regno] is
1310 correct. */
1311 && reg_save_code (regno, save_mode[regno]) >= 0)
1312 mem = adjust_address_nv (mem, save_mode[regno], 0);
1313 else
1314 mem = copy_rtx (mem);
1315
1316 /* Verify that the alignment of spill space is equal to or greater
1317 than required. */
1318 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1319 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1320
1321 pat = gen_rtx_SET (VOIDmode, mem,
1322 gen_rtx_REG (GET_MODE (mem),
1323 regno));
1324 code = reg_save_code (regno, GET_MODE (mem));
1325 new_chain = insert_one_insn (chain, before_p, code, pat);
1326
1327 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1328 for (k = 0; k < numregs; k++)
1329 {
1330 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1331 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1332 n_regs_saved++;
1333 }
1334
1335 /* Tell our callers how many extra registers we saved/restored. */
1336 return numregs - 1;
1337}
1338
1339/* A for_each_rtx callback used by add_used_regs. Add the hard-register
1340 equivalent of each REG to regset DATA. */
1341
1342static int
1343add_used_regs_1 (rtx *loc, void *data)
1344{
1345 unsigned int regno;
1346 regset live;
1347 rtx x;
1348
1349 x = *loc;
1350 live = (regset) data;
1351 if (REG_P (x))
1352 {
1353 regno = REGNO (x);
1354 if (HARD_REGISTER_NUM_P (regno))
1355 bitmap_set_range (live, regno, hard_regno_nregs[regno][GET_MODE (x)]);
1356 else
1357 regno = reg_renumber[regno];
1358 }
1359 return 0;
1360}
1361
1362/* A note_uses callback used by insert_one_insn. Add the hard-register
1363 equivalent of each REG to regset DATA. */
1364
1365static void
1366add_used_regs (rtx *loc, void *data)
1367{
1368 for_each_rtx (loc, add_used_regs_1, data);
1369}
1370
1371/* Emit a new caller-save insn and set the code. */
1372static struct insn_chain *
1373insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1374{
1375 rtx_insn *insn = chain->insn;
1376 struct insn_chain *new_chain;
1377
1378#ifdef HAVE_cc0
1379 /* If INSN references CC0, put our insns in front of the insn that sets
1380 CC0. This is always safe, since the only way we could be passed an
1381 insn that references CC0 is for a restore, and doing a restore earlier
1382 isn't a problem. We do, however, assume here that CALL_INSNs don't
1383 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1384
1385 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1386 && before_p
1387 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1388 chain = chain->prev, insn = chain->insn;
1389#endif
1390
1391 new_chain = new_insn_chain ();
1392 if (before_p)
1393 {
1394 rtx link;
1395
1396 new_chain->prev = chain->prev;
1397 if (new_chain->prev != 0)
1398 new_chain->prev->next = new_chain;
1399 else
1400 reload_insn_chain = new_chain;
1401
1402 chain->prev = new_chain;
1403 new_chain->next = chain;
1404 new_chain->insn = emit_insn_before (pat, insn);
1405 /* ??? It would be nice if we could exclude the already / still saved
1406 registers from the live sets. */
1407 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1408 note_uses (&PATTERN (chain->insn), add_used_regs,
1409 &new_chain->live_throughout);
1410 /* If CHAIN->INSN is a call, then the registers which contain
1411 the arguments to the function are live in the new insn. */
1412 if (CALL_P (chain->insn))
1413 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1414 link != NULL_RTX;
1415 link = XEXP (link, 1))
1416 note_uses (&XEXP (link, 0), add_used_regs,
1417 &new_chain->live_throughout);
1418
1419 CLEAR_REG_SET (&new_chain->dead_or_set);
1420 if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1421 BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1422 }
1423 else
1424 {
1425 new_chain->next = chain->next;
1426 if (new_chain->next != 0)
1427 new_chain->next->prev = new_chain;
1428 chain->next = new_chain;
1429 new_chain->prev = chain;
1430 new_chain->insn = emit_insn_after (pat, insn);
1431 /* ??? It would be nice if we could exclude the already / still saved
1432 registers from the live sets, and observe REG_UNUSED notes. */
1433 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1434 /* Registers that are set in CHAIN->INSN live in the new insn.
1435 (Unless there is a REG_UNUSED note for them, but we don't
1436 look for them here.) */
1437 note_stores (PATTERN (chain->insn), add_stored_regs,
1438 &new_chain->live_throughout);
1439 CLEAR_REG_SET (&new_chain->dead_or_set);
1440 if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1441 BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1442 }
1443 new_chain->block = chain->block;
1444 new_chain->is_caller_save_insn = 1;
1445
1446 INSN_CODE (new_chain->insn) = code;
1447 return new_chain;
1448}
1449#include "gt-caller-save.h"