]> git.ipfire.org Git - thirdparty/gcc.git/blame_incremental - gcc/fold-const-call.c
PR65122 extended alignment support in allocators
[thirdparty/gcc.git] / gcc / fold-const-call.c
... / ...
CommitLineData
1/* Constant folding for calls to built-in and internal functions.
2 Copyright (C) 1988-2016 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "realmpfr.h"
24#include "tree.h"
25#include "stor-layout.h"
26#include "options.h"
27#include "fold-const.h"
28#include "fold-const-call.h"
29#include "case-cfn-macros.h"
30#include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
31
32/* Functions that test for certain constant types, abstracting away the
33 decision about whether to check for overflow. */
34
35static inline bool
36integer_cst_p (tree t)
37{
38 return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
39}
40
41static inline bool
42real_cst_p (tree t)
43{
44 return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
45}
46
47static inline bool
48complex_cst_p (tree t)
49{
50 return TREE_CODE (t) == COMPLEX_CST;
51}
52
53/* Return true if ARG is a constant in the range of the host size_t.
54 Store it in *SIZE_OUT if so. */
55
56static inline bool
57host_size_t_cst_p (tree t, size_t *size_out)
58{
59 if (integer_cst_p (t)
60 && wi::min_precision (t, UNSIGNED) <= sizeof (size_t) * CHAR_BIT)
61 {
62 *size_out = tree_to_uhwi (t);
63 return true;
64 }
65 return false;
66}
67
68/* RES is the result of a comparison in which < 0 means "less", 0 means
69 "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
70 return it in type TYPE. */
71
72static inline tree
73build_cmp_result (tree type, int res)
74{
75 return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
76}
77
78/* M is the result of trying to constant-fold an expression (starting
79 with clear MPFR flags) and INEXACT says whether the result in M is
80 exact or inexact. Return true if M can be used as a constant-folded
81 result in format FORMAT, storing the value in *RESULT if so. */
82
83static bool
84do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
85 const real_format *format)
86{
87 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
88 overflow/underflow occurred. If -frounding-math, proceed iff the
89 result of calling FUNC was exact. */
90 if (!mpfr_number_p (m)
91 || mpfr_overflow_p ()
92 || mpfr_underflow_p ()
93 || (flag_rounding_math && inexact))
94 return false;
95
96 REAL_VALUE_TYPE tmp;
97 real_from_mpfr (&tmp, m, format, GMP_RNDN);
98
99 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
100 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
101 underflowed in the conversion. */
102 if (!real_isfinite (&tmp)
103 || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
104 return false;
105
106 real_convert (result, format, &tmp);
107 return real_identical (result, &tmp);
108}
109
110/* Try to evaluate:
111
112 *RESULT = f (*ARG)
113
114 in format FORMAT, given that FUNC is the MPFR implementation of f.
115 Return true on success. */
116
117static bool
118do_mpfr_arg1 (real_value *result,
119 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
120 const real_value *arg, const real_format *format)
121{
122 /* To proceed, MPFR must exactly represent the target floating point
123 format, which only happens when the target base equals two. */
124 if (format->b != 2 || !real_isfinite (arg))
125 return false;
126
127 int prec = format->p;
128 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
129 mpfr_t m;
130
131 mpfr_init2 (m, prec);
132 mpfr_from_real (m, arg, GMP_RNDN);
133 mpfr_clear_flags ();
134 bool inexact = func (m, m, rnd);
135 bool ok = do_mpfr_ckconv (result, m, inexact, format);
136 mpfr_clear (m);
137
138 return ok;
139}
140
141/* Try to evaluate:
142
143 *RESULT_SIN = sin (*ARG);
144 *RESULT_COS = cos (*ARG);
145
146 for format FORMAT. Return true on success. */
147
148static bool
149do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
150 const real_value *arg, const real_format *format)
151{
152 /* To proceed, MPFR must exactly represent the target floating point
153 format, which only happens when the target base equals two. */
154 if (format->b != 2 || !real_isfinite (arg))
155 return false;
156
157 int prec = format->p;
158 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
159 mpfr_t m, ms, mc;
160
161 mpfr_inits2 (prec, m, ms, mc, NULL);
162 mpfr_from_real (m, arg, GMP_RNDN);
163 mpfr_clear_flags ();
164 bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
165 bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
166 && do_mpfr_ckconv (result_cos, mc, inexact, format));
167 mpfr_clears (m, ms, mc, NULL);
168
169 return ok;
170}
171
172/* Try to evaluate:
173
174 *RESULT = f (*ARG0, *ARG1)
175
176 in format FORMAT, given that FUNC is the MPFR implementation of f.
177 Return true on success. */
178
179static bool
180do_mpfr_arg2 (real_value *result,
181 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
182 const real_value *arg0, const real_value *arg1,
183 const real_format *format)
184{
185 /* To proceed, MPFR must exactly represent the target floating point
186 format, which only happens when the target base equals two. */
187 if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
188 return false;
189
190 int prec = format->p;
191 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
192 mpfr_t m0, m1;
193
194 mpfr_inits2 (prec, m0, m1, NULL);
195 mpfr_from_real (m0, arg0, GMP_RNDN);
196 mpfr_from_real (m1, arg1, GMP_RNDN);
197 mpfr_clear_flags ();
198 bool inexact = func (m0, m0, m1, rnd);
199 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
200 mpfr_clears (m0, m1, NULL);
201
202 return ok;
203}
204
205/* Try to evaluate:
206
207 *RESULT = f (ARG0, *ARG1)
208
209 in format FORMAT, given that FUNC is the MPFR implementation of f.
210 Return true on success. */
211
212static bool
213do_mpfr_arg2 (real_value *result,
214 int (*func) (mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
215 const wide_int_ref &arg0, const real_value *arg1,
216 const real_format *format)
217{
218 if (format->b != 2 || !real_isfinite (arg1))
219 return false;
220
221 int prec = format->p;
222 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
223 mpfr_t m;
224
225 mpfr_init2 (m, prec);
226 mpfr_from_real (m, arg1, GMP_RNDN);
227 mpfr_clear_flags ();
228 bool inexact = func (m, arg0.to_shwi (), m, rnd);
229 bool ok = do_mpfr_ckconv (result, m, inexact, format);
230 mpfr_clear (m);
231
232 return ok;
233}
234
235/* Try to evaluate:
236
237 *RESULT = f (*ARG0, *ARG1, *ARG2)
238
239 in format FORMAT, given that FUNC is the MPFR implementation of f.
240 Return true on success. */
241
242static bool
243do_mpfr_arg3 (real_value *result,
244 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
245 mpfr_srcptr, mpfr_rnd_t),
246 const real_value *arg0, const real_value *arg1,
247 const real_value *arg2, const real_format *format)
248{
249 /* To proceed, MPFR must exactly represent the target floating point
250 format, which only happens when the target base equals two. */
251 if (format->b != 2
252 || !real_isfinite (arg0)
253 || !real_isfinite (arg1)
254 || !real_isfinite (arg2))
255 return false;
256
257 int prec = format->p;
258 mp_rnd_t rnd = format->round_towards_zero ? GMP_RNDZ : GMP_RNDN;
259 mpfr_t m0, m1, m2;
260
261 mpfr_inits2 (prec, m0, m1, m2, NULL);
262 mpfr_from_real (m0, arg0, GMP_RNDN);
263 mpfr_from_real (m1, arg1, GMP_RNDN);
264 mpfr_from_real (m2, arg2, GMP_RNDN);
265 mpfr_clear_flags ();
266 bool inexact = func (m0, m0, m1, m2, rnd);
267 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
268 mpfr_clears (m0, m1, m2, NULL);
269
270 return ok;
271}
272
273/* M is the result of trying to constant-fold an expression (starting
274 with clear MPFR flags) and INEXACT says whether the result in M is
275 exact or inexact. Return true if M can be used as a constant-folded
276 result in which the real and imaginary parts have format FORMAT.
277 Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
278
279static bool
280do_mpc_ckconv (real_value *result_real, real_value *result_imag,
281 mpc_srcptr m, bool inexact, const real_format *format)
282{
283 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
284 overflow/underflow occurred. If -frounding-math, proceed iff the
285 result of calling FUNC was exact. */
286 if (!mpfr_number_p (mpc_realref (m))
287 || !mpfr_number_p (mpc_imagref (m))
288 || mpfr_overflow_p ()
289 || mpfr_underflow_p ()
290 || (flag_rounding_math && inexact))
291 return false;
292
293 REAL_VALUE_TYPE tmp_real, tmp_imag;
294 real_from_mpfr (&tmp_real, mpc_realref (m), format, GMP_RNDN);
295 real_from_mpfr (&tmp_imag, mpc_imagref (m), format, GMP_RNDN);
296
297 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
298 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
299 underflowed in the conversion. */
300 if (!real_isfinite (&tmp_real)
301 || !real_isfinite (&tmp_imag)
302 || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
303 || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
304 return false;
305
306 real_convert (result_real, format, &tmp_real);
307 real_convert (result_imag, format, &tmp_imag);
308
309 return (real_identical (result_real, &tmp_real)
310 && real_identical (result_imag, &tmp_imag));
311}
312
313/* Try to evaluate:
314
315 RESULT = f (ARG)
316
317 in format FORMAT, given that FUNC is the mpc implementation of f.
318 Return true on success. Both RESULT and ARG are represented as
319 real and imaginary pairs. */
320
321static bool
322do_mpc_arg1 (real_value *result_real, real_value *result_imag,
323 int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
324 const real_value *arg_real, const real_value *arg_imag,
325 const real_format *format)
326{
327 /* To proceed, MPFR must exactly represent the target floating point
328 format, which only happens when the target base equals two. */
329 if (format->b != 2
330 || !real_isfinite (arg_real)
331 || !real_isfinite (arg_imag))
332 return false;
333
334 int prec = format->p;
335 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
336 mpc_t m;
337
338 mpc_init2 (m, prec);
339 mpfr_from_real (mpc_realref (m), arg_real, GMP_RNDN);
340 mpfr_from_real (mpc_imagref (m), arg_imag, GMP_RNDN);
341 mpfr_clear_flags ();
342 bool inexact = func (m, m, crnd);
343 bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
344 mpc_clear (m);
345
346 return ok;
347}
348
349/* Try to evaluate:
350
351 RESULT = f (ARG0, ARG1)
352
353 in format FORMAT, given that FUNC is the mpc implementation of f.
354 Return true on success. RESULT, ARG0 and ARG1 are represented as
355 real and imaginary pairs. */
356
357static bool
358do_mpc_arg2 (real_value *result_real, real_value *result_imag,
359 int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
360 const real_value *arg0_real, const real_value *arg0_imag,
361 const real_value *arg1_real, const real_value *arg1_imag,
362 const real_format *format)
363{
364 if (!real_isfinite (arg0_real)
365 || !real_isfinite (arg0_imag)
366 || !real_isfinite (arg1_real)
367 || !real_isfinite (arg1_imag))
368 return false;
369
370 int prec = format->p;
371 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
372 mpc_t m0, m1;
373
374 mpc_init2 (m0, prec);
375 mpc_init2 (m1, prec);
376 mpfr_from_real (mpc_realref (m0), arg0_real, GMP_RNDN);
377 mpfr_from_real (mpc_imagref (m0), arg0_imag, GMP_RNDN);
378 mpfr_from_real (mpc_realref (m1), arg1_real, GMP_RNDN);
379 mpfr_from_real (mpc_imagref (m1), arg1_imag, GMP_RNDN);
380 mpfr_clear_flags ();
381 bool inexact = func (m0, m0, m1, crnd);
382 bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
383 mpc_clear (m0);
384 mpc_clear (m1);
385
386 return ok;
387}
388
389/* Try to evaluate:
390
391 *RESULT = logb (*ARG)
392
393 in format FORMAT. Return true on success. */
394
395static bool
396fold_const_logb (real_value *result, const real_value *arg,
397 const real_format *format)
398{
399 switch (arg->cl)
400 {
401 case rvc_nan:
402 /* If arg is +-NaN, then return it. */
403 *result = *arg;
404 return true;
405
406 case rvc_inf:
407 /* If arg is +-Inf, then return +Inf. */
408 *result = *arg;
409 result->sign = 0;
410 return true;
411
412 case rvc_zero:
413 /* Zero may set errno and/or raise an exception. */
414 return false;
415
416 case rvc_normal:
417 /* For normal numbers, proceed iff radix == 2. In GCC,
418 normalized significands are in the range [0.5, 1.0). We
419 want the exponent as if they were [1.0, 2.0) so get the
420 exponent and subtract 1. */
421 if (format->b == 2)
422 {
423 real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
424 return true;
425 }
426 return false;
427 }
428 gcc_unreachable ();
429}
430
431/* Try to evaluate:
432
433 *RESULT = significand (*ARG)
434
435 in format FORMAT. Return true on success. */
436
437static bool
438fold_const_significand (real_value *result, const real_value *arg,
439 const real_format *format)
440{
441 switch (arg->cl)
442 {
443 case rvc_zero:
444 case rvc_nan:
445 case rvc_inf:
446 /* If arg is +-0, +-Inf or +-NaN, then return it. */
447 *result = *arg;
448 return true;
449
450 case rvc_normal:
451 /* For normal numbers, proceed iff radix == 2. */
452 if (format->b == 2)
453 {
454 *result = *arg;
455 /* In GCC, normalized significands are in the range [0.5, 1.0).
456 We want them to be [1.0, 2.0) so set the exponent to 1. */
457 SET_REAL_EXP (result, 1);
458 return true;
459 }
460 return false;
461 }
462 gcc_unreachable ();
463}
464
465/* Try to evaluate:
466
467 *RESULT = f (*ARG)
468
469 where FORMAT is the format of *ARG and PRECISION is the number of
470 significant bits in the result. Return true on success. */
471
472static bool
473fold_const_conversion (wide_int *result,
474 void (*fn) (real_value *, format_helper,
475 const real_value *),
476 const real_value *arg, unsigned int precision,
477 const real_format *format)
478{
479 if (!real_isfinite (arg))
480 return false;
481
482 real_value rounded;
483 fn (&rounded, format, arg);
484
485 bool fail = false;
486 *result = real_to_integer (&rounded, &fail, precision);
487 return !fail;
488}
489
490/* Try to evaluate:
491
492 *RESULT = pow (*ARG0, *ARG1)
493
494 in format FORMAT. Return true on success. */
495
496static bool
497fold_const_pow (real_value *result, const real_value *arg0,
498 const real_value *arg1, const real_format *format)
499{
500 if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
501 return true;
502
503 /* Check for an integer exponent. */
504 REAL_VALUE_TYPE cint1;
505 HOST_WIDE_INT n1 = real_to_integer (arg1);
506 real_from_integer (&cint1, VOIDmode, n1, SIGNED);
507 /* Attempt to evaluate pow at compile-time, unless this should
508 raise an exception. */
509 if (real_identical (arg1, &cint1)
510 && (n1 > 0
511 || (!flag_trapping_math && !flag_errno_math)
512 || !real_equal (arg0, &dconst0)))
513 {
514 bool inexact = real_powi (result, format, arg0, n1);
515 /* Avoid the folding if flag_signaling_nans is on. */
516 if (flag_unsafe_math_optimizations
517 || (!inexact
518 && !(flag_signaling_nans
519 && REAL_VALUE_ISSIGNALING_NAN (*arg0))))
520 return true;
521 }
522
523 return false;
524}
525
526/* Try to evaluate:
527
528 *RESULT = ldexp (*ARG0, ARG1)
529
530 in format FORMAT. Return true on success. */
531
532static bool
533fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
534 const wide_int_ref &arg1,
535 const real_format *format)
536{
537 /* Bound the maximum adjustment to twice the range of the
538 mode's valid exponents. Use abs to ensure the range is
539 positive as a sanity check. */
540 int max_exp_adj = 2 * labs (format->emax - format->emin);
541
542 /* The requested adjustment must be inside this range. This
543 is a preliminary cap to avoid things like overflow, we
544 may still fail to compute the result for other reasons. */
545 if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
546 return false;
547
548 /* Don't perform operation if we honor signaling NaNs and
549 operand is a signaling NaN. */
550 if (!flag_unsafe_math_optimizations
551 && flag_signaling_nans
552 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
553 return false;
554
555 REAL_VALUE_TYPE initial_result;
556 real_ldexp (&initial_result, arg0, arg1.to_shwi ());
557
558 /* Ensure we didn't overflow. */
559 if (real_isinf (&initial_result))
560 return false;
561
562 /* Only proceed if the target mode can hold the
563 resulting value. */
564 *result = real_value_truncate (format, initial_result);
565 return real_equal (&initial_result, result);
566}
567
568/* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
569 return type TYPE. QUIET is true if a quiet rather than signalling
570 NaN is required. */
571
572static tree
573fold_const_builtin_nan (tree type, tree arg, bool quiet)
574{
575 REAL_VALUE_TYPE real;
576 const char *str = c_getstr (arg);
577 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
578 return build_real (type, real);
579 return NULL_TREE;
580}
581
582/* Try to evaluate:
583
584 *RESULT = FN (*ARG)
585
586 in format FORMAT. Return true on success. */
587
588static bool
589fold_const_call_ss (real_value *result, combined_fn fn,
590 const real_value *arg, const real_format *format)
591{
592 switch (fn)
593 {
594 CASE_CFN_SQRT:
595 return (real_compare (GE_EXPR, arg, &dconst0)
596 && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
597
598 CASE_CFN_CBRT:
599 return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
600
601 CASE_CFN_ASIN:
602 return (real_compare (GE_EXPR, arg, &dconstm1)
603 && real_compare (LE_EXPR, arg, &dconst1)
604 && do_mpfr_arg1 (result, mpfr_asin, arg, format));
605
606 CASE_CFN_ACOS:
607 return (real_compare (GE_EXPR, arg, &dconstm1)
608 && real_compare (LE_EXPR, arg, &dconst1)
609 && do_mpfr_arg1 (result, mpfr_acos, arg, format));
610
611 CASE_CFN_ATAN:
612 return do_mpfr_arg1 (result, mpfr_atan, arg, format);
613
614 CASE_CFN_ASINH:
615 return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
616
617 CASE_CFN_ACOSH:
618 return (real_compare (GE_EXPR, arg, &dconst1)
619 && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
620
621 CASE_CFN_ATANH:
622 return (real_compare (GE_EXPR, arg, &dconstm1)
623 && real_compare (LE_EXPR, arg, &dconst1)
624 && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
625
626 CASE_CFN_SIN:
627 return do_mpfr_arg1 (result, mpfr_sin, arg, format);
628
629 CASE_CFN_COS:
630 return do_mpfr_arg1 (result, mpfr_cos, arg, format);
631
632 CASE_CFN_TAN:
633 return do_mpfr_arg1 (result, mpfr_tan, arg, format);
634
635 CASE_CFN_SINH:
636 return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
637
638 CASE_CFN_COSH:
639 return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
640
641 CASE_CFN_TANH:
642 return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
643
644 CASE_CFN_ERF:
645 return do_mpfr_arg1 (result, mpfr_erf, arg, format);
646
647 CASE_CFN_ERFC:
648 return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
649
650 CASE_CFN_TGAMMA:
651 return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
652
653 CASE_CFN_EXP:
654 return do_mpfr_arg1 (result, mpfr_exp, arg, format);
655
656 CASE_CFN_EXP2:
657 return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
658
659 CASE_CFN_EXP10:
660 CASE_CFN_POW10:
661 return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
662
663 CASE_CFN_EXPM1:
664 return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
665
666 CASE_CFN_LOG:
667 return (real_compare (GT_EXPR, arg, &dconst0)
668 && do_mpfr_arg1 (result, mpfr_log, arg, format));
669
670 CASE_CFN_LOG2:
671 return (real_compare (GT_EXPR, arg, &dconst0)
672 && do_mpfr_arg1 (result, mpfr_log2, arg, format));
673
674 CASE_CFN_LOG10:
675 return (real_compare (GT_EXPR, arg, &dconst0)
676 && do_mpfr_arg1 (result, mpfr_log10, arg, format));
677
678 CASE_CFN_LOG1P:
679 return (real_compare (GT_EXPR, arg, &dconstm1)
680 && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
681
682 CASE_CFN_J0:
683 return do_mpfr_arg1 (result, mpfr_j0, arg, format);
684
685 CASE_CFN_J1:
686 return do_mpfr_arg1 (result, mpfr_j1, arg, format);
687
688 CASE_CFN_Y0:
689 return (real_compare (GT_EXPR, arg, &dconst0)
690 && do_mpfr_arg1 (result, mpfr_y0, arg, format));
691
692 CASE_CFN_Y1:
693 return (real_compare (GT_EXPR, arg, &dconst0)
694 && do_mpfr_arg1 (result, mpfr_y1, arg, format));
695
696 CASE_CFN_FLOOR:
697 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
698 {
699 real_floor (result, format, arg);
700 return true;
701 }
702 return false;
703
704 CASE_CFN_CEIL:
705 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
706 {
707 real_ceil (result, format, arg);
708 return true;
709 }
710 return false;
711
712 CASE_CFN_TRUNC:
713 real_trunc (result, format, arg);
714 return true;
715
716 CASE_CFN_ROUND:
717 if (!REAL_VALUE_ISNAN (*arg) || !flag_errno_math)
718 {
719 real_round (result, format, arg);
720 return true;
721 }
722 return false;
723
724 CASE_CFN_LOGB:
725 return fold_const_logb (result, arg, format);
726
727 CASE_CFN_SIGNIFICAND:
728 return fold_const_significand (result, arg, format);
729
730 default:
731 return false;
732 }
733}
734
735/* Try to evaluate:
736
737 *RESULT = FN (*ARG)
738
739 where FORMAT is the format of ARG and PRECISION is the number of
740 significant bits in the result. Return true on success. */
741
742static bool
743fold_const_call_ss (wide_int *result, combined_fn fn,
744 const real_value *arg, unsigned int precision,
745 const real_format *format)
746{
747 switch (fn)
748 {
749 CASE_CFN_SIGNBIT:
750 if (real_isneg (arg))
751 *result = wi::one (precision);
752 else
753 *result = wi::zero (precision);
754 return true;
755
756 CASE_CFN_ILOGB:
757 /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
758 Proceed iff radix == 2. In GCC, normalized significands are in
759 the range [0.5, 1.0). We want the exponent as if they were
760 [1.0, 2.0) so get the exponent and subtract 1. */
761 if (arg->cl == rvc_normal && format->b == 2)
762 {
763 *result = wi::shwi (REAL_EXP (arg) - 1, precision);
764 return true;
765 }
766 return false;
767
768 CASE_CFN_ICEIL:
769 CASE_CFN_LCEIL:
770 CASE_CFN_LLCEIL:
771 return fold_const_conversion (result, real_ceil, arg,
772 precision, format);
773
774 CASE_CFN_LFLOOR:
775 CASE_CFN_IFLOOR:
776 CASE_CFN_LLFLOOR:
777 return fold_const_conversion (result, real_floor, arg,
778 precision, format);
779
780 CASE_CFN_IROUND:
781 CASE_CFN_LROUND:
782 CASE_CFN_LLROUND:
783 return fold_const_conversion (result, real_round, arg,
784 precision, format);
785
786 CASE_CFN_IRINT:
787 CASE_CFN_LRINT:
788 CASE_CFN_LLRINT:
789 /* Not yet folded to a constant. */
790 return false;
791
792 CASE_CFN_FINITE:
793 case CFN_BUILT_IN_FINITED32:
794 case CFN_BUILT_IN_FINITED64:
795 case CFN_BUILT_IN_FINITED128:
796 case CFN_BUILT_IN_ISFINITE:
797 *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
798 return true;
799
800 CASE_CFN_ISINF:
801 case CFN_BUILT_IN_ISINFD32:
802 case CFN_BUILT_IN_ISINFD64:
803 case CFN_BUILT_IN_ISINFD128:
804 if (real_isinf (arg))
805 *result = wi::shwi (arg->sign ? -1 : 1, precision);
806 else
807 *result = wi::shwi (0, precision);
808 return true;
809
810 CASE_CFN_ISNAN:
811 case CFN_BUILT_IN_ISNAND32:
812 case CFN_BUILT_IN_ISNAND64:
813 case CFN_BUILT_IN_ISNAND128:
814 *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
815 return true;
816
817 default:
818 return false;
819 }
820}
821
822/* Try to evaluate:
823
824 *RESULT = FN (ARG)
825
826 where ARG_TYPE is the type of ARG and PRECISION is the number of bits
827 in the result. Return true on success. */
828
829static bool
830fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
831 unsigned int precision, tree arg_type)
832{
833 switch (fn)
834 {
835 CASE_CFN_FFS:
836 *result = wi::shwi (wi::ffs (arg), precision);
837 return true;
838
839 CASE_CFN_CLZ:
840 {
841 int tmp;
842 if (wi::ne_p (arg, 0))
843 tmp = wi::clz (arg);
844 else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (arg_type), tmp))
845 tmp = TYPE_PRECISION (arg_type);
846 *result = wi::shwi (tmp, precision);
847 return true;
848 }
849
850 CASE_CFN_CTZ:
851 {
852 int tmp;
853 if (wi::ne_p (arg, 0))
854 tmp = wi::ctz (arg);
855 else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (arg_type), tmp))
856 tmp = TYPE_PRECISION (arg_type);
857 *result = wi::shwi (tmp, precision);
858 return true;
859 }
860
861 CASE_CFN_CLRSB:
862 *result = wi::shwi (wi::clrsb (arg), precision);
863 return true;
864
865 CASE_CFN_POPCOUNT:
866 *result = wi::shwi (wi::popcount (arg), precision);
867 return true;
868
869 CASE_CFN_PARITY:
870 *result = wi::shwi (wi::parity (arg), precision);
871 return true;
872
873 case CFN_BUILT_IN_BSWAP16:
874 case CFN_BUILT_IN_BSWAP32:
875 case CFN_BUILT_IN_BSWAP64:
876 *result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
877 return true;
878
879 default:
880 return false;
881 }
882}
883
884/* Try to evaluate:
885
886 RESULT = FN (*ARG)
887
888 where FORMAT is the format of ARG and of the real and imaginary parts
889 of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
890 true on success. */
891
892static bool
893fold_const_call_cs (real_value *result_real, real_value *result_imag,
894 combined_fn fn, const real_value *arg,
895 const real_format *format)
896{
897 switch (fn)
898 {
899 CASE_CFN_CEXPI:
900 /* cexpi(x+yi) = cos(x)+sin(y)*i. */
901 return do_mpfr_sincos (result_imag, result_real, arg, format);
902
903 default:
904 return false;
905 }
906}
907
908/* Try to evaluate:
909
910 *RESULT = fn (ARG)
911
912 where FORMAT is the format of RESULT and of the real and imaginary parts
913 of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
914 success. */
915
916static bool
917fold_const_call_sc (real_value *result, combined_fn fn,
918 const real_value *arg_real, const real_value *arg_imag,
919 const real_format *format)
920{
921 switch (fn)
922 {
923 CASE_CFN_CABS:
924 return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
925
926 default:
927 return false;
928 }
929}
930
931/* Try to evaluate:
932
933 RESULT = fn (ARG)
934
935 where FORMAT is the format of the real and imaginary parts of RESULT
936 (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
937 Return true on success. */
938
939static bool
940fold_const_call_cc (real_value *result_real, real_value *result_imag,
941 combined_fn fn, const real_value *arg_real,
942 const real_value *arg_imag, const real_format *format)
943{
944 switch (fn)
945 {
946 CASE_CFN_CCOS:
947 return do_mpc_arg1 (result_real, result_imag, mpc_cos,
948 arg_real, arg_imag, format);
949
950 CASE_CFN_CCOSH:
951 return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
952 arg_real, arg_imag, format);
953
954 CASE_CFN_CPROJ:
955 if (real_isinf (arg_real) || real_isinf (arg_imag))
956 {
957 real_inf (result_real);
958 *result_imag = dconst0;
959 result_imag->sign = arg_imag->sign;
960 }
961 else
962 {
963 *result_real = *arg_real;
964 *result_imag = *arg_imag;
965 }
966 return true;
967
968 CASE_CFN_CSIN:
969 return do_mpc_arg1 (result_real, result_imag, mpc_sin,
970 arg_real, arg_imag, format);
971
972 CASE_CFN_CSINH:
973 return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
974 arg_real, arg_imag, format);
975
976 CASE_CFN_CTAN:
977 return do_mpc_arg1 (result_real, result_imag, mpc_tan,
978 arg_real, arg_imag, format);
979
980 CASE_CFN_CTANH:
981 return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
982 arg_real, arg_imag, format);
983
984 CASE_CFN_CLOG:
985 return do_mpc_arg1 (result_real, result_imag, mpc_log,
986 arg_real, arg_imag, format);
987
988 CASE_CFN_CSQRT:
989 return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
990 arg_real, arg_imag, format);
991
992 CASE_CFN_CASIN:
993 return do_mpc_arg1 (result_real, result_imag, mpc_asin,
994 arg_real, arg_imag, format);
995
996 CASE_CFN_CACOS:
997 return do_mpc_arg1 (result_real, result_imag, mpc_acos,
998 arg_real, arg_imag, format);
999
1000 CASE_CFN_CATAN:
1001 return do_mpc_arg1 (result_real, result_imag, mpc_atan,
1002 arg_real, arg_imag, format);
1003
1004 CASE_CFN_CASINH:
1005 return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
1006 arg_real, arg_imag, format);
1007
1008 CASE_CFN_CACOSH:
1009 return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
1010 arg_real, arg_imag, format);
1011
1012 CASE_CFN_CATANH:
1013 return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
1014 arg_real, arg_imag, format);
1015
1016 CASE_CFN_CEXP:
1017 return do_mpc_arg1 (result_real, result_imag, mpc_exp,
1018 arg_real, arg_imag, format);
1019
1020 default:
1021 return false;
1022 }
1023}
1024
1025/* Subroutine of fold_const_call, with the same interface. Handle cases
1026 where the arguments and result are numerical. */
1027
1028static tree
1029fold_const_call_1 (combined_fn fn, tree type, tree arg)
1030{
1031 machine_mode mode = TYPE_MODE (type);
1032 machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
1033
1034 if (integer_cst_p (arg))
1035 {
1036 if (SCALAR_INT_MODE_P (mode))
1037 {
1038 wide_int result;
1039 if (fold_const_call_ss (&result, fn, arg, TYPE_PRECISION (type),
1040 TREE_TYPE (arg)))
1041 return wide_int_to_tree (type, result);
1042 }
1043 return NULL_TREE;
1044 }
1045
1046 if (real_cst_p (arg))
1047 {
1048 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
1049 if (mode == arg_mode)
1050 {
1051 /* real -> real. */
1052 REAL_VALUE_TYPE result;
1053 if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
1054 REAL_MODE_FORMAT (mode)))
1055 return build_real (type, result);
1056 }
1057 else if (COMPLEX_MODE_P (mode)
1058 && GET_MODE_INNER (mode) == arg_mode)
1059 {
1060 /* real -> complex real. */
1061 REAL_VALUE_TYPE result_real, result_imag;
1062 if (fold_const_call_cs (&result_real, &result_imag, fn,
1063 TREE_REAL_CST_PTR (arg),
1064 REAL_MODE_FORMAT (arg_mode)))
1065 return build_complex (type,
1066 build_real (TREE_TYPE (type), result_real),
1067 build_real (TREE_TYPE (type), result_imag));
1068 }
1069 else if (INTEGRAL_TYPE_P (type))
1070 {
1071 /* real -> int. */
1072 wide_int result;
1073 if (fold_const_call_ss (&result, fn,
1074 TREE_REAL_CST_PTR (arg),
1075 TYPE_PRECISION (type),
1076 REAL_MODE_FORMAT (arg_mode)))
1077 return wide_int_to_tree (type, result);
1078 }
1079 return NULL_TREE;
1080 }
1081
1082 if (complex_cst_p (arg))
1083 {
1084 gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
1085 machine_mode inner_mode = GET_MODE_INNER (arg_mode);
1086 tree argr = TREE_REALPART (arg);
1087 tree argi = TREE_IMAGPART (arg);
1088 if (mode == arg_mode
1089 && real_cst_p (argr)
1090 && real_cst_p (argi))
1091 {
1092 /* complex real -> complex real. */
1093 REAL_VALUE_TYPE result_real, result_imag;
1094 if (fold_const_call_cc (&result_real, &result_imag, fn,
1095 TREE_REAL_CST_PTR (argr),
1096 TREE_REAL_CST_PTR (argi),
1097 REAL_MODE_FORMAT (inner_mode)))
1098 return build_complex (type,
1099 build_real (TREE_TYPE (type), result_real),
1100 build_real (TREE_TYPE (type), result_imag));
1101 }
1102 if (mode == inner_mode
1103 && real_cst_p (argr)
1104 && real_cst_p (argi))
1105 {
1106 /* complex real -> real. */
1107 REAL_VALUE_TYPE result;
1108 if (fold_const_call_sc (&result, fn,
1109 TREE_REAL_CST_PTR (argr),
1110 TREE_REAL_CST_PTR (argi),
1111 REAL_MODE_FORMAT (inner_mode)))
1112 return build_real (type, result);
1113 }
1114 return NULL_TREE;
1115 }
1116
1117 return NULL_TREE;
1118}
1119
1120/* Try to fold FN (ARG) to a constant. Return the constant on success,
1121 otherwise return null. TYPE is the type of the return value. */
1122
1123tree
1124fold_const_call (combined_fn fn, tree type, tree arg)
1125{
1126 switch (fn)
1127 {
1128 case CFN_BUILT_IN_STRLEN:
1129 if (const char *str = c_getstr (arg))
1130 return build_int_cst (type, strlen (str));
1131 return NULL_TREE;
1132
1133 CASE_CFN_NAN:
1134 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
1135 case CFN_BUILT_IN_NAND32:
1136 case CFN_BUILT_IN_NAND64:
1137 case CFN_BUILT_IN_NAND128:
1138 return fold_const_builtin_nan (type, arg, true);
1139
1140 CASE_CFN_NANS:
1141 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
1142 return fold_const_builtin_nan (type, arg, false);
1143
1144 default:
1145 return fold_const_call_1 (fn, type, arg);
1146 }
1147}
1148
1149/* Try to evaluate:
1150
1151 *RESULT = FN (*ARG0, *ARG1)
1152
1153 in format FORMAT. Return true on success. */
1154
1155static bool
1156fold_const_call_sss (real_value *result, combined_fn fn,
1157 const real_value *arg0, const real_value *arg1,
1158 const real_format *format)
1159{
1160 switch (fn)
1161 {
1162 CASE_CFN_DREM:
1163 CASE_CFN_REMAINDER:
1164 return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
1165
1166 CASE_CFN_ATAN2:
1167 return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
1168
1169 CASE_CFN_FDIM:
1170 return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
1171
1172 CASE_CFN_HYPOT:
1173 return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
1174
1175 CASE_CFN_COPYSIGN:
1176 *result = *arg0;
1177 real_copysign (result, arg1);
1178 return true;
1179
1180 CASE_CFN_FMIN:
1181 return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
1182
1183 CASE_CFN_FMAX:
1184 return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
1185
1186 CASE_CFN_POW:
1187 return fold_const_pow (result, arg0, arg1, format);
1188
1189 default:
1190 return false;
1191 }
1192}
1193
1194/* Try to evaluate:
1195
1196 *RESULT = FN (*ARG0, ARG1)
1197
1198 where FORMAT is the format of *RESULT and *ARG0. Return true on
1199 success. */
1200
1201static bool
1202fold_const_call_sss (real_value *result, combined_fn fn,
1203 const real_value *arg0, const wide_int_ref &arg1,
1204 const real_format *format)
1205{
1206 switch (fn)
1207 {
1208 CASE_CFN_LDEXP:
1209 return fold_const_builtin_load_exponent (result, arg0, arg1, format);
1210
1211 CASE_CFN_SCALBN:
1212 CASE_CFN_SCALBLN:
1213 return (format->b == 2
1214 && fold_const_builtin_load_exponent (result, arg0, arg1,
1215 format));
1216
1217 CASE_CFN_POWI:
1218 /* Avoid the folding if flag_signaling_nans is on and
1219 operand is a signaling NaN. */
1220 if (!flag_unsafe_math_optimizations
1221 && flag_signaling_nans
1222 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
1223 return false;
1224
1225 real_powi (result, format, arg0, arg1.to_shwi ());
1226 return true;
1227
1228 default:
1229 return false;
1230 }
1231}
1232
1233/* Try to evaluate:
1234
1235 *RESULT = FN (ARG0, *ARG1)
1236
1237 where FORMAT is the format of *RESULT and *ARG1. Return true on
1238 success. */
1239
1240static bool
1241fold_const_call_sss (real_value *result, combined_fn fn,
1242 const wide_int_ref &arg0, const real_value *arg1,
1243 const real_format *format)
1244{
1245 switch (fn)
1246 {
1247 CASE_CFN_JN:
1248 return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
1249
1250 CASE_CFN_YN:
1251 return (real_compare (GT_EXPR, arg1, &dconst0)
1252 && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
1253
1254 default:
1255 return false;
1256 }
1257}
1258
1259/* Try to evaluate:
1260
1261 RESULT = fn (ARG0, ARG1)
1262
1263 where FORMAT is the format of the real and imaginary parts of RESULT
1264 (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
1265 and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
1266
1267static bool
1268fold_const_call_ccc (real_value *result_real, real_value *result_imag,
1269 combined_fn fn, const real_value *arg0_real,
1270 const real_value *arg0_imag, const real_value *arg1_real,
1271 const real_value *arg1_imag, const real_format *format)
1272{
1273 switch (fn)
1274 {
1275 CASE_CFN_CPOW:
1276 return do_mpc_arg2 (result_real, result_imag, mpc_pow,
1277 arg0_real, arg0_imag, arg1_real, arg1_imag, format);
1278
1279 default:
1280 return false;
1281 }
1282}
1283
1284/* Subroutine of fold_const_call, with the same interface. Handle cases
1285 where the arguments and result are numerical. */
1286
1287static tree
1288fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
1289{
1290 machine_mode mode = TYPE_MODE (type);
1291 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1292 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1293
1294 if (arg0_mode == arg1_mode
1295 && real_cst_p (arg0)
1296 && real_cst_p (arg1))
1297 {
1298 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1299 if (mode == arg0_mode)
1300 {
1301 /* real, real -> real. */
1302 REAL_VALUE_TYPE result;
1303 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1304 TREE_REAL_CST_PTR (arg1),
1305 REAL_MODE_FORMAT (mode)))
1306 return build_real (type, result);
1307 }
1308 return NULL_TREE;
1309 }
1310
1311 if (real_cst_p (arg0)
1312 && integer_cst_p (arg1))
1313 {
1314 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1315 if (mode == arg0_mode)
1316 {
1317 /* real, int -> real. */
1318 REAL_VALUE_TYPE result;
1319 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1320 arg1, REAL_MODE_FORMAT (mode)))
1321 return build_real (type, result);
1322 }
1323 return NULL_TREE;
1324 }
1325
1326 if (integer_cst_p (arg0)
1327 && real_cst_p (arg1))
1328 {
1329 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
1330 if (mode == arg1_mode)
1331 {
1332 /* int, real -> real. */
1333 REAL_VALUE_TYPE result;
1334 if (fold_const_call_sss (&result, fn, arg0,
1335 TREE_REAL_CST_PTR (arg1),
1336 REAL_MODE_FORMAT (mode)))
1337 return build_real (type, result);
1338 }
1339 return NULL_TREE;
1340 }
1341
1342 if (arg0_mode == arg1_mode
1343 && complex_cst_p (arg0)
1344 && complex_cst_p (arg1))
1345 {
1346 gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
1347 machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
1348 tree arg0r = TREE_REALPART (arg0);
1349 tree arg0i = TREE_IMAGPART (arg0);
1350 tree arg1r = TREE_REALPART (arg1);
1351 tree arg1i = TREE_IMAGPART (arg1);
1352 if (mode == arg0_mode
1353 && real_cst_p (arg0r)
1354 && real_cst_p (arg0i)
1355 && real_cst_p (arg1r)
1356 && real_cst_p (arg1i))
1357 {
1358 /* complex real, complex real -> complex real. */
1359 REAL_VALUE_TYPE result_real, result_imag;
1360 if (fold_const_call_ccc (&result_real, &result_imag, fn,
1361 TREE_REAL_CST_PTR (arg0r),
1362 TREE_REAL_CST_PTR (arg0i),
1363 TREE_REAL_CST_PTR (arg1r),
1364 TREE_REAL_CST_PTR (arg1i),
1365 REAL_MODE_FORMAT (inner_mode)))
1366 return build_complex (type,
1367 build_real (TREE_TYPE (type), result_real),
1368 build_real (TREE_TYPE (type), result_imag));
1369 }
1370 return NULL_TREE;
1371 }
1372
1373 return NULL_TREE;
1374}
1375
1376/* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
1377 otherwise return null. TYPE is the type of the return value. */
1378
1379tree
1380fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
1381{
1382 const char *p0, *p1;
1383 switch (fn)
1384 {
1385 case CFN_BUILT_IN_STRSPN:
1386 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1387 return build_int_cst (type, strspn (p0, p1));
1388 return NULL_TREE;
1389
1390 case CFN_BUILT_IN_STRCSPN:
1391 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1392 return build_int_cst (type, strcspn (p0, p1));
1393 return NULL_TREE;
1394
1395 case CFN_BUILT_IN_STRCMP:
1396 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1397 return build_cmp_result (type, strcmp (p0, p1));
1398 return NULL_TREE;
1399
1400 default:
1401 return fold_const_call_1 (fn, type, arg0, arg1);
1402 }
1403}
1404
1405/* Try to evaluate:
1406
1407 *RESULT = FN (*ARG0, *ARG1, *ARG2)
1408
1409 in format FORMAT. Return true on success. */
1410
1411static bool
1412fold_const_call_ssss (real_value *result, combined_fn fn,
1413 const real_value *arg0, const real_value *arg1,
1414 const real_value *arg2, const real_format *format)
1415{
1416 switch (fn)
1417 {
1418 CASE_CFN_FMA:
1419 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
1420
1421 default:
1422 return false;
1423 }
1424}
1425
1426/* Subroutine of fold_const_call, with the same interface. Handle cases
1427 where the arguments and result are numerical. */
1428
1429static tree
1430fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1431{
1432 machine_mode mode = TYPE_MODE (type);
1433 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1434 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1435 machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
1436
1437 if (arg0_mode == arg1_mode
1438 && arg0_mode == arg2_mode
1439 && real_cst_p (arg0)
1440 && real_cst_p (arg1)
1441 && real_cst_p (arg2))
1442 {
1443 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1444 if (mode == arg0_mode)
1445 {
1446 /* real, real, real -> real. */
1447 REAL_VALUE_TYPE result;
1448 if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
1449 TREE_REAL_CST_PTR (arg1),
1450 TREE_REAL_CST_PTR (arg2),
1451 REAL_MODE_FORMAT (mode)))
1452 return build_real (type, result);
1453 }
1454 return NULL_TREE;
1455 }
1456
1457 return NULL_TREE;
1458}
1459
1460/* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
1461 success, otherwise return null. TYPE is the type of the return value. */
1462
1463tree
1464fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1465{
1466 const char *p0, *p1;
1467 size_t s2;
1468 switch (fn)
1469 {
1470 case CFN_BUILT_IN_STRNCMP:
1471 if ((p0 = c_getstr (arg0))
1472 && (p1 = c_getstr (arg1))
1473 && host_size_t_cst_p (arg2, &s2))
1474 return build_int_cst (type, strncmp (p0, p1, s2));
1475 return NULL_TREE;
1476
1477 case CFN_BUILT_IN_BCMP:
1478 case CFN_BUILT_IN_MEMCMP:
1479 if ((p0 = c_getstr (arg0))
1480 && (p1 = c_getstr (arg1))
1481 && host_size_t_cst_p (arg2, &s2)
1482 && s2 <= strlen (p0)
1483 && s2 <= strlen (p1))
1484 return build_cmp_result (type, memcmp (p0, p1, s2));
1485 return NULL_TREE;
1486
1487 default:
1488 return fold_const_call_1 (fn, type, arg0, arg1, arg2);
1489 }
1490}
1491
1492/* Fold a fma operation with arguments ARG[012]. */
1493
1494tree
1495fold_fma (location_t, tree type, tree arg0, tree arg1, tree arg2)
1496{
1497 REAL_VALUE_TYPE result;
1498 if (real_cst_p (arg0)
1499 && real_cst_p (arg1)
1500 && real_cst_p (arg2)
1501 && do_mpfr_arg3 (&result, mpfr_fma, TREE_REAL_CST_PTR (arg0),
1502 TREE_REAL_CST_PTR (arg1), TREE_REAL_CST_PTR (arg2),
1503 REAL_MODE_FORMAT (TYPE_MODE (type))))
1504 return build_real (type, result);
1505
1506 return NULL_TREE;
1507}