]> git.ipfire.org Git - thirdparty/gcc.git/blame_incremental - gcc/explow.c
trans-array.c (gfc_conv_descriptor_data_get): Rename from gfc_conv_descriptor_data.
[thirdparty/gcc.git] / gcc / explow.c
... / ...
CommitLineData
1/* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "toplev.h"
28#include "rtl.h"
29#include "tree.h"
30#include "tm_p.h"
31#include "flags.h"
32#include "function.h"
33#include "expr.h"
34#include "optabs.h"
35#include "hard-reg-set.h"
36#include "insn-config.h"
37#include "ggc.h"
38#include "recog.h"
39#include "langhooks.h"
40
41static rtx break_out_memory_refs (rtx);
42static void emit_stack_probe (rtx);
43
44
45/* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47HOST_WIDE_INT
48trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49{
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode));
54
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
56 if (mode == BImode)
57 return c & 1 ? STORE_FLAG_VALUE : 0;
58
59 /* Sign-extend for the requested mode. */
60
61 if (width < HOST_BITS_PER_WIDE_INT)
62 {
63 HOST_WIDE_INT sign = 1;
64 sign <<= width - 1;
65 c &= (sign << 1) - 1;
66 c ^= sign;
67 c -= sign;
68 }
69
70 return c;
71}
72
73/* Return an rtx for the sum of X and the integer C. */
74
75rtx
76plus_constant (rtx x, HOST_WIDE_INT c)
77{
78 RTX_CODE code;
79 rtx y;
80 enum machine_mode mode;
81 rtx tem;
82 int all_constant = 0;
83
84 if (c == 0)
85 return x;
86
87 restart:
88
89 code = GET_CODE (x);
90 mode = GET_MODE (x);
91 y = x;
92
93 switch (code)
94 {
95 case CONST_INT:
96 return GEN_INT (INTVAL (x) + c);
97
98 case CONST_DOUBLE:
99 {
100 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
101 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
102 unsigned HOST_WIDE_INT l2 = c;
103 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
104 unsigned HOST_WIDE_INT lv;
105 HOST_WIDE_INT hv;
106
107 add_double (l1, h1, l2, h2, &lv, &hv);
108
109 return immed_double_const (lv, hv, VOIDmode);
110 }
111
112 case MEM:
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
118 {
119 tem
120 = force_const_mem (GET_MODE (x),
121 plus_constant (get_pool_constant (XEXP (x, 0)),
122 c));
123 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 return tem;
125 }
126 break;
127
128 case CONST:
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
134
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
139
140 case PLUS:
141 /* The interesting case is adding the integer to a sum.
142 Look for constant term in the sum and combine
143 with C. For an integer constant term, we make a combined
144 integer. For a constant term that is not an explicit integer,
145 we cannot really combine, but group them together anyway.
146
147 Restart or use a recursive call in case the remaining operand is
148 something that we handle specially, such as a SYMBOL_REF.
149
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
152
153 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
154 {
155 c += INTVAL (XEXP (x, 1));
156
157 if (GET_MODE (x) != VOIDmode)
158 c = trunc_int_for_mode (c, GET_MODE (x));
159
160 x = XEXP (x, 0);
161 goto restart;
162 }
163 else if (CONSTANT_P (XEXP (x, 1)))
164 {
165 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
166 c = 0;
167 }
168 else if (find_constant_term_loc (&y))
169 {
170 /* We need to be careful since X may be shared and we can't
171 modify it in place. */
172 rtx copy = copy_rtx (x);
173 rtx *const_loc = find_constant_term_loc (&copy);
174
175 *const_loc = plus_constant (*const_loc, c);
176 x = copy;
177 c = 0;
178 }
179 break;
180
181 default:
182 break;
183 }
184
185 if (c != 0)
186 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
187
188 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
189 return x;
190 else if (all_constant)
191 return gen_rtx_CONST (mode, x);
192 else
193 return x;
194}
195\f
196/* If X is a sum, return a new sum like X but lacking any constant terms.
197 Add all the removed constant terms into *CONSTPTR.
198 X itself is not altered. The result != X if and only if
199 it is not isomorphic to X. */
200
201rtx
202eliminate_constant_term (rtx x, rtx *constptr)
203{
204 rtx x0, x1;
205 rtx tem;
206
207 if (GET_CODE (x) != PLUS)
208 return x;
209
210 /* First handle constants appearing at this level explicitly. */
211 if (GET_CODE (XEXP (x, 1)) == CONST_INT
212 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
213 XEXP (x, 1)))
214 && GET_CODE (tem) == CONST_INT)
215 {
216 *constptr = tem;
217 return eliminate_constant_term (XEXP (x, 0), constptr);
218 }
219
220 tem = const0_rtx;
221 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
222 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
223 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
224 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
225 *constptr, tem))
226 && GET_CODE (tem) == CONST_INT)
227 {
228 *constptr = tem;
229 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
230 }
231
232 return x;
233}
234
235/* Return an rtx for the size in bytes of the value of EXP. */
236
237rtx
238expr_size (tree exp)
239{
240 tree size;
241
242 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
243 size = TREE_OPERAND (exp, 1);
244 else
245 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
246
247 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
248}
249
250/* Return a wide integer for the size in bytes of the value of EXP, or -1
251 if the size can vary or is larger than an integer. */
252
253HOST_WIDE_INT
254int_expr_size (tree exp)
255{
256 tree size;
257
258 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
259 size = TREE_OPERAND (exp, 1);
260 else
261 size = lang_hooks.expr_size (exp);
262
263 if (size == 0 || !host_integerp (size, 0))
264 return -1;
265
266 return tree_low_cst (size, 0);
267}
268\f
269/* Return a copy of X in which all memory references
270 and all constants that involve symbol refs
271 have been replaced with new temporary registers.
272 Also emit code to load the memory locations and constants
273 into those registers.
274
275 If X contains no such constants or memory references,
276 X itself (not a copy) is returned.
277
278 If a constant is found in the address that is not a legitimate constant
279 in an insn, it is left alone in the hope that it might be valid in the
280 address.
281
282 X may contain no arithmetic except addition, subtraction and multiplication.
283 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
284
285static rtx
286break_out_memory_refs (rtx x)
287{
288 if (MEM_P (x)
289 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
290 && GET_MODE (x) != VOIDmode))
291 x = force_reg (GET_MODE (x), x);
292 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
293 || GET_CODE (x) == MULT)
294 {
295 rtx op0 = break_out_memory_refs (XEXP (x, 0));
296 rtx op1 = break_out_memory_refs (XEXP (x, 1));
297
298 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
299 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
300 }
301
302 return x;
303}
304
305/* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
309 used. */
310
311rtx
312convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
313 rtx x)
314{
315#ifndef POINTERS_EXTEND_UNSIGNED
316 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
317 return x;
318#else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode;
320 rtx temp;
321 enum rtx_code code;
322
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x) == to_mode)
325 return x;
326
327 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
328
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x))
332 {
333 case CONST_INT:
334 case CONST_DOUBLE:
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
336 code = TRUNCATE;
337 else if (POINTERS_EXTEND_UNSIGNED < 0)
338 break;
339 else if (POINTERS_EXTEND_UNSIGNED > 0)
340 code = ZERO_EXTEND;
341 else
342 code = SIGN_EXTEND;
343 temp = simplify_unary_operation (code, to_mode, x, from_mode);
344 if (temp)
345 return temp;
346 break;
347
348 case SUBREG:
349 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
350 && GET_MODE (SUBREG_REG (x)) == to_mode)
351 return SUBREG_REG (x);
352 break;
353
354 case LABEL_REF:
355 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
356 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
357 return temp;
358 break;
359
360 case SYMBOL_REF:
361 temp = shallow_copy_rtx (x);
362 PUT_MODE (temp, to_mode);
363 return temp;
364 break;
365
366 case CONST:
367 return gen_rtx_CONST (to_mode,
368 convert_memory_address (to_mode, XEXP (x, 0)));
369 break;
370
371 case PLUS:
372 case MULT:
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
378 || (GET_CODE (x) == PLUS
379 && GET_CODE (XEXP (x, 1)) == CONST_INT
380 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 convert_memory_address (to_mode, XEXP (x, 0)),
383 XEXP (x, 1));
384 break;
385
386 default:
387 break;
388 }
389
390 return convert_modes (to_mode, from_mode,
391 x, POINTERS_EXTEND_UNSIGNED);
392#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
393}
394\f
395/* Return something equivalent to X but valid as a memory address
396 for something of mode MODE. When X is not itself valid, this
397 works by copying X or subexpressions of it into registers. */
398
399rtx
400memory_address (enum machine_mode mode, rtx x)
401{
402 rtx oldx = x;
403
404 x = convert_memory_address (Pmode, x);
405
406 /* By passing constant addresses through registers
407 we get a chance to cse them. */
408 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
409 x = force_reg (Pmode, x);
410
411 /* We get better cse by rejecting indirect addressing at this stage.
412 Let the combiner create indirect addresses where appropriate.
413 For now, generate the code so that the subexpressions useful to share
414 are visible. But not if cse won't be done! */
415 else
416 {
417 if (! cse_not_expected && !REG_P (x))
418 x = break_out_memory_refs (x);
419
420 /* At this point, any valid address is accepted. */
421 if (memory_address_p (mode, x))
422 goto win;
423
424 /* If it was valid before but breaking out memory refs invalidated it,
425 use it the old way. */
426 if (memory_address_p (mode, oldx))
427 goto win2;
428
429 /* Perform machine-dependent transformations on X
430 in certain cases. This is not necessary since the code
431 below can handle all possible cases, but machine-dependent
432 transformations can make better code. */
433 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
434
435 /* PLUS and MULT can appear in special ways
436 as the result of attempts to make an address usable for indexing.
437 Usually they are dealt with by calling force_operand, below.
438 But a sum containing constant terms is special
439 if removing them makes the sum a valid address:
440 then we generate that address in a register
441 and index off of it. We do this because it often makes
442 shorter code, and because the addresses thus generated
443 in registers often become common subexpressions. */
444 if (GET_CODE (x) == PLUS)
445 {
446 rtx constant_term = const0_rtx;
447 rtx y = eliminate_constant_term (x, &constant_term);
448 if (constant_term == const0_rtx
449 || ! memory_address_p (mode, y))
450 x = force_operand (x, NULL_RTX);
451 else
452 {
453 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
454 if (! memory_address_p (mode, y))
455 x = force_operand (x, NULL_RTX);
456 else
457 x = y;
458 }
459 }
460
461 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
462 x = force_operand (x, NULL_RTX);
463
464 /* If we have a register that's an invalid address,
465 it must be a hard reg of the wrong class. Copy it to a pseudo. */
466 else if (REG_P (x))
467 x = copy_to_reg (x);
468
469 /* Last resort: copy the value to a register, since
470 the register is a valid address. */
471 else
472 x = force_reg (Pmode, x);
473
474 goto done;
475
476 win2:
477 x = oldx;
478 win:
479 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
480 /* Don't copy an addr via a reg if it is one of our stack slots. */
481 && ! (GET_CODE (x) == PLUS
482 && (XEXP (x, 0) == virtual_stack_vars_rtx
483 || XEXP (x, 0) == virtual_incoming_args_rtx)))
484 {
485 if (general_operand (x, Pmode))
486 x = force_reg (Pmode, x);
487 else
488 x = force_operand (x, NULL_RTX);
489 }
490 }
491
492 done:
493
494 /* If we didn't change the address, we are done. Otherwise, mark
495 a reg as a pointer if we have REG or REG + CONST_INT. */
496 if (oldx == x)
497 return x;
498 else if (REG_P (x))
499 mark_reg_pointer (x, BITS_PER_UNIT);
500 else if (GET_CODE (x) == PLUS
501 && REG_P (XEXP (x, 0))
502 && GET_CODE (XEXP (x, 1)) == CONST_INT)
503 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
504
505 /* OLDX may have been the address on a temporary. Update the address
506 to indicate that X is now used. */
507 update_temp_slot_address (oldx, x);
508
509 return x;
510}
511
512/* Like `memory_address' but pretend `flag_force_addr' is 0. */
513
514rtx
515memory_address_noforce (enum machine_mode mode, rtx x)
516{
517 int ambient_force_addr = flag_force_addr;
518 rtx val;
519
520 flag_force_addr = 0;
521 val = memory_address (mode, x);
522 flag_force_addr = ambient_force_addr;
523 return val;
524}
525
526/* Convert a mem ref into one with a valid memory address.
527 Pass through anything else unchanged. */
528
529rtx
530validize_mem (rtx ref)
531{
532 if (!MEM_P (ref))
533 return ref;
534 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
535 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
536 return ref;
537
538 /* Don't alter REF itself, since that is probably a stack slot. */
539 return replace_equiv_address (ref, XEXP (ref, 0));
540}
541\f
542/* Copy the value or contents of X to a new temp reg and return that reg. */
543
544rtx
545copy_to_reg (rtx x)
546{
547 rtx temp = gen_reg_rtx (GET_MODE (x));
548
549 /* If not an operand, must be an address with PLUS and MULT so
550 do the computation. */
551 if (! general_operand (x, VOIDmode))
552 x = force_operand (x, temp);
553
554 if (x != temp)
555 emit_move_insn (temp, x);
556
557 return temp;
558}
559
560/* Like copy_to_reg but always give the new register mode Pmode
561 in case X is a constant. */
562
563rtx
564copy_addr_to_reg (rtx x)
565{
566 return copy_to_mode_reg (Pmode, x);
567}
568
569/* Like copy_to_reg but always give the new register mode MODE
570 in case X is a constant. */
571
572rtx
573copy_to_mode_reg (enum machine_mode mode, rtx x)
574{
575 rtx temp = gen_reg_rtx (mode);
576
577 /* If not an operand, must be an address with PLUS and MULT so
578 do the computation. */
579 if (! general_operand (x, VOIDmode))
580 x = force_operand (x, temp);
581
582 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
583 if (x != temp)
584 emit_move_insn (temp, x);
585 return temp;
586}
587
588/* Load X into a register if it is not already one.
589 Use mode MODE for the register.
590 X should be valid for mode MODE, but it may be a constant which
591 is valid for all integer modes; that's why caller must specify MODE.
592
593 The caller must not alter the value in the register we return,
594 since we mark it as a "constant" register. */
595
596rtx
597force_reg (enum machine_mode mode, rtx x)
598{
599 rtx temp, insn, set;
600
601 if (REG_P (x))
602 return x;
603
604 if (general_operand (x, mode))
605 {
606 temp = gen_reg_rtx (mode);
607 insn = emit_move_insn (temp, x);
608 }
609 else
610 {
611 temp = force_operand (x, NULL_RTX);
612 if (REG_P (temp))
613 insn = get_last_insn ();
614 else
615 {
616 rtx temp2 = gen_reg_rtx (mode);
617 insn = emit_move_insn (temp2, temp);
618 temp = temp2;
619 }
620 }
621
622 /* Let optimizers know that TEMP's value never changes
623 and that X can be substituted for it. Don't get confused
624 if INSN set something else (such as a SUBREG of TEMP). */
625 if (CONSTANT_P (x)
626 && (set = single_set (insn)) != 0
627 && SET_DEST (set) == temp
628 && ! rtx_equal_p (x, SET_SRC (set)))
629 set_unique_reg_note (insn, REG_EQUAL, x);
630
631 /* Let optimizers know that TEMP is a pointer, and if so, the
632 known alignment of that pointer. */
633 {
634 unsigned align = 0;
635 if (GET_CODE (x) == SYMBOL_REF)
636 {
637 align = BITS_PER_UNIT;
638 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
639 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
640 }
641 else if (GET_CODE (x) == LABEL_REF)
642 align = BITS_PER_UNIT;
643 else if (GET_CODE (x) == CONST
644 && GET_CODE (XEXP (x, 0)) == PLUS
645 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
646 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
647 {
648 rtx s = XEXP (XEXP (x, 0), 0);
649 rtx c = XEXP (XEXP (x, 0), 1);
650 unsigned sa, ca;
651
652 sa = BITS_PER_UNIT;
653 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
654 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
655
656 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
657
658 align = MIN (sa, ca);
659 }
660
661 if (align)
662 mark_reg_pointer (temp, align);
663 }
664
665 return temp;
666}
667
668/* If X is a memory ref, copy its contents to a new temp reg and return
669 that reg. Otherwise, return X. */
670
671rtx
672force_not_mem (rtx x)
673{
674 rtx temp;
675
676 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
677 return x;
678
679 temp = gen_reg_rtx (GET_MODE (x));
680
681 if (MEM_POINTER (x))
682 REG_POINTER (temp) = 1;
683
684 emit_move_insn (temp, x);
685 return temp;
686}
687
688/* Copy X to TARGET (if it's nonzero and a reg)
689 or to a new temp reg and return that reg.
690 MODE is the mode to use for X in case it is a constant. */
691
692rtx
693copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
694{
695 rtx temp;
696
697 if (target && REG_P (target))
698 temp = target;
699 else
700 temp = gen_reg_rtx (mode);
701
702 emit_move_insn (temp, x);
703 return temp;
704}
705\f
706/* Return the mode to use to store a scalar of TYPE and MODE.
707 PUNSIGNEDP points to the signedness of the type and may be adjusted
708 to show what signedness to use on extension operations.
709
710 FOR_CALL is nonzero if this call is promoting args for a call. */
711
712#if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
713#define PROMOTE_FUNCTION_MODE PROMOTE_MODE
714#endif
715
716enum machine_mode
717promote_mode (tree type, enum machine_mode mode, int *punsignedp,
718 int for_call ATTRIBUTE_UNUSED)
719{
720 enum tree_code code = TREE_CODE (type);
721 int unsignedp = *punsignedp;
722
723#ifndef PROMOTE_MODE
724 if (! for_call)
725 return mode;
726#endif
727
728 switch (code)
729 {
730#ifdef PROMOTE_FUNCTION_MODE
731 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
732 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
733#ifdef PROMOTE_MODE
734 if (for_call)
735 {
736#endif
737 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
738#ifdef PROMOTE_MODE
739 }
740 else
741 {
742 PROMOTE_MODE (mode, unsignedp, type);
743 }
744#endif
745 break;
746#endif
747
748#ifdef POINTERS_EXTEND_UNSIGNED
749 case REFERENCE_TYPE:
750 case POINTER_TYPE:
751 mode = Pmode;
752 unsignedp = POINTERS_EXTEND_UNSIGNED;
753 break;
754#endif
755
756 default:
757 break;
758 }
759
760 *punsignedp = unsignedp;
761 return mode;
762}
763\f
764/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
765 This pops when ADJUST is positive. ADJUST need not be constant. */
766
767void
768adjust_stack (rtx adjust)
769{
770 rtx temp;
771
772 if (adjust == const0_rtx)
773 return;
774
775 /* We expect all variable sized adjustments to be multiple of
776 PREFERRED_STACK_BOUNDARY. */
777 if (GET_CODE (adjust) == CONST_INT)
778 stack_pointer_delta -= INTVAL (adjust);
779
780 temp = expand_binop (Pmode,
781#ifdef STACK_GROWS_DOWNWARD
782 add_optab,
783#else
784 sub_optab,
785#endif
786 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
787 OPTAB_LIB_WIDEN);
788
789 if (temp != stack_pointer_rtx)
790 emit_move_insn (stack_pointer_rtx, temp);
791}
792
793/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
794 This pushes when ADJUST is positive. ADJUST need not be constant. */
795
796void
797anti_adjust_stack (rtx adjust)
798{
799 rtx temp;
800
801 if (adjust == const0_rtx)
802 return;
803
804 /* We expect all variable sized adjustments to be multiple of
805 PREFERRED_STACK_BOUNDARY. */
806 if (GET_CODE (adjust) == CONST_INT)
807 stack_pointer_delta += INTVAL (adjust);
808
809 temp = expand_binop (Pmode,
810#ifdef STACK_GROWS_DOWNWARD
811 sub_optab,
812#else
813 add_optab,
814#endif
815 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
816 OPTAB_LIB_WIDEN);
817
818 if (temp != stack_pointer_rtx)
819 emit_move_insn (stack_pointer_rtx, temp);
820}
821
822/* Round the size of a block to be pushed up to the boundary required
823 by this machine. SIZE is the desired size, which need not be constant. */
824
825static rtx
826round_push (rtx size)
827{
828 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
829
830 if (align == 1)
831 return size;
832
833 if (GET_CODE (size) == CONST_INT)
834 {
835 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
836
837 if (INTVAL (size) != new)
838 size = GEN_INT (new);
839 }
840 else
841 {
842 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
843 but we know it can't. So add ourselves and then do
844 TRUNC_DIV_EXPR. */
845 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
846 NULL_RTX, 1, OPTAB_LIB_WIDEN);
847 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
848 NULL_RTX, 1);
849 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
850 }
851
852 return size;
853}
854\f
855/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
856 to a previously-created save area. If no save area has been allocated,
857 this function will allocate one. If a save area is specified, it
858 must be of the proper mode.
859
860 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
861 are emitted at the current position. */
862
863void
864emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
865{
866 rtx sa = *psave;
867 /* The default is that we use a move insn and save in a Pmode object. */
868 rtx (*fcn) (rtx, rtx) = gen_move_insn;
869 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
870
871 /* See if this machine has anything special to do for this kind of save. */
872 switch (save_level)
873 {
874#ifdef HAVE_save_stack_block
875 case SAVE_BLOCK:
876 if (HAVE_save_stack_block)
877 fcn = gen_save_stack_block;
878 break;
879#endif
880#ifdef HAVE_save_stack_function
881 case SAVE_FUNCTION:
882 if (HAVE_save_stack_function)
883 fcn = gen_save_stack_function;
884 break;
885#endif
886#ifdef HAVE_save_stack_nonlocal
887 case SAVE_NONLOCAL:
888 if (HAVE_save_stack_nonlocal)
889 fcn = gen_save_stack_nonlocal;
890 break;
891#endif
892 default:
893 break;
894 }
895
896 /* If there is no save area and we have to allocate one, do so. Otherwise
897 verify the save area is the proper mode. */
898
899 if (sa == 0)
900 {
901 if (mode != VOIDmode)
902 {
903 if (save_level == SAVE_NONLOCAL)
904 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
905 else
906 *psave = sa = gen_reg_rtx (mode);
907 }
908 }
909
910 if (after)
911 {
912 rtx seq;
913
914 start_sequence ();
915 do_pending_stack_adjust ();
916 /* We must validize inside the sequence, to ensure that any instructions
917 created by the validize call also get moved to the right place. */
918 if (sa != 0)
919 sa = validize_mem (sa);
920 emit_insn (fcn (sa, stack_pointer_rtx));
921 seq = get_insns ();
922 end_sequence ();
923 emit_insn_after (seq, after);
924 }
925 else
926 {
927 do_pending_stack_adjust ();
928 if (sa != 0)
929 sa = validize_mem (sa);
930 emit_insn (fcn (sa, stack_pointer_rtx));
931 }
932}
933
934/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
935 area made by emit_stack_save. If it is zero, we have nothing to do.
936
937 Put any emitted insns after insn AFTER, if nonzero, otherwise at
938 current position. */
939
940void
941emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
942{
943 /* The default is that we use a move insn. */
944 rtx (*fcn) (rtx, rtx) = gen_move_insn;
945
946 /* See if this machine has anything special to do for this kind of save. */
947 switch (save_level)
948 {
949#ifdef HAVE_restore_stack_block
950 case SAVE_BLOCK:
951 if (HAVE_restore_stack_block)
952 fcn = gen_restore_stack_block;
953 break;
954#endif
955#ifdef HAVE_restore_stack_function
956 case SAVE_FUNCTION:
957 if (HAVE_restore_stack_function)
958 fcn = gen_restore_stack_function;
959 break;
960#endif
961#ifdef HAVE_restore_stack_nonlocal
962 case SAVE_NONLOCAL:
963 if (HAVE_restore_stack_nonlocal)
964 fcn = gen_restore_stack_nonlocal;
965 break;
966#endif
967 default:
968 break;
969 }
970
971 if (sa != 0)
972 {
973 sa = validize_mem (sa);
974 /* These clobbers prevent the scheduler from moving
975 references to variable arrays below the code
976 that deletes (pops) the arrays. */
977 emit_insn (gen_rtx_CLOBBER (VOIDmode,
978 gen_rtx_MEM (BLKmode,
979 gen_rtx_SCRATCH (VOIDmode))));
980 emit_insn (gen_rtx_CLOBBER (VOIDmode,
981 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
982 }
983
984 discard_pending_stack_adjust ();
985
986 if (after)
987 {
988 rtx seq;
989
990 start_sequence ();
991 emit_insn (fcn (stack_pointer_rtx, sa));
992 seq = get_insns ();
993 end_sequence ();
994 emit_insn_after (seq, after);
995 }
996 else
997 emit_insn (fcn (stack_pointer_rtx, sa));
998}
999
1000/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1001 function. This function should be called whenever we allocate or
1002 deallocate dynamic stack space. */
1003
1004void
1005update_nonlocal_goto_save_area (void)
1006{
1007 tree t_save;
1008 rtx r_save;
1009
1010 /* The nonlocal_goto_save_area object is an array of N pointers. The
1011 first one is used for the frame pointer save; the rest are sized by
1012 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1013 of the stack save area slots. */
1014 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1015 integer_one_node, NULL_TREE, NULL_TREE);
1016 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1017
1018 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1019}
1020\f
1021/* Return an rtx representing the address of an area of memory dynamically
1022 pushed on the stack. This region of memory is always aligned to
1023 a multiple of BIGGEST_ALIGNMENT.
1024
1025 Any required stack pointer alignment is preserved.
1026
1027 SIZE is an rtx representing the size of the area.
1028 TARGET is a place in which the address can be placed.
1029
1030 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1031
1032rtx
1033allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1034{
1035 /* If we're asking for zero bytes, it doesn't matter what we point
1036 to since we can't dereference it. But return a reasonable
1037 address anyway. */
1038 if (size == const0_rtx)
1039 return virtual_stack_dynamic_rtx;
1040
1041 /* Otherwise, show we're calling alloca or equivalent. */
1042 current_function_calls_alloca = 1;
1043
1044 /* Ensure the size is in the proper mode. */
1045 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1046 size = convert_to_mode (Pmode, size, 1);
1047
1048 /* We can't attempt to minimize alignment necessary, because we don't
1049 know the final value of preferred_stack_boundary yet while executing
1050 this code. */
1051 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1052
1053 /* We will need to ensure that the address we return is aligned to
1054 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1055 always know its final value at this point in the compilation (it
1056 might depend on the size of the outgoing parameter lists, for
1057 example), so we must align the value to be returned in that case.
1058 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1059 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1060 We must also do an alignment operation on the returned value if
1061 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1062
1063 If we have to align, we must leave space in SIZE for the hole
1064 that might result from the alignment operation. */
1065
1066#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1067#define MUST_ALIGN 1
1068#else
1069#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1070#endif
1071
1072 if (MUST_ALIGN)
1073 size
1074 = force_operand (plus_constant (size,
1075 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1076 NULL_RTX);
1077
1078#ifdef SETJMP_VIA_SAVE_AREA
1079 /* If setjmp restores regs from a save area in the stack frame,
1080 avoid clobbering the reg save area. Note that the offset of
1081 virtual_incoming_args_rtx includes the preallocated stack args space.
1082 It would be no problem to clobber that, but it's on the wrong side
1083 of the old save area.
1084
1085 What used to happen is that, since we did not know for sure
1086 whether setjmp() was invoked until after RTL generation, we
1087 would use reg notes to store the "optimized" size and fix things
1088 up later. These days we know this information before we ever
1089 start building RTL so the reg notes are unnecessary. */
1090 if (!current_function_calls_setjmp)
1091 {
1092 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1093
1094 /* ??? Code below assumes that the save area needs maximal
1095 alignment. This constraint may be too strong. */
1096 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1097
1098 if (GET_CODE (size) == CONST_INT)
1099 {
1100 HOST_WIDE_INT new = INTVAL (size) / align * align;
1101
1102 if (INTVAL (size) != new)
1103 size = GEN_INT (new);
1104 }
1105 else
1106 {
1107 /* Since we know overflow is not possible, we avoid using
1108 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1109 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1110 GEN_INT (align), NULL_RTX, 1);
1111 size = expand_mult (Pmode, size,
1112 GEN_INT (align), NULL_RTX, 1);
1113 }
1114 }
1115 else
1116 {
1117 rtx dynamic_offset
1118 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1119 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1120
1121 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1122 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1123 }
1124#endif /* SETJMP_VIA_SAVE_AREA */
1125
1126 /* Round the size to a multiple of the required stack alignment.
1127 Since the stack if presumed to be rounded before this allocation,
1128 this will maintain the required alignment.
1129
1130 If the stack grows downward, we could save an insn by subtracting
1131 SIZE from the stack pointer and then aligning the stack pointer.
1132 The problem with this is that the stack pointer may be unaligned
1133 between the execution of the subtraction and alignment insns and
1134 some machines do not allow this. Even on those that do, some
1135 signal handlers malfunction if a signal should occur between those
1136 insns. Since this is an extremely rare event, we have no reliable
1137 way of knowing which systems have this problem. So we avoid even
1138 momentarily mis-aligning the stack. */
1139
1140 /* If we added a variable amount to SIZE,
1141 we can no longer assume it is aligned. */
1142#if !defined (SETJMP_VIA_SAVE_AREA)
1143 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1144#endif
1145 size = round_push (size);
1146
1147 do_pending_stack_adjust ();
1148
1149 /* We ought to be called always on the toplevel and stack ought to be aligned
1150 properly. */
1151 gcc_assert (!(stack_pointer_delta
1152 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1153
1154 /* If needed, check that we have the required amount of stack. Take into
1155 account what has already been checked. */
1156 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1157 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1158
1159 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1160 if (target == 0 || !REG_P (target)
1161 || REGNO (target) < FIRST_PSEUDO_REGISTER
1162 || GET_MODE (target) != Pmode)
1163 target = gen_reg_rtx (Pmode);
1164
1165 mark_reg_pointer (target, known_align);
1166
1167 /* Perform the required allocation from the stack. Some systems do
1168 this differently than simply incrementing/decrementing from the
1169 stack pointer, such as acquiring the space by calling malloc(). */
1170#ifdef HAVE_allocate_stack
1171 if (HAVE_allocate_stack)
1172 {
1173 enum machine_mode mode = STACK_SIZE_MODE;
1174 insn_operand_predicate_fn pred;
1175
1176 /* We don't have to check against the predicate for operand 0 since
1177 TARGET is known to be a pseudo of the proper mode, which must
1178 be valid for the operand. For operand 1, convert to the
1179 proper mode and validate. */
1180 if (mode == VOIDmode)
1181 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1182
1183 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1184 if (pred && ! ((*pred) (size, mode)))
1185 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1186
1187 emit_insn (gen_allocate_stack (target, size));
1188 }
1189 else
1190#endif
1191 {
1192#ifndef STACK_GROWS_DOWNWARD
1193 emit_move_insn (target, virtual_stack_dynamic_rtx);
1194#endif
1195
1196 /* Check stack bounds if necessary. */
1197 if (current_function_limit_stack)
1198 {
1199 rtx available;
1200 rtx space_available = gen_label_rtx ();
1201#ifdef STACK_GROWS_DOWNWARD
1202 available = expand_binop (Pmode, sub_optab,
1203 stack_pointer_rtx, stack_limit_rtx,
1204 NULL_RTX, 1, OPTAB_WIDEN);
1205#else
1206 available = expand_binop (Pmode, sub_optab,
1207 stack_limit_rtx, stack_pointer_rtx,
1208 NULL_RTX, 1, OPTAB_WIDEN);
1209#endif
1210 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1211 space_available);
1212#ifdef HAVE_trap
1213 if (HAVE_trap)
1214 emit_insn (gen_trap ());
1215 else
1216#endif
1217 error ("stack limits not supported on this target");
1218 emit_barrier ();
1219 emit_label (space_available);
1220 }
1221
1222 anti_adjust_stack (size);
1223
1224#ifdef STACK_GROWS_DOWNWARD
1225 emit_move_insn (target, virtual_stack_dynamic_rtx);
1226#endif
1227 }
1228
1229 if (MUST_ALIGN)
1230 {
1231 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1232 but we know it can't. So add ourselves and then do
1233 TRUNC_DIV_EXPR. */
1234 target = expand_binop (Pmode, add_optab, target,
1235 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1236 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1237 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1238 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1239 NULL_RTX, 1);
1240 target = expand_mult (Pmode, target,
1241 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1242 NULL_RTX, 1);
1243 }
1244
1245 /* Record the new stack level for nonlocal gotos. */
1246 if (cfun->nonlocal_goto_save_area != 0)
1247 update_nonlocal_goto_save_area ();
1248
1249 return target;
1250}
1251\f
1252/* A front end may want to override GCC's stack checking by providing a
1253 run-time routine to call to check the stack, so provide a mechanism for
1254 calling that routine. */
1255
1256static GTY(()) rtx stack_check_libfunc;
1257
1258void
1259set_stack_check_libfunc (rtx libfunc)
1260{
1261 stack_check_libfunc = libfunc;
1262}
1263\f
1264/* Emit one stack probe at ADDRESS, an address within the stack. */
1265
1266static void
1267emit_stack_probe (rtx address)
1268{
1269 rtx memref = gen_rtx_MEM (word_mode, address);
1270
1271 MEM_VOLATILE_P (memref) = 1;
1272
1273 if (STACK_CHECK_PROBE_LOAD)
1274 emit_move_insn (gen_reg_rtx (word_mode), memref);
1275 else
1276 emit_move_insn (memref, const0_rtx);
1277}
1278
1279/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1280 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1281 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1282 subtract from the stack. If SIZE is constant, this is done
1283 with a fixed number of probes. Otherwise, we must make a loop. */
1284
1285#ifdef STACK_GROWS_DOWNWARD
1286#define STACK_GROW_OP MINUS
1287#else
1288#define STACK_GROW_OP PLUS
1289#endif
1290
1291void
1292probe_stack_range (HOST_WIDE_INT first, rtx size)
1293{
1294 /* First ensure SIZE is Pmode. */
1295 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1296 size = convert_to_mode (Pmode, size, 1);
1297
1298 /* Next see if the front end has set up a function for us to call to
1299 check the stack. */
1300 if (stack_check_libfunc != 0)
1301 {
1302 rtx addr = memory_address (QImode,
1303 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1304 stack_pointer_rtx,
1305 plus_constant (size, first)));
1306
1307 addr = convert_memory_address (ptr_mode, addr);
1308 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1309 ptr_mode);
1310 }
1311
1312 /* Next see if we have an insn to check the stack. Use it if so. */
1313#ifdef HAVE_check_stack
1314 else if (HAVE_check_stack)
1315 {
1316 insn_operand_predicate_fn pred;
1317 rtx last_addr
1318 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1319 stack_pointer_rtx,
1320 plus_constant (size, first)),
1321 NULL_RTX);
1322
1323 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1324 if (pred && ! ((*pred) (last_addr, Pmode)))
1325 last_addr = copy_to_mode_reg (Pmode, last_addr);
1326
1327 emit_insn (gen_check_stack (last_addr));
1328 }
1329#endif
1330
1331 /* If we have to generate explicit probes, see if we have a constant
1332 small number of them to generate. If so, that's the easy case. */
1333 else if (GET_CODE (size) == CONST_INT
1334 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1335 {
1336 HOST_WIDE_INT offset;
1337
1338 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1339 for values of N from 1 until it exceeds LAST. If only one
1340 probe is needed, this will not generate any code. Then probe
1341 at LAST. */
1342 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1343 offset < INTVAL (size);
1344 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1345 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1346 stack_pointer_rtx,
1347 GEN_INT (offset)));
1348
1349 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1350 stack_pointer_rtx,
1351 plus_constant (size, first)));
1352 }
1353
1354 /* In the variable case, do the same as above, but in a loop. We emit loop
1355 notes so that loop optimization can be done. */
1356 else
1357 {
1358 rtx test_addr
1359 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1360 stack_pointer_rtx,
1361 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1362 NULL_RTX);
1363 rtx last_addr
1364 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1365 stack_pointer_rtx,
1366 plus_constant (size, first)),
1367 NULL_RTX);
1368 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1369 rtx loop_lab = gen_label_rtx ();
1370 rtx test_lab = gen_label_rtx ();
1371 rtx end_lab = gen_label_rtx ();
1372 rtx temp;
1373
1374 if (!REG_P (test_addr)
1375 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1376 test_addr = force_reg (Pmode, test_addr);
1377
1378 emit_jump (test_lab);
1379
1380 emit_label (loop_lab);
1381 emit_stack_probe (test_addr);
1382
1383#ifdef STACK_GROWS_DOWNWARD
1384#define CMP_OPCODE GTU
1385 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1386 1, OPTAB_WIDEN);
1387#else
1388#define CMP_OPCODE LTU
1389 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1390 1, OPTAB_WIDEN);
1391#endif
1392
1393 gcc_assert (temp == test_addr);
1394
1395 emit_label (test_lab);
1396 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1397 NULL_RTX, Pmode, 1, loop_lab);
1398 emit_jump (end_lab);
1399 emit_label (end_lab);
1400
1401 emit_stack_probe (last_addr);
1402 }
1403}
1404\f
1405/* Return an rtx representing the register or memory location
1406 in which a scalar value of data type VALTYPE
1407 was returned by a function call to function FUNC.
1408 FUNC is a FUNCTION_DECL node if the precise function is known,
1409 otherwise 0.
1410 OUTGOING is 1 if on a machine with register windows this function
1411 should return the register in which the function will put its result
1412 and 0 otherwise. */
1413
1414rtx
1415hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1416 int outgoing ATTRIBUTE_UNUSED)
1417{
1418 rtx val;
1419
1420#ifdef FUNCTION_OUTGOING_VALUE
1421 if (outgoing)
1422 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1423 else
1424#endif
1425 val = FUNCTION_VALUE (valtype, func);
1426
1427 if (REG_P (val)
1428 && GET_MODE (val) == BLKmode)
1429 {
1430 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1431 enum machine_mode tmpmode;
1432
1433 /* int_size_in_bytes can return -1. We don't need a check here
1434 since the value of bytes will then be large enough that no
1435 mode will match anyway. */
1436
1437 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1438 tmpmode != VOIDmode;
1439 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1440 {
1441 /* Have we found a large enough mode? */
1442 if (GET_MODE_SIZE (tmpmode) >= bytes)
1443 break;
1444 }
1445
1446 /* No suitable mode found. */
1447 gcc_assert (tmpmode != VOIDmode);
1448
1449 PUT_MODE (val, tmpmode);
1450 }
1451 return val;
1452}
1453
1454/* Return an rtx representing the register or memory location
1455 in which a scalar value of mode MODE was returned by a library call. */
1456
1457rtx
1458hard_libcall_value (enum machine_mode mode)
1459{
1460 return LIBCALL_VALUE (mode);
1461}
1462
1463/* Look up the tree code for a given rtx code
1464 to provide the arithmetic operation for REAL_ARITHMETIC.
1465 The function returns an int because the caller may not know
1466 what `enum tree_code' means. */
1467
1468int
1469rtx_to_tree_code (enum rtx_code code)
1470{
1471 enum tree_code tcode;
1472
1473 switch (code)
1474 {
1475 case PLUS:
1476 tcode = PLUS_EXPR;
1477 break;
1478 case MINUS:
1479 tcode = MINUS_EXPR;
1480 break;
1481 case MULT:
1482 tcode = MULT_EXPR;
1483 break;
1484 case DIV:
1485 tcode = RDIV_EXPR;
1486 break;
1487 case SMIN:
1488 tcode = MIN_EXPR;
1489 break;
1490 case SMAX:
1491 tcode = MAX_EXPR;
1492 break;
1493 default:
1494 tcode = LAST_AND_UNUSED_TREE_CODE;
1495 break;
1496 }
1497 return ((int) tcode);
1498}
1499
1500#include "gt-explow.h"