]> git.ipfire.org Git - thirdparty/gcc.git/blame_incremental - gcc/config/i386/constraints.md
Update copyright years.
[thirdparty/gcc.git] / gcc / config / i386 / constraints.md
... / ...
CommitLineData
1;; Constraint definitions for IA-32 and x86-64.
2;; Copyright (C) 2006-2020 Free Software Foundation, Inc.
3;;
4;; This file is part of GCC.
5;;
6;; GCC is free software; you can redistribute it and/or modify
7;; it under the terms of the GNU General Public License as published by
8;; the Free Software Foundation; either version 3, or (at your option)
9;; any later version.
10;;
11;; GCC is distributed in the hope that it will be useful,
12;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;; GNU General Public License for more details.
15;;
16;; You should have received a copy of the GNU General Public License
17;; along with GCC; see the file COPYING3. If not see
18;; <http://www.gnu.org/licenses/>.
19
20;;; Unused letters:
21;;; H
22;;; h j z
23
24;; Integer register constraints.
25;; It is not necessary to define 'r' here.
26(define_register_constraint "R" "LEGACY_REGS"
27 "Legacy register---the eight integer registers available on all
28 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
29 @code{si}, @code{di}, @code{bp}, @code{sp}).")
30
31(define_register_constraint "q" "TARGET_64BIT ? GENERAL_REGS : Q_REGS"
32 "Any register accessible as @code{@var{r}l}. In 32-bit mode, @code{a},
33 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.")
34
35(define_register_constraint "Q" "Q_REGS"
36 "Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
37 @code{c}, and @code{d}.")
38
39(define_register_constraint "l" "INDEX_REGS"
40 "@internal Any register that can be used as the index in a base+index
41 memory access: that is, any general register except the stack pointer.")
42
43(define_register_constraint "a" "AREG"
44 "The @code{a} register.")
45
46(define_register_constraint "b" "BREG"
47 "The @code{b} register.")
48
49(define_register_constraint "c" "CREG"
50 "The @code{c} register.")
51
52(define_register_constraint "d" "DREG"
53 "The @code{d} register.")
54
55(define_register_constraint "S" "SIREG"
56 "The @code{si} register.")
57
58(define_register_constraint "D" "DIREG"
59 "The @code{di} register.")
60
61(define_register_constraint "A" "AD_REGS"
62 "The @code{a} and @code{d} registers, as a pair (for instructions
63 that return half the result in one and half in the other).")
64
65(define_register_constraint "U" "CLOBBERED_REGS"
66 "The call-clobbered integer registers.")
67
68;; Floating-point register constraints.
69(define_register_constraint "f"
70 "TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 ? FLOAT_REGS : NO_REGS"
71 "Any 80387 floating-point (stack) register.")
72
73(define_register_constraint "t"
74 "TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 ? FP_TOP_REG : NO_REGS"
75 "Top of 80387 floating-point stack (@code{%st(0)}).")
76
77(define_register_constraint "u"
78 "TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 ? FP_SECOND_REG : NO_REGS"
79 "Second from top of 80387 floating-point stack (@code{%st(1)}).")
80
81(define_register_constraint "Yk" "TARGET_AVX512F ? MASK_REGS : NO_REGS"
82"@internal Any mask register that can be used as predicate, i.e. k1-k7.")
83
84(define_register_constraint "k" "TARGET_AVX512F ? ALL_MASK_REGS : NO_REGS"
85"@internal Any mask register.")
86
87;; Vector registers (also used for plain floating point nowadays).
88(define_register_constraint "y" "TARGET_MMX ? MMX_REGS : NO_REGS"
89 "Any MMX register.")
90
91(define_register_constraint "x" "TARGET_SSE ? SSE_REGS : NO_REGS"
92 "Any SSE register.")
93
94(define_register_constraint "v" "TARGET_SSE ? ALL_SSE_REGS : NO_REGS"
95 "Any EVEX encodable SSE register (@code{%xmm0-%xmm31}).")
96
97;; We use the Y prefix to denote any number of conditional register sets:
98;; z First SSE register.
99;; d any EVEX encodable SSE register for AVX512DQ target or
100;; any SSE register for SSE4_1 target.
101;; p Integer register when TARGET_PARTIAL_REG_STALL is disabled
102;; a Integer register when zero extensions with AND are disabled
103;; b Any register that can be used as the GOT base when calling
104;; ___tls_get_addr: that is, any general register except EAX
105;; and ESP, for -fno-plt if linker supports it. Otherwise,
106;; EBX.
107;; f x87 register when 80387 floating point arithmetic is enabled
108;; r SSE regs not requiring REX prefix when prefixes avoidance is enabled
109;; and all SSE regs otherwise
110;; v any EVEX encodable SSE register for AVX512VL target,
111;; otherwise any SSE register
112;; w any EVEX encodable SSE register for AVX512BW with TARGET_AVX512VL
113;; target.
114
115(define_register_constraint "Yz" "TARGET_SSE ? SSE_FIRST_REG : NO_REGS"
116 "First SSE register (@code{%xmm0}).")
117
118(define_register_constraint "Yd"
119 "TARGET_AVX512DQ ? ALL_SSE_REGS : TARGET_SSE4_1 ? SSE_REGS : NO_REGS"
120 "@internal Any EVEX encodable SSE register (@code{%xmm0-%xmm31}) for AVX512DQ target or any SSE register for SSE4_1 target.")
121
122(define_register_constraint "Yp"
123 "TARGET_PARTIAL_REG_STALL ? NO_REGS : GENERAL_REGS"
124 "@internal Any integer register when TARGET_PARTIAL_REG_STALL is disabled.")
125
126(define_register_constraint "Ya"
127 "TARGET_ZERO_EXTEND_WITH_AND && optimize_function_for_speed_p (cfun)
128 ? NO_REGS : GENERAL_REGS"
129 "@internal Any integer register when zero extensions with AND are disabled.")
130
131(define_register_constraint "Yb"
132 "(!flag_plt && HAVE_AS_IX86_TLS_GET_ADDR_GOT) ? TLS_GOTBASE_REGS : BREG"
133 "@internal Any register that can be used as the GOT base when calling
134 ___tls_get_addr: that is, any general register except @code{a} and
135 @code{sp} registers, for -fno-plt if linker supports it. Otherwise,
136 @code{b} register.")
137
138(define_register_constraint "Yf"
139 "(ix86_fpmath & FPMATH_387) ? FLOAT_REGS : NO_REGS"
140 "@internal Any x87 register when 80387 FP arithmetic is enabled.")
141
142(define_register_constraint "Yr"
143 "TARGET_SSE ? (TARGET_AVOID_4BYTE_PREFIXES ? NO_REX_SSE_REGS : ALL_SSE_REGS) : NO_REGS"
144 "@internal Lower SSE register when avoiding REX prefix and all SSE registers otherwise.")
145
146(define_register_constraint "Yv"
147 "TARGET_AVX512VL ? ALL_SSE_REGS : TARGET_SSE ? SSE_REGS : NO_REGS"
148 "@internal For AVX512VL, any EVEX encodable SSE register (@code{%xmm0-%xmm31}), otherwise any SSE register.")
149
150(define_register_constraint "Yw"
151 "TARGET_AVX512BW && TARGET_AVX512VL ? ALL_SSE_REGS : NO_REGS"
152 "@internal Any EVEX encodable SSE register (@code{%xmm0-%xmm31}) for AVX512BW with TARGET_AVX512VL target.")
153
154;; We use the B prefix to denote any number of internal operands:
155;; f FLAGS_REG
156;; g GOT memory operand.
157;; m Vector memory operand
158;; c Constant memory operand
159;; n Memory operand without REX prefix
160;; s Sibcall memory operand, not valid for TARGET_X32
161;; w Call memory operand, not valid for TARGET_X32
162;; z Constant call address operand.
163;; C SSE constant operand.
164
165(define_constraint "Bf"
166 "@internal Flags register operand."
167 (match_operand 0 "flags_reg_operand"))
168
169(define_constraint "Bg"
170 "@internal GOT memory operand."
171 (match_operand 0 "GOT_memory_operand"))
172
173(define_special_memory_constraint "Bm"
174 "@internal Vector memory operand."
175 (match_operand 0 "vector_memory_operand"))
176
177(define_special_memory_constraint "Bc"
178 "@internal Constant memory operand."
179 (and (match_operand 0 "memory_operand")
180 (match_test "constant_address_p (XEXP (op, 0))")))
181
182(define_special_memory_constraint "Bn"
183 "@internal Memory operand without REX prefix."
184 (match_operand 0 "norex_memory_operand"))
185
186(define_constraint "Bs"
187 "@internal Sibcall memory operand."
188 (ior (and (not (match_test "TARGET_INDIRECT_BRANCH_REGISTER"))
189 (not (match_test "TARGET_X32"))
190 (match_operand 0 "sibcall_memory_operand"))
191 (and (match_test "TARGET_X32 && Pmode == DImode")
192 (match_operand 0 "GOT_memory_operand"))))
193
194(define_constraint "Bw"
195 "@internal Call memory operand."
196 (ior (and (not (match_test "TARGET_INDIRECT_BRANCH_REGISTER"))
197 (not (match_test "TARGET_X32"))
198 (match_operand 0 "memory_operand"))
199 (and (match_test "TARGET_X32 && Pmode == DImode")
200 (match_operand 0 "GOT_memory_operand"))))
201
202(define_constraint "Bz"
203 "@internal Constant call address operand."
204 (match_operand 0 "constant_call_address_operand"))
205
206(define_constraint "BC"
207 "@internal SSE constant -1 operand."
208 (and (match_test "TARGET_SSE")
209 (ior (match_test "op == constm1_rtx")
210 (match_operand 0 "vector_all_ones_operand"))))
211
212;; Integer constant constraints.
213(define_constraint "I"
214 "Integer constant in the range 0 @dots{} 31, for 32-bit shifts."
215 (and (match_code "const_int")
216 (match_test "IN_RANGE (ival, 0, 31)")))
217
218(define_constraint "J"
219 "Integer constant in the range 0 @dots{} 63, for 64-bit shifts."
220 (and (match_code "const_int")
221 (match_test "IN_RANGE (ival, 0, 63)")))
222
223(define_constraint "K"
224 "Signed 8-bit integer constant."
225 (and (match_code "const_int")
226 (match_test "IN_RANGE (ival, -128, 127)")))
227
228(define_constraint "L"
229 "@code{0xFF}, @code{0xFFFF} or @code{0xFFFFFFFF}
230 for AND as a zero-extending move."
231 (and (match_code "const_int")
232 (match_test "ival == 0xff || ival == 0xffff
233 || ival == (HOST_WIDE_INT) 0xffffffff")))
234
235(define_constraint "M"
236 "0, 1, 2, or 3 (shifts for the @code{lea} instruction)."
237 (and (match_code "const_int")
238 (match_test "IN_RANGE (ival, 0, 3)")))
239
240(define_constraint "N"
241 "Unsigned 8-bit integer constant (for @code{in} and @code{out}
242 instructions)."
243 (and (match_code "const_int")
244 (match_test "IN_RANGE (ival, 0, 255)")))
245
246(define_constraint "O"
247 "@internal Integer constant in the range 0 @dots{} 127, for 128-bit shifts."
248 (and (match_code "const_int")
249 (match_test "IN_RANGE (ival, 0, 127)")))
250
251;; Floating-point constant constraints.
252;; We allow constants even if TARGET_80387 isn't set, because the
253;; stack register converter may need to load 0.0 into the function
254;; value register (top of stack).
255(define_constraint "G"
256 "Standard 80387 floating point constant."
257 (and (match_code "const_double")
258 (match_test "standard_80387_constant_p (op) > 0")))
259
260;; This can theoretically be any mode's CONST0_RTX.
261(define_constraint "C"
262 "Constant zero operand."
263 (ior (match_test "op == const0_rtx")
264 (match_operand 0 "const0_operand")))
265
266;; Constant-or-symbol-reference constraints.
267
268(define_constraint "e"
269 "32-bit signed integer constant, or a symbolic reference known
270 to fit that range (for immediate operands in sign-extending x86-64
271 instructions)."
272 (match_operand 0 "x86_64_immediate_operand"))
273
274;; We use W prefix to denote any number of
275;; constant-or-symbol-reference constraints
276
277(define_constraint "We"
278 "32-bit signed integer constant, or a symbolic reference known
279 to fit that range (for sign-extending conversion operations that
280 require non-VOIDmode immediate operands)."
281 (and (match_operand 0 "x86_64_immediate_operand")
282 (match_test "GET_MODE (op) != VOIDmode")))
283
284(define_constraint "Wz"
285 "32-bit unsigned integer constant, or a symbolic reference known
286 to fit that range (for zero-extending conversion operations that
287 require non-VOIDmode immediate operands)."
288 (and (match_operand 0 "x86_64_zext_immediate_operand")
289 (match_test "GET_MODE (op) != VOIDmode")))
290
291(define_constraint "Wd"
292 "128-bit integer constant where both the high and low 64-bit word
293 of it satisfies the e constraint."
294 (match_operand 0 "x86_64_hilo_int_operand"))
295
296(define_constraint "Wf"
297 "32-bit signed integer constant zero extended from word size
298 to double word size."
299 (match_operand 0 "x86_64_dwzext_immediate_operand"))
300
301(define_constraint "Z"
302 "32-bit unsigned integer constant, or a symbolic reference known
303 to fit that range (for immediate operands in zero-extending x86-64
304 instructions)."
305 (match_operand 0 "x86_64_zext_immediate_operand"))
306
307;; T prefix is used for different address constraints
308;; v - VSIB address
309;; s - address with no segment register
310;; i - address with no index and no rip
311;; b - address with no base and no rip
312
313(define_address_constraint "Tv"
314 "VSIB address operand"
315 (match_operand 0 "vsib_address_operand"))
316
317(define_address_constraint "Ts"
318 "Address operand without segment register"
319 (match_operand 0 "address_no_seg_operand"))