]>
Commit | Line | Data |
---|---|---|
1 | /* Handle initialization things in -*- C++ -*- | |
2 | Copyright (C) 1987-2025 Free Software Foundation, Inc. | |
3 | Contributed by Michael Tiemann (tiemann@cygnus.com) | |
4 | ||
5 | This file is part of GCC. | |
6 | ||
7 | GCC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GCC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GCC; see the file COPYING3. If not see | |
19 | <http://www.gnu.org/licenses/>. */ | |
20 | ||
21 | /* High-level class interface. */ | |
22 | ||
23 | #include "config.h" | |
24 | #include "system.h" | |
25 | #include "coretypes.h" | |
26 | #include "target.h" | |
27 | #include "cp-tree.h" | |
28 | #include "stringpool.h" | |
29 | #include "varasm.h" | |
30 | #include "gimplify.h" | |
31 | #include "c-family/c-ubsan.h" | |
32 | #include "intl.h" | |
33 | #include "stringpool.h" | |
34 | #include "attribs.h" | |
35 | #include "asan.h" | |
36 | #include "stor-layout.h" | |
37 | #include "pointer-query.h" | |
38 | ||
39 | static bool begin_init_stmts (tree *, tree *); | |
40 | static tree finish_init_stmts (bool, tree, tree); | |
41 | static void construct_virtual_base (tree, tree); | |
42 | static bool expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t); | |
43 | static bool expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t); | |
44 | static int member_init_ok_or_else (tree, tree, tree); | |
45 | static void expand_virtual_init (tree, tree); | |
46 | static tree sort_mem_initializers (tree, tree); | |
47 | static tree initializing_context (tree); | |
48 | static void expand_cleanup_for_base (tree, tree); | |
49 | static tree dfs_initialize_vtbl_ptrs (tree, void *); | |
50 | static tree build_field_list (tree, tree, int *); | |
51 | static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool); | |
52 | ||
53 | static GTY(()) tree fn; | |
54 | ||
55 | /* We are about to generate some complex initialization code. | |
56 | Conceptually, it is all a single expression. However, we may want | |
57 | to include conditionals, loops, and other such statement-level | |
58 | constructs. Therefore, we build the initialization code inside a | |
59 | statement-expression. This function starts such an expression. | |
60 | STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function; | |
61 | pass them back to finish_init_stmts when the expression is | |
62 | complete. */ | |
63 | ||
64 | static bool | |
65 | begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p) | |
66 | { | |
67 | bool is_global = !building_stmt_list_p (); | |
68 | ||
69 | *stmt_expr_p = begin_stmt_expr (); | |
70 | *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE); | |
71 | ||
72 | return is_global; | |
73 | } | |
74 | ||
75 | /* Finish out the statement-expression begun by the previous call to | |
76 | begin_init_stmts. Returns the statement-expression itself. */ | |
77 | ||
78 | static tree | |
79 | finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt) | |
80 | { | |
81 | finish_compound_stmt (compound_stmt); | |
82 | ||
83 | stmt_expr = finish_stmt_expr (stmt_expr, true); | |
84 | ||
85 | gcc_assert (!building_stmt_list_p () == is_global); | |
86 | ||
87 | return stmt_expr; | |
88 | } | |
89 | ||
90 | /* Constructors */ | |
91 | ||
92 | /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base | |
93 | which we want to initialize the vtable pointer for, DATA is | |
94 | TREE_LIST whose TREE_VALUE is the this ptr expression. */ | |
95 | ||
96 | static tree | |
97 | dfs_initialize_vtbl_ptrs (tree binfo, void *data) | |
98 | { | |
99 | if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) | |
100 | return dfs_skip_bases; | |
101 | ||
102 | if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo)) | |
103 | { | |
104 | tree base_ptr = TREE_VALUE ((tree) data); | |
105 | ||
106 | base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1, | |
107 | tf_warning_or_error); | |
108 | ||
109 | expand_virtual_init (binfo, base_ptr); | |
110 | } | |
111 | ||
112 | return NULL_TREE; | |
113 | } | |
114 | ||
115 | /* Initialize all the vtable pointers in the object pointed to by | |
116 | ADDR. */ | |
117 | ||
118 | void | |
119 | initialize_vtbl_ptrs (tree addr) | |
120 | { | |
121 | tree list; | |
122 | tree type; | |
123 | ||
124 | type = TREE_TYPE (TREE_TYPE (addr)); | |
125 | list = build_tree_list (type, addr); | |
126 | ||
127 | /* Walk through the hierarchy, initializing the vptr in each base | |
128 | class. We do these in pre-order because we can't find the virtual | |
129 | bases for a class until we've initialized the vtbl for that | |
130 | class. */ | |
131 | dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list); | |
132 | } | |
133 | ||
134 | /* Return an expression for the zero-initialization of an object with | |
135 | type T. This expression will either be a constant (in the case | |
136 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an | |
137 | aggregate), or NULL (in the case that T does not require | |
138 | initialization). In either case, the value can be used as | |
139 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static | |
140 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS | |
141 | is the number of elements in the array. If STATIC_STORAGE_P is | |
142 | TRUE, initializers are only generated for entities for which | |
143 | zero-initialization does not simply mean filling the storage with | |
144 | zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field, | |
145 | subfields with bit positions at or above that bit size shouldn't | |
146 | be added. Note that this only works when the result is assigned | |
147 | to a base COMPONENT_REF; if we only have a pointer to the base subobject, | |
148 | expand_assignment will end up clearing the full size of TYPE. */ | |
149 | ||
150 | static tree | |
151 | build_zero_init_1 (tree type, tree nelts, bool static_storage_p, | |
152 | tree field_size) | |
153 | { | |
154 | tree init = NULL_TREE; | |
155 | ||
156 | /* [dcl.init] | |
157 | ||
158 | To zero-initialize an object of type T means: | |
159 | ||
160 | -- if T is a scalar type, the storage is set to the value of zero | |
161 | converted to T. | |
162 | ||
163 | -- if T is a non-union class type, the storage for each non-static | |
164 | data member and each base-class subobject is zero-initialized. | |
165 | ||
166 | -- if T is a union type, the storage for its first data member is | |
167 | zero-initialized. | |
168 | ||
169 | -- if T is an array type, the storage for each element is | |
170 | zero-initialized. | |
171 | ||
172 | -- if T is a reference type, no initialization is performed. */ | |
173 | ||
174 | gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST); | |
175 | ||
176 | /* An initializer is unqualified. */ | |
177 | type = cv_unqualified (type); | |
178 | ||
179 | if (type == error_mark_node) | |
180 | ; | |
181 | else if (static_storage_p && zero_init_p (type)) | |
182 | /* In order to save space, we do not explicitly build initializers | |
183 | for items that do not need them. GCC's semantics are that | |
184 | items with static storage duration that are not otherwise | |
185 | initialized are initialized to zero. */ | |
186 | ; | |
187 | else if (TYPE_PTR_OR_PTRMEM_P (type)) | |
188 | init = fold (convert (type, nullptr_node)); | |
189 | else if (NULLPTR_TYPE_P (type)) | |
190 | init = build_int_cst (type, 0); | |
191 | else if (SCALAR_TYPE_P (type)) | |
192 | init = build_zero_cst (type); | |
193 | else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type))) | |
194 | { | |
195 | tree field, next; | |
196 | vec<constructor_elt, va_gc> *v = NULL; | |
197 | ||
198 | /* Iterate over the fields, building initializations. */ | |
199 | for (field = TYPE_FIELDS (type); field; field = next) | |
200 | { | |
201 | next = DECL_CHAIN (field); | |
202 | ||
203 | if (TREE_CODE (field) != FIELD_DECL) | |
204 | continue; | |
205 | ||
206 | /* For unions, only the first field is initialized. */ | |
207 | if (TREE_CODE (type) == UNION_TYPE) | |
208 | next = NULL_TREE; | |
209 | ||
210 | if (TREE_TYPE (field) == error_mark_node) | |
211 | continue; | |
212 | ||
213 | /* Don't add virtual bases for base classes if they are beyond | |
214 | the size of the current field, that means it is present | |
215 | somewhere else in the object. */ | |
216 | if (field_size) | |
217 | { | |
218 | tree bitpos = bit_position (field); | |
219 | if (TREE_CODE (bitpos) == INTEGER_CST | |
220 | && !tree_int_cst_lt (bitpos, field_size)) | |
221 | continue; | |
222 | } | |
223 | ||
224 | /* Don't add zero width bitfields. */ | |
225 | if (DECL_C_BIT_FIELD (field) | |
226 | && integer_zerop (DECL_SIZE (field))) | |
227 | continue; | |
228 | ||
229 | /* Note that for class types there will be FIELD_DECLs | |
230 | corresponding to base classes as well. Thus, iterating | |
231 | over TYPE_FIELDs will result in correct initialization of | |
232 | all of the subobjects. */ | |
233 | if (!static_storage_p || !zero_init_p (TREE_TYPE (field))) | |
234 | { | |
235 | tree new_field_size | |
236 | = (DECL_FIELD_IS_BASE (field) | |
237 | && DECL_SIZE (field) | |
238 | && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST) | |
239 | ? DECL_SIZE (field) : NULL_TREE; | |
240 | tree value = build_zero_init_1 (TREE_TYPE (field), | |
241 | /*nelts=*/NULL_TREE, | |
242 | static_storage_p, | |
243 | new_field_size); | |
244 | if (value) | |
245 | CONSTRUCTOR_APPEND_ELT(v, field, value); | |
246 | } | |
247 | } | |
248 | ||
249 | /* Build a constructor to contain the initializations. */ | |
250 | init = build_constructor (type, v); | |
251 | CONSTRUCTOR_ZERO_PADDING_BITS (init) = 1; | |
252 | } | |
253 | else if (TREE_CODE (type) == ARRAY_TYPE) | |
254 | { | |
255 | tree max_index; | |
256 | vec<constructor_elt, va_gc> *v = NULL; | |
257 | ||
258 | /* Iterate over the array elements, building initializations. */ | |
259 | if (nelts) | |
260 | max_index = fold_build2_loc (input_location, MINUS_EXPR, | |
261 | TREE_TYPE (nelts), nelts, | |
262 | build_one_cst (TREE_TYPE (nelts))); | |
263 | /* Treat flexible array members like [0] arrays. */ | |
264 | else if (TYPE_DOMAIN (type) == NULL_TREE) | |
265 | return NULL_TREE; | |
266 | else | |
267 | max_index = array_type_nelts_minus_one (type); | |
268 | ||
269 | /* If we have an error_mark here, we should just return error mark | |
270 | as we don't know the size of the array yet. */ | |
271 | if (max_index == error_mark_node) | |
272 | return error_mark_node; | |
273 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); | |
274 | ||
275 | /* A zero-sized array, which is accepted as an extension, will | |
276 | have an upper bound of -1. */ | |
277 | if (!integer_minus_onep (max_index)) | |
278 | { | |
279 | constructor_elt ce; | |
280 | ||
281 | /* If this is a one element array, we just use a regular init. */ | |
282 | if (integer_zerop (max_index)) | |
283 | ce.index = size_zero_node; | |
284 | else | |
285 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, | |
286 | max_index); | |
287 | ||
288 | ce.value = build_zero_init_1 (TREE_TYPE (type), /*nelts=*/NULL_TREE, | |
289 | static_storage_p, NULL_TREE); | |
290 | if (ce.value) | |
291 | { | |
292 | vec_alloc (v, 1); | |
293 | v->quick_push (ce); | |
294 | } | |
295 | } | |
296 | ||
297 | /* Build a constructor to contain the initializations. */ | |
298 | init = build_constructor (type, v); | |
299 | } | |
300 | else if (VECTOR_TYPE_P (type)) | |
301 | init = build_zero_cst (type); | |
302 | else | |
303 | gcc_assert (TYPE_REF_P (type)); | |
304 | ||
305 | /* In all cases, the initializer is a constant. */ | |
306 | if (init) | |
307 | TREE_CONSTANT (init) = 1; | |
308 | ||
309 | return init; | |
310 | } | |
311 | ||
312 | /* Return an expression for the zero-initialization of an object with | |
313 | type T. This expression will either be a constant (in the case | |
314 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an | |
315 | aggregate), or NULL (in the case that T does not require | |
316 | initialization). In either case, the value can be used as | |
317 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static | |
318 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS | |
319 | is the number of elements in the array. If STATIC_STORAGE_P is | |
320 | TRUE, initializers are only generated for entities for which | |
321 | zero-initialization does not simply mean filling the storage with | |
322 | zero bytes. */ | |
323 | ||
324 | tree | |
325 | build_zero_init (tree type, tree nelts, bool static_storage_p) | |
326 | { | |
327 | return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE); | |
328 | } | |
329 | ||
330 | /* Return a suitable initializer for value-initializing an object of type | |
331 | TYPE, as described in [dcl.init]. */ | |
332 | ||
333 | tree | |
334 | build_value_init (tree type, tsubst_flags_t complain) | |
335 | { | |
336 | /* [dcl.init] | |
337 | ||
338 | To value-initialize an object of type T means: | |
339 | ||
340 | - if T is a class type (clause 9) with either no default constructor | |
341 | (12.1) or a default constructor that is user-provided or deleted, | |
342 | then the object is default-initialized; | |
343 | ||
344 | - if T is a (possibly cv-qualified) class type without a user-provided | |
345 | or deleted default constructor, then the object is zero-initialized | |
346 | and the semantic constraints for default-initialization are checked, | |
347 | and if T has a non-trivial default constructor, the object is | |
348 | default-initialized; | |
349 | ||
350 | - if T is an array type, then each element is value-initialized; | |
351 | ||
352 | - otherwise, the object is zero-initialized. | |
353 | ||
354 | A program that calls for default-initialization or | |
355 | value-initialization of an entity of reference type is ill-formed. */ | |
356 | ||
357 | if (CLASS_TYPE_P (type) && type_build_ctor_call (type)) | |
358 | { | |
359 | tree ctor | |
360 | = build_special_member_call (NULL_TREE, complete_ctor_identifier, | |
361 | NULL, type, LOOKUP_NORMAL, complain); | |
362 | if (ctor == error_mark_node || TREE_CONSTANT (ctor)) | |
363 | return ctor; | |
364 | if (processing_template_decl) | |
365 | /* The AGGR_INIT_EXPR tweaking below breaks in templates. */ | |
366 | return build_min (CAST_EXPR, type, NULL_TREE); | |
367 | tree fn = NULL_TREE; | |
368 | if (TREE_CODE (ctor) == CALL_EXPR) | |
369 | fn = get_callee_fndecl (ctor); | |
370 | ctor = build_aggr_init_expr (type, ctor); | |
371 | if (fn && user_provided_p (fn)) | |
372 | return ctor; | |
373 | else if (TYPE_HAS_COMPLEX_DFLT (type)) | |
374 | { | |
375 | /* This is a class that needs constructing, but doesn't have | |
376 | a user-provided constructor. So we need to zero-initialize | |
377 | the object and then call the implicitly defined ctor. | |
378 | This will be handled in simplify_aggr_init_expr. */ | |
379 | AGGR_INIT_ZERO_FIRST (ctor) = 1; | |
380 | return ctor; | |
381 | } | |
382 | } | |
383 | ||
384 | /* Discard any access checking during subobject initialization; | |
385 | the checks are implied by the call to the ctor which we have | |
386 | verified is OK (cpp0x/defaulted46.C). */ | |
387 | push_deferring_access_checks (dk_deferred); | |
388 | tree r = build_value_init_noctor (type, complain); | |
389 | pop_deferring_access_checks (); | |
390 | return r; | |
391 | } | |
392 | ||
393 | /* Like build_value_init, but don't call the constructor for TYPE. Used | |
394 | for base initializers. */ | |
395 | ||
396 | tree | |
397 | build_value_init_noctor (tree type, tsubst_flags_t complain) | |
398 | { | |
399 | if (!COMPLETE_TYPE_P (type)) | |
400 | { | |
401 | if (complain & tf_error) | |
402 | error ("value-initialization of incomplete type %qT", type); | |
403 | return error_mark_node; | |
404 | } | |
405 | /* FIXME the class and array cases should just use digest_init once it is | |
406 | SFINAE-enabled. */ | |
407 | if (CLASS_TYPE_P (type)) | |
408 | { | |
409 | gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type) | |
410 | || errorcount != 0); | |
411 | ||
412 | if (TREE_CODE (type) != UNION_TYPE) | |
413 | { | |
414 | tree field; | |
415 | vec<constructor_elt, va_gc> *v = NULL; | |
416 | ||
417 | /* Iterate over the fields, building initializations. */ | |
418 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) | |
419 | { | |
420 | tree ftype, value; | |
421 | ||
422 | if (TREE_CODE (field) != FIELD_DECL) | |
423 | continue; | |
424 | ||
425 | ftype = TREE_TYPE (field); | |
426 | ||
427 | if (ftype == error_mark_node) | |
428 | continue; | |
429 | ||
430 | /* Ignore flexible array members for value initialization. */ | |
431 | if (TREE_CODE (ftype) == ARRAY_TYPE | |
432 | && !COMPLETE_TYPE_P (ftype) | |
433 | && !TYPE_DOMAIN (ftype) | |
434 | && COMPLETE_TYPE_P (TREE_TYPE (ftype)) | |
435 | && (next_aggregate_field (DECL_CHAIN (field)) | |
436 | == NULL_TREE)) | |
437 | continue; | |
438 | ||
439 | /* Ignore unnamed zero-width bitfields. */ | |
440 | if (DECL_UNNAMED_BIT_FIELD (field) | |
441 | && integer_zerop (DECL_SIZE (field))) | |
442 | continue; | |
443 | ||
444 | /* We could skip vfields and fields of types with | |
445 | user-defined constructors, but I think that won't improve | |
446 | performance at all; it should be simpler in general just | |
447 | to zero out the entire object than try to only zero the | |
448 | bits that actually need it. */ | |
449 | ||
450 | /* Note that for class types there will be FIELD_DECLs | |
451 | corresponding to base classes as well. Thus, iterating | |
452 | over TYPE_FIELDs will result in correct initialization of | |
453 | all of the subobjects. */ | |
454 | value = build_value_init (ftype, complain); | |
455 | value = maybe_constant_init (value); | |
456 | ||
457 | if (value == error_mark_node) | |
458 | return error_mark_node; | |
459 | ||
460 | CONSTRUCTOR_APPEND_ELT(v, field, value); | |
461 | ||
462 | /* We shouldn't have gotten here for anything that would need | |
463 | non-trivial initialization, and gimplify_init_ctor_preeval | |
464 | would need to be fixed to allow it. */ | |
465 | gcc_assert (TREE_CODE (value) != TARGET_EXPR | |
466 | && TREE_CODE (value) != AGGR_INIT_EXPR); | |
467 | } | |
468 | ||
469 | /* Build a constructor to contain the zero- initializations. */ | |
470 | tree ret = build_constructor (type, v); | |
471 | CONSTRUCTOR_ZERO_PADDING_BITS (ret) = 1; | |
472 | return ret; | |
473 | } | |
474 | } | |
475 | else if (TREE_CODE (type) == ARRAY_TYPE) | |
476 | { | |
477 | vec<constructor_elt, va_gc> *v = NULL; | |
478 | ||
479 | /* Iterate over the array elements, building initializations. */ | |
480 | tree max_index = array_type_nelts_minus_one (type); | |
481 | ||
482 | /* If we have an error_mark here, we should just return error mark | |
483 | as we don't know the size of the array yet. */ | |
484 | if (max_index == error_mark_node) | |
485 | { | |
486 | if (complain & tf_error) | |
487 | error ("cannot value-initialize array of unknown bound %qT", | |
488 | type); | |
489 | return error_mark_node; | |
490 | } | |
491 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); | |
492 | ||
493 | /* A zero-sized array, which is accepted as an extension, will | |
494 | have an upper bound of -1. */ | |
495 | if (!tree_int_cst_equal (max_index, integer_minus_one_node)) | |
496 | { | |
497 | constructor_elt ce; | |
498 | ||
499 | /* If this is a one element array, we just use a regular init. */ | |
500 | if (tree_int_cst_equal (size_zero_node, max_index)) | |
501 | ce.index = size_zero_node; | |
502 | else | |
503 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index); | |
504 | ||
505 | ce.value = build_value_init (TREE_TYPE (type), complain); | |
506 | ce.value = maybe_constant_init (ce.value); | |
507 | if (ce.value == error_mark_node) | |
508 | return error_mark_node; | |
509 | ||
510 | vec_alloc (v, 1); | |
511 | v->quick_push (ce); | |
512 | ||
513 | /* We shouldn't have gotten here for anything that would need | |
514 | non-trivial initialization, and gimplify_init_ctor_preeval | |
515 | would need to be fixed to allow it. */ | |
516 | gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR | |
517 | && TREE_CODE (ce.value) != AGGR_INIT_EXPR); | |
518 | } | |
519 | ||
520 | /* Build a constructor to contain the initializations. */ | |
521 | return build_constructor (type, v); | |
522 | } | |
523 | else if (TREE_CODE (type) == FUNCTION_TYPE) | |
524 | { | |
525 | if (complain & tf_error) | |
526 | error ("value-initialization of function type %qT", type); | |
527 | return error_mark_node; | |
528 | } | |
529 | else if (TYPE_REF_P (type)) | |
530 | { | |
531 | if (complain & tf_error) | |
532 | error ("value-initialization of reference type %qT", type); | |
533 | return error_mark_node; | |
534 | } | |
535 | ||
536 | return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false); | |
537 | } | |
538 | ||
539 | /* Initialize current class with INIT, a TREE_LIST of arguments for | |
540 | a target constructor. If TREE_LIST is void_type_node, an empty | |
541 | initializer list was given. Return the target constructor. */ | |
542 | ||
543 | static tree | |
544 | perform_target_ctor (tree init) | |
545 | { | |
546 | tree decl = current_class_ref; | |
547 | tree type = current_class_type; | |
548 | ||
549 | init = build_aggr_init (decl, init, LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS, | |
550 | tf_warning_or_error); | |
551 | finish_expr_stmt (init); | |
552 | if (type_build_dtor_call (type)) | |
553 | { | |
554 | tree expr = build_delete (input_location, | |
555 | type, decl, sfk_complete_destructor, | |
556 | LOOKUP_NORMAL | |
557 | |LOOKUP_NONVIRTUAL | |
558 | |LOOKUP_DESTRUCTOR, | |
559 | 0, tf_warning_or_error); | |
560 | if (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) | |
561 | { | |
562 | tree base = build_delete (input_location, | |
563 | type, decl, sfk_base_destructor, | |
564 | LOOKUP_NORMAL | |
565 | |LOOKUP_NONVIRTUAL | |
566 | |LOOKUP_DESTRUCTOR, | |
567 | 0, tf_warning_or_error); | |
568 | expr = build_if_in_charge (expr, base); | |
569 | } | |
570 | if (expr != error_mark_node | |
571 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) | |
572 | finish_eh_cleanup (expr); | |
573 | } | |
574 | return init; | |
575 | } | |
576 | ||
577 | /* Instantiate the default member initializer of MEMBER, if needed. | |
578 | Only get_nsdmi should use the return value of this function. */ | |
579 | ||
580 | tree | |
581 | maybe_instantiate_nsdmi_init (tree member, tsubst_flags_t complain) | |
582 | { | |
583 | tree init = DECL_INITIAL (member); | |
584 | ||
585 | /* tsubst_decl uses void_node to indicate an uninstantiated DMI. */ | |
586 | if (init == void_node) | |
587 | { | |
588 | /* Clear any special tsubst flags; the result of NSDMI instantiation | |
589 | should be independent of the substitution context. */ | |
590 | complain &= tf_warning_or_error; | |
591 | ||
592 | init = DECL_INITIAL (DECL_TI_TEMPLATE (member)); | |
593 | location_t expr_loc | |
594 | = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member)); | |
595 | if (TREE_CODE (init) == DEFERRED_PARSE) | |
596 | /* Unparsed. */; | |
597 | /* Check recursive instantiation. */ | |
598 | else if (DECL_INSTANTIATING_NSDMI_P (member)) | |
599 | { | |
600 | if (complain & tf_error) | |
601 | error_at (expr_loc, "recursive instantiation of default member " | |
602 | "initializer for %qD", member); | |
603 | init = error_mark_node; | |
604 | } | |
605 | else | |
606 | { | |
607 | cp_evaluated ev; | |
608 | ||
609 | location_t sloc = input_location; | |
610 | input_location = expr_loc; | |
611 | ||
612 | DECL_INSTANTIATING_NSDMI_P (member) = 1; | |
613 | ||
614 | bool pushed = false; | |
615 | tree ctx = type_context_for_name_lookup (member); | |
616 | ||
617 | bool push_to_top = maybe_push_to_top_level (member); | |
618 | if (!currently_open_class (ctx)) | |
619 | { | |
620 | push_nested_class (ctx); | |
621 | push_deferring_access_checks (dk_no_deferred); | |
622 | pushed = true; | |
623 | } | |
624 | ||
625 | inject_this_parameter (ctx, TYPE_UNQUALIFIED); | |
626 | ||
627 | start_lambda_scope (member); | |
628 | ||
629 | /* Do deferred instantiation of the NSDMI. */ | |
630 | init = tsubst_expr (init, DECL_TI_ARGS (member), complain, member); | |
631 | init = digest_nsdmi_init (member, init, complain); | |
632 | ||
633 | finish_lambda_scope (); | |
634 | ||
635 | DECL_INSTANTIATING_NSDMI_P (member) = 0; | |
636 | ||
637 | if (init != error_mark_node) | |
638 | DECL_INITIAL (member) = init; | |
639 | ||
640 | if (pushed) | |
641 | { | |
642 | pop_deferring_access_checks (); | |
643 | pop_nested_class (); | |
644 | } | |
645 | maybe_pop_from_top_level (push_to_top); | |
646 | ||
647 | input_location = sloc; | |
648 | } | |
649 | } | |
650 | ||
651 | return init; | |
652 | } | |
653 | ||
654 | /* Return the non-static data initializer for FIELD_DECL MEMBER. */ | |
655 | ||
656 | tree | |
657 | get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain) | |
658 | { | |
659 | tree save_ccp = current_class_ptr; | |
660 | tree save_ccr = current_class_ref; | |
661 | ||
662 | tree init = maybe_instantiate_nsdmi_init (member, complain); | |
663 | ||
664 | if (init && TREE_CODE (init) == DEFERRED_PARSE) | |
665 | { | |
666 | if (complain & tf_error) | |
667 | { | |
668 | auto_diagnostic_group d; | |
669 | error ("default member initializer for %qD required before the end " | |
670 | "of its enclosing class", member); | |
671 | inform (location_of (init), "defined here"); | |
672 | DECL_INITIAL (member) = error_mark_node; | |
673 | } | |
674 | init = error_mark_node; | |
675 | } | |
676 | ||
677 | if (in_ctor) | |
678 | { | |
679 | current_class_ptr = save_ccp; | |
680 | current_class_ref = save_ccr; | |
681 | } | |
682 | else | |
683 | { | |
684 | /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to | |
685 | refer to; constexpr evaluation knows what to do with it. */ | |
686 | current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member)); | |
687 | current_class_ptr = build_address (current_class_ref); | |
688 | } | |
689 | ||
690 | /* Clear processing_template_decl for sake of break_out_target_exprs; | |
691 | INIT is always non-templated. */ | |
692 | processing_template_decl_sentinel ptds; | |
693 | ||
694 | /* Strip redundant TARGET_EXPR so we don't need to remap it, and | |
695 | so the aggregate init code below will see a CONSTRUCTOR. */ | |
696 | bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init)); | |
697 | if (simple_target) | |
698 | init = TARGET_EXPR_INITIAL (init); | |
699 | init = break_out_target_exprs (init, /*loc*/true); | |
700 | if (init && TREE_CODE (init) == TARGET_EXPR) | |
701 | /* In a constructor, this expresses the full initialization, prevent | |
702 | perform_member_init from calling another constructor (58162). */ | |
703 | TARGET_EXPR_DIRECT_INIT_P (init) = in_ctor; | |
704 | if (simple_target && TREE_CODE (init) != CONSTRUCTOR) | |
705 | /* Now put it back so C++17 copy elision works. */ | |
706 | init = get_target_expr (init); | |
707 | ||
708 | set_target_expr_eliding (init); | |
709 | ||
710 | current_class_ptr = save_ccp; | |
711 | current_class_ref = save_ccr; | |
712 | return init; | |
713 | } | |
714 | ||
715 | /* Diagnose the flexible array MEMBER if its INITializer is non-null | |
716 | and return true if so. Otherwise return false. */ | |
717 | ||
718 | bool | |
719 | maybe_reject_flexarray_init (tree member, tree init) | |
720 | { | |
721 | tree type = TREE_TYPE (member); | |
722 | ||
723 | if (!init | |
724 | || TREE_CODE (type) != ARRAY_TYPE | |
725 | || TYPE_DOMAIN (type)) | |
726 | return false; | |
727 | ||
728 | /* Point at the flexible array member declaration if it's initialized | |
729 | in-class, and at the ctor if it's initialized in a ctor member | |
730 | initializer list. */ | |
731 | location_t loc; | |
732 | if (DECL_INITIAL (member) == init | |
733 | || !current_function_decl | |
734 | || DECL_DEFAULTED_FN (current_function_decl)) | |
735 | loc = DECL_SOURCE_LOCATION (member); | |
736 | else | |
737 | loc = DECL_SOURCE_LOCATION (current_function_decl); | |
738 | ||
739 | error_at (loc, "initializer for flexible array member %q#D", member); | |
740 | return true; | |
741 | } | |
742 | ||
743 | /* If INIT's value can come from a call to std::initializer_list<T>::begin, | |
744 | return that function. Otherwise, NULL_TREE. */ | |
745 | ||
746 | static tree | |
747 | find_list_begin (tree init) | |
748 | { | |
749 | STRIP_NOPS (init); | |
750 | while (TREE_CODE (init) == COMPOUND_EXPR) | |
751 | init = TREE_OPERAND (init, 1); | |
752 | STRIP_NOPS (init); | |
753 | if (TREE_CODE (init) == COND_EXPR) | |
754 | { | |
755 | tree left = TREE_OPERAND (init, 1); | |
756 | if (!left) | |
757 | left = TREE_OPERAND (init, 0); | |
758 | left = find_list_begin (left); | |
759 | if (left) | |
760 | return left; | |
761 | return find_list_begin (TREE_OPERAND (init, 2)); | |
762 | } | |
763 | if (TREE_CODE (init) == CALL_EXPR) | |
764 | if (tree fn = get_callee_fndecl (init)) | |
765 | if (id_equal (DECL_NAME (fn), "begin") | |
766 | && is_std_init_list (DECL_CONTEXT (fn))) | |
767 | return fn; | |
768 | return NULL_TREE; | |
769 | } | |
770 | ||
771 | /* If INIT initializing MEMBER is copying the address of the underlying array | |
772 | of an initializer_list, warn. */ | |
773 | ||
774 | static void | |
775 | maybe_warn_list_ctor (tree member, tree init) | |
776 | { | |
777 | tree memtype = TREE_TYPE (member); | |
778 | if (!init || !TYPE_PTR_P (memtype) | |
779 | || !is_list_ctor (current_function_decl)) | |
780 | return; | |
781 | ||
782 | tree parm = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl); | |
783 | parm = TREE_VALUE (parm); | |
784 | tree initlist = non_reference (parm); | |
785 | ||
786 | /* Do not warn if the parameter is an lvalue reference to non-const. */ | |
787 | if (TYPE_REF_P (parm) && !TYPE_REF_IS_RVALUE (parm) | |
788 | && !CP_TYPE_CONST_P (initlist)) | |
789 | return; | |
790 | ||
791 | tree targs = CLASSTYPE_TI_ARGS (initlist); | |
792 | tree elttype = TREE_VEC_ELT (targs, 0); | |
793 | ||
794 | if (!same_type_ignoring_top_level_qualifiers_p | |
795 | (TREE_TYPE (memtype), elttype)) | |
796 | return; | |
797 | ||
798 | tree begin = find_list_begin (init); | |
799 | if (!begin) | |
800 | return; | |
801 | ||
802 | location_t loc = cp_expr_loc_or_input_loc (init); | |
803 | warning_at (loc, OPT_Winit_list_lifetime, | |
804 | "initializing %qD from %qE does not extend the lifetime " | |
805 | "of the underlying array", member, begin); | |
806 | } | |
807 | ||
808 | /* Data structure for find_uninit_fields_r, below. */ | |
809 | ||
810 | struct find_uninit_data { | |
811 | /* The set tracking the yet-uninitialized members. */ | |
812 | hash_set<tree> *uninitialized; | |
813 | /* The data member we are currently initializing. It can be either | |
814 | a type (initializing a base class/delegating constructors), or | |
815 | a COMPONENT_REF. */ | |
816 | tree member; | |
817 | }; | |
818 | ||
819 | /* walk_tree callback that warns about using uninitialized data in | |
820 | a member-initializer-list. */ | |
821 | ||
822 | static tree | |
823 | find_uninit_fields_r (tree *tp, int *walk_subtrees, void *data) | |
824 | { | |
825 | find_uninit_data *d = static_cast<find_uninit_data *>(data); | |
826 | hash_set<tree> *uninitialized = d->uninitialized; | |
827 | tree init = *tp; | |
828 | const tree_code code = TREE_CODE (init); | |
829 | ||
830 | /* No need to look into types or unevaluated operands. */ | |
831 | if (TYPE_P (init) || unevaluated_p (code)) | |
832 | { | |
833 | *walk_subtrees = false; | |
834 | return NULL_TREE; | |
835 | } | |
836 | ||
837 | switch (code) | |
838 | { | |
839 | /* We'd need data flow info to avoid false positives. */ | |
840 | case COND_EXPR: | |
841 | case VEC_COND_EXPR: | |
842 | case BIND_EXPR: | |
843 | /* We might see a MODIFY_EXPR in cases like S() : a((b = 42)), c(b) { } | |
844 | where the initializer for 'a' surreptitiously initializes 'b'. Let's | |
845 | not bother with these complicated scenarios in the front end. */ | |
846 | case MODIFY_EXPR: | |
847 | /* Don't attempt to handle statement-expressions, either. */ | |
848 | case STATEMENT_LIST: | |
849 | uninitialized->empty (); | |
850 | gcc_fallthrough (); | |
851 | /* If we're just taking the address of an object, it doesn't matter | |
852 | whether it's been initialized. */ | |
853 | case ADDR_EXPR: | |
854 | *walk_subtrees = false; | |
855 | return NULL_TREE; | |
856 | default: | |
857 | break; | |
858 | } | |
859 | ||
860 | /* We'd need data flow info to avoid false positives. */ | |
861 | if (truth_value_p (code)) | |
862 | goto give_up; | |
863 | /* Attempt to handle a simple a{b}, but no more. */ | |
864 | else if (BRACE_ENCLOSED_INITIALIZER_P (init)) | |
865 | { | |
866 | if (CONSTRUCTOR_NELTS (init) == 1 | |
867 | && !BRACE_ENCLOSED_INITIALIZER_P (CONSTRUCTOR_ELT (init, 0)->value)) | |
868 | init = CONSTRUCTOR_ELT (init, 0)->value; | |
869 | else | |
870 | goto give_up; | |
871 | } | |
872 | /* Warn about uninitialized 'this'. */ | |
873 | else if (code == CALL_EXPR) | |
874 | { | |
875 | tree fn = get_callee_fndecl (init); | |
876 | if (fn && DECL_IOBJ_MEMBER_FUNCTION_P (fn)) | |
877 | { | |
878 | tree op = CALL_EXPR_ARG (init, 0); | |
879 | if (TREE_CODE (op) == ADDR_EXPR) | |
880 | op = TREE_OPERAND (op, 0); | |
881 | temp_override<tree> ovr (d->member, DECL_ARGUMENTS (fn)); | |
882 | cp_walk_tree_without_duplicates (&op, find_uninit_fields_r, data); | |
883 | } | |
884 | /* Functions (whether static or nonstatic member) may have side effects | |
885 | and initialize other members; it's not the front end's job to try to | |
886 | figure it out. But don't give up for constructors: we still want to | |
887 | warn when initializing base classes: | |
888 | ||
889 | struct D : public B { | |
890 | int x; | |
891 | D() : B(x) {} | |
892 | }; | |
893 | ||
894 | so carry on to detect that 'x' is used uninitialized. */ | |
895 | if (!fn || !DECL_CONSTRUCTOR_P (fn)) | |
896 | goto give_up; | |
897 | } | |
898 | ||
899 | /* If we find FIELD in the uninitialized set, we warn. */ | |
900 | if (code == COMPONENT_REF) | |
901 | { | |
902 | tree field = TREE_OPERAND (init, 1); | |
903 | tree type = TYPE_P (d->member) ? d->member : TREE_TYPE (d->member); | |
904 | ||
905 | /* We're initializing a reference member with itself. */ | |
906 | if (TYPE_REF_P (type) && cp_tree_equal (d->member, init)) | |
907 | warning_at (EXPR_LOCATION (init), OPT_Winit_self, | |
908 | "%qD is initialized with itself", field); | |
909 | else if (cp_tree_equal (TREE_OPERAND (init, 0), current_class_ref) | |
910 | && uninitialized->contains (field)) | |
911 | { | |
912 | if (TYPE_REF_P (TREE_TYPE (field))) | |
913 | warning_at (EXPR_LOCATION (init), OPT_Wuninitialized, | |
914 | "reference %qD is not yet bound to a value when used " | |
915 | "here", field); | |
916 | else if ((!INDIRECT_TYPE_P (type) || is_this_parameter (d->member)) | |
917 | && !conv_binds_to_reference_parm_p (type, init)) | |
918 | warning_at (EXPR_LOCATION (init), OPT_Wuninitialized, | |
919 | "member %qD is used uninitialized", field); | |
920 | *walk_subtrees = false; | |
921 | } | |
922 | } | |
923 | ||
924 | return NULL_TREE; | |
925 | ||
926 | give_up: | |
927 | *walk_subtrees = false; | |
928 | uninitialized->empty (); | |
929 | return integer_zero_node; | |
930 | } | |
931 | ||
932 | /* Wrapper around find_uninit_fields_r above. */ | |
933 | ||
934 | static void | |
935 | find_uninit_fields (tree *t, hash_set<tree> *uninitialized, tree member) | |
936 | { | |
937 | if (!uninitialized->is_empty ()) | |
938 | { | |
939 | find_uninit_data data = { uninitialized, member }; | |
940 | cp_walk_tree_without_duplicates (t, find_uninit_fields_r, &data); | |
941 | } | |
942 | } | |
943 | ||
944 | /* Return true if it's OK to initialize an array TYPE from INIT. Mere mortals | |
945 | can't copy arrays, but the compiler can do so with a VEC_INIT_EXPR in | |
946 | certain cases. */ | |
947 | ||
948 | static bool | |
949 | can_init_array_with_p (tree type, tree init) | |
950 | { | |
951 | if (!init) | |
952 | /* Value-init, OK. */ | |
953 | return true; | |
954 | if (!same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (init))) | |
955 | return false; | |
956 | /* We're called from synthesize_method, and we're processing the | |
957 | mem-initializers of a constructor. */ | |
958 | if (DECL_DEFAULTED_FN (current_function_decl)) | |
959 | return true; | |
960 | if (TREE_CODE (init) == TARGET_EXPR) | |
961 | { | |
962 | init = TARGET_EXPR_INITIAL (init); | |
963 | /* As an extension, we allow copying from a compound literal. */ | |
964 | if (TREE_CODE (init) == CONSTRUCTOR) | |
965 | return CONSTRUCTOR_C99_COMPOUND_LITERAL (init); | |
966 | /* VEC_INIT_EXPR is used for non-constant initialization of trailing | |
967 | elements with no explicit initializers. */ | |
968 | else if (TREE_CODE (init) == VEC_INIT_EXPR) | |
969 | return true; | |
970 | } | |
971 | ||
972 | permerror (input_location, "array must be initialized " | |
973 | "with a brace-enclosed initializer"); | |
974 | return true; | |
975 | } | |
976 | ||
977 | /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of | |
978 | arguments. If TREE_LIST is void_type_node, an empty initializer | |
979 | list was given; if NULL_TREE no initializer was given. UNINITIALIZED | |
980 | is the hash set that tracks uninitialized fields. */ | |
981 | ||
982 | static void | |
983 | perform_member_init (tree member, tree init, hash_set<tree> &uninitialized) | |
984 | { | |
985 | tree decl; | |
986 | tree type = TREE_TYPE (member); | |
987 | ||
988 | /* Use the non-static data member initializer if there was no | |
989 | mem-initializer for this field. */ | |
990 | if (init == NULL_TREE) | |
991 | init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error); | |
992 | ||
993 | if (init == error_mark_node) | |
994 | return; | |
995 | ||
996 | /* Effective C++ rule 12 requires that all data members be | |
997 | initialized. */ | |
998 | if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE) | |
999 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__, | |
1000 | "%qD should be initialized in the member initialization list", | |
1001 | member); | |
1002 | ||
1003 | /* Get an lvalue for the data member. */ | |
1004 | decl = build_class_member_access_expr (current_class_ref, member, | |
1005 | /*access_path=*/NULL_TREE, | |
1006 | /*preserve_reference=*/true, | |
1007 | tf_warning_or_error); | |
1008 | if (decl == error_mark_node) | |
1009 | return; | |
1010 | ||
1011 | if ((warn_init_self || warn_uninitialized || warn_self_move) | |
1012 | && init | |
1013 | && TREE_CODE (init) == TREE_LIST | |
1014 | && TREE_CHAIN (init) == NULL_TREE) | |
1015 | { | |
1016 | tree val = TREE_VALUE (init); | |
1017 | /* Handle references. */ | |
1018 | if (REFERENCE_REF_P (val)) | |
1019 | val = TREE_OPERAND (val, 0); | |
1020 | if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member | |
1021 | && TREE_OPERAND (val, 0) == current_class_ref) | |
1022 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1023 | OPT_Winit_self, "%qD is initialized with itself", | |
1024 | member); | |
1025 | else if (!maybe_warn_self_move (input_location, member, | |
1026 | TREE_VALUE (init))) | |
1027 | find_uninit_fields (&val, &uninitialized, decl); | |
1028 | } | |
1029 | ||
1030 | if (array_of_unknown_bound_p (type)) | |
1031 | { | |
1032 | maybe_reject_flexarray_init (member, init); | |
1033 | return; | |
1034 | } | |
1035 | ||
1036 | if (init && TREE_CODE (init) == TREE_LIST) | |
1037 | { | |
1038 | /* A(): a{e} */ | |
1039 | if (DIRECT_LIST_INIT_P (TREE_VALUE (init))) | |
1040 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, | |
1041 | tf_warning_or_error); | |
1042 | /* We are trying to initialize an array from a ()-list. If we | |
1043 | should attempt to do so, conjure up a CONSTRUCTOR. */ | |
1044 | else if (TREE_CODE (type) == ARRAY_TYPE | |
1045 | /* P0960 is a C++20 feature. */ | |
1046 | && cxx_dialect >= cxx20) | |
1047 | init = do_aggregate_paren_init (init, type); | |
1048 | else if (!CLASS_TYPE_P (type)) | |
1049 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, | |
1050 | tf_warning_or_error); | |
1051 | /* If we're initializing a class from a ()-list, leave the TREE_LIST | |
1052 | alone: we might call an appropriate constructor, or (in C++20) | |
1053 | do aggregate-initialization. */ | |
1054 | } | |
1055 | ||
1056 | /* Assume we are initializing the member. */ | |
1057 | bool member_initialized_p = true; | |
1058 | ||
1059 | if (init == void_type_node) | |
1060 | { | |
1061 | /* mem() means value-initialization. */ | |
1062 | if (TREE_CODE (type) == ARRAY_TYPE) | |
1063 | { | |
1064 | init = build_vec_init_expr (type, init, tf_warning_or_error); | |
1065 | init = cp_build_init_expr (decl, init); | |
1066 | finish_expr_stmt (init); | |
1067 | } | |
1068 | else | |
1069 | { | |
1070 | tree value = build_value_init (type, tf_warning_or_error); | |
1071 | if (value == error_mark_node) | |
1072 | return; | |
1073 | init = cp_build_init_expr (decl, value); | |
1074 | finish_expr_stmt (init); | |
1075 | } | |
1076 | } | |
1077 | /* Deal with this here, as we will get confused if we try to call the | |
1078 | assignment op for an anonymous union. This can happen in a | |
1079 | synthesized copy constructor. */ | |
1080 | else if (ANON_AGGR_TYPE_P (type)) | |
1081 | { | |
1082 | if (init) | |
1083 | { | |
1084 | init = cp_build_init_expr (decl, TREE_VALUE (init)); | |
1085 | finish_expr_stmt (init); | |
1086 | } | |
1087 | } | |
1088 | else if (init | |
1089 | && (TYPE_REF_P (type) | |
1090 | || (TREE_CODE (init) == CONSTRUCTOR | |
1091 | && (CP_AGGREGATE_TYPE_P (type) | |
1092 | || is_std_init_list (type))))) | |
1093 | { | |
1094 | /* With references and list-initialization, we need to deal with | |
1095 | extending temporary lifetimes. 12.2p5: "A temporary bound to a | |
1096 | reference member in a constructor's ctor-initializer (12.6.2) | |
1097 | persists until the constructor exits." */ | |
1098 | unsigned i; tree t; | |
1099 | releasing_vec cleanups; | |
1100 | if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) | |
1101 | { | |
1102 | if (BRACE_ENCLOSED_INITIALIZER_P (init) | |
1103 | && CP_AGGREGATE_TYPE_P (type)) | |
1104 | init = reshape_init (type, init, tf_warning_or_error); | |
1105 | init = digest_init (type, init, tf_warning_or_error); | |
1106 | } | |
1107 | if (init == error_mark_node) | |
1108 | return; | |
1109 | if (is_empty_field (member) | |
1110 | && !TREE_SIDE_EFFECTS (init)) | |
1111 | /* Don't add trivial initialization of an empty base/field, as they | |
1112 | might not be ordered the way the back-end expects. */ | |
1113 | return; | |
1114 | /* A FIELD_DECL doesn't really have a suitable lifetime, but | |
1115 | make_temporary_var_for_ref_to_temp will treat it as automatic and | |
1116 | set_up_extended_ref_temp wants to use the decl in a warning. */ | |
1117 | init = extend_ref_init_temps (member, init, &cleanups); | |
1118 | if (TREE_CODE (type) == ARRAY_TYPE | |
1119 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type))) | |
1120 | init = build_vec_init_expr (type, init, tf_warning_or_error); | |
1121 | init = cp_build_init_expr (decl, init); | |
1122 | finish_expr_stmt (init); | |
1123 | FOR_EACH_VEC_ELT (*cleanups, i, t) | |
1124 | push_cleanup (NULL_TREE, t, false); | |
1125 | } | |
1126 | else if (type_build_ctor_call (type) | |
1127 | || (init && CLASS_TYPE_P (strip_array_types (type)))) | |
1128 | { | |
1129 | if (TREE_CODE (type) == ARRAY_TYPE) | |
1130 | { | |
1131 | if (can_init_array_with_p (type, init)) | |
1132 | { | |
1133 | if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type))) | |
1134 | { | |
1135 | /* Initialize the array only if it's not a flexible | |
1136 | array member (i.e., if it has an upper bound). */ | |
1137 | init = build_vec_init_expr (type, init, tf_warning_or_error); | |
1138 | init = cp_build_init_expr (decl, init); | |
1139 | finish_expr_stmt (init); | |
1140 | } | |
1141 | } | |
1142 | else | |
1143 | error ("invalid initializer for array member %q#D", member); | |
1144 | } | |
1145 | else | |
1146 | { | |
1147 | int flags = LOOKUP_NORMAL; | |
1148 | if (DECL_DEFAULTED_FN (current_function_decl)) | |
1149 | flags |= LOOKUP_DEFAULTED; | |
1150 | if (CP_TYPE_CONST_P (type) | |
1151 | && init == NULL_TREE | |
1152 | && default_init_uninitialized_part (type)) | |
1153 | { | |
1154 | /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a | |
1155 | vtable; still give this diagnostic. */ | |
1156 | auto_diagnostic_group d; | |
1157 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), | |
1158 | "uninitialized const member in %q#T", type)) | |
1159 | inform (DECL_SOURCE_LOCATION (member), | |
1160 | "%q#D should be initialized", member ); | |
1161 | } | |
1162 | finish_expr_stmt (build_aggr_init (decl, init, flags, | |
1163 | tf_warning_or_error)); | |
1164 | } | |
1165 | } | |
1166 | else | |
1167 | { | |
1168 | if (init == NULL_TREE) | |
1169 | { | |
1170 | tree core_type; | |
1171 | /* member traversal: note it leaves init NULL */ | |
1172 | if (TYPE_REF_P (type)) | |
1173 | { | |
1174 | auto_diagnostic_group d; | |
1175 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), | |
1176 | "uninitialized reference member in %q#T", type)) | |
1177 | inform (DECL_SOURCE_LOCATION (member), | |
1178 | "%q#D should be initialized", member); | |
1179 | } | |
1180 | else if (CP_TYPE_CONST_P (type)) | |
1181 | { | |
1182 | auto_diagnostic_group d; | |
1183 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), | |
1184 | "uninitialized const member in %q#T", type)) | |
1185 | inform (DECL_SOURCE_LOCATION (member), | |
1186 | "%q#D should be initialized", member ); | |
1187 | } | |
1188 | ||
1189 | core_type = strip_array_types (type); | |
1190 | ||
1191 | if (CLASS_TYPE_P (core_type) | |
1192 | && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type) | |
1193 | || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))) | |
1194 | diagnose_uninitialized_cst_or_ref_member (core_type, | |
1195 | /*using_new=*/false, | |
1196 | /*complain=*/true); | |
1197 | ||
1198 | /* We left the member uninitialized. */ | |
1199 | member_initialized_p = false; | |
1200 | } | |
1201 | ||
1202 | maybe_warn_list_ctor (member, init); | |
1203 | ||
1204 | if (init) | |
1205 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, | |
1206 | INIT_EXPR, init, | |
1207 | tf_warning_or_error)); | |
1208 | } | |
1209 | ||
1210 | if (member_initialized_p && warn_uninitialized) | |
1211 | /* This member is now initialized, remove it from the uninitialized | |
1212 | set. */ | |
1213 | uninitialized.remove (member); | |
1214 | ||
1215 | if (type_build_dtor_call (type)) | |
1216 | { | |
1217 | tree expr; | |
1218 | ||
1219 | expr = build_class_member_access_expr (current_class_ref, member, | |
1220 | /*access_path=*/NULL_TREE, | |
1221 | /*preserve_reference=*/false, | |
1222 | tf_warning_or_error); | |
1223 | expr = build_delete (input_location, | |
1224 | type, expr, sfk_complete_destructor, | |
1225 | LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0, | |
1226 | tf_warning_or_error); | |
1227 | ||
1228 | if (expr != error_mark_node | |
1229 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) | |
1230 | finish_eh_cleanup (expr); | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all | |
1235 | the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */ | |
1236 | ||
1237 | static tree | |
1238 | build_field_list (tree t, tree list, int *uses_unions_or_anon_p) | |
1239 | { | |
1240 | tree fields; | |
1241 | ||
1242 | /* Note whether or not T is a union. */ | |
1243 | if (TREE_CODE (t) == UNION_TYPE) | |
1244 | *uses_unions_or_anon_p = 1; | |
1245 | ||
1246 | for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields)) | |
1247 | { | |
1248 | tree fieldtype; | |
1249 | ||
1250 | /* Skip CONST_DECLs for enumeration constants and so forth. */ | |
1251 | if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields)) | |
1252 | continue; | |
1253 | ||
1254 | fieldtype = TREE_TYPE (fields); | |
1255 | ||
1256 | /* For an anonymous struct or union, we must recursively | |
1257 | consider the fields of the anonymous type. They can be | |
1258 | directly initialized from the constructor. */ | |
1259 | if (ANON_AGGR_TYPE_P (fieldtype)) | |
1260 | { | |
1261 | /* Add this field itself. Synthesized copy constructors | |
1262 | initialize the entire aggregate. */ | |
1263 | list = tree_cons (fields, NULL_TREE, list); | |
1264 | /* And now add the fields in the anonymous aggregate. */ | |
1265 | list = build_field_list (fieldtype, list, uses_unions_or_anon_p); | |
1266 | *uses_unions_or_anon_p = 1; | |
1267 | } | |
1268 | /* Add this field. */ | |
1269 | else if (DECL_NAME (fields)) | |
1270 | list = tree_cons (fields, NULL_TREE, list); | |
1271 | } | |
1272 | ||
1273 | return list; | |
1274 | } | |
1275 | ||
1276 | /* Return the innermost aggregate scope for FIELD, whether that is | |
1277 | the enclosing class or an anonymous aggregate within it. */ | |
1278 | ||
1279 | static tree | |
1280 | innermost_aggr_scope (tree field) | |
1281 | { | |
1282 | if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) | |
1283 | return TREE_TYPE (field); | |
1284 | else | |
1285 | return DECL_CONTEXT (field); | |
1286 | } | |
1287 | ||
1288 | /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives | |
1289 | a FIELD_DECL or BINFO in T that needs initialization. The | |
1290 | TREE_VALUE gives the initializer, or list of initializer arguments. | |
1291 | ||
1292 | Return a TREE_LIST containing all of the initializations required | |
1293 | for T, in the order in which they should be performed. The output | |
1294 | list has the same format as the input. */ | |
1295 | ||
1296 | static tree | |
1297 | sort_mem_initializers (tree t, tree mem_inits) | |
1298 | { | |
1299 | tree init; | |
1300 | tree base, binfo, base_binfo; | |
1301 | tree sorted_inits; | |
1302 | tree next_subobject; | |
1303 | vec<tree, va_gc> *vbases; | |
1304 | int i; | |
1305 | int uses_unions_or_anon_p = 0; | |
1306 | ||
1307 | /* Build up a list of initializations. The TREE_PURPOSE of entry | |
1308 | will be the subobject (a FIELD_DECL or BINFO) to initialize. The | |
1309 | TREE_VALUE will be the constructor arguments, or NULL if no | |
1310 | explicit initialization was provided. */ | |
1311 | sorted_inits = NULL_TREE; | |
1312 | ||
1313 | /* Process the virtual bases. */ | |
1314 | for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; | |
1315 | vec_safe_iterate (vbases, i, &base); i++) | |
1316 | sorted_inits = tree_cons (base, NULL_TREE, sorted_inits); | |
1317 | ||
1318 | /* Process the direct bases. */ | |
1319 | for (binfo = TYPE_BINFO (t), i = 0; | |
1320 | BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) | |
1321 | if (!BINFO_VIRTUAL_P (base_binfo)) | |
1322 | sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits); | |
1323 | ||
1324 | /* Process the non-static data members. */ | |
1325 | sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p); | |
1326 | /* Reverse the entire list of initializations, so that they are in | |
1327 | the order that they will actually be performed. */ | |
1328 | sorted_inits = nreverse (sorted_inits); | |
1329 | ||
1330 | /* If the user presented the initializers in an order different from | |
1331 | that in which they will actually occur, we issue a warning. Keep | |
1332 | track of the next subobject which can be explicitly initialized | |
1333 | without issuing a warning. */ | |
1334 | next_subobject = sorted_inits; | |
1335 | ||
1336 | /* Go through the explicit initializers, filling in TREE_PURPOSE in | |
1337 | the SORTED_INITS. */ | |
1338 | for (init = mem_inits; init; init = TREE_CHAIN (init)) | |
1339 | { | |
1340 | tree subobject; | |
1341 | tree subobject_init; | |
1342 | ||
1343 | subobject = TREE_PURPOSE (init); | |
1344 | ||
1345 | /* If the explicit initializers are in sorted order, then | |
1346 | SUBOBJECT will be NEXT_SUBOBJECT, or something following | |
1347 | it. */ | |
1348 | for (subobject_init = next_subobject; | |
1349 | subobject_init; | |
1350 | subobject_init = TREE_CHAIN (subobject_init)) | |
1351 | if (TREE_PURPOSE (subobject_init) == subobject) | |
1352 | break; | |
1353 | ||
1354 | /* Issue a warning if the explicit initializer order does not | |
1355 | match that which will actually occur. | |
1356 | ??? Are all these on the correct lines? */ | |
1357 | if (warn_reorder && !subobject_init) | |
1358 | { | |
1359 | if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL) | |
1360 | warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)), | |
1361 | OPT_Wreorder, "%qD will be initialized after", | |
1362 | TREE_PURPOSE (next_subobject)); | |
1363 | else | |
1364 | warning (OPT_Wreorder, "base %qT will be initialized after", | |
1365 | TREE_PURPOSE (next_subobject)); | |
1366 | if (TREE_CODE (subobject) == FIELD_DECL) | |
1367 | warning_at (DECL_SOURCE_LOCATION (subobject), | |
1368 | OPT_Wreorder, " %q#D", subobject); | |
1369 | else | |
1370 | warning (OPT_Wreorder, " base %qT", subobject); | |
1371 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1372 | OPT_Wreorder, " when initialized here"); | |
1373 | } | |
1374 | ||
1375 | /* Look again, from the beginning of the list. */ | |
1376 | if (!subobject_init) | |
1377 | { | |
1378 | subobject_init = sorted_inits; | |
1379 | while (TREE_PURPOSE (subobject_init) != subobject) | |
1380 | subobject_init = TREE_CHAIN (subobject_init); | |
1381 | } | |
1382 | ||
1383 | /* It is invalid to initialize the same subobject more than | |
1384 | once. */ | |
1385 | if (TREE_VALUE (subobject_init)) | |
1386 | { | |
1387 | if (TREE_CODE (subobject) == FIELD_DECL) | |
1388 | error_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1389 | "multiple initializations given for %qD", | |
1390 | subobject); | |
1391 | else | |
1392 | error_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1393 | "multiple initializations given for base %qT", | |
1394 | subobject); | |
1395 | } | |
1396 | ||
1397 | /* Record the initialization. */ | |
1398 | TREE_VALUE (subobject_init) = TREE_VALUE (init); | |
1399 | /* Carry over the dummy TREE_TYPE node containing the source location. */ | |
1400 | TREE_TYPE (subobject_init) = TREE_TYPE (init); | |
1401 | next_subobject = subobject_init; | |
1402 | } | |
1403 | ||
1404 | /* [class.base.init] | |
1405 | ||
1406 | If a ctor-initializer specifies more than one mem-initializer for | |
1407 | multiple members of the same union (including members of | |
1408 | anonymous unions), the ctor-initializer is ill-formed. | |
1409 | ||
1410 | Here we also splice out uninitialized union members. */ | |
1411 | if (uses_unions_or_anon_p) | |
1412 | { | |
1413 | tree *last_p = NULL; | |
1414 | tree *p; | |
1415 | for (p = &sorted_inits; *p; ) | |
1416 | { | |
1417 | tree field; | |
1418 | tree ctx; | |
1419 | ||
1420 | init = *p; | |
1421 | ||
1422 | field = TREE_PURPOSE (init); | |
1423 | ||
1424 | /* Skip base classes. */ | |
1425 | if (TREE_CODE (field) != FIELD_DECL) | |
1426 | goto next; | |
1427 | ||
1428 | /* If this is an anonymous aggregate with no explicit initializer, | |
1429 | splice it out. */ | |
1430 | if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field))) | |
1431 | goto splice; | |
1432 | ||
1433 | /* See if this field is a member of a union, or a member of a | |
1434 | structure contained in a union, etc. */ | |
1435 | ctx = innermost_aggr_scope (field); | |
1436 | ||
1437 | /* If this field is not a member of a union, skip it. */ | |
1438 | if (TREE_CODE (ctx) != UNION_TYPE | |
1439 | && !ANON_AGGR_TYPE_P (ctx)) | |
1440 | goto next; | |
1441 | ||
1442 | /* If this union member has no explicit initializer and no NSDMI, | |
1443 | splice it out. */ | |
1444 | if (TREE_VALUE (init) || DECL_INITIAL (field)) | |
1445 | /* OK. */; | |
1446 | else | |
1447 | goto splice; | |
1448 | ||
1449 | /* It's only an error if we have two initializers for the same | |
1450 | union type. */ | |
1451 | if (!last_p) | |
1452 | { | |
1453 | last_p = p; | |
1454 | goto next; | |
1455 | } | |
1456 | ||
1457 | /* See if LAST_FIELD and the field initialized by INIT are | |
1458 | members of the same union (or the union itself). If so, there's | |
1459 | a problem, unless they're actually members of the same structure | |
1460 | which is itself a member of a union. For example, given: | |
1461 | ||
1462 | union { struct { int i; int j; }; }; | |
1463 | ||
1464 | initializing both `i' and `j' makes sense. */ | |
1465 | ctx = common_enclosing_class | |
1466 | (innermost_aggr_scope (field), | |
1467 | innermost_aggr_scope (TREE_PURPOSE (*last_p))); | |
1468 | ||
1469 | if (ctx && (TREE_CODE (ctx) == UNION_TYPE | |
1470 | || ctx == TREE_TYPE (TREE_PURPOSE (*last_p)))) | |
1471 | { | |
1472 | /* A mem-initializer hides an NSDMI. */ | |
1473 | if (TREE_VALUE (init) && !TREE_VALUE (*last_p)) | |
1474 | *last_p = TREE_CHAIN (*last_p); | |
1475 | else if (TREE_VALUE (*last_p) && !TREE_VALUE (init)) | |
1476 | goto splice; | |
1477 | else | |
1478 | { | |
1479 | error_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1480 | "initializations for multiple members of %qT", | |
1481 | ctx); | |
1482 | goto splice; | |
1483 | } | |
1484 | } | |
1485 | ||
1486 | last_p = p; | |
1487 | ||
1488 | next: | |
1489 | p = &TREE_CHAIN (*p); | |
1490 | continue; | |
1491 | splice: | |
1492 | *p = TREE_CHAIN (*p); | |
1493 | } | |
1494 | } | |
1495 | ||
1496 | return sorted_inits; | |
1497 | } | |
1498 | ||
1499 | /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */ | |
1500 | ||
1501 | static tree | |
1502 | mark_exp_read_r (tree *tp, int *, void *) | |
1503 | { | |
1504 | tree t = *tp; | |
1505 | if (TREE_CODE (t) == PARM_DECL) | |
1506 | mark_exp_read (t); | |
1507 | return NULL_TREE; | |
1508 | } | |
1509 | ||
1510 | /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS | |
1511 | is a TREE_LIST giving the explicit mem-initializer-list for the | |
1512 | constructor. The TREE_PURPOSE of each entry is a subobject (a | |
1513 | FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE | |
1514 | is a TREE_LIST giving the arguments to the constructor or | |
1515 | void_type_node for an empty list of arguments. */ | |
1516 | ||
1517 | void | |
1518 | emit_mem_initializers (tree mem_inits) | |
1519 | { | |
1520 | int flags = LOOKUP_NORMAL; | |
1521 | ||
1522 | /* We will already have issued an error message about the fact that | |
1523 | the type is incomplete. */ | |
1524 | if (!COMPLETE_TYPE_P (current_class_type)) | |
1525 | return; | |
1526 | ||
1527 | /* Keep a set holding fields that are not initialized. */ | |
1528 | hash_set<tree> uninitialized; | |
1529 | ||
1530 | /* Initially that is all of them. */ | |
1531 | if (warn_uninitialized) | |
1532 | for (tree f = next_aggregate_field (TYPE_FIELDS (current_class_type)); | |
1533 | f != NULL_TREE; | |
1534 | f = next_aggregate_field (DECL_CHAIN (f))) | |
1535 | if (!DECL_ARTIFICIAL (f) | |
1536 | && !is_really_empty_class (TREE_TYPE (f), /*ignore_vptr*/false)) | |
1537 | uninitialized.add (f); | |
1538 | ||
1539 | if (mem_inits | |
1540 | && TYPE_P (TREE_PURPOSE (mem_inits)) | |
1541 | && same_type_p (TREE_PURPOSE (mem_inits), current_class_type)) | |
1542 | { | |
1543 | /* Delegating constructor. */ | |
1544 | gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE); | |
1545 | tree ctor = perform_target_ctor (TREE_VALUE (mem_inits)); | |
1546 | find_uninit_fields (&ctor, &uninitialized, current_class_type); | |
1547 | return; | |
1548 | } | |
1549 | ||
1550 | if (DECL_DEFAULTED_FN (current_function_decl) | |
1551 | && ! DECL_INHERITED_CTOR (current_function_decl)) | |
1552 | flags |= LOOKUP_DEFAULTED; | |
1553 | ||
1554 | /* Sort the mem-initializers into the order in which the | |
1555 | initializations should be performed. */ | |
1556 | mem_inits = sort_mem_initializers (current_class_type, mem_inits); | |
1557 | ||
1558 | in_base_initializer = 1; | |
1559 | ||
1560 | /* Initialize base classes. */ | |
1561 | for (; (mem_inits | |
1562 | && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL); | |
1563 | mem_inits = TREE_CHAIN (mem_inits)) | |
1564 | { | |
1565 | tree subobject = TREE_PURPOSE (mem_inits); | |
1566 | tree arguments = TREE_VALUE (mem_inits); | |
1567 | ||
1568 | /* We already have issued an error message. */ | |
1569 | if (arguments == error_mark_node) | |
1570 | continue; | |
1571 | ||
1572 | /* Suppress access control when calling the inherited ctor. */ | |
1573 | bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl) | |
1574 | && flag_new_inheriting_ctors | |
1575 | && arguments); | |
1576 | if (inherited_base) | |
1577 | push_deferring_access_checks (dk_deferred); | |
1578 | ||
1579 | if (arguments == NULL_TREE) | |
1580 | { | |
1581 | /* If these initializations are taking place in a copy constructor, | |
1582 | the base class should probably be explicitly initialized if there | |
1583 | is a user-defined constructor in the base class (other than the | |
1584 | default constructor, which will be called anyway). */ | |
1585 | if (extra_warnings | |
1586 | && DECL_COPY_CONSTRUCTOR_P (current_function_decl) | |
1587 | && type_has_user_nondefault_constructor (BINFO_TYPE (subobject))) | |
1588 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), | |
1589 | OPT_Wextra, "base class %q#T should be explicitly " | |
1590 | "initialized in the copy constructor", | |
1591 | BINFO_TYPE (subobject)); | |
1592 | } | |
1593 | ||
1594 | /* Initialize the base. */ | |
1595 | if (!BINFO_VIRTUAL_P (subobject)) | |
1596 | { | |
1597 | tree base_addr; | |
1598 | ||
1599 | base_addr = build_base_path (PLUS_EXPR, current_class_ptr, | |
1600 | subobject, 1, tf_warning_or_error); | |
1601 | expand_aggr_init_1 (subobject, NULL_TREE, | |
1602 | cp_build_fold_indirect_ref (base_addr), | |
1603 | arguments, | |
1604 | flags, | |
1605 | tf_warning_or_error); | |
1606 | expand_cleanup_for_base (subobject, NULL_TREE); | |
1607 | if (STATEMENT_LIST_TAIL (cur_stmt_list)) | |
1608 | find_uninit_fields (&STATEMENT_LIST_TAIL (cur_stmt_list)->stmt, | |
1609 | &uninitialized, BINFO_TYPE (subobject)); | |
1610 | } | |
1611 | else if (!ABSTRACT_CLASS_TYPE_P (current_class_type)) | |
1612 | /* C++14 DR1658 Means we do not have to construct vbases of | |
1613 | abstract classes. */ | |
1614 | construct_virtual_base (subobject, arguments); | |
1615 | else | |
1616 | /* When not constructing vbases of abstract classes, at least mark | |
1617 | the arguments expressions as read to avoid | |
1618 | -Wunused-but-set-parameter false positives. */ | |
1619 | cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL); | |
1620 | ||
1621 | if (inherited_base) | |
1622 | pop_deferring_access_checks (); | |
1623 | } | |
1624 | in_base_initializer = 0; | |
1625 | ||
1626 | /* Initialize the vptrs. */ | |
1627 | initialize_vtbl_ptrs (current_class_ptr); | |
1628 | ||
1629 | /* Initialize the data members. */ | |
1630 | while (mem_inits) | |
1631 | { | |
1632 | /* If this initializer was explicitly provided, then the dummy TREE_TYPE | |
1633 | node contains the source location. */ | |
1634 | iloc_sentinel ils (EXPR_LOCATION (TREE_TYPE (mem_inits))); | |
1635 | ||
1636 | perform_member_init (TREE_PURPOSE (mem_inits), | |
1637 | TREE_VALUE (mem_inits), | |
1638 | uninitialized); | |
1639 | ||
1640 | mem_inits = TREE_CHAIN (mem_inits); | |
1641 | } | |
1642 | } | |
1643 | ||
1644 | /* Returns the address of the vtable (i.e., the value that should be | |
1645 | assigned to the vptr) for BINFO. */ | |
1646 | ||
1647 | tree | |
1648 | build_vtbl_address (tree binfo) | |
1649 | { | |
1650 | tree binfo_for = binfo; | |
1651 | tree vtbl; | |
1652 | ||
1653 | if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo)) | |
1654 | /* If this is a virtual primary base, then the vtable we want to store | |
1655 | is that for the base this is being used as the primary base of. We | |
1656 | can't simply skip the initialization, because we may be expanding the | |
1657 | inits of a subobject constructor where the virtual base layout | |
1658 | can be different. */ | |
1659 | while (BINFO_PRIMARY_P (binfo_for)) | |
1660 | binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for); | |
1661 | ||
1662 | /* Figure out what vtable BINFO's vtable is based on, and mark it as | |
1663 | used. */ | |
1664 | vtbl = get_vtbl_decl_for_binfo (binfo_for); | |
1665 | TREE_USED (vtbl) = true; | |
1666 | ||
1667 | /* Now compute the address to use when initializing the vptr. */ | |
1668 | vtbl = unshare_expr (BINFO_VTABLE (binfo_for)); | |
1669 | if (VAR_P (vtbl)) | |
1670 | vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl); | |
1671 | ||
1672 | return vtbl; | |
1673 | } | |
1674 | ||
1675 | /* This code sets up the virtual function tables appropriate for | |
1676 | the pointer DECL. It is a one-ply initialization. | |
1677 | ||
1678 | BINFO is the exact type that DECL is supposed to be. In | |
1679 | multiple inheritance, this might mean "C's A" if C : A, B. */ | |
1680 | ||
1681 | static void | |
1682 | expand_virtual_init (tree binfo, tree decl) | |
1683 | { | |
1684 | tree vtbl, vtbl_ptr; | |
1685 | tree vtt_index; | |
1686 | ||
1687 | /* Compute the initializer for vptr. */ | |
1688 | vtbl = build_vtbl_address (binfo); | |
1689 | ||
1690 | /* We may get this vptr from a VTT, if this is a subobject | |
1691 | constructor or subobject destructor. */ | |
1692 | vtt_index = BINFO_VPTR_INDEX (binfo); | |
1693 | if (vtt_index) | |
1694 | { | |
1695 | tree vtbl2; | |
1696 | tree vtt_parm; | |
1697 | ||
1698 | /* Compute the value to use, when there's a VTT. */ | |
1699 | vtt_parm = current_vtt_parm; | |
1700 | vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index); | |
1701 | vtbl2 = cp_build_fold_indirect_ref (vtbl2); | |
1702 | vtbl2 = convert (TREE_TYPE (vtbl), vtbl2); | |
1703 | ||
1704 | /* The actual initializer is the VTT value only in the subobject | |
1705 | constructor. In maybe_clone_body we'll substitute NULL for | |
1706 | the vtt_parm in the case of the non-subobject constructor. */ | |
1707 | vtbl = build_if_in_charge (vtbl, vtbl2); | |
1708 | } | |
1709 | ||
1710 | /* Compute the location of the vtpr. */ | |
1711 | vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl), | |
1712 | TREE_TYPE (binfo)); | |
1713 | gcc_assert (vtbl_ptr != error_mark_node); | |
1714 | ||
1715 | /* Assign the vtable to the vptr. */ | |
1716 | vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error); | |
1717 | finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR, | |
1718 | vtbl, tf_warning_or_error)); | |
1719 | } | |
1720 | ||
1721 | /* If an exception is thrown in a constructor, those base classes already | |
1722 | constructed must be destroyed. This function creates the cleanup | |
1723 | for BINFO, which has just been constructed. If FLAG is non-NULL, | |
1724 | it is a DECL which is nonzero when this base needs to be | |
1725 | destroyed. */ | |
1726 | ||
1727 | static void | |
1728 | expand_cleanup_for_base (tree binfo, tree flag) | |
1729 | { | |
1730 | tree expr; | |
1731 | ||
1732 | if (!type_build_dtor_call (BINFO_TYPE (binfo))) | |
1733 | return; | |
1734 | ||
1735 | /* Call the destructor. */ | |
1736 | expr = build_special_member_call (current_class_ref, | |
1737 | base_dtor_identifier, | |
1738 | NULL, | |
1739 | binfo, | |
1740 | LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, | |
1741 | tf_warning_or_error); | |
1742 | ||
1743 | if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo))) | |
1744 | return; | |
1745 | ||
1746 | if (flag) | |
1747 | expr = fold_build3_loc (input_location, | |
1748 | COND_EXPR, void_type_node, | |
1749 | c_common_truthvalue_conversion (input_location, flag), | |
1750 | expr, integer_zero_node); | |
1751 | ||
1752 | finish_eh_cleanup (expr); | |
1753 | } | |
1754 | ||
1755 | /* Construct the virtual base-class VBASE passing the ARGUMENTS to its | |
1756 | constructor. */ | |
1757 | ||
1758 | static void | |
1759 | construct_virtual_base (tree vbase, tree arguments) | |
1760 | { | |
1761 | tree inner_if_stmt; | |
1762 | tree exp; | |
1763 | tree flag; | |
1764 | ||
1765 | /* If there are virtual base classes with destructors, we need to | |
1766 | emit cleanups to destroy them if an exception is thrown during | |
1767 | the construction process. These exception regions (i.e., the | |
1768 | period during which the cleanups must occur) begin from the time | |
1769 | the construction is complete to the end of the function. If we | |
1770 | create a conditional block in which to initialize the | |
1771 | base-classes, then the cleanup region for the virtual base begins | |
1772 | inside a block, and ends outside of that block. This situation | |
1773 | confuses the sjlj exception-handling code. Therefore, we do not | |
1774 | create a single conditional block, but one for each | |
1775 | initialization. (That way the cleanup regions always begin | |
1776 | in the outer block.) We trust the back end to figure out | |
1777 | that the FLAG will not change across initializations, and | |
1778 | avoid doing multiple tests. */ | |
1779 | flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl)); | |
1780 | inner_if_stmt = begin_if_stmt (); | |
1781 | finish_if_stmt_cond (flag, inner_if_stmt); | |
1782 | ||
1783 | /* Compute the location of the virtual base. If we're | |
1784 | constructing virtual bases, then we must be the most derived | |
1785 | class. Therefore, we don't have to look up the virtual base; | |
1786 | we already know where it is. */ | |
1787 | exp = convert_to_base_statically (current_class_ref, vbase); | |
1788 | ||
1789 | expand_aggr_init_1 (vbase, current_class_ref, exp, arguments, | |
1790 | 0, tf_warning_or_error); | |
1791 | finish_then_clause (inner_if_stmt); | |
1792 | finish_if_stmt (inner_if_stmt); | |
1793 | ||
1794 | expand_cleanup_for_base (vbase, flag); | |
1795 | } | |
1796 | ||
1797 | /* Find the context in which this FIELD can be initialized. */ | |
1798 | ||
1799 | static tree | |
1800 | initializing_context (tree field) | |
1801 | { | |
1802 | tree t = DECL_CONTEXT (field); | |
1803 | ||
1804 | /* Anonymous union members can be initialized in the first enclosing | |
1805 | non-anonymous union context. */ | |
1806 | while (t && ANON_AGGR_TYPE_P (t)) | |
1807 | t = TYPE_CONTEXT (t); | |
1808 | return t; | |
1809 | } | |
1810 | ||
1811 | /* Function to give error message if member initialization specification | |
1812 | is erroneous. FIELD is the member we decided to initialize. | |
1813 | TYPE is the type for which the initialization is being performed. | |
1814 | FIELD must be a member of TYPE. | |
1815 | ||
1816 | MEMBER_NAME is the name of the member. */ | |
1817 | ||
1818 | static int | |
1819 | member_init_ok_or_else (tree field, tree type, tree member_name) | |
1820 | { | |
1821 | if (field == error_mark_node) | |
1822 | return 0; | |
1823 | if (!field) | |
1824 | { | |
1825 | error ("class %qT does not have any field named %qD", type, | |
1826 | member_name); | |
1827 | return 0; | |
1828 | } | |
1829 | if (VAR_P (field)) | |
1830 | { | |
1831 | error ("%q#D is a static data member; it can only be " | |
1832 | "initialized at its definition", | |
1833 | field); | |
1834 | return 0; | |
1835 | } | |
1836 | if (TREE_CODE (field) != FIELD_DECL) | |
1837 | { | |
1838 | error ("%q#D is not a non-static data member of %qT", | |
1839 | field, type); | |
1840 | return 0; | |
1841 | } | |
1842 | if (initializing_context (field) != type) | |
1843 | { | |
1844 | error ("class %qT does not have any field named %qD", type, | |
1845 | member_name); | |
1846 | return 0; | |
1847 | } | |
1848 | ||
1849 | return 1; | |
1850 | } | |
1851 | ||
1852 | /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it | |
1853 | is a _TYPE node or TYPE_DECL which names a base for that type. | |
1854 | Check the validity of NAME, and return either the base _TYPE, base | |
1855 | binfo, or the FIELD_DECL of the member. If NAME is invalid, return | |
1856 | NULL_TREE and issue a diagnostic. | |
1857 | ||
1858 | An old style unnamed direct single base construction is permitted, | |
1859 | where NAME is NULL. */ | |
1860 | ||
1861 | tree | |
1862 | expand_member_init (tree name) | |
1863 | { | |
1864 | tree basetype; | |
1865 | tree field; | |
1866 | ||
1867 | if (!current_class_ref) | |
1868 | return NULL_TREE; | |
1869 | ||
1870 | if (!name) | |
1871 | { | |
1872 | /* This is an obsolete unnamed base class initializer. The | |
1873 | parser will already have warned about its use. */ | |
1874 | switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type))) | |
1875 | { | |
1876 | case 0: | |
1877 | error ("unnamed initializer for %qT, which has no base classes", | |
1878 | current_class_type); | |
1879 | return NULL_TREE; | |
1880 | case 1: | |
1881 | basetype = BINFO_TYPE | |
1882 | (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0)); | |
1883 | break; | |
1884 | default: | |
1885 | error ("unnamed initializer for %qT, which uses multiple inheritance", | |
1886 | current_class_type); | |
1887 | return NULL_TREE; | |
1888 | } | |
1889 | } | |
1890 | else if (TYPE_P (name)) | |
1891 | { | |
1892 | basetype = TYPE_MAIN_VARIANT (name); | |
1893 | name = TYPE_NAME (name); | |
1894 | } | |
1895 | else if (TREE_CODE (name) == TYPE_DECL) | |
1896 | basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name)); | |
1897 | else | |
1898 | basetype = NULL_TREE; | |
1899 | ||
1900 | if (basetype) | |
1901 | { | |
1902 | tree class_binfo; | |
1903 | tree direct_binfo; | |
1904 | tree virtual_binfo; | |
1905 | int i; | |
1906 | ||
1907 | if (current_template_parms | |
1908 | || same_type_p (basetype, current_class_type)) | |
1909 | return basetype; | |
1910 | ||
1911 | class_binfo = TYPE_BINFO (current_class_type); | |
1912 | direct_binfo = NULL_TREE; | |
1913 | virtual_binfo = NULL_TREE; | |
1914 | ||
1915 | /* Look for a direct base. */ | |
1916 | for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i) | |
1917 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype)) | |
1918 | break; | |
1919 | ||
1920 | /* Look for a virtual base -- unless the direct base is itself | |
1921 | virtual. */ | |
1922 | if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo)) | |
1923 | virtual_binfo = binfo_for_vbase (basetype, current_class_type); | |
1924 | ||
1925 | /* [class.base.init] | |
1926 | ||
1927 | If a mem-initializer-id is ambiguous because it designates | |
1928 | both a direct non-virtual base class and an inherited virtual | |
1929 | base class, the mem-initializer is ill-formed. */ | |
1930 | if (direct_binfo && virtual_binfo) | |
1931 | { | |
1932 | error ("%qD is both a direct base and an indirect virtual base", | |
1933 | basetype); | |
1934 | return NULL_TREE; | |
1935 | } | |
1936 | ||
1937 | if (!direct_binfo && !virtual_binfo) | |
1938 | { | |
1939 | if (CLASSTYPE_VBASECLASSES (current_class_type)) | |
1940 | error ("type %qT is not a direct or virtual base of %qT", | |
1941 | basetype, current_class_type); | |
1942 | else | |
1943 | error ("type %qT is not a direct base of %qT", | |
1944 | basetype, current_class_type); | |
1945 | return NULL_TREE; | |
1946 | } | |
1947 | ||
1948 | return direct_binfo ? direct_binfo : virtual_binfo; | |
1949 | } | |
1950 | else | |
1951 | { | |
1952 | if (identifier_p (name)) | |
1953 | field = lookup_field (current_class_type, name, 1, false); | |
1954 | else | |
1955 | field = name; | |
1956 | ||
1957 | if (member_init_ok_or_else (field, current_class_type, name)) | |
1958 | return field; | |
1959 | } | |
1960 | ||
1961 | return NULL_TREE; | |
1962 | } | |
1963 | ||
1964 | /* This is like `expand_member_init', only it stores one aggregate | |
1965 | value into another. | |
1966 | ||
1967 | INIT comes in two flavors: it is either a value which | |
1968 | is to be stored in EXP, or it is a parameter list | |
1969 | to go to a constructor, which will operate on EXP. | |
1970 | If INIT is not a parameter list for a constructor, then set | |
1971 | LOOKUP_ONLYCONVERTING. | |
1972 | If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of | |
1973 | the initializer, if FLAGS is 0, then it is the (init) form. | |
1974 | If `init' is a CONSTRUCTOR, then we emit a warning message, | |
1975 | explaining that such initializations are invalid. | |
1976 | ||
1977 | If INIT resolves to a CALL_EXPR which happens to return | |
1978 | something of the type we are looking for, then we know | |
1979 | that we can safely use that call to perform the | |
1980 | initialization. | |
1981 | ||
1982 | The virtual function table pointer cannot be set up here, because | |
1983 | we do not really know its type. | |
1984 | ||
1985 | This never calls operator=(). | |
1986 | ||
1987 | When initializing, nothing is CONST. | |
1988 | ||
1989 | A default copy constructor may have to be used to perform the | |
1990 | initialization. | |
1991 | ||
1992 | A constructor or a conversion operator may have to be used to | |
1993 | perform the initialization, but not both, as it would be ambiguous. */ | |
1994 | ||
1995 | tree | |
1996 | build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain) | |
1997 | { | |
1998 | tree stmt_expr; | |
1999 | tree compound_stmt; | |
2000 | int destroy_temps; | |
2001 | tree type = TREE_TYPE (exp); | |
2002 | int was_const = TREE_READONLY (exp); | |
2003 | int was_volatile = TREE_THIS_VOLATILE (exp); | |
2004 | int is_global; | |
2005 | ||
2006 | if (init == error_mark_node) | |
2007 | return error_mark_node; | |
2008 | ||
2009 | location_t init_loc = (init | |
2010 | ? cp_expr_loc_or_input_loc (init) | |
2011 | : location_of (exp)); | |
2012 | ||
2013 | TREE_READONLY (exp) = 0; | |
2014 | TREE_THIS_VOLATILE (exp) = 0; | |
2015 | ||
2016 | if (TREE_CODE (type) == ARRAY_TYPE) | |
2017 | { | |
2018 | tree itype = init ? TREE_TYPE (init) : NULL_TREE; | |
2019 | int from_array = 0; | |
2020 | ||
2021 | if (DECL_DECOMPOSITION_P (exp)) | |
2022 | { | |
2023 | from_array = 1; | |
2024 | init = mark_rvalue_use (init); | |
2025 | if (init | |
2026 | && DECL_P (tree_strip_any_location_wrapper (init)) | |
2027 | && !(flags & LOOKUP_ONLYCONVERTING)) | |
2028 | { | |
2029 | /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init | |
2030 | recognizes it as direct-initialization. */ | |
2031 | init = build_constructor_single (init_list_type_node, | |
2032 | NULL_TREE, init); | |
2033 | CONSTRUCTOR_IS_DIRECT_INIT (init) = true; | |
2034 | } | |
2035 | } | |
2036 | else | |
2037 | { | |
2038 | /* Must arrange to initialize each element of EXP | |
2039 | from elements of INIT. */ | |
2040 | if (cv_qualified_p (type)) | |
2041 | TREE_TYPE (exp) = cv_unqualified (type); | |
2042 | if (itype && cv_qualified_p (itype)) | |
2043 | TREE_TYPE (init) = cv_unqualified (itype); | |
2044 | from_array = (itype && same_type_p (TREE_TYPE (init), | |
2045 | TREE_TYPE (exp))); | |
2046 | ||
2047 | if (init && !BRACE_ENCLOSED_INITIALIZER_P (init) | |
2048 | && (!from_array | |
2049 | || (TREE_CODE (init) != CONSTRUCTOR | |
2050 | /* Can happen, eg, handling the compound-literals | |
2051 | extension (ext/complit12.C). */ | |
2052 | && TREE_CODE (init) != TARGET_EXPR))) | |
2053 | { | |
2054 | if (complain & tf_error) | |
2055 | error_at (init_loc, "array must be initialized " | |
2056 | "with a brace-enclosed initializer"); | |
2057 | return error_mark_node; | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | stmt_expr = build_vec_init (exp, NULL_TREE, init, | |
2062 | /*explicit_value_init_p=*/false, | |
2063 | from_array, | |
2064 | complain); | |
2065 | TREE_READONLY (exp) = was_const; | |
2066 | TREE_THIS_VOLATILE (exp) = was_volatile; | |
2067 | TREE_TYPE (exp) = type; | |
2068 | /* Restore the type of init unless it was used directly. */ | |
2069 | if (init && TREE_CODE (stmt_expr) != INIT_EXPR) | |
2070 | TREE_TYPE (init) = itype; | |
2071 | return stmt_expr; | |
2072 | } | |
2073 | ||
2074 | if (is_copy_initialization (init)) | |
2075 | flags |= LOOKUP_ONLYCONVERTING; | |
2076 | ||
2077 | is_global = begin_init_stmts (&stmt_expr, &compound_stmt); | |
2078 | destroy_temps = stmts_are_full_exprs_p (); | |
2079 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; | |
2080 | bool ok = expand_aggr_init_1 (TYPE_BINFO (type), exp, exp, | |
2081 | init, LOOKUP_NORMAL|flags, complain); | |
2082 | stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); | |
2083 | current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; | |
2084 | TREE_READONLY (exp) = was_const; | |
2085 | TREE_THIS_VOLATILE (exp) = was_volatile; | |
2086 | if (!ok) | |
2087 | return error_mark_node; | |
2088 | ||
2089 | if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL) | |
2090 | && TREE_SIDE_EFFECTS (stmt_expr) | |
2091 | && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type))) | |
2092 | /* Just know that we've seen something for this node. */ | |
2093 | TREE_USED (exp) = 1; | |
2094 | ||
2095 | return stmt_expr; | |
2096 | } | |
2097 | ||
2098 | static bool | |
2099 | expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags, | |
2100 | tsubst_flags_t complain) | |
2101 | { | |
2102 | tree type = TREE_TYPE (exp); | |
2103 | ||
2104 | /* It fails because there may not be a constructor which takes | |
2105 | its own type as the first (or only parameter), but which does | |
2106 | take other types via a conversion. So, if the thing initializing | |
2107 | the expression is a unit element of type X, first try X(X&), | |
2108 | followed by initialization by X. If neither of these work | |
2109 | out, then look hard. */ | |
2110 | tree rval; | |
2111 | vec<tree, va_gc> *parms; | |
2112 | ||
2113 | /* If we have direct-initialization from an initializer list, pull | |
2114 | it out of the TREE_LIST so the code below can see it. */ | |
2115 | if (init && TREE_CODE (init) == TREE_LIST | |
2116 | && DIRECT_LIST_INIT_P (TREE_VALUE (init))) | |
2117 | { | |
2118 | gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0 | |
2119 | && TREE_CHAIN (init) == NULL_TREE); | |
2120 | init = TREE_VALUE (init); | |
2121 | /* Only call reshape_init if it has not been called earlier | |
2122 | by the callers. */ | |
2123 | if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type)) | |
2124 | init = reshape_init (type, init, complain); | |
2125 | } | |
2126 | ||
2127 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) | |
2128 | && CP_AGGREGATE_TYPE_P (type)) | |
2129 | /* A brace-enclosed initializer for an aggregate. In C++0x this can | |
2130 | happen for direct-initialization, too. */ | |
2131 | init = digest_init (type, init, complain); | |
2132 | ||
2133 | if (init == error_mark_node) | |
2134 | return false; | |
2135 | ||
2136 | /* A CONSTRUCTOR of the target's type is a previously digested | |
2137 | initializer, whether that happened just above or in | |
2138 | cp_parser_late_parsing_nsdmi. | |
2139 | ||
2140 | A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P | |
2141 | set represents the whole initialization, so we shouldn't build up | |
2142 | another ctor call. */ | |
2143 | if (init | |
2144 | && (TREE_CODE (init) == CONSTRUCTOR | |
2145 | || (TREE_CODE (init) == TARGET_EXPR | |
2146 | && (TARGET_EXPR_DIRECT_INIT_P (init) | |
2147 | || TARGET_EXPR_LIST_INIT_P (init)))) | |
2148 | && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) | |
2149 | { | |
2150 | /* Early initialization via a TARGET_EXPR only works for | |
2151 | complete objects. */ | |
2152 | gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp); | |
2153 | ||
2154 | init = cp_build_init_expr (exp, init); | |
2155 | TREE_SIDE_EFFECTS (init) = 1; | |
2156 | finish_expr_stmt (init); | |
2157 | return true; | |
2158 | } | |
2159 | ||
2160 | if (init && TREE_CODE (init) != TREE_LIST | |
2161 | && (flags & LOOKUP_ONLYCONVERTING) | |
2162 | && !unsafe_return_slot_p (exp)) | |
2163 | { | |
2164 | /* Base subobjects should only get direct-initialization. */ | |
2165 | gcc_assert (true_exp == exp); | |
2166 | ||
2167 | if (flags & DIRECT_BIND) | |
2168 | /* Do nothing. We hit this in two cases: Reference initialization, | |
2169 | where we aren't initializing a real variable, so we don't want | |
2170 | to run a new constructor; and catching an exception, where we | |
2171 | have already built up the constructor call so we could wrap it | |
2172 | in an exception region. */; | |
2173 | else | |
2174 | { | |
2175 | init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, | |
2176 | flags, complain | tf_no_cleanup); | |
2177 | if (init == error_mark_node) | |
2178 | return false; | |
2179 | } | |
2180 | ||
2181 | /* We need to protect the initialization of a catch parm with a | |
2182 | call to terminate(), which shows up as a MUST_NOT_THROW_EXPR | |
2183 | around the TARGET_EXPR for the copy constructor. See | |
2184 | initialize_handler_parm. */ | |
2185 | tree *p = &init; | |
2186 | while (TREE_CODE (*p) == MUST_NOT_THROW_EXPR | |
2187 | || TREE_CODE (*p) == CLEANUP_POINT_EXPR) | |
2188 | { | |
2189 | /* Avoid voidify_wrapper_expr making a temporary. */ | |
2190 | TREE_TYPE (*p) = void_type_node; | |
2191 | p = &TREE_OPERAND (*p, 0); | |
2192 | } | |
2193 | *p = cp_build_init_expr (exp, *p); | |
2194 | finish_expr_stmt (init); | |
2195 | return true; | |
2196 | } | |
2197 | ||
2198 | if (init == NULL_TREE) | |
2199 | parms = NULL; | |
2200 | else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init)) | |
2201 | { | |
2202 | parms = make_tree_vector (); | |
2203 | for (; init != NULL_TREE; init = TREE_CHAIN (init)) | |
2204 | vec_safe_push (parms, TREE_VALUE (init)); | |
2205 | } | |
2206 | else | |
2207 | parms = make_tree_vector_single (init); | |
2208 | ||
2209 | if (exp == current_class_ref && current_function_decl | |
2210 | && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) | |
2211 | { | |
2212 | /* Delegating constructor. */ | |
2213 | tree complete; | |
2214 | tree base; | |
2215 | tree elt; unsigned i; | |
2216 | ||
2217 | /* Unshare the arguments for the second call. */ | |
2218 | releasing_vec parms2; | |
2219 | FOR_EACH_VEC_SAFE_ELT (parms, i, elt) | |
2220 | { | |
2221 | elt = break_out_target_exprs (elt); | |
2222 | vec_safe_push (parms2, elt); | |
2223 | } | |
2224 | complete = build_special_member_call (exp, complete_ctor_identifier, | |
2225 | &parms2, binfo, flags, | |
2226 | complain); | |
2227 | complete = fold_build_cleanup_point_expr (void_type_node, complete); | |
2228 | ||
2229 | base = build_special_member_call (exp, base_ctor_identifier, | |
2230 | &parms, binfo, flags, | |
2231 | complain); | |
2232 | base = fold_build_cleanup_point_expr (void_type_node, base); | |
2233 | if (complete == error_mark_node || base == error_mark_node) | |
2234 | return false; | |
2235 | rval = build_if_in_charge (complete, base); | |
2236 | } | |
2237 | else | |
2238 | { | |
2239 | tree ctor_name = (true_exp == exp | |
2240 | ? complete_ctor_identifier : base_ctor_identifier); | |
2241 | ||
2242 | rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags, | |
2243 | complain); | |
2244 | if (rval == error_mark_node) | |
2245 | return false; | |
2246 | } | |
2247 | ||
2248 | if (parms != NULL) | |
2249 | release_tree_vector (parms); | |
2250 | ||
2251 | if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR) | |
2252 | { | |
2253 | tree fn = get_callee_fndecl (rval); | |
2254 | if (fn && DECL_DECLARED_CONSTEXPR_P (fn)) | |
2255 | { | |
2256 | tree e = maybe_constant_init (rval, exp); | |
2257 | if (TREE_CONSTANT (e)) | |
2258 | rval = cp_build_init_expr (exp, e); | |
2259 | } | |
2260 | } | |
2261 | ||
2262 | /* FIXME put back convert_to_void? */ | |
2263 | if (TREE_SIDE_EFFECTS (rval)) | |
2264 | finish_expr_stmt (rval); | |
2265 | ||
2266 | return true; | |
2267 | } | |
2268 | ||
2269 | /* This function is responsible for initializing EXP with INIT | |
2270 | (if any). Returns true on success, false on failure. | |
2271 | ||
2272 | BINFO is the binfo of the type for who we are performing the | |
2273 | initialization. For example, if W is a virtual base class of A and B, | |
2274 | and C : A, B. | |
2275 | If we are initializing B, then W must contain B's W vtable, whereas | |
2276 | were we initializing C, W must contain C's W vtable. | |
2277 | ||
2278 | TRUE_EXP is nonzero if it is the true expression being initialized. | |
2279 | In this case, it may be EXP, or may just contain EXP. The reason we | |
2280 | need this is because if EXP is a base element of TRUE_EXP, we | |
2281 | don't necessarily know by looking at EXP where its virtual | |
2282 | baseclass fields should really be pointing. But we do know | |
2283 | from TRUE_EXP. In constructors, we don't know anything about | |
2284 | the value being initialized. | |
2285 | ||
2286 | FLAGS is just passed to `build_new_method_call'. See that function | |
2287 | for its description. */ | |
2288 | ||
2289 | static bool | |
2290 | expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags, | |
2291 | tsubst_flags_t complain) | |
2292 | { | |
2293 | tree type = TREE_TYPE (exp); | |
2294 | ||
2295 | gcc_assert (init != error_mark_node && type != error_mark_node); | |
2296 | gcc_assert (building_stmt_list_p ()); | |
2297 | ||
2298 | /* Use a function returning the desired type to initialize EXP for us. | |
2299 | If the function is a constructor, and its first argument is | |
2300 | NULL_TREE, know that it was meant for us--just slide exp on | |
2301 | in and expand the constructor. Constructors now come | |
2302 | as TARGET_EXPRs. */ | |
2303 | ||
2304 | if (init && VAR_P (exp) | |
2305 | && COMPOUND_LITERAL_P (init)) | |
2306 | { | |
2307 | vec<tree, va_gc> *cleanups = NULL; | |
2308 | /* If store_init_value returns NULL_TREE, the INIT has been | |
2309 | recorded as the DECL_INITIAL for EXP. That means there's | |
2310 | nothing more we have to do. */ | |
2311 | init = store_init_value (exp, init, &cleanups, flags); | |
2312 | if (init) | |
2313 | finish_expr_stmt (init); | |
2314 | gcc_assert (!cleanups); | |
2315 | return true; | |
2316 | } | |
2317 | ||
2318 | /* List-initialization from {} becomes value-initialization for non-aggregate | |
2319 | classes with default constructors. Handle this here when we're | |
2320 | initializing a base, so protected access works. */ | |
2321 | if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST) | |
2322 | { | |
2323 | tree elt = TREE_VALUE (init); | |
2324 | if (DIRECT_LIST_INIT_P (elt) | |
2325 | && CONSTRUCTOR_ELTS (elt) == 0 | |
2326 | && CLASSTYPE_NON_AGGREGATE (type) | |
2327 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) | |
2328 | init = void_type_node; | |
2329 | } | |
2330 | ||
2331 | /* If an explicit -- but empty -- initializer list was present, | |
2332 | that's value-initialization. */ | |
2333 | if (init == void_type_node) | |
2334 | { | |
2335 | /* If the type has data but no user-provided default ctor, we need to zero | |
2336 | out the object. */ | |
2337 | if (type_has_non_user_provided_default_constructor (type) | |
2338 | && !is_really_empty_class (type, /*ignore_vptr*/true)) | |
2339 | { | |
2340 | tree field_size = NULL_TREE; | |
2341 | if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type) | |
2342 | /* Don't clobber already initialized virtual bases. */ | |
2343 | field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type)); | |
2344 | init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false, | |
2345 | field_size); | |
2346 | init = cp_build_init_expr (exp, init); | |
2347 | finish_expr_stmt (init); | |
2348 | } | |
2349 | ||
2350 | /* If we don't need to mess with the constructor at all, | |
2351 | then we're done. */ | |
2352 | if (! type_build_ctor_call (type)) | |
2353 | return true; | |
2354 | ||
2355 | /* Otherwise fall through and call the constructor. */ | |
2356 | init = NULL_TREE; | |
2357 | } | |
2358 | ||
2359 | /* We know that expand_default_init can handle everything we want | |
2360 | at this point. */ | |
2361 | return expand_default_init (binfo, true_exp, exp, init, flags, complain); | |
2362 | } | |
2363 | ||
2364 | /* Report an error if TYPE is not a user-defined, class type. If | |
2365 | OR_ELSE is nonzero, give an error message. */ | |
2366 | ||
2367 | int | |
2368 | is_class_type (tree type, int or_else) | |
2369 | { | |
2370 | if (type == error_mark_node) | |
2371 | return 0; | |
2372 | ||
2373 | if (! CLASS_TYPE_P (type)) | |
2374 | { | |
2375 | if (or_else) | |
2376 | error ("%qT is not a class type", type); | |
2377 | return 0; | |
2378 | } | |
2379 | return 1; | |
2380 | } | |
2381 | ||
2382 | /* Returns true iff the initializer INIT represents copy-initialization | |
2383 | (and therefore we must set LOOKUP_ONLYCONVERTING when processing it). */ | |
2384 | ||
2385 | bool | |
2386 | is_copy_initialization (tree init) | |
2387 | { | |
2388 | return (init && init != void_type_node | |
2389 | && TREE_CODE (init) != TREE_LIST | |
2390 | && !(TREE_CODE (init) == TARGET_EXPR | |
2391 | && TARGET_EXPR_DIRECT_INIT_P (init)) | |
2392 | && !DIRECT_LIST_INIT_P (init)); | |
2393 | } | |
2394 | ||
2395 | /* Build a reference to a member of an aggregate. This is not a C++ | |
2396 | `&', but really something which can have its address taken, and | |
2397 | then act as a pointer to member, for example TYPE :: FIELD can have | |
2398 | its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if | |
2399 | this expression is the operand of "&". | |
2400 | ||
2401 | @@ Prints out lousy diagnostics for operator <typename> | |
2402 | @@ fields. | |
2403 | ||
2404 | @@ This function should be rewritten and placed in search.cc. */ | |
2405 | ||
2406 | tree | |
2407 | build_offset_ref (tree type, tree member, bool address_p, | |
2408 | tsubst_flags_t complain) | |
2409 | { | |
2410 | tree decl; | |
2411 | tree basebinfo = NULL_TREE; | |
2412 | ||
2413 | /* class templates can come in as TEMPLATE_DECLs here. */ | |
2414 | if (TREE_CODE (member) == TEMPLATE_DECL) | |
2415 | return member; | |
2416 | ||
2417 | if (dependent_scope_p (type) || type_dependent_expression_p (member)) | |
2418 | return build_qualified_name (NULL_TREE, type, member, | |
2419 | /*template_p=*/false); | |
2420 | ||
2421 | gcc_assert (TYPE_P (type)); | |
2422 | if (! is_class_type (type, 1)) | |
2423 | return error_mark_node; | |
2424 | ||
2425 | gcc_assert (DECL_P (member) || BASELINK_P (member)); | |
2426 | /* Callers should call mark_used before this point, except for functions. */ | |
2427 | gcc_assert (!DECL_P (member) || TREE_USED (member) | |
2428 | || TREE_CODE (member) == FUNCTION_DECL); | |
2429 | ||
2430 | type = TYPE_MAIN_VARIANT (type); | |
2431 | if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type))) | |
2432 | { | |
2433 | if (complain & tf_error) | |
2434 | error ("incomplete type %qT does not have member %qD", type, member); | |
2435 | return error_mark_node; | |
2436 | } | |
2437 | ||
2438 | /* Entities other than non-static members need no further | |
2439 | processing. */ | |
2440 | if (TREE_CODE (member) == TYPE_DECL) | |
2441 | return member; | |
2442 | if (VAR_P (member) || TREE_CODE (member) == CONST_DECL) | |
2443 | return convert_from_reference (member); | |
2444 | ||
2445 | if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member)) | |
2446 | { | |
2447 | if (complain & tf_error) | |
2448 | error ("invalid pointer to bit-field %qD", member); | |
2449 | return error_mark_node; | |
2450 | } | |
2451 | ||
2452 | /* Set up BASEBINFO for member lookup. */ | |
2453 | decl = maybe_dummy_object (type, &basebinfo); | |
2454 | ||
2455 | /* A lot of this logic is now handled in lookup_member. */ | |
2456 | if (BASELINK_P (member)) | |
2457 | { | |
2458 | /* Go from the TREE_BASELINK to the member function info. */ | |
2459 | tree t = BASELINK_FUNCTIONS (member); | |
2460 | ||
2461 | if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t)) | |
2462 | { | |
2463 | /* Get rid of a potential OVERLOAD around it. */ | |
2464 | t = OVL_FIRST (t); | |
2465 | ||
2466 | /* Unique functions are handled easily. */ | |
2467 | ||
2468 | /* For non-static member of base class, we need a special rule | |
2469 | for access checking [class.protected]: | |
2470 | ||
2471 | If the access is to form a pointer to member, the | |
2472 | nested-name-specifier shall name the derived class | |
2473 | (or any class derived from that class). */ | |
2474 | bool ok; | |
2475 | if (address_p && DECL_P (t) | |
2476 | && DECL_NONSTATIC_MEMBER_P (t)) | |
2477 | ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t, | |
2478 | complain); | |
2479 | else | |
2480 | ok = perform_or_defer_access_check (basebinfo, t, t, | |
2481 | complain); | |
2482 | if (!ok) | |
2483 | return error_mark_node; | |
2484 | if (DECL_STATIC_FUNCTION_P (t)) | |
2485 | return member; | |
2486 | member = t; | |
2487 | } | |
2488 | else | |
2489 | TREE_TYPE (member) = unknown_type_node; | |
2490 | } | |
2491 | else if (address_p && TREE_CODE (member) == FIELD_DECL) | |
2492 | { | |
2493 | /* We need additional test besides the one in | |
2494 | check_accessibility_of_qualified_id in case it is | |
2495 | a pointer to non-static member. */ | |
2496 | if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member, | |
2497 | complain)) | |
2498 | return error_mark_node; | |
2499 | } | |
2500 | ||
2501 | if (!address_p) | |
2502 | { | |
2503 | /* If MEMBER is non-static, then the program has fallen afoul of | |
2504 | [expr.prim]: | |
2505 | ||
2506 | An id-expression that denotes a non-static data member or | |
2507 | non-static member function of a class can only be used: | |
2508 | ||
2509 | -- as part of a class member access (_expr.ref_) in which the | |
2510 | object-expression refers to the member's class or a class | |
2511 | derived from that class, or | |
2512 | ||
2513 | -- to form a pointer to member (_expr.unary.op_), or | |
2514 | ||
2515 | -- in the body of a non-static member function of that class or | |
2516 | of a class derived from that class (_class.mfct.non-static_), or | |
2517 | ||
2518 | -- in a mem-initializer for a constructor for that class or for | |
2519 | a class derived from that class (_class.base.init_). */ | |
2520 | if (DECL_OBJECT_MEMBER_FUNCTION_P (member)) | |
2521 | { | |
2522 | /* Build a representation of the qualified name suitable | |
2523 | for use as the operand to "&" -- even though the "&" is | |
2524 | not actually present. */ | |
2525 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); | |
2526 | /* In Microsoft mode, treat a non-static member function as if | |
2527 | it were a pointer-to-member. */ | |
2528 | if (flag_ms_extensions) | |
2529 | { | |
2530 | PTRMEM_OK_P (member) = 1; | |
2531 | return cp_build_addr_expr (member, complain); | |
2532 | } | |
2533 | if (complain & tf_error) | |
2534 | error ("invalid use of non-static member function %qD", | |
2535 | TREE_OPERAND (member, 1)); | |
2536 | return error_mark_node; | |
2537 | } | |
2538 | else if (TREE_CODE (member) == FIELD_DECL) | |
2539 | { | |
2540 | if (complain & tf_error) | |
2541 | error ("invalid use of non-static data member %qD", member); | |
2542 | return error_mark_node; | |
2543 | } | |
2544 | return member; | |
2545 | } | |
2546 | ||
2547 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); | |
2548 | PTRMEM_OK_P (member) = 1; | |
2549 | return member; | |
2550 | } | |
2551 | ||
2552 | /* If DECL is a scalar enumeration constant or variable with a | |
2553 | constant initializer, return the initializer (or, its initializers, | |
2554 | recursively); otherwise, return DECL. If STRICT_P, the | |
2555 | initializer is only returned if DECL is a | |
2556 | constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to | |
2557 | return an aggregate constant. If UNSHARE_P, return an unshared | |
2558 | copy of the initializer. */ | |
2559 | ||
2560 | static tree | |
2561 | constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p, | |
2562 | bool unshare_p) | |
2563 | { | |
2564 | while (TREE_CODE (decl) == CONST_DECL | |
2565 | || decl_constant_var_p (decl) | |
2566 | || (!strict_p && VAR_P (decl) | |
2567 | && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))) | |
2568 | { | |
2569 | tree init; | |
2570 | /* If DECL is a static data member in a template | |
2571 | specialization, we must instantiate it here. The | |
2572 | initializer for the static data member is not processed | |
2573 | until needed; we need it now. */ | |
2574 | mark_used (decl, tf_none); | |
2575 | init = DECL_INITIAL (decl); | |
2576 | if (init == error_mark_node) | |
2577 | { | |
2578 | if (TREE_CODE (decl) == CONST_DECL | |
2579 | || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) | |
2580 | /* Treat the error as a constant to avoid cascading errors on | |
2581 | excessively recursive template instantiation (c++/9335). */ | |
2582 | return init; | |
2583 | else | |
2584 | return decl; | |
2585 | } | |
2586 | /* Initializers in templates are generally expanded during | |
2587 | instantiation, so before that for const int i(2) | |
2588 | INIT is a TREE_LIST with the actual initializer as | |
2589 | TREE_VALUE. */ | |
2590 | if (processing_template_decl | |
2591 | && init | |
2592 | && TREE_CODE (init) == TREE_LIST | |
2593 | && TREE_CHAIN (init) == NULL_TREE) | |
2594 | init = TREE_VALUE (init); | |
2595 | /* Instantiate a non-dependent initializer for user variables. We | |
2596 | mustn't do this for the temporary for an array compound literal; | |
2597 | trying to instatiate the initializer will keep creating new | |
2598 | temporaries until we crash. Probably it's not useful to do it for | |
2599 | other artificial variables, either. */ | |
2600 | if (!DECL_ARTIFICIAL (decl)) | |
2601 | init = instantiate_non_dependent_or_null (init); | |
2602 | if (!init | |
2603 | || !TREE_TYPE (init) | |
2604 | || !TREE_CONSTANT (init) | |
2605 | || (!return_aggregate_cst_ok_p | |
2606 | /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not | |
2607 | return an aggregate constant (of which string | |
2608 | literals are a special case), as we do not want | |
2609 | to make inadvertent copies of such entities, and | |
2610 | we must be sure that their addresses are the | |
2611 | same everywhere. */ | |
2612 | && (TREE_CODE (init) == CONSTRUCTOR | |
2613 | || TREE_CODE (init) == STRING_CST))) | |
2614 | break; | |
2615 | /* Don't return a CONSTRUCTOR for a variable with partial run-time | |
2616 | initialization, since it doesn't represent the entire value. | |
2617 | Similarly for VECTOR_CSTs created by cp_folding those | |
2618 | CONSTRUCTORs. */ | |
2619 | if ((TREE_CODE (init) == CONSTRUCTOR | |
2620 | || TREE_CODE (init) == VECTOR_CST) | |
2621 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) | |
2622 | break; | |
2623 | /* If the variable has a dynamic initializer, don't use its | |
2624 | DECL_INITIAL which doesn't reflect the real value. */ | |
2625 | if (VAR_P (decl) | |
2626 | && TREE_STATIC (decl) | |
2627 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) | |
2628 | && DECL_NONTRIVIALLY_INITIALIZED_P (decl)) | |
2629 | break; | |
2630 | decl = init; | |
2631 | } | |
2632 | return unshare_p ? unshare_expr (decl) : decl; | |
2633 | } | |
2634 | ||
2635 | /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant | |
2636 | of integral or enumeration type, or a constexpr variable of scalar type, | |
2637 | then return that value. These are those variables permitted in constant | |
2638 | expressions by [5.19/1]. */ | |
2639 | ||
2640 | tree | |
2641 | scalar_constant_value (tree decl) | |
2642 | { | |
2643 | return constant_value_1 (decl, /*strict_p=*/true, | |
2644 | /*return_aggregate_cst_ok_p=*/false, | |
2645 | /*unshare_p=*/true); | |
2646 | } | |
2647 | ||
2648 | /* Like scalar_constant_value, but can also return aggregate initializers. | |
2649 | If UNSHARE_P, return an unshared copy of the initializer. */ | |
2650 | ||
2651 | tree | |
2652 | decl_really_constant_value (tree decl, bool unshare_p /*= true*/) | |
2653 | { | |
2654 | return constant_value_1 (decl, /*strict_p=*/true, | |
2655 | /*return_aggregate_cst_ok_p=*/true, | |
2656 | /*unshare_p=*/unshare_p); | |
2657 | } | |
2658 | ||
2659 | /* A more relaxed version of decl_really_constant_value, used by the | |
2660 | common C/C++ code. */ | |
2661 | ||
2662 | tree | |
2663 | decl_constant_value (tree decl, bool unshare_p) | |
2664 | { | |
2665 | return constant_value_1 (decl, /*strict_p=*/processing_template_decl, | |
2666 | /*return_aggregate_cst_ok_p=*/true, | |
2667 | /*unshare_p=*/unshare_p); | |
2668 | } | |
2669 | ||
2670 | tree | |
2671 | decl_constant_value (tree decl) | |
2672 | { | |
2673 | return decl_constant_value (decl, /*unshare_p=*/true); | |
2674 | } | |
2675 | \f | |
2676 | /* Common subroutines of build_new and build_vec_delete. */ | |
2677 | \f | |
2678 | /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is | |
2679 | the type of the object being allocated; otherwise, it's just TYPE. | |
2680 | INIT is the initializer, if any. USE_GLOBAL_NEW is true if the | |
2681 | user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is | |
2682 | a vector of arguments to be provided as arguments to a placement | |
2683 | new operator. This routine performs no semantic checks; it just | |
2684 | creates and returns a NEW_EXPR. */ | |
2685 | ||
2686 | static tree | |
2687 | build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type, | |
2688 | tree nelts, vec<tree, va_gc> *init, int use_global_new) | |
2689 | { | |
2690 | tree init_list; | |
2691 | tree new_expr; | |
2692 | ||
2693 | /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR. | |
2694 | If INIT is not NULL, then we want to store VOID_ZERO_NODE. This | |
2695 | permits us to distinguish the case of a missing initializer "new | |
2696 | int" from an empty initializer "new int()". */ | |
2697 | if (init == NULL) | |
2698 | init_list = NULL_TREE; | |
2699 | else if (init->is_empty ()) | |
2700 | init_list = void_node; | |
2701 | else | |
2702 | init_list = build_tree_list_vec (init); | |
2703 | ||
2704 | new_expr = build4_loc (loc, NEW_EXPR, build_pointer_type (type), | |
2705 | build_tree_list_vec (placement), type, nelts, | |
2706 | init_list); | |
2707 | NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new; | |
2708 | TREE_SIDE_EFFECTS (new_expr) = 1; | |
2709 | ||
2710 | return new_expr; | |
2711 | } | |
2712 | ||
2713 | /* Diagnose uninitialized const members or reference members of type | |
2714 | TYPE. USING_NEW is used to disambiguate the diagnostic between a | |
2715 | new expression without a new-initializer and a declaration. Returns | |
2716 | the error count. */ | |
2717 | ||
2718 | static int | |
2719 | diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin, | |
2720 | bool using_new, bool complain) | |
2721 | { | |
2722 | tree field; | |
2723 | int error_count = 0; | |
2724 | ||
2725 | if (type_has_user_provided_constructor (type)) | |
2726 | return 0; | |
2727 | ||
2728 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) | |
2729 | { | |
2730 | tree field_type; | |
2731 | ||
2732 | if (TREE_CODE (field) != FIELD_DECL) | |
2733 | continue; | |
2734 | ||
2735 | field_type = strip_array_types (TREE_TYPE (field)); | |
2736 | ||
2737 | if (type_has_user_provided_constructor (field_type)) | |
2738 | continue; | |
2739 | ||
2740 | if (TYPE_REF_P (field_type)) | |
2741 | { | |
2742 | ++ error_count; | |
2743 | if (complain) | |
2744 | { | |
2745 | auto_diagnostic_group d; | |
2746 | if (DECL_CONTEXT (field) == origin) | |
2747 | { | |
2748 | if (using_new) | |
2749 | error ("uninitialized reference member in %q#T " | |
2750 | "using %<new%> without new-initializer", origin); | |
2751 | else | |
2752 | error ("uninitialized reference member in %q#T", origin); | |
2753 | } | |
2754 | else | |
2755 | { | |
2756 | if (using_new) | |
2757 | error ("uninitialized reference member in base %q#T " | |
2758 | "of %q#T using %<new%> without new-initializer", | |
2759 | DECL_CONTEXT (field), origin); | |
2760 | else | |
2761 | error ("uninitialized reference member in base %q#T " | |
2762 | "of %q#T", DECL_CONTEXT (field), origin); | |
2763 | } | |
2764 | inform (DECL_SOURCE_LOCATION (field), | |
2765 | "%q#D should be initialized", field); | |
2766 | } | |
2767 | } | |
2768 | ||
2769 | if (CP_TYPE_CONST_P (field_type)) | |
2770 | { | |
2771 | ++ error_count; | |
2772 | if (complain) | |
2773 | { | |
2774 | auto_diagnostic_group d; | |
2775 | if (DECL_CONTEXT (field) == origin) | |
2776 | { | |
2777 | if (using_new) | |
2778 | error ("uninitialized const member in %q#T " | |
2779 | "using %<new%> without new-initializer", origin); | |
2780 | else | |
2781 | error ("uninitialized const member in %q#T", origin); | |
2782 | } | |
2783 | else | |
2784 | { | |
2785 | if (using_new) | |
2786 | error ("uninitialized const member in base %q#T " | |
2787 | "of %q#T using %<new%> without new-initializer", | |
2788 | DECL_CONTEXT (field), origin); | |
2789 | else | |
2790 | error ("uninitialized const member in base %q#T " | |
2791 | "of %q#T", DECL_CONTEXT (field), origin); | |
2792 | } | |
2793 | inform (DECL_SOURCE_LOCATION (field), | |
2794 | "%q#D should be initialized", field); | |
2795 | } | |
2796 | } | |
2797 | ||
2798 | if (CLASS_TYPE_P (field_type)) | |
2799 | error_count | |
2800 | += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin, | |
2801 | using_new, complain); | |
2802 | } | |
2803 | return error_count; | |
2804 | } | |
2805 | ||
2806 | int | |
2807 | diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain) | |
2808 | { | |
2809 | return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain); | |
2810 | } | |
2811 | ||
2812 | /* Call __cxa_bad_array_new_length to indicate that the size calculation | |
2813 | overflowed. */ | |
2814 | ||
2815 | tree | |
2816 | throw_bad_array_new_length (void) | |
2817 | { | |
2818 | if (!fn) | |
2819 | { | |
2820 | tree name = get_identifier ("__cxa_throw_bad_array_new_length"); | |
2821 | ||
2822 | fn = get_global_binding (name); | |
2823 | if (!fn) | |
2824 | fn = push_throw_library_fn | |
2825 | (name, build_function_type_list (void_type_node, NULL_TREE)); | |
2826 | } | |
2827 | ||
2828 | return build_cxx_call (fn, 0, NULL, tf_warning_or_error); | |
2829 | } | |
2830 | ||
2831 | /* Attempt to verify that the argument, OPER, of a placement new expression | |
2832 | refers to an object sufficiently large for an object of TYPE or an array | |
2833 | of NELTS of such objects when NELTS is non-null, and issue a warning when | |
2834 | it does not. SIZE specifies the size needed to construct the object or | |
2835 | array and captures the result of NELTS * sizeof (TYPE). (SIZE could be | |
2836 | greater when the array under construction requires a cookie to store | |
2837 | NELTS. GCC's placement new expression stores the cookie when invoking | |
2838 | a user-defined placement new operator function but not the default one. | |
2839 | Placement new expressions with user-defined placement new operator are | |
2840 | not diagnosed since we don't know how they use the buffer (this could | |
2841 | be a future extension). */ | |
2842 | static void | |
2843 | warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper) | |
2844 | { | |
2845 | location_t loc = cp_expr_loc_or_input_loc (oper); | |
2846 | ||
2847 | STRIP_NOPS (oper); | |
2848 | ||
2849 | /* Using a function argument or a (non-array) variable as an argument | |
2850 | to placement new is not checked since it's unknown what it might | |
2851 | point to. */ | |
2852 | if (TREE_CODE (oper) == PARM_DECL | |
2853 | || VAR_P (oper) | |
2854 | || TREE_CODE (oper) == COMPONENT_REF) | |
2855 | return; | |
2856 | ||
2857 | /* Evaluate any constant expressions. */ | |
2858 | size = fold_non_dependent_expr (size); | |
2859 | ||
2860 | access_ref ref; | |
2861 | ref.eval = [](tree x){ return fold_non_dependent_expr (x); }; | |
2862 | ref.trail1special = warn_placement_new < 2; | |
2863 | tree objsize = compute_objsize (oper, 1, &ref); | |
2864 | if (!objsize) | |
2865 | return; | |
2866 | ||
2867 | /* We can only draw conclusions if ref.deref == -1, | |
2868 | i.e. oper is the address of the object. */ | |
2869 | if (ref.deref != -1) | |
2870 | return; | |
2871 | ||
2872 | offset_int bytes_avail = wi::to_offset (objsize); | |
2873 | offset_int bytes_need; | |
2874 | ||
2875 | if (CONSTANT_CLASS_P (size)) | |
2876 | bytes_need = wi::to_offset (size); | |
2877 | else if (nelts && CONSTANT_CLASS_P (nelts)) | |
2878 | bytes_need = (wi::to_offset (nelts) | |
2879 | * wi::to_offset (TYPE_SIZE_UNIT (type))); | |
2880 | else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))) | |
2881 | bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type)); | |
2882 | else | |
2883 | { | |
2884 | /* The type is a VLA. */ | |
2885 | return; | |
2886 | } | |
2887 | ||
2888 | if (bytes_avail >= bytes_need) | |
2889 | return; | |
2890 | ||
2891 | /* True when the size to mention in the warning is exact as opposed | |
2892 | to "at least N". */ | |
2893 | const bool exact_size = (ref.offrng[0] == ref.offrng[1] | |
2894 | || ref.sizrng[1] - ref.offrng[0] == 0); | |
2895 | ||
2896 | tree opertype = ref.ref ? TREE_TYPE (ref.ref) : TREE_TYPE (oper); | |
2897 | bool warned = false; | |
2898 | if (nelts) | |
2899 | nelts = fold_for_warn (nelts); | |
2900 | ||
2901 | auto_diagnostic_group d; | |
2902 | if (nelts) | |
2903 | if (CONSTANT_CLASS_P (nelts)) | |
2904 | warned = warning_at (loc, OPT_Wplacement_new_, | |
2905 | (exact_size | |
2906 | ? G_("placement new constructing an object " | |
2907 | "of type %<%T [%wu]%> and size %qwu " | |
2908 | "in a region of type %qT and size %qwi") | |
2909 | : G_("placement new constructing an object " | |
2910 | "of type %<%T [%wu]%> and size %qwu " | |
2911 | "in a region of type %qT and size " | |
2912 | "at most %qwu")), | |
2913 | type, tree_to_uhwi (nelts), | |
2914 | bytes_need.to_uhwi (), | |
2915 | opertype, bytes_avail.to_uhwi ()); | |
2916 | else | |
2917 | warned = warning_at (loc, OPT_Wplacement_new_, | |
2918 | (exact_size | |
2919 | ? G_("placement new constructing an array " | |
2920 | "of objects of type %qT and size %qwu " | |
2921 | "in a region of type %qT and size %qwi") | |
2922 | : G_("placement new constructing an array " | |
2923 | "of objects of type %qT and size %qwu " | |
2924 | "in a region of type %qT and size " | |
2925 | "at most %qwu")), | |
2926 | type, bytes_need.to_uhwi (), opertype, | |
2927 | bytes_avail.to_uhwi ()); | |
2928 | else | |
2929 | warned = warning_at (loc, OPT_Wplacement_new_, | |
2930 | (exact_size | |
2931 | ? G_("placement new constructing an object " | |
2932 | "of type %qT and size %qwu in a region " | |
2933 | "of type %qT and size %qwi") | |
2934 | : G_("placement new constructing an object " | |
2935 | "of type %qT " | |
2936 | "and size %qwu in a region of type %qT " | |
2937 | "and size at most %qwu")), | |
2938 | type, bytes_need.to_uhwi (), opertype, | |
2939 | bytes_avail.to_uhwi ()); | |
2940 | ||
2941 | if (!warned || !ref.ref) | |
2942 | return; | |
2943 | ||
2944 | if (ref.offrng[0] == 0 || !ref.offset_bounded ()) | |
2945 | /* Avoid mentioning the offset when its lower bound is zero | |
2946 | or when it's impossibly large. */ | |
2947 | inform (DECL_SOURCE_LOCATION (ref.ref), | |
2948 | "%qD declared here", ref.ref); | |
2949 | else if (ref.offrng[0] == ref.offrng[1]) | |
2950 | inform (DECL_SOURCE_LOCATION (ref.ref), | |
2951 | "at offset %wi from %qD declared here", | |
2952 | ref.offrng[0].to_shwi (), ref.ref); | |
2953 | else | |
2954 | inform (DECL_SOURCE_LOCATION (ref.ref), | |
2955 | "at offset [%wi, %wi] from %qD declared here", | |
2956 | ref.offrng[0].to_shwi (), ref.offrng[1].to_shwi (), ref.ref); | |
2957 | } | |
2958 | ||
2959 | /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */ | |
2960 | ||
2961 | bool | |
2962 | type_has_new_extended_alignment (tree t) | |
2963 | { | |
2964 | return (aligned_new_threshold | |
2965 | && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold); | |
2966 | } | |
2967 | ||
2968 | /* Return the alignment we expect malloc to guarantee. This should just be | |
2969 | MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some | |
2970 | reason, so don't let the threshold be smaller than max_align_t_align. */ | |
2971 | ||
2972 | unsigned | |
2973 | malloc_alignment () | |
2974 | { | |
2975 | return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT); | |
2976 | } | |
2977 | ||
2978 | /* Determine whether an allocation function is a namespace-scope | |
2979 | non-replaceable placement new function. See DR 1748. */ | |
2980 | bool | |
2981 | std_placement_new_fn_p (tree alloc_fn) | |
2982 | { | |
2983 | if (DECL_NAMESPACE_SCOPE_P (alloc_fn) | |
2984 | && IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_fn)) | |
2985 | && !DECL_IS_REPLACEABLE_OPERATOR_NEW_P (alloc_fn)) | |
2986 | { | |
2987 | tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn))); | |
2988 | if (first_arg | |
2989 | && (TREE_VALUE (first_arg) == ptr_type_node) | |
2990 | && (TREE_CHAIN (first_arg) == void_list_node)) | |
2991 | return true; | |
2992 | } | |
2993 | return false; | |
2994 | } | |
2995 | ||
2996 | /* For element type ELT_TYPE, return the appropriate type of the heap object | |
2997 | containing such element(s). COOKIE_SIZE is the size of cookie in bytes. | |
2998 | Return | |
2999 | struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; } | |
3000 | where N is nothing (flexible array member) if ITYPE2 is NULL, otherwise | |
3001 | the array has ITYPE2 as its TYPE_DOMAIN. */ | |
3002 | ||
3003 | tree | |
3004 | build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree itype2) | |
3005 | { | |
3006 | gcc_assert (tree_fits_uhwi_p (cookie_size)); | |
3007 | unsigned HOST_WIDE_INT csz = tree_to_uhwi (cookie_size); | |
3008 | csz /= int_size_in_bytes (sizetype); | |
3009 | tree itype1 = build_index_type (size_int (csz - 1)); | |
3010 | tree atype1 = build_cplus_array_type (sizetype, itype1); | |
3011 | tree atype2 = build_cplus_array_type (elt_type, itype2); | |
3012 | tree rtype = cxx_make_type (RECORD_TYPE); | |
3013 | tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1); | |
3014 | tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2); | |
3015 | DECL_FIELD_CONTEXT (fld1) = rtype; | |
3016 | DECL_FIELD_CONTEXT (fld2) = rtype; | |
3017 | DECL_ARTIFICIAL (fld1) = true; | |
3018 | DECL_ARTIFICIAL (fld2) = true; | |
3019 | TYPE_FIELDS (rtype) = fld1; | |
3020 | DECL_CHAIN (fld1) = fld2; | |
3021 | TYPE_ARTIFICIAL (rtype) = true; | |
3022 | layout_type (rtype); | |
3023 | ||
3024 | tree decl = build_decl (UNKNOWN_LOCATION, TYPE_DECL, heap_identifier, rtype); | |
3025 | TYPE_NAME (rtype) = decl; | |
3026 | TYPE_STUB_DECL (rtype) = decl; | |
3027 | DECL_CONTEXT (decl) = NULL_TREE; | |
3028 | DECL_ARTIFICIAL (decl) = true; | |
3029 | layout_decl (decl, 0); | |
3030 | ||
3031 | return rtype; | |
3032 | } | |
3033 | ||
3034 | /* Help the constexpr code to find the right type for the heap variable | |
3035 | by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size. | |
3036 | Return ALLOC_CALL or ALLOC_CALL cast to a pointer to | |
3037 | struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */ | |
3038 | ||
3039 | static tree | |
3040 | maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size) | |
3041 | { | |
3042 | if (cxx_dialect < cxx20) | |
3043 | return alloc_call; | |
3044 | ||
3045 | if (current_function_decl != NULL_TREE | |
3046 | && !DECL_DECLARED_CONSTEXPR_P (current_function_decl)) | |
3047 | return alloc_call; | |
3048 | ||
3049 | tree call_expr = extract_call_expr (alloc_call); | |
3050 | if (call_expr == error_mark_node) | |
3051 | return alloc_call; | |
3052 | ||
3053 | tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr); | |
3054 | if (alloc_call_fndecl == NULL_TREE | |
3055 | || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl)) | |
3056 | || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace) | |
3057 | return alloc_call; | |
3058 | ||
3059 | tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size, | |
3060 | NULL_TREE); | |
3061 | return build_nop (build_pointer_type (rtype), alloc_call); | |
3062 | } | |
3063 | ||
3064 | /* Generate code for a new-expression, including calling the "operator | |
3065 | new" function, initializing the object, and, if an exception occurs | |
3066 | during construction, cleaning up. The arguments are as for | |
3067 | build_raw_new_expr. This may change PLACEMENT and INIT. | |
3068 | TYPE is the type of the object being constructed, possibly an array | |
3069 | of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may | |
3070 | be an array of the form U[inner], with the whole expression being | |
3071 | "new U[NELTS][inner]"). */ | |
3072 | ||
3073 | static tree | |
3074 | build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts, | |
3075 | vec<tree, va_gc> **init, bool globally_qualified_p, | |
3076 | tsubst_flags_t complain) | |
3077 | { | |
3078 | tree size, rval; | |
3079 | /* True iff this is a call to "operator new[]" instead of just | |
3080 | "operator new". */ | |
3081 | bool array_p = false; | |
3082 | /* If ARRAY_P is true, the element type of the array. This is never | |
3083 | an ARRAY_TYPE; for something like "new int[3][4]", the | |
3084 | ELT_TYPE is "int". If ARRAY_P is false, this is the same type as | |
3085 | TYPE. */ | |
3086 | tree elt_type; | |
3087 | /* The type of the new-expression. (This type is always a pointer | |
3088 | type.) */ | |
3089 | tree pointer_type; | |
3090 | tree non_const_pointer_type; | |
3091 | /* The most significant array bound in int[OUTER_NELTS][inner]. */ | |
3092 | tree outer_nelts = NULL_TREE; | |
3093 | /* For arrays with a non-constant number of elements, a bounds checks | |
3094 | on the NELTS parameter to avoid integer overflow at runtime. */ | |
3095 | tree outer_nelts_check = NULL_TREE; | |
3096 | bool outer_nelts_from_type = false; | |
3097 | /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */ | |
3098 | offset_int inner_nelts_count = 1; | |
3099 | tree alloc_call, alloc_expr; | |
3100 | /* Size of the inner array elements (those with constant dimensions). */ | |
3101 | offset_int inner_size; | |
3102 | /* The address returned by the call to "operator new". This node is | |
3103 | a VAR_DECL and is therefore reusable. */ | |
3104 | tree alloc_node; | |
3105 | tree alloc_fn; | |
3106 | tree cookie_expr, init_expr; | |
3107 | int nothrow, check_new; | |
3108 | /* If non-NULL, the number of extra bytes to allocate at the | |
3109 | beginning of the storage allocated for an array-new expression in | |
3110 | order to store the number of elements. */ | |
3111 | tree cookie_size = NULL_TREE; | |
3112 | tree placement_first; | |
3113 | tree placement_expr = NULL_TREE; | |
3114 | /* True if the function we are calling is a placement allocation | |
3115 | function. */ | |
3116 | bool placement_allocation_fn_p; | |
3117 | /* True if the storage must be initialized, either by a constructor | |
3118 | or due to an explicit new-initializer. */ | |
3119 | bool is_initialized; | |
3120 | /* The address of the thing allocated, not including any cookie. In | |
3121 | particular, if an array cookie is in use, DATA_ADDR is the | |
3122 | address of the first array element. This node is a VAR_DECL, and | |
3123 | is therefore reusable. */ | |
3124 | tree data_addr; | |
3125 | tree orig_type = type; | |
3126 | ||
3127 | if (nelts) | |
3128 | { | |
3129 | outer_nelts = nelts; | |
3130 | array_p = true; | |
3131 | } | |
3132 | else if (TREE_CODE (type) == ARRAY_TYPE) | |
3133 | { | |
3134 | /* Transforms new (T[N]) to new T[N]. The former is a GNU | |
3135 | extension for variable N. (This also covers new T where T is | |
3136 | a VLA typedef.) */ | |
3137 | array_p = true; | |
3138 | nelts = array_type_nelts_top (type); | |
3139 | outer_nelts = nelts; | |
3140 | type = TREE_TYPE (type); | |
3141 | outer_nelts_from_type = true; | |
3142 | } | |
3143 | ||
3144 | /* Lots of logic below depends on whether we have a constant number of | |
3145 | elements, so go ahead and fold it now. */ | |
3146 | const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain); | |
3147 | ||
3148 | /* If our base type is an array, then make sure we know how many elements | |
3149 | it has. */ | |
3150 | for (elt_type = type; | |
3151 | TREE_CODE (elt_type) == ARRAY_TYPE; | |
3152 | elt_type = TREE_TYPE (elt_type)) | |
3153 | { | |
3154 | tree inner_nelts = array_type_nelts_top (elt_type); | |
3155 | tree inner_nelts_cst = maybe_constant_value (inner_nelts); | |
3156 | if (TREE_CODE (inner_nelts_cst) == INTEGER_CST) | |
3157 | { | |
3158 | wi::overflow_type overflow; | |
3159 | offset_int result = wi::mul (wi::to_offset (inner_nelts_cst), | |
3160 | inner_nelts_count, SIGNED, &overflow); | |
3161 | if (overflow) | |
3162 | { | |
3163 | if (complain & tf_error) | |
3164 | error ("integer overflow in array size"); | |
3165 | nelts = error_mark_node; | |
3166 | } | |
3167 | inner_nelts_count = result; | |
3168 | } | |
3169 | else | |
3170 | { | |
3171 | if (complain & tf_error) | |
3172 | { | |
3173 | error_at (cp_expr_loc_or_input_loc (inner_nelts), | |
3174 | "array size in new-expression must be constant"); | |
3175 | cxx_constant_value(inner_nelts); | |
3176 | } | |
3177 | nelts = error_mark_node; | |
3178 | } | |
3179 | if (nelts != error_mark_node) | |
3180 | nelts = cp_build_binary_op (input_location, | |
3181 | MULT_EXPR, nelts, | |
3182 | inner_nelts_cst, | |
3183 | complain); | |
3184 | } | |
3185 | ||
3186 | if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type, | |
3187 | !(complain & tf_error))) | |
3188 | return error_mark_node; | |
3189 | ||
3190 | if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error)) | |
3191 | { | |
3192 | error ("variably modified type not allowed in new-expression"); | |
3193 | return error_mark_node; | |
3194 | } | |
3195 | ||
3196 | if (nelts == error_mark_node) | |
3197 | return error_mark_node; | |
3198 | ||
3199 | /* Warn if we performed the (T[N]) to T[N] transformation and N is | |
3200 | variable. */ | |
3201 | if (outer_nelts_from_type | |
3202 | && !TREE_CONSTANT (cst_outer_nelts)) | |
3203 | { | |
3204 | if (complain & tf_warning_or_error) | |
3205 | { | |
3206 | pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla, | |
3207 | typedef_variant_p (orig_type) | |
3208 | ? G_("non-constant array new length must be specified " | |
3209 | "directly, not by %<typedef%>") | |
3210 | : G_("non-constant array new length must be specified " | |
3211 | "without parentheses around the type-id")); | |
3212 | } | |
3213 | else | |
3214 | return error_mark_node; | |
3215 | } | |
3216 | ||
3217 | if (VOID_TYPE_P (elt_type)) | |
3218 | { | |
3219 | if (complain & tf_error) | |
3220 | error ("invalid type %<void%> for %<new%>"); | |
3221 | return error_mark_node; | |
3222 | } | |
3223 | ||
3224 | if (is_std_init_list (elt_type) && !cp_unevaluated_operand) | |
3225 | warning (OPT_Winit_list_lifetime, | |
3226 | "%<new%> of %<initializer_list%> does not " | |
3227 | "extend the lifetime of the underlying array"); | |
3228 | ||
3229 | if (abstract_virtuals_error (ACU_NEW, elt_type, complain)) | |
3230 | return error_mark_node; | |
3231 | ||
3232 | is_initialized = (type_build_ctor_call (elt_type) || *init != NULL); | |
3233 | ||
3234 | if (*init == NULL && cxx_dialect < cxx11) | |
3235 | { | |
3236 | bool maybe_uninitialized_error = false; | |
3237 | /* A program that calls for default-initialization [...] of an | |
3238 | entity of reference type is ill-formed. */ | |
3239 | if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type)) | |
3240 | maybe_uninitialized_error = true; | |
3241 | ||
3242 | /* A new-expression that creates an object of type T initializes | |
3243 | that object as follows: | |
3244 | - If the new-initializer is omitted: | |
3245 | -- If T is a (possibly cv-qualified) non-POD class type | |
3246 | (or array thereof), the object is default-initialized (8.5). | |
3247 | [...] | |
3248 | -- Otherwise, the object created has indeterminate | |
3249 | value. If T is a const-qualified type, or a (possibly | |
3250 | cv-qualified) POD class type (or array thereof) | |
3251 | containing (directly or indirectly) a member of | |
3252 | const-qualified type, the program is ill-formed; */ | |
3253 | ||
3254 | if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type)) | |
3255 | maybe_uninitialized_error = true; | |
3256 | ||
3257 | if (maybe_uninitialized_error | |
3258 | && diagnose_uninitialized_cst_or_ref_member (elt_type, | |
3259 | /*using_new=*/true, | |
3260 | complain & tf_error)) | |
3261 | return error_mark_node; | |
3262 | } | |
3263 | ||
3264 | if (CP_TYPE_CONST_P (elt_type) && *init == NULL | |
3265 | && default_init_uninitialized_part (elt_type)) | |
3266 | { | |
3267 | if (complain & tf_error) | |
3268 | error ("uninitialized const in %<new%> of %q#T", elt_type); | |
3269 | return error_mark_node; | |
3270 | } | |
3271 | ||
3272 | size = size_in_bytes (elt_type); | |
3273 | if (array_p) | |
3274 | { | |
3275 | /* Maximum available size in bytes. Half of the address space | |
3276 | minus the cookie size. */ | |
3277 | offset_int max_size | |
3278 | = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1); | |
3279 | /* Maximum number of outer elements which can be allocated. */ | |
3280 | offset_int max_outer_nelts; | |
3281 | tree max_outer_nelts_tree; | |
3282 | ||
3283 | gcc_assert (TREE_CODE (size) == INTEGER_CST); | |
3284 | cookie_size = targetm.cxx.get_cookie_size (elt_type); | |
3285 | gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST); | |
3286 | gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size)); | |
3287 | /* Unconditionally subtract the cookie size. This decreases the | |
3288 | maximum object size and is safe even if we choose not to use | |
3289 | a cookie after all. */ | |
3290 | max_size -= wi::to_offset (cookie_size); | |
3291 | wi::overflow_type overflow; | |
3292 | inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED, | |
3293 | &overflow); | |
3294 | if (overflow || wi::gtu_p (inner_size, max_size)) | |
3295 | { | |
3296 | if (complain & tf_error) | |
3297 | { | |
3298 | cst_size_error error; | |
3299 | if (overflow) | |
3300 | error = cst_size_overflow; | |
3301 | else | |
3302 | { | |
3303 | error = cst_size_too_big; | |
3304 | size = size_binop (MULT_EXPR, size, | |
3305 | wide_int_to_tree (sizetype, | |
3306 | inner_nelts_count)); | |
3307 | size = cp_fully_fold (size); | |
3308 | } | |
3309 | invalid_array_size_error (input_location, error, size, | |
3310 | /*name=*/NULL_TREE); | |
3311 | } | |
3312 | return error_mark_node; | |
3313 | } | |
3314 | ||
3315 | max_outer_nelts = wi::udiv_trunc (max_size, inner_size); | |
3316 | max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts); | |
3317 | ||
3318 | size = build2 (MULT_EXPR, sizetype, size, nelts); | |
3319 | ||
3320 | if (TREE_CODE (cst_outer_nelts) == INTEGER_CST) | |
3321 | { | |
3322 | if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts)) | |
3323 | { | |
3324 | /* When the array size is constant, check it at compile time | |
3325 | to make sure it doesn't exceed the implementation-defined | |
3326 | maximum, as required by C++ 14 (in C++ 11 this requirement | |
3327 | isn't explicitly stated but it's enforced anyway -- see | |
3328 | grokdeclarator in cp/decl.cc). */ | |
3329 | if (complain & tf_error) | |
3330 | { | |
3331 | size = cp_fully_fold (size); | |
3332 | invalid_array_size_error (input_location, cst_size_too_big, | |
3333 | size, NULL_TREE); | |
3334 | } | |
3335 | return error_mark_node; | |
3336 | } | |
3337 | } | |
3338 | else | |
3339 | { | |
3340 | /* When a runtime check is necessary because the array size | |
3341 | isn't constant, keep only the top-most seven bits (starting | |
3342 | with the most significant non-zero bit) of the maximum size | |
3343 | to compare the array size against, to simplify encoding the | |
3344 | constant maximum size in the instruction stream. */ | |
3345 | ||
3346 | unsigned shift = (max_outer_nelts.get_precision ()) - 7 | |
3347 | - wi::clz (max_outer_nelts); | |
3348 | max_outer_nelts = (max_outer_nelts >> shift) << shift; | |
3349 | ||
3350 | outer_nelts_check = build2 (LE_EXPR, boolean_type_node, | |
3351 | outer_nelts, | |
3352 | max_outer_nelts_tree); | |
3353 | } | |
3354 | } | |
3355 | ||
3356 | tree align_arg = NULL_TREE; | |
3357 | if (type_has_new_extended_alignment (elt_type)) | |
3358 | { | |
3359 | unsigned align = TYPE_ALIGN_UNIT (elt_type); | |
3360 | /* Also consider the alignment of the cookie, if any. */ | |
3361 | if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) | |
3362 | align = MAX (align, TYPE_ALIGN_UNIT (size_type_node)); | |
3363 | align_arg = build_int_cst (align_type_node, align); | |
3364 | } | |
3365 | ||
3366 | alloc_fn = NULL_TREE; | |
3367 | ||
3368 | /* If PLACEMENT is a single simple pointer type not passed by | |
3369 | reference, prepare to capture it in a temporary variable. Do | |
3370 | this now, since PLACEMENT will change in the calls below. */ | |
3371 | placement_first = NULL_TREE; | |
3372 | if (vec_safe_length (*placement) == 1 | |
3373 | && (TYPE_PTR_P (TREE_TYPE ((**placement)[0])))) | |
3374 | placement_first = (**placement)[0]; | |
3375 | ||
3376 | bool member_new_p = false; | |
3377 | ||
3378 | /* Allocate the object. */ | |
3379 | tree fnname; | |
3380 | tree fns; | |
3381 | ||
3382 | fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR); | |
3383 | ||
3384 | member_new_p = !globally_qualified_p | |
3385 | && CLASS_TYPE_P (elt_type) | |
3386 | && (array_p | |
3387 | ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type) | |
3388 | : TYPE_HAS_NEW_OPERATOR (elt_type)); | |
3389 | ||
3390 | bool member_delete_p = (!globally_qualified_p | |
3391 | && CLASS_TYPE_P (elt_type) | |
3392 | && (array_p | |
3393 | ? TYPE_GETS_VEC_DELETE (elt_type) | |
3394 | : TYPE_GETS_REG_DELETE (elt_type))); | |
3395 | ||
3396 | if (member_new_p) | |
3397 | { | |
3398 | /* Use a class-specific operator new. */ | |
3399 | /* If a cookie is required, add some extra space. */ | |
3400 | if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) | |
3401 | size = build2 (PLUS_EXPR, sizetype, size, cookie_size); | |
3402 | else | |
3403 | { | |
3404 | cookie_size = NULL_TREE; | |
3405 | /* No size arithmetic necessary, so the size check is | |
3406 | not needed. */ | |
3407 | if (outer_nelts_check != NULL && inner_size == 1) | |
3408 | outer_nelts_check = NULL_TREE; | |
3409 | } | |
3410 | /* Perform the overflow check. */ | |
3411 | tree errval = TYPE_MAX_VALUE (sizetype); | |
3412 | if (cxx_dialect >= cxx11 && flag_exceptions) | |
3413 | errval = throw_bad_array_new_length (); | |
3414 | if (outer_nelts_check != NULL_TREE) | |
3415 | size = build3 (COND_EXPR, sizetype, outer_nelts_check, size, errval); | |
3416 | size = fold_to_constant (size); | |
3417 | /* Create the argument list. */ | |
3418 | vec_safe_insert (*placement, 0, size); | |
3419 | /* Do name-lookup to find the appropriate operator. */ | |
3420 | fns = lookup_fnfields (elt_type, fnname, /*protect=*/2, complain); | |
3421 | if (fns == NULL_TREE) | |
3422 | { | |
3423 | if (complain & tf_error) | |
3424 | error ("no suitable %qD found in class %qT", fnname, elt_type); | |
3425 | return error_mark_node; | |
3426 | } | |
3427 | if (TREE_CODE (fns) == TREE_LIST) | |
3428 | { | |
3429 | if (complain & tf_error) | |
3430 | { | |
3431 | auto_diagnostic_group d; | |
3432 | error ("request for member %qD is ambiguous", fnname); | |
3433 | print_candidates (fns); | |
3434 | } | |
3435 | return error_mark_node; | |
3436 | } | |
3437 | tree dummy = build_dummy_object (elt_type); | |
3438 | alloc_call = NULL_TREE; | |
3439 | if (align_arg) | |
3440 | { | |
3441 | vec<tree, va_gc> *align_args | |
3442 | = vec_copy_and_insert (*placement, align_arg, 1); | |
3443 | alloc_call | |
3444 | = build_new_method_call (dummy, fns, &align_args, | |
3445 | /*conversion_path=*/NULL_TREE, | |
3446 | LOOKUP_NORMAL, &alloc_fn, tf_none); | |
3447 | /* If no matching function is found and the allocated object type | |
3448 | has new-extended alignment, the alignment argument is removed | |
3449 | from the argument list, and overload resolution is performed | |
3450 | again. */ | |
3451 | if (alloc_call == error_mark_node) | |
3452 | alloc_call = NULL_TREE; | |
3453 | } | |
3454 | if (!alloc_call) | |
3455 | alloc_call = build_new_method_call (dummy, fns, placement, | |
3456 | /*conversion_path=*/NULL_TREE, | |
3457 | LOOKUP_NORMAL, | |
3458 | &alloc_fn, complain); | |
3459 | } | |
3460 | else | |
3461 | { | |
3462 | /* Use a global operator new. */ | |
3463 | /* See if a cookie might be required. */ | |
3464 | if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))) | |
3465 | { | |
3466 | cookie_size = NULL_TREE; | |
3467 | /* No size arithmetic necessary, so the size check is | |
3468 | not needed. */ | |
3469 | if (outer_nelts_check != NULL && inner_size == 1) | |
3470 | outer_nelts_check = NULL_TREE; | |
3471 | } | |
3472 | ||
3473 | size = fold_to_constant (size); | |
3474 | /* If size is zero e.g. due to type having zero size, try to | |
3475 | preserve outer_nelts for constant expression evaluation | |
3476 | purposes. */ | |
3477 | if (integer_zerop (size) && outer_nelts) | |
3478 | size = build2 (MULT_EXPR, TREE_TYPE (size), size, outer_nelts); | |
3479 | ||
3480 | alloc_call = build_operator_new_call (fnname, placement, | |
3481 | &size, &cookie_size, | |
3482 | align_arg, outer_nelts_check, | |
3483 | &alloc_fn, complain); | |
3484 | } | |
3485 | ||
3486 | if (alloc_call == error_mark_node) | |
3487 | return error_mark_node; | |
3488 | ||
3489 | gcc_assert (alloc_fn != NULL_TREE); | |
3490 | ||
3491 | /* Now, check to see if this function is actually a placement | |
3492 | allocation function. This can happen even when PLACEMENT is NULL | |
3493 | because we might have something like: | |
3494 | ||
3495 | struct S { void* operator new (size_t, int i = 0); }; | |
3496 | ||
3497 | A call to `new S' will get this allocation function, even though | |
3498 | there is no explicit placement argument. If there is more than | |
3499 | one argument, or there are variable arguments, then this is a | |
3500 | placement allocation function. */ | |
3501 | placement_allocation_fn_p | |
3502 | = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1 | |
3503 | || varargs_function_p (alloc_fn)); | |
3504 | ||
3505 | if (complain & tf_warning_or_error | |
3506 | && warn_aligned_new | |
3507 | && !placement_allocation_fn_p | |
3508 | && TYPE_ALIGN (elt_type) > malloc_alignment () | |
3509 | && (warn_aligned_new > 1 | |
3510 | || CP_DECL_CONTEXT (alloc_fn) == global_namespace) | |
3511 | && !aligned_allocation_fn_p (alloc_fn)) | |
3512 | { | |
3513 | auto_diagnostic_group d; | |
3514 | if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended " | |
3515 | "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type))) | |
3516 | { | |
3517 | inform (input_location, "uses %qD, which does not have an alignment " | |
3518 | "parameter", alloc_fn); | |
3519 | if (!aligned_new_threshold) | |
3520 | inform (input_location, "use %<-faligned-new%> to enable C++17 " | |
3521 | "over-aligned new support"); | |
3522 | } | |
3523 | } | |
3524 | ||
3525 | /* If we found a simple case of PLACEMENT_EXPR above, then copy it | |
3526 | into a temporary variable. */ | |
3527 | if (!processing_template_decl | |
3528 | && TREE_CODE (alloc_call) == CALL_EXPR | |
3529 | && call_expr_nargs (alloc_call) == 2 | |
3530 | && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE | |
3531 | && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))) | |
3532 | { | |
3533 | tree placement = CALL_EXPR_ARG (alloc_call, 1); | |
3534 | ||
3535 | if (placement_first != NULL_TREE | |
3536 | && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement))) | |
3537 | || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement))))) | |
3538 | { | |
3539 | placement_expr = get_internal_target_expr (placement_first); | |
3540 | CALL_EXPR_ARG (alloc_call, 1) | |
3541 | = fold_convert (TREE_TYPE (placement), placement_expr); | |
3542 | } | |
3543 | ||
3544 | if (!member_new_p | |
3545 | && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))) | |
3546 | { | |
3547 | /* Attempt to make the warning point at the operator new argument. */ | |
3548 | if (placement_first) | |
3549 | placement = placement_first; | |
3550 | ||
3551 | warn_placement_new_too_small (orig_type, nelts, size, placement); | |
3552 | } | |
3553 | } | |
3554 | ||
3555 | alloc_expr = alloc_call; | |
3556 | if (cookie_size) | |
3557 | alloc_expr = maybe_wrap_new_for_constexpr (alloc_expr, type, | |
3558 | cookie_size); | |
3559 | ||
3560 | /* In the simple case, we can stop now. */ | |
3561 | pointer_type = build_pointer_type (type); | |
3562 | if (!cookie_size && !is_initialized && !member_delete_p) | |
3563 | return build_nop (pointer_type, alloc_expr); | |
3564 | ||
3565 | /* Store the result of the allocation call in a variable so that we can | |
3566 | use it more than once. */ | |
3567 | alloc_expr = get_internal_target_expr (alloc_expr); | |
3568 | alloc_node = TARGET_EXPR_SLOT (alloc_expr); | |
3569 | ||
3570 | /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */ | |
3571 | while (TREE_CODE (alloc_call) == COMPOUND_EXPR) | |
3572 | alloc_call = TREE_OPERAND (alloc_call, 1); | |
3573 | ||
3574 | /* Preevaluate the placement args so that we don't reevaluate them for a | |
3575 | placement delete. */ | |
3576 | if (placement_allocation_fn_p) | |
3577 | { | |
3578 | tree inits; | |
3579 | stabilize_call (alloc_call, &inits); | |
3580 | if (inits) | |
3581 | alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits, | |
3582 | alloc_expr); | |
3583 | } | |
3584 | ||
3585 | /* unless an allocation function is declared with an empty excep- | |
3586 | tion-specification (_except.spec_), throw(), it indicates failure to | |
3587 | allocate storage by throwing a bad_alloc exception (clause _except_, | |
3588 | _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo- | |
3589 | cation function is declared with an empty exception-specification, | |
3590 | throw(), it returns null to indicate failure to allocate storage and a | |
3591 | non-null pointer otherwise. | |
3592 | ||
3593 | So check for a null exception spec on the op new we just called. */ | |
3594 | ||
3595 | nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn)); | |
3596 | check_new | |
3597 | = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn)); | |
3598 | ||
3599 | if (cookie_size) | |
3600 | { | |
3601 | tree cookie; | |
3602 | tree cookie_ptr; | |
3603 | tree size_ptr_type; | |
3604 | ||
3605 | /* Adjust so we're pointing to the start of the object. */ | |
3606 | data_addr = fold_build_pointer_plus (alloc_node, cookie_size); | |
3607 | ||
3608 | /* Store the number of bytes allocated so that we can know how | |
3609 | many elements to destroy later. We use the last sizeof | |
3610 | (size_t) bytes to store the number of elements. */ | |
3611 | cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype)); | |
3612 | cookie_ptr = fold_build_pointer_plus_loc (input_location, | |
3613 | alloc_node, cookie_ptr); | |
3614 | size_ptr_type = build_pointer_type (sizetype); | |
3615 | cookie_ptr = fold_convert (size_ptr_type, cookie_ptr); | |
3616 | cookie = cp_build_fold_indirect_ref (cookie_ptr); | |
3617 | ||
3618 | cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts); | |
3619 | ||
3620 | if (targetm.cxx.cookie_has_size ()) | |
3621 | { | |
3622 | /* Also store the element size. */ | |
3623 | cookie_ptr = fold_build_pointer_plus (cookie_ptr, | |
3624 | fold_build1_loc (input_location, | |
3625 | NEGATE_EXPR, sizetype, | |
3626 | size_in_bytes (sizetype))); | |
3627 | ||
3628 | cookie = cp_build_fold_indirect_ref (cookie_ptr); | |
3629 | cookie = build2 (MODIFY_EXPR, sizetype, cookie, | |
3630 | size_in_bytes (elt_type)); | |
3631 | cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr), | |
3632 | cookie, cookie_expr); | |
3633 | } | |
3634 | } | |
3635 | else | |
3636 | { | |
3637 | cookie_expr = NULL_TREE; | |
3638 | data_addr = alloc_node; | |
3639 | } | |
3640 | ||
3641 | /* Now use a pointer to the type we've actually allocated. */ | |
3642 | ||
3643 | /* But we want to operate on a non-const version to start with, | |
3644 | since we'll be modifying the elements. */ | |
3645 | non_const_pointer_type = build_pointer_type | |
3646 | (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST)); | |
3647 | ||
3648 | data_addr = fold_convert (non_const_pointer_type, data_addr); | |
3649 | /* Any further uses of alloc_node will want this type, too. */ | |
3650 | alloc_node = fold_convert (non_const_pointer_type, alloc_node); | |
3651 | ||
3652 | /* Now initialize the allocated object. Note that we preevaluate the | |
3653 | initialization expression, apart from the actual constructor call or | |
3654 | assignment--we do this because we want to delay the allocation as long | |
3655 | as possible in order to minimize the size of the exception region for | |
3656 | placement delete. */ | |
3657 | if (is_initialized) | |
3658 | { | |
3659 | bool explicit_value_init_p = false; | |
3660 | ||
3661 | if (*init != NULL && (*init)->is_empty ()) | |
3662 | { | |
3663 | *init = NULL; | |
3664 | explicit_value_init_p = true; | |
3665 | } | |
3666 | ||
3667 | if (processing_template_decl) | |
3668 | { | |
3669 | /* Avoid an ICE when converting to a base in build_simple_base_path. | |
3670 | We'll throw this all away anyway, and build_new will create | |
3671 | a NEW_EXPR. */ | |
3672 | tree t = fold_convert (build_pointer_type (elt_type), data_addr); | |
3673 | /* build_value_init doesn't work in templates, and we don't need | |
3674 | the initializer anyway since we're going to throw it away and | |
3675 | rebuild it at instantiation time, so just build up a single | |
3676 | constructor call to get any appropriate diagnostics. */ | |
3677 | init_expr = cp_build_fold_indirect_ref (t); | |
3678 | if (type_build_ctor_call (elt_type)) | |
3679 | init_expr = build_special_member_call (init_expr, | |
3680 | complete_ctor_identifier, | |
3681 | init, elt_type, | |
3682 | LOOKUP_NORMAL, | |
3683 | complain); | |
3684 | } | |
3685 | else if (array_p) | |
3686 | { | |
3687 | tree vecinit = NULL_TREE; | |
3688 | const size_t len = vec_safe_length (*init); | |
3689 | if (len == 1 && DIRECT_LIST_INIT_P ((**init)[0])) | |
3690 | { | |
3691 | vecinit = (**init)[0]; | |
3692 | if (CONSTRUCTOR_NELTS (vecinit) == 0) | |
3693 | /* List-value-initialization, leave it alone. */; | |
3694 | else | |
3695 | { | |
3696 | tree arraytype, domain; | |
3697 | if (TREE_CONSTANT (nelts)) | |
3698 | domain = compute_array_index_type (NULL_TREE, nelts, | |
3699 | complain); | |
3700 | else | |
3701 | /* We'll check the length at runtime. */ | |
3702 | domain = NULL_TREE; | |
3703 | arraytype = build_cplus_array_type (type, domain); | |
3704 | /* If we have new char[4]{"foo"}, we have to reshape | |
3705 | so that the STRING_CST isn't wrapped in { }. */ | |
3706 | vecinit = reshape_init (arraytype, vecinit, complain); | |
3707 | /* The middle end doesn't cope with the location wrapper | |
3708 | around a STRING_CST. */ | |
3709 | STRIP_ANY_LOCATION_WRAPPER (vecinit); | |
3710 | vecinit = digest_init (arraytype, vecinit, complain); | |
3711 | } | |
3712 | } | |
3713 | else if (*init) | |
3714 | { | |
3715 | if (complain & tf_error) | |
3716 | error ("parenthesized initializer in array new"); | |
3717 | return error_mark_node; | |
3718 | } | |
3719 | ||
3720 | /* Collect flags for disabling subobject cleanups once the complete | |
3721 | object is fully constructed. */ | |
3722 | vec<tree, va_gc> *flags = make_tree_vector (); | |
3723 | ||
3724 | init_expr | |
3725 | = build_vec_init (data_addr, | |
3726 | cp_build_binary_op (input_location, | |
3727 | MINUS_EXPR, outer_nelts, | |
3728 | integer_one_node, | |
3729 | complain), | |
3730 | vecinit, | |
3731 | explicit_value_init_p, | |
3732 | /*from_array=*/0, | |
3733 | complain, | |
3734 | &flags); | |
3735 | ||
3736 | for (tree f : flags) | |
3737 | { | |
3738 | tree cl = build_disable_temp_cleanup (f); | |
3739 | cl = convert_to_void (cl, ICV_STATEMENT, complain); | |
3740 | init_expr = build2 (COMPOUND_EXPR, void_type_node, | |
3741 | init_expr, cl); | |
3742 | } | |
3743 | release_tree_vector (flags); | |
3744 | } | |
3745 | else | |
3746 | { | |
3747 | init_expr = cp_build_fold_indirect_ref (data_addr); | |
3748 | ||
3749 | if (type_build_ctor_call (type) && !explicit_value_init_p) | |
3750 | { | |
3751 | init_expr = build_special_member_call (init_expr, | |
3752 | complete_ctor_identifier, | |
3753 | init, elt_type, | |
3754 | LOOKUP_NORMAL, | |
3755 | complain|tf_no_cleanup); | |
3756 | } | |
3757 | else if (explicit_value_init_p) | |
3758 | { | |
3759 | /* Something like `new int()'. NO_CLEANUP is needed so | |
3760 | we don't try and build a (possibly ill-formed) | |
3761 | destructor. */ | |
3762 | tree val = build_value_init (type, complain | tf_no_cleanup); | |
3763 | if (val == error_mark_node) | |
3764 | return error_mark_node; | |
3765 | init_expr = cp_build_init_expr (init_expr, val); | |
3766 | } | |
3767 | else | |
3768 | { | |
3769 | tree ie; | |
3770 | ||
3771 | /* We are processing something like `new int (10)', which | |
3772 | means allocate an int, and initialize it with 10. | |
3773 | ||
3774 | In C++20, also handle `new A(1, 2)'. */ | |
3775 | if (cxx_dialect >= cxx20 | |
3776 | && AGGREGATE_TYPE_P (type) | |
3777 | && (*init)->length () > 1) | |
3778 | { | |
3779 | ie = build_constructor_from_vec (init_list_type_node, *init); | |
3780 | CONSTRUCTOR_IS_DIRECT_INIT (ie) = true; | |
3781 | CONSTRUCTOR_IS_PAREN_INIT (ie) = true; | |
3782 | ie = digest_init (type, ie, complain); | |
3783 | } | |
3784 | else | |
3785 | ie = build_x_compound_expr_from_vec (*init, "new initializer", | |
3786 | complain); | |
3787 | init_expr = cp_build_modify_expr (input_location, init_expr, | |
3788 | INIT_EXPR, ie, complain); | |
3789 | } | |
3790 | /* If the initializer uses C++14 aggregate NSDMI that refer to the | |
3791 | object being initialized, replace them now and don't try to | |
3792 | preevaluate. */ | |
3793 | bool had_placeholder = false; | |
3794 | if (!processing_template_decl | |
3795 | && TREE_CODE (init_expr) == INIT_EXPR) | |
3796 | TREE_OPERAND (init_expr, 1) | |
3797 | = replace_placeholders (TREE_OPERAND (init_expr, 1), | |
3798 | TREE_OPERAND (init_expr, 0), | |
3799 | &had_placeholder); | |
3800 | } | |
3801 | ||
3802 | if (init_expr == error_mark_node) | |
3803 | return error_mark_node; | |
3804 | } | |
3805 | else | |
3806 | init_expr = NULL_TREE; | |
3807 | ||
3808 | /* If any part of the object initialization terminates by throwing an | |
3809 | exception and a suitable deallocation function can be found, the | |
3810 | deallocation function is called to free the memory in which the | |
3811 | object was being constructed, after which the exception continues | |
3812 | to propagate in the context of the new-expression. If no | |
3813 | unambiguous matching deallocation function can be found, | |
3814 | propagating the exception does not cause the object's memory to be | |
3815 | freed. */ | |
3816 | if (flag_exceptions && (init_expr || member_delete_p)) | |
3817 | { | |
3818 | enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR; | |
3819 | tree cleanup; | |
3820 | ||
3821 | /* The Standard is unclear here, but the right thing to do | |
3822 | is to use the same method for finding deallocation | |
3823 | functions that we use for finding allocation functions. */ | |
3824 | cleanup = (build_op_delete_call | |
3825 | (dcode, | |
3826 | alloc_node, | |
3827 | size, | |
3828 | globally_qualified_p, | |
3829 | placement_allocation_fn_p ? alloc_call : NULL_TREE, | |
3830 | alloc_fn, | |
3831 | complain)); | |
3832 | ||
3833 | if (cleanup && init_expr && !processing_template_decl) | |
3834 | /* Ack! First we allocate the memory. Then we set our sentry | |
3835 | variable to true, and expand a cleanup that deletes the | |
3836 | memory if sentry is true. Then we run the constructor, and | |
3837 | finally clear the sentry. | |
3838 | ||
3839 | We need to do this because we allocate the space first, so | |
3840 | if there are any temporaries with cleanups in the | |
3841 | constructor args, we need this EH region to extend until | |
3842 | end of full-expression to preserve nesting. | |
3843 | ||
3844 | We used to try to evaluate the args first to avoid this, but | |
3845 | since C++17 [expr.new] says that "The invocation of the | |
3846 | allocation function is sequenced before the evaluations of | |
3847 | expressions in the new-initializer." */ | |
3848 | { | |
3849 | tree end, sentry, begin; | |
3850 | ||
3851 | begin = get_internal_target_expr (boolean_true_node); | |
3852 | ||
3853 | sentry = TARGET_EXPR_SLOT (begin); | |
3854 | ||
3855 | /* CLEANUP is compiler-generated, so no diagnostics. */ | |
3856 | suppress_warning (cleanup); | |
3857 | ||
3858 | TARGET_EXPR_CLEANUP (begin) | |
3859 | = build3 (COND_EXPR, void_type_node, sentry, | |
3860 | cleanup, void_node); | |
3861 | ||
3862 | end = build2 (MODIFY_EXPR, TREE_TYPE (sentry), | |
3863 | sentry, boolean_false_node); | |
3864 | ||
3865 | init_expr | |
3866 | = build2 (COMPOUND_EXPR, void_type_node, begin, | |
3867 | build2 (COMPOUND_EXPR, void_type_node, init_expr, | |
3868 | end)); | |
3869 | /* Likewise, this is compiler-generated. */ | |
3870 | suppress_warning (init_expr); | |
3871 | } | |
3872 | } | |
3873 | ||
3874 | /* Now build up the return value in reverse order. */ | |
3875 | ||
3876 | rval = data_addr; | |
3877 | ||
3878 | if (init_expr) | |
3879 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval); | |
3880 | if (cookie_expr) | |
3881 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval); | |
3882 | ||
3883 | suppress_warning (rval, OPT_Wunused_value); | |
3884 | ||
3885 | if (rval == data_addr && TREE_CODE (alloc_expr) == TARGET_EXPR) | |
3886 | /* If we don't have an initializer or a cookie, strip the TARGET_EXPR | |
3887 | and return the call (which doesn't need to be adjusted). */ | |
3888 | rval = TARGET_EXPR_INITIAL (alloc_expr); | |
3889 | else | |
3890 | { | |
3891 | if (check_new) | |
3892 | { | |
3893 | tree ifexp = cp_build_binary_op (input_location, | |
3894 | NE_EXPR, alloc_node, | |
3895 | nullptr_node, | |
3896 | complain); | |
3897 | rval = build_conditional_expr (input_location, ifexp, rval, | |
3898 | alloc_node, complain); | |
3899 | } | |
3900 | ||
3901 | /* Perform the allocation before anything else, so that ALLOC_NODE | |
3902 | has been initialized before we start using it. */ | |
3903 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval); | |
3904 | } | |
3905 | ||
3906 | /* A new-expression is never an lvalue. */ | |
3907 | gcc_assert (!obvalue_p (rval)); | |
3908 | ||
3909 | return convert (pointer_type, rval); | |
3910 | } | |
3911 | ||
3912 | /* Generate a representation for a C++ "new" expression. *PLACEMENT | |
3913 | is a vector of placement-new arguments (or NULL if none). If NELTS | |
3914 | is NULL, TYPE is the type of the storage to be allocated. If NELTS | |
3915 | is not NULL, then this is an array-new allocation; TYPE is the type | |
3916 | of the elements in the array and NELTS is the number of elements in | |
3917 | the array. *INIT, if non-NULL, is the initializer for the new | |
3918 | object, or an empty vector to indicate an initializer of "()". If | |
3919 | USE_GLOBAL_NEW is true, then the user explicitly wrote "::new" | |
3920 | rather than just "new". This may change PLACEMENT and INIT. */ | |
3921 | ||
3922 | tree | |
3923 | build_new (location_t loc, vec<tree, va_gc> **placement, tree type, | |
3924 | tree nelts, vec<tree, va_gc> **init, int use_global_new, | |
3925 | tsubst_flags_t complain) | |
3926 | { | |
3927 | tree rval; | |
3928 | vec<tree, va_gc> *orig_placement = NULL; | |
3929 | tree orig_nelts = NULL_TREE; | |
3930 | vec<tree, va_gc> *orig_init = NULL; | |
3931 | ||
3932 | if (type == error_mark_node) | |
3933 | return error_mark_node; | |
3934 | ||
3935 | if (nelts == NULL_TREE | |
3936 | /* Don't do auto deduction where it might affect mangling. */ | |
3937 | && (!processing_template_decl || at_function_scope_p ())) | |
3938 | { | |
3939 | tree auto_node = type_uses_auto (type); | |
3940 | if (auto_node) | |
3941 | { | |
3942 | tree d_init = NULL_TREE; | |
3943 | const size_t len = vec_safe_length (*init); | |
3944 | /* E.g. new auto(x) must have exactly one element, or | |
3945 | a {} initializer will have one element. */ | |
3946 | if (len == 1) | |
3947 | { | |
3948 | d_init = (**init)[0]; | |
3949 | d_init = resolve_nondeduced_context (d_init, complain); | |
3950 | } | |
3951 | /* For the rest, e.g. new A(1, 2, 3), create a list. */ | |
3952 | else if (len > 1) | |
3953 | { | |
3954 | unsigned int n; | |
3955 | tree t; | |
3956 | tree *pp = &d_init; | |
3957 | FOR_EACH_VEC_ELT (**init, n, t) | |
3958 | { | |
3959 | t = resolve_nondeduced_context (t, complain); | |
3960 | *pp = build_tree_list (NULL_TREE, t); | |
3961 | pp = &TREE_CHAIN (*pp); | |
3962 | } | |
3963 | } | |
3964 | type = do_auto_deduction (type, d_init, auto_node, complain); | |
3965 | } | |
3966 | } | |
3967 | ||
3968 | if (processing_template_decl) | |
3969 | { | |
3970 | if (dependent_type_p (type) | |
3971 | || any_type_dependent_arguments_p (*placement) | |
3972 | || (nelts && type_dependent_expression_p (nelts)) | |
3973 | || (nelts && *init) | |
3974 | || any_type_dependent_arguments_p (*init)) | |
3975 | return build_raw_new_expr (loc, *placement, type, nelts, *init, | |
3976 | use_global_new); | |
3977 | ||
3978 | orig_placement = make_tree_vector_copy (*placement); | |
3979 | orig_nelts = nelts; | |
3980 | if (*init) | |
3981 | { | |
3982 | orig_init = make_tree_vector_copy (*init); | |
3983 | /* Also copy any CONSTRUCTORs in *init, since reshape_init and | |
3984 | digest_init clobber them in place. */ | |
3985 | for (unsigned i = 0; i < orig_init->length(); ++i) | |
3986 | { | |
3987 | tree e = (**init)[i]; | |
3988 | if (TREE_CODE (e) == CONSTRUCTOR) | |
3989 | (**init)[i] = copy_node (e); | |
3990 | } | |
3991 | } | |
3992 | } | |
3993 | ||
3994 | if (nelts) | |
3995 | { | |
3996 | location_t nelts_loc = cp_expr_loc_or_loc (nelts, loc); | |
3997 | if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false)) | |
3998 | { | |
3999 | if (complain & tf_error) | |
4000 | permerror (nelts_loc, | |
4001 | "size in array new must have integral type"); | |
4002 | else | |
4003 | return error_mark_node; | |
4004 | } | |
4005 | ||
4006 | /* Try to determine the constant value only for the purposes | |
4007 | of the diagnostic below but continue to use the original | |
4008 | value and handle const folding later. */ | |
4009 | const_tree cst_nelts = fold_non_dependent_expr (nelts, complain); | |
4010 | ||
4011 | /* The expression in a noptr-new-declarator is erroneous if it's of | |
4012 | non-class type and its value before converting to std::size_t is | |
4013 | less than zero. ... If the expression is a constant expression, | |
4014 | the program is ill-fomed. */ | |
4015 | if (TREE_CODE (cst_nelts) == INTEGER_CST | |
4016 | && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE, | |
4017 | complain & tf_error)) | |
4018 | return error_mark_node; | |
4019 | ||
4020 | nelts = mark_rvalue_use (nelts); | |
4021 | nelts = cp_save_expr (cp_convert (sizetype, nelts, complain)); | |
4022 | } | |
4023 | ||
4024 | /* ``A reference cannot be created by the new operator. A reference | |
4025 | is not an object (8.2.2, 8.4.3), so a pointer to it could not be | |
4026 | returned by new.'' ARM 5.3.3 */ | |
4027 | if (TYPE_REF_P (type)) | |
4028 | { | |
4029 | if (complain & tf_error) | |
4030 | error_at (loc, "new cannot be applied to a reference type"); | |
4031 | else | |
4032 | return error_mark_node; | |
4033 | type = TREE_TYPE (type); | |
4034 | } | |
4035 | ||
4036 | if (TREE_CODE (type) == FUNCTION_TYPE) | |
4037 | { | |
4038 | if (complain & tf_error) | |
4039 | error_at (loc, "new cannot be applied to a function type"); | |
4040 | return error_mark_node; | |
4041 | } | |
4042 | ||
4043 | /* P1009: Array size deduction in new-expressions. */ | |
4044 | const bool array_p = TREE_CODE (type) == ARRAY_TYPE; | |
4045 | if (*init | |
4046 | /* If the array didn't specify its bound, we have to deduce it. */ | |
4047 | && ((array_p && !TYPE_DOMAIN (type)) | |
4048 | /* For C++20 array with parenthesized-init, we have to process | |
4049 | the parenthesized-list. But don't do it for (), which is | |
4050 | value-initialization, and INIT should stay empty. */ | |
4051 | || (cxx_dialect >= cxx20 | |
4052 | && (array_p || nelts) | |
4053 | && !(*init)->is_empty ()))) | |
4054 | { | |
4055 | /* This means we have 'new T[]()'. */ | |
4056 | if ((*init)->is_empty ()) | |
4057 | { | |
4058 | tree ctor = build_constructor (init_list_type_node, NULL); | |
4059 | CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true; | |
4060 | vec_safe_push (*init, ctor); | |
4061 | } | |
4062 | tree &elt = (**init)[0]; | |
4063 | /* The C++20 'new T[](e_0, ..., e_k)' case allowed by P0960. */ | |
4064 | if (!DIRECT_LIST_INIT_P (elt) && cxx_dialect >= cxx20) | |
4065 | { | |
4066 | tree ctor = build_constructor_from_vec (init_list_type_node, *init); | |
4067 | CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true; | |
4068 | CONSTRUCTOR_IS_PAREN_INIT (ctor) = true; | |
4069 | elt = ctor; | |
4070 | /* We've squashed all the vector elements into the first one; | |
4071 | truncate the rest. */ | |
4072 | (*init)->truncate (1); | |
4073 | } | |
4074 | /* Otherwise we should have 'new T[]{e_0, ..., e_k}'. */ | |
4075 | if (array_p && !TYPE_DOMAIN (type)) | |
4076 | { | |
4077 | /* We need to reshape before deducing the bounds to handle code like | |
4078 | ||
4079 | struct S { int x, y; }; | |
4080 | new S[]{1, 2, 3, 4}; | |
4081 | ||
4082 | which should deduce S[2]. But don't change ELT itself: we want to | |
4083 | pass a list-initializer to build_new_1, even for STRING_CSTs. */ | |
4084 | tree e = elt; | |
4085 | if (BRACE_ENCLOSED_INITIALIZER_P (e)) | |
4086 | e = reshape_init (type, e, complain); | |
4087 | cp_complete_array_type (&type, e, /*do_default*/false); | |
4088 | } | |
4089 | } | |
4090 | ||
4091 | /* The type allocated must be complete. If the new-type-id was | |
4092 | "T[N]" then we are just checking that "T" is complete here, but | |
4093 | that is equivalent, since the value of "N" doesn't matter. */ | |
4094 | if (!complete_type_or_maybe_complain (type, NULL_TREE, complain)) | |
4095 | return error_mark_node; | |
4096 | ||
4097 | rval = build_new_1 (placement, type, nelts, init, use_global_new, complain); | |
4098 | if (rval == error_mark_node) | |
4099 | return error_mark_node; | |
4100 | ||
4101 | if (processing_template_decl) | |
4102 | { | |
4103 | tree ret = build_raw_new_expr (loc, orig_placement, type, orig_nelts, | |
4104 | orig_init, use_global_new); | |
4105 | release_tree_vector (orig_placement); | |
4106 | release_tree_vector (orig_init); | |
4107 | return ret; | |
4108 | } | |
4109 | ||
4110 | /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */ | |
4111 | rval = build1_loc (loc, NOP_EXPR, TREE_TYPE (rval), rval); | |
4112 | suppress_warning (rval, OPT_Wunused_value); | |
4113 | ||
4114 | return rval; | |
4115 | } | |
4116 | \f | |
4117 | static tree | |
4118 | build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type, | |
4119 | special_function_kind auto_delete_vec, | |
4120 | int use_global_delete, tsubst_flags_t complain, | |
4121 | bool in_cleanup = false) | |
4122 | { | |
4123 | tree virtual_size; | |
4124 | tree ptype = build_pointer_type (type = complete_type (type)); | |
4125 | tree size_exp; | |
4126 | ||
4127 | /* Temporary variables used by the loop. */ | |
4128 | tree tbase, tbase_init; | |
4129 | ||
4130 | /* This is the body of the loop that implements the deletion of a | |
4131 | single element, and moves temp variables to next elements. */ | |
4132 | tree body; | |
4133 | ||
4134 | /* This is the LOOP_EXPR that governs the deletion of the elements. */ | |
4135 | tree loop = 0; | |
4136 | ||
4137 | /* This is the thing that governs what to do after the loop has run. */ | |
4138 | tree deallocate_expr = 0; | |
4139 | ||
4140 | /* This is the BIND_EXPR which holds the outermost iterator of the | |
4141 | loop. It is convenient to set this variable up and test it before | |
4142 | executing any other code in the loop. | |
4143 | This is also the containing expression returned by this function. */ | |
4144 | tree controller = NULL_TREE; | |
4145 | tree tmp; | |
4146 | ||
4147 | /* We should only have 1-D arrays here. */ | |
4148 | gcc_assert (TREE_CODE (type) != ARRAY_TYPE); | |
4149 | ||
4150 | if (base == error_mark_node || maxindex == error_mark_node) | |
4151 | return error_mark_node; | |
4152 | ||
4153 | if (!verify_type_context (loc, TCTX_DEALLOCATION, type, | |
4154 | !(complain & tf_error))) | |
4155 | return error_mark_node; | |
4156 | ||
4157 | if (!COMPLETE_TYPE_P (type)) | |
4158 | { | |
4159 | if (cxx_dialect > cxx23) | |
4160 | { | |
4161 | if (complain & tf_error) | |
4162 | { | |
4163 | auto_diagnostic_group d; | |
4164 | int saved_errorcount = errorcount; | |
4165 | if (permerror_opt (loc, OPT_Wdelete_incomplete, | |
4166 | "operator %<delete []%> used on " | |
4167 | "incomplete type")) | |
4168 | { | |
4169 | cxx_incomplete_type_inform (type); | |
4170 | if (errorcount != saved_errorcount) | |
4171 | return error_mark_node; | |
4172 | } | |
4173 | } | |
4174 | else | |
4175 | return error_mark_node; | |
4176 | } | |
4177 | else if (complain & tf_warning) | |
4178 | { | |
4179 | auto_diagnostic_group d; | |
4180 | if (warning_at (loc, OPT_Wdelete_incomplete, | |
4181 | "possible problem detected in invocation of " | |
4182 | "operator %<delete []%>")) | |
4183 | { | |
4184 | cxx_incomplete_type_diagnostic (base, type, DK_WARNING); | |
4185 | inform (loc, "neither the destructor nor the " | |
4186 | "class-specific operator %<delete []%> will be called, " | |
4187 | "even if they are declared when the class is defined"); | |
4188 | } | |
4189 | } | |
4190 | /* This size won't actually be used. */ | |
4191 | size_exp = size_one_node; | |
4192 | goto no_destructor; | |
4193 | } | |
4194 | ||
4195 | size_exp = size_in_bytes (type); | |
4196 | ||
4197 | if (! MAYBE_CLASS_TYPE_P (type)) | |
4198 | goto no_destructor; | |
4199 | else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) | |
4200 | { | |
4201 | /* Make sure the destructor is callable. */ | |
4202 | if (type_build_dtor_call (type)) | |
4203 | { | |
4204 | tmp = build_delete (loc, ptype, base, sfk_complete_destructor, | |
4205 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL, | |
4206 | 1, complain); | |
4207 | if (tmp == error_mark_node) | |
4208 | return error_mark_node; | |
4209 | } | |
4210 | goto no_destructor; | |
4211 | } | |
4212 | ||
4213 | /* The below is short by the cookie size. */ | |
4214 | virtual_size = size_binop (MULT_EXPR, size_exp, | |
4215 | fold_convert (sizetype, maxindex)); | |
4216 | ||
4217 | tbase = create_temporary_var (ptype); | |
4218 | DECL_INITIAL (tbase) | |
4219 | = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base), | |
4220 | virtual_size); | |
4221 | tbase_init = build_stmt (loc, DECL_EXPR, tbase); | |
4222 | controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE); | |
4223 | TREE_SIDE_EFFECTS (controller) = 1; | |
4224 | BIND_EXPR_VEC_DTOR (controller) = true; | |
4225 | ||
4226 | body = build1 (EXIT_EXPR, void_type_node, | |
4227 | build2 (EQ_EXPR, boolean_type_node, tbase, | |
4228 | fold_convert (ptype, base))); | |
4229 | tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp); | |
4230 | tmp = fold_build_pointer_plus (tbase, tmp); | |
4231 | tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain); | |
4232 | if (tmp == error_mark_node) | |
4233 | return error_mark_node; | |
4234 | body = build_compound_expr (loc, body, tmp); | |
4235 | /* [expr.delete]/3: "In an array delete expression, if the dynamic type of | |
4236 | the object to be deleted is not similar to its static type, the behavior | |
4237 | is undefined." So we can set LOOKUP_NONVIRTUAL. */ | |
4238 | tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor, | |
4239 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL, | |
4240 | 1, complain); | |
4241 | if (tmp == error_mark_node) | |
4242 | return error_mark_node; | |
4243 | body = build_compound_expr (loc, body, tmp); | |
4244 | ||
4245 | loop = build1 (LOOP_EXPR, void_type_node, body); | |
4246 | ||
4247 | /* If one destructor throws, keep trying to clean up the rest, unless we're | |
4248 | already in a build_vec_init cleanup. */ | |
4249 | if (flag_exceptions && !in_cleanup && !processing_template_decl | |
4250 | && !expr_noexcept_p (tmp, tf_none)) | |
4251 | { | |
4252 | loop = build2 (TRY_CATCH_EXPR, void_type_node, loop, | |
4253 | unshare_expr (loop)); | |
4254 | /* Tell honor_protect_cleanup_actions to discard this on the | |
4255 | exceptional path. */ | |
4256 | TRY_CATCH_IS_CLEANUP (loop) = true; | |
4257 | } | |
4258 | ||
4259 | loop = build_compound_expr (loc, tbase_init, loop); | |
4260 | ||
4261 | no_destructor: | |
4262 | /* Delete the storage if appropriate. */ | |
4263 | if (auto_delete_vec == sfk_deleting_destructor) | |
4264 | { | |
4265 | tree base_tbd; | |
4266 | ||
4267 | /* The below is short by the cookie size. */ | |
4268 | virtual_size = size_binop (MULT_EXPR, size_exp, | |
4269 | fold_convert (sizetype, maxindex)); | |
4270 | ||
4271 | if (! TYPE_VEC_NEW_USES_COOKIE (type)) | |
4272 | /* no header */ | |
4273 | base_tbd = base; | |
4274 | else | |
4275 | { | |
4276 | tree cookie_size; | |
4277 | ||
4278 | cookie_size = targetm.cxx.get_cookie_size (type); | |
4279 | base_tbd = cp_build_binary_op (loc, | |
4280 | MINUS_EXPR, | |
4281 | cp_convert (string_type_node, | |
4282 | base, complain), | |
4283 | cookie_size, | |
4284 | complain); | |
4285 | if (base_tbd == error_mark_node) | |
4286 | return error_mark_node; | |
4287 | base_tbd = cp_convert (ptype, base_tbd, complain); | |
4288 | /* True size with header. */ | |
4289 | virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size); | |
4290 | } | |
4291 | ||
4292 | deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR, | |
4293 | base_tbd, virtual_size, | |
4294 | use_global_delete & 1, | |
4295 | /*placement=*/NULL_TREE, | |
4296 | /*alloc_fn=*/NULL_TREE, | |
4297 | complain); | |
4298 | } | |
4299 | ||
4300 | body = loop; | |
4301 | if (deallocate_expr == error_mark_node) | |
4302 | return error_mark_node; | |
4303 | else if (!deallocate_expr) | |
4304 | ; | |
4305 | else if (!body) | |
4306 | body = deallocate_expr; | |
4307 | else | |
4308 | /* The delete operator must be called, even if a destructor | |
4309 | throws. */ | |
4310 | body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr); | |
4311 | ||
4312 | if (!body) | |
4313 | body = integer_zero_node; | |
4314 | ||
4315 | /* Outermost wrapper: If pointer is null, punt. */ | |
4316 | tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base, | |
4317 | fold_convert (TREE_TYPE (base), nullptr_node)); | |
4318 | /* This is a compiler generated comparison, don't emit | |
4319 | e.g. -Wnonnull-compare warning for it. */ | |
4320 | suppress_warning (cond, OPT_Wnonnull_compare); | |
4321 | body = build3_loc (loc, COND_EXPR, void_type_node, | |
4322 | cond, body, integer_zero_node); | |
4323 | COND_EXPR_IS_VEC_DELETE (body) = true; | |
4324 | body = build1 (NOP_EXPR, void_type_node, body); | |
4325 | ||
4326 | if (controller) | |
4327 | { | |
4328 | TREE_OPERAND (controller, 1) = body; | |
4329 | body = controller; | |
4330 | } | |
4331 | ||
4332 | if (TREE_CODE (base) == SAVE_EXPR) | |
4333 | /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */ | |
4334 | body = build2 (COMPOUND_EXPR, void_type_node, base, body); | |
4335 | ||
4336 | return convert_to_void (body, ICV_CAST, complain); | |
4337 | } | |
4338 | ||
4339 | /* Create an unnamed variable of the indicated TYPE. */ | |
4340 | ||
4341 | tree | |
4342 | create_temporary_var (tree type) | |
4343 | { | |
4344 | tree decl; | |
4345 | ||
4346 | decl = build_decl (input_location, | |
4347 | VAR_DECL, NULL_TREE, type); | |
4348 | TREE_USED (decl) = 1; | |
4349 | DECL_ARTIFICIAL (decl) = 1; | |
4350 | DECL_IGNORED_P (decl) = 1; | |
4351 | DECL_CONTEXT (decl) = current_function_decl; | |
4352 | ||
4353 | return decl; | |
4354 | } | |
4355 | ||
4356 | /* Create a new temporary variable of the indicated TYPE, initialized | |
4357 | to INIT. | |
4358 | ||
4359 | It is not entered into current_binding_level, because that breaks | |
4360 | things when it comes time to do final cleanups (which take place | |
4361 | "outside" the binding contour of the function). */ | |
4362 | ||
4363 | tree | |
4364 | get_temp_regvar (tree type, tree init) | |
4365 | { | |
4366 | tree decl; | |
4367 | ||
4368 | decl = create_temporary_var (type); | |
4369 | add_decl_expr (decl); | |
4370 | ||
4371 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR, | |
4372 | init, tf_warning_or_error)); | |
4373 | ||
4374 | return decl; | |
4375 | } | |
4376 | ||
4377 | /* Subroutine of build_vec_init. Returns true if assigning to an array of | |
4378 | INNER_ELT_TYPE from INIT is trivial. */ | |
4379 | ||
4380 | static bool | |
4381 | vec_copy_assign_is_trivial (tree inner_elt_type, tree init) | |
4382 | { | |
4383 | tree fromtype = inner_elt_type; | |
4384 | if (lvalue_p (init)) | |
4385 | fromtype = cp_build_reference_type (fromtype, /*rval*/false); | |
4386 | return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype); | |
4387 | } | |
4388 | ||
4389 | /* Subroutine of build_vec_init: Check that the array has at least N | |
4390 | elements. Other parameters are local variables in build_vec_init. */ | |
4391 | ||
4392 | void | |
4393 | finish_length_check (tree atype, tree iterator, tree obase, unsigned n) | |
4394 | { | |
4395 | tree nelts = build_int_cst (ptrdiff_type_node, n - 1); | |
4396 | if (TREE_CODE (atype) != ARRAY_TYPE) | |
4397 | { | |
4398 | if (flag_exceptions) | |
4399 | { | |
4400 | tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator, | |
4401 | nelts); | |
4402 | c = build3 (COND_EXPR, void_type_node, c, | |
4403 | throw_bad_array_new_length (), void_node); | |
4404 | finish_expr_stmt (c); | |
4405 | } | |
4406 | /* Don't check an array new when -fno-exceptions. */ | |
4407 | } | |
4408 | else if (sanitize_flags_p (SANITIZE_BOUNDS) | |
4409 | && current_function_decl != NULL_TREE) | |
4410 | { | |
4411 | /* Make sure the last element of the initializer is in bounds. */ | |
4412 | finish_expr_stmt | |
4413 | (ubsan_instrument_bounds | |
4414 | (input_location, obase, &nelts, /*ignore_off_by_one*/false)); | |
4415 | } | |
4416 | } | |
4417 | ||
4418 | /* walk_tree callback to collect temporaries in an expression. */ | |
4419 | ||
4420 | tree | |
4421 | find_temps_r (tree *tp, int *walk_subtrees, void *data) | |
4422 | { | |
4423 | vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data); | |
4424 | tree t = *tp; | |
4425 | if (TREE_CODE (t) == TARGET_EXPR | |
4426 | && !TARGET_EXPR_ELIDING_P (t)) | |
4427 | temps.safe_push (tp); | |
4428 | else if (TYPE_P (t)) | |
4429 | *walk_subtrees = 0; | |
4430 | ||
4431 | return NULL_TREE; | |
4432 | } | |
4433 | ||
4434 | /* walk_tree callback to collect temporaries in an expression that | |
4435 | are allocator arguments to standard library classes. */ | |
4436 | ||
4437 | static tree | |
4438 | find_allocator_temps_r (tree *tp, int *walk_subtrees, void *data) | |
4439 | { | |
4440 | vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data); | |
4441 | tree t = *tp; | |
4442 | if (TYPE_P (t)) | |
4443 | { | |
4444 | *walk_subtrees = 0; | |
4445 | return NULL_TREE; | |
4446 | } | |
4447 | ||
4448 | /* If this is a call to a constructor for a std:: class, look for | |
4449 | a reference-to-allocator argument. */ | |
4450 | tree fn = cp_get_callee_fndecl_nofold (t); | |
4451 | if (fn && DECL_CONSTRUCTOR_P (fn) | |
4452 | && decl_in_std_namespace_p (TYPE_NAME (DECL_CONTEXT (fn)))) | |
4453 | { | |
4454 | int nargs = call_expr_nargs (t); | |
4455 | for (int i = 1; i < nargs; ++i) | |
4456 | { | |
4457 | tree arg = get_nth_callarg (t, i); | |
4458 | tree atype = TREE_TYPE (arg); | |
4459 | if (TREE_CODE (atype) == REFERENCE_TYPE | |
4460 | && is_std_allocator (TREE_TYPE (atype))) | |
4461 | { | |
4462 | STRIP_NOPS (arg); | |
4463 | if (TREE_CODE (arg) == ADDR_EXPR) | |
4464 | { | |
4465 | tree *ap = &TREE_OPERAND (arg, 0); | |
4466 | if (TREE_CODE (*ap) == TARGET_EXPR) | |
4467 | temps.safe_push (ap); | |
4468 | } | |
4469 | } | |
4470 | } | |
4471 | } | |
4472 | ||
4473 | return NULL_TREE; | |
4474 | } | |
4475 | ||
4476 | /* If INIT initializes a standard library class, and involves a temporary | |
4477 | std::allocator<T>, use ALLOC_OBJ for all such temporaries. | |
4478 | ||
4479 | Note that this can clobber the input to build_vec_init; no unsharing is | |
4480 | done. To make this safe we use the TARGET_EXPR in all places rather than | |
4481 | pulling out the TARGET_EXPR_SLOT. | |
4482 | ||
4483 | Used by build_vec_init when initializing an array of e.g. strings to reuse | |
4484 | the same temporary allocator for all of the strings. We can do this because | |
4485 | std::allocator has no data and the standard library doesn't care about the | |
4486 | address of allocator objects. | |
4487 | ||
4488 | ??? Add an attribute to allow users to assert the same property for other | |
4489 | classes, i.e. one object of the type is interchangeable with any other? */ | |
4490 | ||
4491 | static void | |
4492 | combine_allocator_temps (tree &init, tree &alloc_obj) | |
4493 | { | |
4494 | auto_vec<tree*> temps; | |
4495 | cp_walk_tree_without_duplicates (&init, find_allocator_temps_r, &temps); | |
4496 | for (tree *p : temps) | |
4497 | { | |
4498 | if (!alloc_obj) | |
4499 | alloc_obj = *p; | |
4500 | else | |
4501 | *p = alloc_obj; | |
4502 | } | |
4503 | } | |
4504 | ||
4505 | /* `build_vec_init' returns tree structure that performs | |
4506 | initialization of a vector of aggregate types. | |
4507 | ||
4508 | BASE is a reference to the vector, of ARRAY_TYPE, or a pointer | |
4509 | to the first element, of POINTER_TYPE. | |
4510 | MAXINDEX is the maximum index of the array (one less than the | |
4511 | number of elements). It is only used if BASE is a pointer or | |
4512 | TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE. | |
4513 | ||
4514 | INIT is the (possibly NULL) initializer. | |
4515 | ||
4516 | If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All | |
4517 | elements in the array are value-initialized. | |
4518 | ||
4519 | FROM_ARRAY is 0 if we should init everything with INIT | |
4520 | (i.e., every element initialized from INIT). | |
4521 | FROM_ARRAY is 1 if we should index into INIT in parallel | |
4522 | with initialization of DECL. | |
4523 | FROM_ARRAY is 2 if we should index into INIT in parallel, | |
4524 | but use assignment instead of initialization. */ | |
4525 | ||
4526 | tree | |
4527 | build_vec_init (tree base, tree maxindex, tree init, | |
4528 | bool explicit_value_init_p, | |
4529 | int from_array, | |
4530 | tsubst_flags_t complain, | |
4531 | vec<tree, va_gc>** cleanup_flags /* = nullptr */) | |
4532 | { | |
4533 | tree rval; | |
4534 | tree base2 = NULL_TREE; | |
4535 | tree itype = NULL_TREE; | |
4536 | tree iterator; | |
4537 | /* The type of BASE. */ | |
4538 | tree atype = TREE_TYPE (base); | |
4539 | /* The type of an element in the array. */ | |
4540 | tree type = TREE_TYPE (atype); | |
4541 | /* The element type reached after removing all outer array | |
4542 | types. */ | |
4543 | tree inner_elt_type; | |
4544 | /* The type of a pointer to an element in the array. */ | |
4545 | tree ptype; | |
4546 | tree stmt_expr; | |
4547 | tree compound_stmt; | |
4548 | int destroy_temps; | |
4549 | HOST_WIDE_INT num_initialized_elts = 0; | |
4550 | bool is_global; | |
4551 | tree obase = base; | |
4552 | bool xvalue = false; | |
4553 | bool errors = false; | |
4554 | location_t loc = (init ? cp_expr_loc_or_input_loc (init) | |
4555 | : location_of (base)); | |
4556 | ||
4557 | if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype)) | |
4558 | maxindex = array_type_nelts_minus_one (atype); | |
4559 | ||
4560 | if (maxindex == NULL_TREE || maxindex == error_mark_node) | |
4561 | return error_mark_node; | |
4562 | ||
4563 | maxindex = maybe_constant_value (maxindex); | |
4564 | if (explicit_value_init_p) | |
4565 | gcc_assert (!init); | |
4566 | ||
4567 | inner_elt_type = strip_array_types (type); | |
4568 | ||
4569 | /* Look through the TARGET_EXPR around a compound literal. */ | |
4570 | if (init && TREE_CODE (init) == TARGET_EXPR | |
4571 | && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR | |
4572 | && from_array != 2 | |
4573 | && (same_type_ignoring_top_level_qualifiers_p | |
4574 | (TREE_TYPE (init), atype))) | |
4575 | init = TARGET_EXPR_INITIAL (init); | |
4576 | ||
4577 | if (tree vi = get_vec_init_expr (init)) | |
4578 | init = VEC_INIT_EXPR_INIT (vi); | |
4579 | ||
4580 | bool direct_init = false; | |
4581 | if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init) | |
4582 | && CONSTRUCTOR_NELTS (init) == 1) | |
4583 | { | |
4584 | tree elt = CONSTRUCTOR_ELT (init, 0)->value; | |
4585 | if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE | |
4586 | && TREE_CODE (elt) != VEC_INIT_EXPR) | |
4587 | { | |
4588 | direct_init = DIRECT_LIST_INIT_P (init); | |
4589 | init = elt; | |
4590 | } | |
4591 | } | |
4592 | ||
4593 | /* from_array doesn't apply to initialization from CONSTRUCTOR. */ | |
4594 | if (init && TREE_CODE (init) == CONSTRUCTOR) | |
4595 | from_array = 0; | |
4596 | ||
4597 | /* If we have a braced-init-list or string constant, make sure that the array | |
4598 | is big enough for all the initializers. */ | |
4599 | bool length_check = (init | |
4600 | && (TREE_CODE (init) == STRING_CST | |
4601 | || (TREE_CODE (init) == CONSTRUCTOR | |
4602 | && CONSTRUCTOR_NELTS (init) > 0)) | |
4603 | && !TREE_CONSTANT (maxindex)); | |
4604 | ||
4605 | if (init | |
4606 | && TREE_CODE (atype) == ARRAY_TYPE | |
4607 | && TREE_CONSTANT (maxindex) | |
4608 | && !vla_type_p (type) | |
4609 | && (from_array == 2 | |
4610 | ? vec_copy_assign_is_trivial (inner_elt_type, init) | |
4611 | : !TYPE_NEEDS_CONSTRUCTING (type)) | |
4612 | && ((TREE_CODE (init) == CONSTRUCTOR | |
4613 | && (BRACE_ENCLOSED_INITIALIZER_P (init) | |
4614 | || (same_type_ignoring_top_level_qualifiers_p | |
4615 | (atype, TREE_TYPE (init)))) | |
4616 | /* Don't do this if the CONSTRUCTOR might contain something | |
4617 | that might throw and require us to clean up. */ | |
4618 | && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init)) | |
4619 | || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type))) | |
4620 | || from_array)) | |
4621 | { | |
4622 | /* Do non-default initialization of trivial arrays resulting from | |
4623 | brace-enclosed initializers. In this case, digest_init and | |
4624 | store_constructor will handle the semantics for us. */ | |
4625 | ||
4626 | if (BRACE_ENCLOSED_INITIALIZER_P (init)) | |
4627 | init = digest_init (atype, init, complain); | |
4628 | stmt_expr = cp_build_init_expr (base, init); | |
4629 | return stmt_expr; | |
4630 | } | |
4631 | ||
4632 | maxindex = cp_convert (ptrdiff_type_node, maxindex, complain); | |
4633 | maxindex = fold_simple (maxindex); | |
4634 | ||
4635 | if (TREE_CODE (atype) == ARRAY_TYPE) | |
4636 | { | |
4637 | ptype = build_pointer_type (type); | |
4638 | base = decay_conversion (base, complain); | |
4639 | if (base == error_mark_node) | |
4640 | return error_mark_node; | |
4641 | base = cp_convert (ptype, base, complain); | |
4642 | } | |
4643 | else | |
4644 | ptype = atype; | |
4645 | ||
4646 | if (integer_all_onesp (maxindex)) | |
4647 | { | |
4648 | /* Shortcut zero element case to avoid unneeded constructor synthesis. */ | |
4649 | if (init && TREE_SIDE_EFFECTS (init)) | |
4650 | base = build2 (COMPOUND_EXPR, ptype, init, base); | |
4651 | return base; | |
4652 | } | |
4653 | ||
4654 | /* The code we are generating looks like: | |
4655 | ({ | |
4656 | T* t1 = (T*) base; | |
4657 | T* rval = t1; | |
4658 | ptrdiff_t iterator = maxindex; | |
4659 | try { | |
4660 | for (; iterator != -1; --iterator) { | |
4661 | ... initialize *t1 ... | |
4662 | ++t1; | |
4663 | } | |
4664 | } catch (...) { | |
4665 | ... destroy elements that were constructed ... | |
4666 | } | |
4667 | rval; | |
4668 | }) | |
4669 | ||
4670 | We can omit the try and catch blocks if we know that the | |
4671 | initialization will never throw an exception, or if the array | |
4672 | elements do not have destructors. We can omit the loop completely if | |
4673 | the elements of the array do not have constructors. | |
4674 | ||
4675 | We actually wrap the entire body of the above in a STMT_EXPR, for | |
4676 | tidiness. | |
4677 | ||
4678 | When copying from array to another, when the array elements have | |
4679 | only trivial copy constructors, we should use __builtin_memcpy | |
4680 | rather than generating a loop. That way, we could take advantage | |
4681 | of whatever cleverness the back end has for dealing with copies | |
4682 | of blocks of memory. */ | |
4683 | ||
4684 | is_global = begin_init_stmts (&stmt_expr, &compound_stmt); | |
4685 | destroy_temps = stmts_are_full_exprs_p (); | |
4686 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; | |
4687 | rval = get_temp_regvar (ptype, base); | |
4688 | base = get_temp_regvar (ptype, rval); | |
4689 | tree iterator_targ = get_internal_target_expr (maxindex); | |
4690 | add_stmt (iterator_targ); | |
4691 | iterator = TARGET_EXPR_SLOT (iterator_targ); | |
4692 | ||
4693 | /* If initializing one array from another, initialize element by | |
4694 | element. We rely upon the below calls to do the argument | |
4695 | checking. Evaluate the initializer before entering the try block. */ | |
4696 | if (from_array) | |
4697 | { | |
4698 | if (lvalue_kind (init) & clk_rvalueref) | |
4699 | xvalue = true; | |
4700 | if (TREE_CODE (init) == TARGET_EXPR) | |
4701 | { | |
4702 | /* Avoid error in decay_conversion. */ | |
4703 | base2 = decay_conversion (TARGET_EXPR_SLOT (init), complain); | |
4704 | base2 = cp_build_compound_expr (init, base2, tf_none); | |
4705 | } | |
4706 | else | |
4707 | base2 = decay_conversion (init, complain); | |
4708 | if (base2 == error_mark_node) | |
4709 | return error_mark_node; | |
4710 | itype = TREE_TYPE (base2); | |
4711 | base2 = get_temp_regvar (itype, base2); | |
4712 | itype = TREE_TYPE (itype); | |
4713 | } | |
4714 | ||
4715 | /* Protect the entire array initialization so that we can destroy | |
4716 | the partially constructed array if an exception is thrown. | |
4717 | But don't do this if we're assigning. */ | |
4718 | if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) | |
4719 | && from_array != 2) | |
4720 | { | |
4721 | tree e; | |
4722 | tree m = cp_build_binary_op (input_location, | |
4723 | MINUS_EXPR, maxindex, iterator, | |
4724 | complain); | |
4725 | ||
4726 | /* Flatten multi-dimensional array since build_vec_delete only | |
4727 | expects one-dimensional array. */ | |
4728 | if (TREE_CODE (type) == ARRAY_TYPE) | |
4729 | m = cp_build_binary_op (input_location, | |
4730 | MULT_EXPR, m, | |
4731 | /* Avoid mixing signed and unsigned. */ | |
4732 | convert (TREE_TYPE (m), | |
4733 | array_type_nelts_total (type)), | |
4734 | complain); | |
4735 | ||
4736 | e = build_vec_delete_1 (input_location, rval, m, | |
4737 | inner_elt_type, sfk_complete_destructor, | |
4738 | /*use_global_delete=*/0, complain, | |
4739 | /*in_cleanup*/true); | |
4740 | if (e == error_mark_node) | |
4741 | errors = true; | |
4742 | TARGET_EXPR_CLEANUP (iterator_targ) = e; | |
4743 | CLEANUP_EH_ONLY (iterator_targ) = true; | |
4744 | ||
4745 | /* Since we push this cleanup before doing any initialization, cleanups | |
4746 | for any temporaries in the initialization are naturally within our | |
4747 | cleanup region, so we don't want wrap_temporary_cleanups to do | |
4748 | anything for arrays. But if the array is a subobject, we need to | |
4749 | tell split_nonconstant_init or cp_genericize_target_expr how to turn | |
4750 | off this cleanup in favor of the cleanup for the complete object. | |
4751 | ||
4752 | ??? For an array temporary such as an initializer_list backing array, | |
4753 | it would avoid redundancy to leave this cleanup active, clear | |
4754 | CLEANUP_EH_ONLY, and not build another cleanup for the temporary | |
4755 | itself. But that breaks when gimplify_target_expr adds a clobber | |
4756 | cleanup that runs before the build_vec_init cleanup. */ | |
4757 | if (cleanup_flags) | |
4758 | vec_safe_push (*cleanup_flags, | |
4759 | build_tree_list (rval, build_zero_cst (ptype))); | |
4760 | } | |
4761 | ||
4762 | /* Should we try to create a constant initializer? */ | |
4763 | bool try_const = (TREE_CODE (atype) == ARRAY_TYPE | |
4764 | && TREE_CONSTANT (maxindex) | |
4765 | && (init ? TREE_CODE (init) == CONSTRUCTOR | |
4766 | : (type_has_constexpr_default_constructor | |
4767 | (inner_elt_type) | |
4768 | /* Value-initialization of scalars is constexpr. */ | |
4769 | || (explicit_value_init_p | |
4770 | && SCALAR_TYPE_P (inner_elt_type)))) | |
4771 | && (literal_type_p (inner_elt_type) | |
4772 | || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type))); | |
4773 | vec<constructor_elt, va_gc> *const_vec = NULL; | |
4774 | bool saw_non_const = false; | |
4775 | /* If we're initializing a static array, we want to do static | |
4776 | initialization of any elements with constant initializers even if | |
4777 | some are non-constant. */ | |
4778 | bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase)); | |
4779 | ||
4780 | bool empty_list = false; | |
4781 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) | |
4782 | && CONSTRUCTOR_NELTS (init) == 0) | |
4783 | /* Skip over the handling of non-empty init lists. */ | |
4784 | empty_list = true; | |
4785 | ||
4786 | /* Maybe pull out constant value when from_array? */ | |
4787 | ||
4788 | else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR) | |
4789 | { | |
4790 | /* Do non-default initialization of non-trivial arrays resulting from | |
4791 | brace-enclosed initializers. */ | |
4792 | unsigned HOST_WIDE_INT idx; | |
4793 | tree field, elt; | |
4794 | /* If the constructor already has the array type, it's been through | |
4795 | digest_init, so we shouldn't try to do anything more. */ | |
4796 | bool digested = (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE | |
4797 | && same_type_p (type, TREE_TYPE (TREE_TYPE (init)))); | |
4798 | from_array = 0; | |
4799 | ||
4800 | if (length_check) | |
4801 | finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init)); | |
4802 | ||
4803 | if (try_const) | |
4804 | vec_alloc (const_vec, CONSTRUCTOR_NELTS (init)); | |
4805 | ||
4806 | tree alloc_obj = NULL_TREE; | |
4807 | ||
4808 | FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt) | |
4809 | { | |
4810 | tree baseref = build1 (INDIRECT_REF, type, base); | |
4811 | tree one_init; | |
4812 | ||
4813 | if (field && TREE_CODE (field) == RANGE_EXPR) | |
4814 | num_initialized_elts += range_expr_nelts (field); | |
4815 | else | |
4816 | num_initialized_elts++; | |
4817 | ||
4818 | /* We need to see sub-array TARGET_EXPR before cp_fold_r so we can | |
4819 | handle cleanup flags properly. */ | |
4820 | gcc_checking_assert (!target_expr_needs_replace (elt)); | |
4821 | ||
4822 | if (digested) | |
4823 | one_init = cp_build_init_expr (baseref, elt); | |
4824 | else if (tree vi = get_vec_init_expr (elt)) | |
4825 | one_init = expand_vec_init_expr (baseref, vi, complain, | |
4826 | cleanup_flags); | |
4827 | else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE) | |
4828 | one_init = build_aggr_init (baseref, elt, 0, complain); | |
4829 | else | |
4830 | one_init = cp_build_modify_expr (input_location, baseref, | |
4831 | NOP_EXPR, elt, complain); | |
4832 | if (one_init == error_mark_node) | |
4833 | errors = true; | |
4834 | if (try_const) | |
4835 | { | |
4836 | if (!field) | |
4837 | field = size_int (idx); | |
4838 | tree e = maybe_constant_init (one_init); | |
4839 | if (reduced_constant_expression_p (e)) | |
4840 | { | |
4841 | CONSTRUCTOR_APPEND_ELT (const_vec, field, e); | |
4842 | if (do_static_init) | |
4843 | one_init = NULL_TREE; | |
4844 | else | |
4845 | one_init = cp_build_init_expr (baseref, e); | |
4846 | } | |
4847 | else | |
4848 | { | |
4849 | if (do_static_init) | |
4850 | { | |
4851 | tree value = build_zero_init (TREE_TYPE (e), NULL_TREE, | |
4852 | true); | |
4853 | if (value) | |
4854 | CONSTRUCTOR_APPEND_ELT (const_vec, field, value); | |
4855 | } | |
4856 | saw_non_const = true; | |
4857 | } | |
4858 | } | |
4859 | ||
4860 | if (one_init) | |
4861 | { | |
4862 | /* Only create one std::allocator temporary. */ | |
4863 | combine_allocator_temps (one_init, alloc_obj); | |
4864 | finish_expr_stmt (one_init); | |
4865 | } | |
4866 | ||
4867 | one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false, | |
4868 | complain); | |
4869 | if (one_init == error_mark_node) | |
4870 | errors = true; | |
4871 | else | |
4872 | finish_expr_stmt (one_init); | |
4873 | ||
4874 | one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, | |
4875 | complain); | |
4876 | if (one_init == error_mark_node) | |
4877 | errors = true; | |
4878 | else | |
4879 | finish_expr_stmt (one_init); | |
4880 | } | |
4881 | ||
4882 | /* Any elements without explicit initializers get T{}. */ | |
4883 | empty_list = true; | |
4884 | } | |
4885 | else if (init && TREE_CODE (init) == STRING_CST) | |
4886 | { | |
4887 | /* Check that the array is at least as long as the string. */ | |
4888 | if (length_check) | |
4889 | finish_length_check (atype, iterator, obase, | |
4890 | TREE_STRING_LENGTH (init)); | |
4891 | tree length = build_int_cst (ptrdiff_type_node, | |
4892 | TREE_STRING_LENGTH (init)); | |
4893 | ||
4894 | /* Copy the string to the first part of the array. */ | |
4895 | tree alias_set = build_int_cst (build_pointer_type (type), 0); | |
4896 | tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set); | |
4897 | tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init); | |
4898 | finish_expr_stmt (stmt); | |
4899 | ||
4900 | /* Adjust the counter and pointer. */ | |
4901 | stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain); | |
4902 | stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt); | |
4903 | finish_expr_stmt (stmt); | |
4904 | ||
4905 | stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain); | |
4906 | stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt); | |
4907 | finish_expr_stmt (stmt); | |
4908 | ||
4909 | /* And set the rest of the array to NUL. */ | |
4910 | from_array = 0; | |
4911 | explicit_value_init_p = true; | |
4912 | } | |
4913 | else if (from_array) | |
4914 | { | |
4915 | if (init) | |
4916 | /* OK, we set base2 above. */; | |
4917 | else if (CLASS_TYPE_P (type) | |
4918 | && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) | |
4919 | { | |
4920 | if (complain & tf_error) | |
4921 | error ("initializer ends prematurely"); | |
4922 | errors = true; | |
4923 | } | |
4924 | } | |
4925 | ||
4926 | /* Now, default-initialize any remaining elements. We don't need to | |
4927 | do that if a) the type does not need constructing, or b) we've | |
4928 | already initialized all the elements. | |
4929 | ||
4930 | We do need to keep going if we're copying an array. */ | |
4931 | ||
4932 | if (try_const && !init | |
4933 | && (cxx_dialect < cxx20 | |
4934 | || !default_init_uninitialized_part (inner_elt_type))) | |
4935 | /* With a constexpr default constructor, which we checked for when | |
4936 | setting try_const above, default-initialization is equivalent to | |
4937 | value-initialization, and build_value_init gives us something more | |
4938 | friendly to maybe_constant_init. Except in C++20 and up a constexpr | |
4939 | constructor need not initialize all the members. */ | |
4940 | explicit_value_init_p = true; | |
4941 | if (from_array | |
4942 | || ((type_build_ctor_call (type) || init || explicit_value_init_p) | |
4943 | && ! (tree_fits_shwi_p (maxindex) | |
4944 | && (num_initialized_elts | |
4945 | == tree_to_shwi (maxindex) + 1)))) | |
4946 | { | |
4947 | /* If the ITERATOR is lesser or equal to -1, then we don't have to loop; | |
4948 | we've already initialized all the elements. */ | |
4949 | tree for_stmt; | |
4950 | tree elt_init; | |
4951 | tree to; | |
4952 | ||
4953 | for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE); | |
4954 | finish_init_stmt (for_stmt); | |
4955 | finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator, | |
4956 | build_int_cst (TREE_TYPE (iterator), -1)), | |
4957 | for_stmt, false, 0, false); | |
4958 | /* We used to pass this decrement to finish_for_expr; now we add it to | |
4959 | elt_init below so it's part of the same full-expression as the | |
4960 | initialization, and thus happens before any potentially throwing | |
4961 | temporary cleanups. */ | |
4962 | tree decr = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, | |
4963 | complain); | |
4964 | ||
4965 | ||
4966 | to = build1 (INDIRECT_REF, type, base); | |
4967 | ||
4968 | /* If the initializer is {}, then all elements are initialized from T{}. | |
4969 | But for non-classes, that's the same as value-initialization. */ | |
4970 | if (empty_list) | |
4971 | { | |
4972 | if (cxx_dialect >= cxx11 | |
4973 | && (CLASS_TYPE_P (type) | |
4974 | || TREE_CODE (type) == ARRAY_TYPE)) | |
4975 | { | |
4976 | init = build_constructor (init_list_type_node, NULL); | |
4977 | } | |
4978 | else | |
4979 | { | |
4980 | init = NULL_TREE; | |
4981 | explicit_value_init_p = true; | |
4982 | } | |
4983 | } | |
4984 | ||
4985 | if (from_array) | |
4986 | { | |
4987 | tree from; | |
4988 | ||
4989 | if (base2) | |
4990 | { | |
4991 | from = build1 (INDIRECT_REF, itype, base2); | |
4992 | if (xvalue) | |
4993 | from = move (from); | |
4994 | if (direct_init) | |
4995 | { | |
4996 | /* Wrap the initializer in a CONSTRUCTOR so that | |
4997 | build_vec_init recognizes it as direct-initialization. */ | |
4998 | from = build_constructor_single (init_list_type_node, | |
4999 | NULL_TREE, from); | |
5000 | CONSTRUCTOR_IS_DIRECT_INIT (from) = true; | |
5001 | } | |
5002 | } | |
5003 | else | |
5004 | from = NULL_TREE; | |
5005 | ||
5006 | if (TREE_CODE (type) == ARRAY_TYPE) | |
5007 | elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false, | |
5008 | from_array, complain); | |
5009 | else if (from_array == 2) | |
5010 | elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, | |
5011 | from, complain); | |
5012 | else if (type_build_ctor_call (type)) | |
5013 | elt_init = build_aggr_init (to, from, 0, complain); | |
5014 | else if (from) | |
5015 | elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from, | |
5016 | complain); | |
5017 | else | |
5018 | gcc_unreachable (); | |
5019 | } | |
5020 | else if (TREE_CODE (type) == ARRAY_TYPE) | |
5021 | { | |
5022 | if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)) | |
5023 | { | |
5024 | if ((complain & tf_error)) | |
5025 | error_at (loc, "array must be initialized " | |
5026 | "with a brace-enclosed initializer"); | |
5027 | elt_init = error_mark_node; | |
5028 | } | |
5029 | else | |
5030 | elt_init = build_vec_init (build1 (INDIRECT_REF, type, base), | |
5031 | 0, init, | |
5032 | explicit_value_init_p, | |
5033 | 0, complain); | |
5034 | } | |
5035 | else if (explicit_value_init_p) | |
5036 | { | |
5037 | elt_init = build_value_init (type, complain); | |
5038 | if (elt_init != error_mark_node) | |
5039 | elt_init = cp_build_init_expr (to, elt_init); | |
5040 | } | |
5041 | else | |
5042 | { | |
5043 | gcc_assert (type_build_ctor_call (type) || init); | |
5044 | if (CLASS_TYPE_P (type)) | |
5045 | elt_init = build_aggr_init (to, init, 0, complain); | |
5046 | else | |
5047 | { | |
5048 | if (TREE_CODE (init) == TREE_LIST) | |
5049 | init = build_x_compound_expr_from_list (init, ELK_INIT, | |
5050 | complain); | |
5051 | elt_init = (init == error_mark_node | |
5052 | ? error_mark_node | |
5053 | : build2 (INIT_EXPR, type, to, init)); | |
5054 | } | |
5055 | } | |
5056 | ||
5057 | if (elt_init == error_mark_node) | |
5058 | errors = true; | |
5059 | ||
5060 | if (try_const) | |
5061 | { | |
5062 | /* FIXME refs to earlier elts */ | |
5063 | tree e = maybe_constant_init (elt_init); | |
5064 | if (reduced_constant_expression_p (e)) | |
5065 | { | |
5066 | if (initializer_zerop (e)) | |
5067 | /* Don't fill the CONSTRUCTOR with zeros. */ | |
5068 | e = NULL_TREE; | |
5069 | if (do_static_init) | |
5070 | elt_init = NULL_TREE; | |
5071 | } | |
5072 | else | |
5073 | { | |
5074 | saw_non_const = true; | |
5075 | if (do_static_init) | |
5076 | e = build_zero_init (TREE_TYPE (e), NULL_TREE, true); | |
5077 | else | |
5078 | e = NULL_TREE; | |
5079 | } | |
5080 | ||
5081 | if (e) | |
5082 | { | |
5083 | HOST_WIDE_INT last = tree_to_shwi (maxindex); | |
5084 | if (num_initialized_elts <= last) | |
5085 | { | |
5086 | tree field = size_int (num_initialized_elts); | |
5087 | if (num_initialized_elts != last) | |
5088 | field = build2 (RANGE_EXPR, sizetype, field, | |
5089 | size_int (last)); | |
5090 | CONSTRUCTOR_APPEND_ELT (const_vec, field, e); | |
5091 | } | |
5092 | } | |
5093 | } | |
5094 | ||
5095 | /* [class.temporary]: "There are three contexts in which temporaries are | |
5096 | destroyed at a different point than the end of the full- | |
5097 | expression. The first context is when a default constructor is called | |
5098 | to initialize an element of an array with no corresponding | |
5099 | initializer. The second context is when a copy constructor is called | |
5100 | to copy an element of an array while the entire array is copied. In | |
5101 | either case, if the constructor has one or more default arguments, the | |
5102 | destruction of every temporary created in a default argument is | |
5103 | sequenced before the construction of the next array element, if any." | |
5104 | ||
5105 | So, for this loop, statements are full-expressions. */ | |
5106 | current_stmt_tree ()->stmts_are_full_exprs_p = 1; | |
5107 | if (elt_init && !errors) | |
5108 | elt_init = build2 (COMPOUND_EXPR, void_type_node, elt_init, decr); | |
5109 | else | |
5110 | elt_init = decr; | |
5111 | finish_expr_stmt (elt_init); | |
5112 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; | |
5113 | ||
5114 | finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false, | |
5115 | complain)); | |
5116 | if (base2) | |
5117 | finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false, | |
5118 | complain)); | |
5119 | ||
5120 | finish_for_stmt (for_stmt); | |
5121 | } | |
5122 | ||
5123 | /* The value of the array initialization is the array itself, RVAL | |
5124 | is a pointer to the first element. */ | |
5125 | finish_stmt_expr_expr (rval, stmt_expr); | |
5126 | ||
5127 | stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); | |
5128 | ||
5129 | current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; | |
5130 | ||
5131 | if (errors) | |
5132 | return error_mark_node; | |
5133 | ||
5134 | if (try_const) | |
5135 | { | |
5136 | if (!saw_non_const) | |
5137 | { | |
5138 | /* If we're not generating the loop, we don't need to reset the | |
5139 | iterator. */ | |
5140 | if (cleanup_flags | |
5141 | && !vec_safe_is_empty (*cleanup_flags)) | |
5142 | { | |
5143 | auto l = (*cleanup_flags)->last (); | |
5144 | gcc_assert (TREE_PURPOSE (l) == iterator); | |
5145 | (*cleanup_flags)->pop (); | |
5146 | } | |
5147 | tree const_init = build_constructor (atype, const_vec); | |
5148 | return build2 (INIT_EXPR, atype, obase, const_init); | |
5149 | } | |
5150 | else if (do_static_init && !vec_safe_is_empty (const_vec)) | |
5151 | DECL_INITIAL (obase) = build_constructor (atype, const_vec); | |
5152 | else | |
5153 | vec_free (const_vec); | |
5154 | } | |
5155 | ||
5156 | /* Now make the result have the correct type. */ | |
5157 | if (TREE_CODE (atype) == ARRAY_TYPE) | |
5158 | { | |
5159 | atype = build_reference_type (atype); | |
5160 | stmt_expr = build1 (NOP_EXPR, atype, stmt_expr); | |
5161 | stmt_expr = convert_from_reference (stmt_expr); | |
5162 | } | |
5163 | ||
5164 | return stmt_expr; | |
5165 | } | |
5166 | ||
5167 | /* Call the DTOR_KIND destructor for EXP. FLAGS are as for | |
5168 | build_delete. */ | |
5169 | ||
5170 | static tree | |
5171 | build_dtor_call (tree exp, special_function_kind dtor_kind, int flags, | |
5172 | tsubst_flags_t complain) | |
5173 | { | |
5174 | tree name; | |
5175 | switch (dtor_kind) | |
5176 | { | |
5177 | case sfk_complete_destructor: | |
5178 | name = complete_dtor_identifier; | |
5179 | break; | |
5180 | ||
5181 | case sfk_base_destructor: | |
5182 | name = base_dtor_identifier; | |
5183 | break; | |
5184 | ||
5185 | case sfk_deleting_destructor: | |
5186 | name = deleting_dtor_identifier; | |
5187 | break; | |
5188 | ||
5189 | default: | |
5190 | gcc_unreachable (); | |
5191 | } | |
5192 | ||
5193 | return build_special_member_call (exp, name, | |
5194 | /*args=*/NULL, | |
5195 | /*binfo=*/TREE_TYPE (exp), | |
5196 | flags, | |
5197 | complain); | |
5198 | } | |
5199 | ||
5200 | /* Generate a call to a destructor. TYPE is the type to cast ADDR to. | |
5201 | ADDR is an expression which yields the store to be destroyed. | |
5202 | AUTO_DELETE is the name of the destructor to call, i.e., either | |
5203 | sfk_complete_destructor, sfk_base_destructor, or | |
5204 | sfk_deleting_destructor. | |
5205 | ||
5206 | FLAGS is the logical disjunction of zero or more LOOKUP_ | |
5207 | flags. See cp-tree.h for more info. */ | |
5208 | ||
5209 | tree | |
5210 | build_delete (location_t loc, tree otype, tree addr, | |
5211 | special_function_kind auto_delete, | |
5212 | int flags, int use_global_delete, tsubst_flags_t complain) | |
5213 | { | |
5214 | tree expr; | |
5215 | ||
5216 | if (addr == error_mark_node) | |
5217 | return error_mark_node; | |
5218 | ||
5219 | tree type = TYPE_MAIN_VARIANT (otype); | |
5220 | ||
5221 | /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type | |
5222 | set to `error_mark_node' before it gets properly cleaned up. */ | |
5223 | if (type == error_mark_node) | |
5224 | return error_mark_node; | |
5225 | ||
5226 | if (TYPE_PTR_P (type)) | |
5227 | type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); | |
5228 | ||
5229 | if (TREE_CODE (type) == ARRAY_TYPE) | |
5230 | { | |
5231 | if (TYPE_DOMAIN (type) == NULL_TREE) | |
5232 | { | |
5233 | if (complain & tf_error) | |
5234 | error_at (loc, "unknown array size in delete"); | |
5235 | return error_mark_node; | |
5236 | } | |
5237 | return build_vec_delete (loc, addr, array_type_nelts_minus_one (type), | |
5238 | auto_delete, use_global_delete, complain); | |
5239 | } | |
5240 | ||
5241 | bool deleting = (auto_delete == sfk_deleting_destructor); | |
5242 | gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR)); | |
5243 | ||
5244 | if (TYPE_PTR_P (otype)) | |
5245 | { | |
5246 | addr = mark_rvalue_use (addr); | |
5247 | ||
5248 | /* We don't want to warn about delete of void*, only other | |
5249 | incomplete types. Deleting other incomplete types | |
5250 | invokes undefined behavior, but it is not ill-formed, so | |
5251 | compile to something that would even do The Right Thing | |
5252 | (TM) should the type have a trivial dtor and no delete | |
5253 | operator. */ | |
5254 | if (!VOID_TYPE_P (type)) | |
5255 | { | |
5256 | complete_type (type); | |
5257 | if (deleting | |
5258 | && !verify_type_context (loc, TCTX_DEALLOCATION, type, | |
5259 | !(complain & tf_error))) | |
5260 | return error_mark_node; | |
5261 | ||
5262 | if (!COMPLETE_TYPE_P (type)) | |
5263 | { | |
5264 | if (cxx_dialect > cxx23) | |
5265 | { | |
5266 | if (complain & tf_error) | |
5267 | { | |
5268 | auto_diagnostic_group d; | |
5269 | int saved_errorcount = errorcount; | |
5270 | if (permerror_opt (loc, OPT_Wdelete_incomplete, | |
5271 | "operator %<delete%> used on " | |
5272 | "incomplete type")) | |
5273 | { | |
5274 | cxx_incomplete_type_inform (type); | |
5275 | if (errorcount != saved_errorcount) | |
5276 | return error_mark_node; | |
5277 | } | |
5278 | } | |
5279 | else | |
5280 | return error_mark_node; | |
5281 | } | |
5282 | else if (complain & tf_warning) | |
5283 | { | |
5284 | auto_diagnostic_group d; | |
5285 | if (warning_at (loc, OPT_Wdelete_incomplete, | |
5286 | "possible problem detected in invocation of " | |
5287 | "%<operator delete%>")) | |
5288 | { | |
5289 | cxx_incomplete_type_diagnostic (addr, type, DK_WARNING); | |
5290 | inform (loc, | |
5291 | "neither the destructor nor the class-specific " | |
5292 | "%<operator delete%> will be called, even if " | |
5293 | "they are declared when the class is defined"); | |
5294 | } | |
5295 | } | |
5296 | } | |
5297 | else if (deleting && warn_delnonvdtor | |
5298 | && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type) | |
5299 | && TYPE_POLYMORPHIC_P (type)) | |
5300 | { | |
5301 | tree dtor = CLASSTYPE_DESTRUCTOR (type); | |
5302 | if (!dtor || !DECL_VINDEX (dtor)) | |
5303 | { | |
5304 | if (CLASSTYPE_PURE_VIRTUALS (type)) | |
5305 | warning_at (loc, OPT_Wdelete_non_virtual_dtor, | |
5306 | "deleting object of abstract class type %qT" | |
5307 | " which has non-virtual destructor" | |
5308 | " will cause undefined behavior", type); | |
5309 | else | |
5310 | warning_at (loc, OPT_Wdelete_non_virtual_dtor, | |
5311 | "deleting object of polymorphic class type %qT" | |
5312 | " which has non-virtual destructor" | |
5313 | " might cause undefined behavior", type); | |
5314 | } | |
5315 | } | |
5316 | } | |
5317 | ||
5318 | /* Throw away const and volatile on target type of addr. */ | |
5319 | addr = convert_force (build_pointer_type (type), addr, 0, complain); | |
5320 | } | |
5321 | else | |
5322 | { | |
5323 | /* Don't check PROTECT here; leave that decision to the | |
5324 | destructor. If the destructor is accessible, call it, | |
5325 | else report error. */ | |
5326 | addr = cp_build_addr_expr (addr, complain); | |
5327 | if (addr == error_mark_node) | |
5328 | return error_mark_node; | |
5329 | ||
5330 | addr = convert_force (build_pointer_type (type), addr, 0, complain); | |
5331 | } | |
5332 | ||
5333 | tree addr_expr = NULL_TREE; | |
5334 | if (deleting) | |
5335 | /* We will use ADDR multiple times so we must save it. */ | |
5336 | { | |
5337 | addr_expr = get_internal_target_expr (addr); | |
5338 | addr = TARGET_EXPR_SLOT (addr_expr); | |
5339 | } | |
5340 | ||
5341 | bool virtual_p = false; | |
5342 | if (type_build_dtor_call (type)) | |
5343 | { | |
5344 | if (CLASSTYPE_LAZY_DESTRUCTOR (type)) | |
5345 | lazily_declare_fn (sfk_destructor, type); | |
5346 | virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type)); | |
5347 | } | |
5348 | ||
5349 | tree head = NULL_TREE; | |
5350 | tree do_delete = NULL_TREE; | |
5351 | bool destroying_delete = false; | |
5352 | ||
5353 | if (!deleting) | |
5354 | { | |
5355 | /* Leave do_delete null. */ | |
5356 | } | |
5357 | /* For `::delete x', we must not use the deleting destructor | |
5358 | since then we would not be sure to get the global `operator | |
5359 | delete'. */ | |
5360 | else if (use_global_delete) | |
5361 | { | |
5362 | head = get_internal_target_expr (build_headof (addr)); | |
5363 | /* Delete the object. */ | |
5364 | do_delete = build_op_delete_call (DELETE_EXPR, | |
5365 | head, | |
5366 | cxx_sizeof_nowarn (type), | |
5367 | /*global_p=*/true, | |
5368 | /*placement=*/NULL_TREE, | |
5369 | /*alloc_fn=*/NULL_TREE, | |
5370 | complain); | |
5371 | /* Otherwise, treat this like a complete object destructor | |
5372 | call. */ | |
5373 | auto_delete = sfk_complete_destructor; | |
5374 | } | |
5375 | /* If the destructor is non-virtual, there is no deleting | |
5376 | variant. Instead, we must explicitly call the appropriate | |
5377 | `operator delete' here. */ | |
5378 | else if (!virtual_p) | |
5379 | { | |
5380 | /* Build the call. */ | |
5381 | do_delete = build_op_delete_call (DELETE_EXPR, | |
5382 | addr, | |
5383 | cxx_sizeof_nowarn (type), | |
5384 | /*global_p=*/false, | |
5385 | /*placement=*/NULL_TREE, | |
5386 | /*alloc_fn=*/NULL_TREE, | |
5387 | complain); | |
5388 | /* Call the complete object destructor. */ | |
5389 | auto_delete = sfk_complete_destructor; | |
5390 | if (do_delete != error_mark_node) | |
5391 | { | |
5392 | tree fn = get_callee_fndecl (do_delete); | |
5393 | destroying_delete = destroying_delete_p (fn); | |
5394 | } | |
5395 | } | |
5396 | else if (TYPE_GETS_REG_DELETE (type)) | |
5397 | { | |
5398 | /* Make sure we have access to the member op delete, even though | |
5399 | we'll actually be calling it from the destructor. */ | |
5400 | build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), | |
5401 | /*global_p=*/false, | |
5402 | /*placement=*/NULL_TREE, | |
5403 | /*alloc_fn=*/NULL_TREE, | |
5404 | complain); | |
5405 | } | |
5406 | ||
5407 | if (destroying_delete) | |
5408 | /* The operator delete will call the destructor. */ | |
5409 | expr = addr; | |
5410 | else if (type_build_dtor_call (type)) | |
5411 | expr = build_dtor_call (cp_build_fold_indirect_ref (addr), | |
5412 | auto_delete, flags, complain); | |
5413 | else | |
5414 | expr = build_trivial_dtor_call (addr); | |
5415 | if (expr == error_mark_node) | |
5416 | return error_mark_node; | |
5417 | ||
5418 | if (!deleting) | |
5419 | { | |
5420 | protected_set_expr_location (expr, loc); | |
5421 | return expr; | |
5422 | } | |
5423 | ||
5424 | if (do_delete == error_mark_node) | |
5425 | return error_mark_node; | |
5426 | ||
5427 | if (do_delete && !TREE_SIDE_EFFECTS (expr)) | |
5428 | expr = do_delete; | |
5429 | else if (do_delete) | |
5430 | /* The delete operator must be called, regardless of whether | |
5431 | the destructor throws. | |
5432 | ||
5433 | [expr.delete]/7 The deallocation function is called | |
5434 | regardless of whether the destructor for the object or some | |
5435 | element of the array throws an exception. */ | |
5436 | expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete); | |
5437 | ||
5438 | /* We need to calculate this before the dtor changes the vptr. */ | |
5439 | if (head) | |
5440 | expr = build2 (COMPOUND_EXPR, void_type_node, head, expr); | |
5441 | ||
5442 | /* Handle deleting a null pointer. */ | |
5443 | warning_sentinel s (warn_address); | |
5444 | tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr, | |
5445 | nullptr_node, complain); | |
5446 | ifexp = cp_fully_fold (ifexp); | |
5447 | ||
5448 | if (ifexp == error_mark_node) | |
5449 | return error_mark_node; | |
5450 | /* This is a compiler generated comparison, don't emit | |
5451 | e.g. -Wnonnull-compare warning for it. */ | |
5452 | else if (TREE_CODE (ifexp) == NE_EXPR) | |
5453 | suppress_warning (ifexp, OPT_Wnonnull_compare); | |
5454 | ||
5455 | if (!integer_nonzerop (ifexp)) | |
5456 | expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node); | |
5457 | ||
5458 | if (addr_expr) | |
5459 | expr = cp_build_compound_expr (addr_expr, expr, tf_none); | |
5460 | ||
5461 | protected_set_expr_location (expr, loc); | |
5462 | return expr; | |
5463 | } | |
5464 | ||
5465 | /* At the beginning of a destructor, push cleanups that will call the | |
5466 | destructors for our base classes and members. | |
5467 | ||
5468 | Called from begin_destructor_body. */ | |
5469 | ||
5470 | void | |
5471 | push_base_cleanups (void) | |
5472 | { | |
5473 | tree binfo, base_binfo; | |
5474 | int i; | |
5475 | tree member; | |
5476 | tree expr; | |
5477 | vec<tree, va_gc> *vbases; | |
5478 | ||
5479 | /* Run destructors for all virtual baseclasses. */ | |
5480 | if (!ABSTRACT_CLASS_TYPE_P (current_class_type) | |
5481 | && CLASSTYPE_VBASECLASSES (current_class_type)) | |
5482 | { | |
5483 | tree cond = (condition_conversion | |
5484 | (build2 (BIT_AND_EXPR, integer_type_node, | |
5485 | current_in_charge_parm, | |
5486 | integer_two_node))); | |
5487 | ||
5488 | /* The CLASSTYPE_VBASECLASSES vector is in initialization | |
5489 | order, which is also the right order for pushing cleanups. */ | |
5490 | for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0; | |
5491 | vec_safe_iterate (vbases, i, &base_binfo); i++) | |
5492 | { | |
5493 | if (type_build_dtor_call (BINFO_TYPE (base_binfo))) | |
5494 | { | |
5495 | expr = build_special_member_call (current_class_ref, | |
5496 | base_dtor_identifier, | |
5497 | NULL, | |
5498 | base_binfo, | |
5499 | (LOOKUP_NORMAL | |
5500 | | LOOKUP_NONVIRTUAL), | |
5501 | tf_warning_or_error); | |
5502 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) | |
5503 | { | |
5504 | expr = build3 (COND_EXPR, void_type_node, cond, | |
5505 | expr, void_node); | |
5506 | finish_decl_cleanup (NULL_TREE, expr); | |
5507 | } | |
5508 | } | |
5509 | } | |
5510 | } | |
5511 | ||
5512 | /* Take care of the remaining baseclasses. */ | |
5513 | for (binfo = TYPE_BINFO (current_class_type), i = 0; | |
5514 | BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) | |
5515 | { | |
5516 | if (BINFO_VIRTUAL_P (base_binfo) | |
5517 | || !type_build_dtor_call (BINFO_TYPE (base_binfo))) | |
5518 | continue; | |
5519 | ||
5520 | expr = build_special_member_call (current_class_ref, | |
5521 | base_dtor_identifier, | |
5522 | NULL, base_binfo, | |
5523 | LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, | |
5524 | tf_warning_or_error); | |
5525 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) | |
5526 | finish_decl_cleanup (NULL_TREE, expr); | |
5527 | } | |
5528 | ||
5529 | /* Don't automatically destroy union members. */ | |
5530 | if (TREE_CODE (current_class_type) == UNION_TYPE) | |
5531 | return; | |
5532 | ||
5533 | for (member = TYPE_FIELDS (current_class_type); member; | |
5534 | member = DECL_CHAIN (member)) | |
5535 | { | |
5536 | tree this_type = TREE_TYPE (member); | |
5537 | if (this_type == error_mark_node | |
5538 | || TREE_CODE (member) != FIELD_DECL | |
5539 | || DECL_ARTIFICIAL (member)) | |
5540 | continue; | |
5541 | if (ANON_AGGR_TYPE_P (this_type)) | |
5542 | continue; | |
5543 | if (type_build_dtor_call (this_type)) | |
5544 | { | |
5545 | tree this_member = (build_class_member_access_expr | |
5546 | (current_class_ref, member, | |
5547 | /*access_path=*/NULL_TREE, | |
5548 | /*preserve_reference=*/false, | |
5549 | tf_warning_or_error)); | |
5550 | expr = build_delete (input_location, this_type, this_member, | |
5551 | sfk_complete_destructor, | |
5552 | LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL, | |
5553 | 0, tf_warning_or_error); | |
5554 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type)) | |
5555 | finish_decl_cleanup (NULL_TREE, expr); | |
5556 | } | |
5557 | } | |
5558 | } | |
5559 | ||
5560 | /* Build a C++ vector delete expression. | |
5561 | MAXINDEX is the number of elements to be deleted. | |
5562 | ELT_SIZE is the nominal size of each element in the vector. | |
5563 | BASE is the expression that should yield the store to be deleted. | |
5564 | This function expands (or synthesizes) these calls itself. | |
5565 | AUTO_DELETE_VEC says whether the container (vector) should be deallocated. | |
5566 | ||
5567 | This also calls delete for virtual baseclasses of elements of the vector. | |
5568 | ||
5569 | Update: MAXINDEX is no longer needed. The size can be extracted from the | |
5570 | start of the vector for pointers, and from the type for arrays. We still | |
5571 | use MAXINDEX for arrays because it happens to already have one of the | |
5572 | values we'd have to extract. (We could use MAXINDEX with pointers to | |
5573 | confirm the size, and trap if the numbers differ; not clear that it'd | |
5574 | be worth bothering.) */ | |
5575 | ||
5576 | tree | |
5577 | build_vec_delete (location_t loc, tree base, tree maxindex, | |
5578 | special_function_kind auto_delete_vec, | |
5579 | int use_global_delete, tsubst_flags_t complain) | |
5580 | { | |
5581 | tree type; | |
5582 | tree rval; | |
5583 | tree base_init = NULL_TREE; | |
5584 | ||
5585 | type = TREE_TYPE (base); | |
5586 | ||
5587 | if (TYPE_PTR_P (type)) | |
5588 | { | |
5589 | /* Step back one from start of vector, and read dimension. */ | |
5590 | tree cookie_addr; | |
5591 | tree size_ptr_type = build_pointer_type (sizetype); | |
5592 | ||
5593 | base = mark_rvalue_use (base); | |
5594 | if (TREE_SIDE_EFFECTS (base)) | |
5595 | { | |
5596 | base_init = get_internal_target_expr (base); | |
5597 | base = TARGET_EXPR_SLOT (base_init); | |
5598 | } | |
5599 | type = strip_array_types (TREE_TYPE (type)); | |
5600 | cookie_addr = fold_build1_loc (loc, NEGATE_EXPR, | |
5601 | sizetype, TYPE_SIZE_UNIT (sizetype)); | |
5602 | cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base), | |
5603 | cookie_addr); | |
5604 | maxindex = cp_build_fold_indirect_ref (cookie_addr); | |
5605 | } | |
5606 | else if (TREE_CODE (type) == ARRAY_TYPE) | |
5607 | { | |
5608 | /* Get the total number of things in the array, maxindex is a | |
5609 | bad name. */ | |
5610 | maxindex = array_type_nelts_total (type); | |
5611 | type = strip_array_types (type); | |
5612 | base = decay_conversion (base, complain); | |
5613 | if (base == error_mark_node) | |
5614 | return error_mark_node; | |
5615 | if (TREE_SIDE_EFFECTS (base)) | |
5616 | { | |
5617 | base_init = get_internal_target_expr (base); | |
5618 | base = TARGET_EXPR_SLOT (base_init); | |
5619 | } | |
5620 | } | |
5621 | else | |
5622 | { | |
5623 | if (base != error_mark_node && !(complain & tf_error)) | |
5624 | error_at (loc, | |
5625 | "type to vector delete is neither pointer or array type"); | |
5626 | return error_mark_node; | |
5627 | } | |
5628 | ||
5629 | rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec, | |
5630 | use_global_delete, complain); | |
5631 | if (base_init && rval != error_mark_node) | |
5632 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval); | |
5633 | ||
5634 | protected_set_expr_location (rval, loc); | |
5635 | return rval; | |
5636 | } | |
5637 | ||
5638 | #include "gt-cp-init.h" |