]> git.ipfire.org Git - thirdparty/gcc.git/blame_incremental - gcc/tree-parloops.c
[multiple changes]
[thirdparty/gcc.git] / gcc / tree-parloops.c
... / ...
CommitLineData
1/* Loop autoparallelization.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 3, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tree-flow.h"
27#include "cfgloop.h"
28#include "tree-data-ref.h"
29#include "tree-scalar-evolution.h"
30#include "gimple-pretty-print.h"
31#include "tree-pass.h"
32#include "langhooks.h"
33#include "tree-vectorizer.h"
34
35/* This pass tries to distribute iterations of loops into several threads.
36 The implementation is straightforward -- for each loop we test whether its
37 iterations are independent, and if it is the case (and some additional
38 conditions regarding profitability and correctness are satisfied), we
39 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
40 machinery do its job.
41
42 The most of the complexity is in bringing the code into shape expected
43 by the omp expanders:
44 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
45 variable and that the exit test is at the start of the loop body
46 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
47 variables by accesses through pointers, and breaking up ssa chains
48 by storing the values incoming to the parallelized loop to a structure
49 passed to the new function as an argument (something similar is done
50 in omp gimplification, unfortunately only a small part of the code
51 can be shared).
52
53 TODO:
54 -- if there are several parallelizable loops in a function, it may be
55 possible to generate the threads just once (using synchronization to
56 ensure that cross-loop dependences are obeyed).
57 -- handling of common reduction patterns for outer loops.
58
59 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
60/*
61 Reduction handling:
62 currently we use vect_force_simple_reduction() to detect reduction patterns.
63 The code transformation will be introduced by an example.
64
65
66parloop
67{
68 int sum=1;
69
70 for (i = 0; i < N; i++)
71 {
72 x[i] = i + 3;
73 sum+=x[i];
74 }
75}
76
77gimple-like code:
78header_bb:
79
80 # sum_29 = PHI <sum_11(5), 1(3)>
81 # i_28 = PHI <i_12(5), 0(3)>
82 D.1795_8 = i_28 + 3;
83 x[i_28] = D.1795_8;
84 sum_11 = D.1795_8 + sum_29;
85 i_12 = i_28 + 1;
86 if (N_6(D) > i_12)
87 goto header_bb;
88
89
90exit_bb:
91
92 # sum_21 = PHI <sum_11(4)>
93 printf (&"%d"[0], sum_21);
94
95
96after reduction transformation (only relevant parts):
97
98parloop
99{
100
101....
102
103
104 # Storing the initial value given by the user. #
105
106 .paral_data_store.32.sum.27 = 1;
107
108 #pragma omp parallel num_threads(4)
109
110 #pragma omp for schedule(static)
111
112 # The neutral element corresponding to the particular
113 reduction's operation, e.g. 0 for PLUS_EXPR,
114 1 for MULT_EXPR, etc. replaces the user's initial value. #
115
116 # sum.27_29 = PHI <sum.27_11, 0>
117
118 sum.27_11 = D.1827_8 + sum.27_29;
119
120 GIMPLE_OMP_CONTINUE
121
122 # Adding this reduction phi is done at create_phi_for_local_result() #
123 # sum.27_56 = PHI <sum.27_11, 0>
124 GIMPLE_OMP_RETURN
125
126 # Creating the atomic operation is done at
127 create_call_for_reduction_1() #
128
129 #pragma omp atomic_load
130 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
131 D.1840_60 = sum.27_56 + D.1839_59;
132 #pragma omp atomic_store (D.1840_60);
133
134 GIMPLE_OMP_RETURN
135
136 # collecting the result after the join of the threads is done at
137 create_loads_for_reductions().
138 The value computed by the threads is loaded from the
139 shared struct. #
140
141
142 .paral_data_load.33_52 = &.paral_data_store.32;
143 sum_37 = .paral_data_load.33_52->sum.27;
144 sum_43 = D.1795_41 + sum_37;
145
146 exit bb:
147 # sum_21 = PHI <sum_43, sum_26>
148 printf (&"%d"[0], sum_21);
149
150...
151
152}
153
154*/
155
156/* Minimal number of iterations of a loop that should be executed in each
157 thread. */
158#define MIN_PER_THREAD 100
159
160/* Element of the hashtable, representing a
161 reduction in the current loop. */
162struct reduction_info
163{
164 gimple reduc_stmt; /* reduction statement. */
165 gimple reduc_phi; /* The phi node defining the reduction. */
166 enum tree_code reduction_code;/* code for the reduction operation. */
167 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
168 result. */
169 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
170 of the reduction variable when existing the loop. */
171 tree initial_value; /* The initial value of the reduction var before entering the loop. */
172 tree field; /* the name of the field in the parloop data structure intended for reduction. */
173 tree init; /* reduction initialization value. */
174 gimple new_phi; /* (helper field) Newly created phi node whose result
175 will be passed to the atomic operation. Represents
176 the local result each thread computed for the reduction
177 operation. */
178};
179
180/* Equality and hash functions for hashtab code. */
181
182static int
183reduction_info_eq (const void *aa, const void *bb)
184{
185 const struct reduction_info *a = (const struct reduction_info *) aa;
186 const struct reduction_info *b = (const struct reduction_info *) bb;
187
188 return (a->reduc_phi == b->reduc_phi);
189}
190
191static hashval_t
192reduction_info_hash (const void *aa)
193{
194 const struct reduction_info *a = (const struct reduction_info *) aa;
195
196 return a->reduc_version;
197}
198
199static struct reduction_info *
200reduction_phi (htab_t reduction_list, gimple phi)
201{
202 struct reduction_info tmpred, *red;
203
204 if (htab_elements (reduction_list) == 0 || phi == NULL)
205 return NULL;
206
207 tmpred.reduc_phi = phi;
208 tmpred.reduc_version = gimple_uid (phi);
209 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
210
211 return red;
212}
213
214/* Element of hashtable of names to copy. */
215
216struct name_to_copy_elt
217{
218 unsigned version; /* The version of the name to copy. */
219 tree new_name; /* The new name used in the copy. */
220 tree field; /* The field of the structure used to pass the
221 value. */
222};
223
224/* Equality and hash functions for hashtab code. */
225
226static int
227name_to_copy_elt_eq (const void *aa, const void *bb)
228{
229 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
230 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
231
232 return a->version == b->version;
233}
234
235static hashval_t
236name_to_copy_elt_hash (const void *aa)
237{
238 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
239
240 return (hashval_t) a->version;
241}
242
243/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
244 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
245 represents the denominator for every element in the matrix. */
246typedef struct lambda_trans_matrix_s
247{
248 lambda_matrix matrix;
249 int rowsize;
250 int colsize;
251 int denominator;
252} *lambda_trans_matrix;
253#define LTM_MATRIX(T) ((T)->matrix)
254#define LTM_ROWSIZE(T) ((T)->rowsize)
255#define LTM_COLSIZE(T) ((T)->colsize)
256#define LTM_DENOMINATOR(T) ((T)->denominator)
257
258/* Allocate a new transformation matrix. */
259
260static lambda_trans_matrix
261lambda_trans_matrix_new (int colsize, int rowsize,
262 struct obstack * lambda_obstack)
263{
264 lambda_trans_matrix ret;
265
266 ret = (lambda_trans_matrix)
267 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
268 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
269 LTM_ROWSIZE (ret) = rowsize;
270 LTM_COLSIZE (ret) = colsize;
271 LTM_DENOMINATOR (ret) = 1;
272 return ret;
273}
274
275/* Multiply a vector VEC by a matrix MAT.
276 MAT is an M*N matrix, and VEC is a vector with length N. The result
277 is stored in DEST which must be a vector of length M. */
278
279static void
280lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
281 lambda_vector vec, lambda_vector dest)
282{
283 int i, j;
284
285 lambda_vector_clear (dest, m);
286 for (i = 0; i < m; i++)
287 for (j = 0; j < n; j++)
288 dest[i] += matrix[i][j] * vec[j];
289}
290
291/* Return true if TRANS is a legal transformation matrix that respects
292 the dependence vectors in DISTS and DIRS. The conservative answer
293 is false.
294
295 "Wolfe proves that a unimodular transformation represented by the
296 matrix T is legal when applied to a loop nest with a set of
297 lexicographically non-negative distance vectors RDG if and only if
298 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
299 i.e.: if and only if it transforms the lexicographically positive
300 distance vectors to lexicographically positive vectors. Note that
301 a unimodular matrix must transform the zero vector (and only it) to
302 the zero vector." S.Muchnick. */
303
304static bool
305lambda_transform_legal_p (lambda_trans_matrix trans,
306 int nb_loops,
307 VEC (ddr_p, heap) *dependence_relations)
308{
309 unsigned int i, j;
310 lambda_vector distres;
311 struct data_dependence_relation *ddr;
312
313 gcc_assert (LTM_COLSIZE (trans) == nb_loops
314 && LTM_ROWSIZE (trans) == nb_loops);
315
316 /* When there are no dependences, the transformation is correct. */
317 if (VEC_length (ddr_p, dependence_relations) == 0)
318 return true;
319
320 ddr = VEC_index (ddr_p, dependence_relations, 0);
321 if (ddr == NULL)
322 return true;
323
324 /* When there is an unknown relation in the dependence_relations, we
325 know that it is no worth looking at this loop nest: give up. */
326 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
327 return false;
328
329 distres = lambda_vector_new (nb_loops);
330
331 /* For each distance vector in the dependence graph. */
332 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
333 {
334 /* Don't care about relations for which we know that there is no
335 dependence, nor about read-read (aka. output-dependences):
336 these data accesses can happen in any order. */
337 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
338 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
339 continue;
340
341 /* Conservatively answer: "this transformation is not valid". */
342 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
343 return false;
344
345 /* If the dependence could not be captured by a distance vector,
346 conservatively answer that the transform is not valid. */
347 if (DDR_NUM_DIST_VECTS (ddr) == 0)
348 return false;
349
350 /* Compute trans.dist_vect */
351 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
352 {
353 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
354 DDR_DIST_VECT (ddr, j), distres);
355
356 if (!lambda_vector_lexico_pos (distres, nb_loops))
357 return false;
358 }
359 }
360 return true;
361}
362
363/* Data dependency analysis. Returns true if the iterations of LOOP
364 are independent on each other (that is, if we can execute them
365 in parallel). */
366
367static bool
368loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
369{
370 VEC (loop_p, heap) *loop_nest;
371 VEC (ddr_p, heap) *dependence_relations;
372 VEC (data_reference_p, heap) *datarefs;
373 lambda_trans_matrix trans;
374 bool ret = false;
375
376 if (dump_file && (dump_flags & TDF_DETAILS))
377 {
378 fprintf (dump_file, "Considering loop %d\n", loop->num);
379 if (!loop->inner)
380 fprintf (dump_file, "loop is innermost\n");
381 else
382 fprintf (dump_file, "loop NOT innermost\n");
383 }
384
385 /* Check for problems with dependences. If the loop can be reversed,
386 the iterations are independent. */
387 datarefs = VEC_alloc (data_reference_p, heap, 10);
388 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
389 loop_nest = VEC_alloc (loop_p, heap, 3);
390 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
391 &dependence_relations))
392 {
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
395 ret = false;
396 goto end;
397 }
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 dump_data_dependence_relations (dump_file, dependence_relations);
400
401 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
402 LTM_MATRIX (trans)[0][0] = -1;
403
404 if (lambda_transform_legal_p (trans, 1, dependence_relations))
405 {
406 ret = true;
407 if (dump_file && (dump_flags & TDF_DETAILS))
408 fprintf (dump_file, " SUCCESS: may be parallelized\n");
409 }
410 else if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 " FAILED: data dependencies exist across iterations\n");
413
414 end:
415 VEC_free (loop_p, heap, loop_nest);
416 free_dependence_relations (dependence_relations);
417 free_data_refs (datarefs);
418
419 return ret;
420}
421
422/* Return true when LOOP contains basic blocks marked with the
423 BB_IRREDUCIBLE_LOOP flag. */
424
425static inline bool
426loop_has_blocks_with_irreducible_flag (struct loop *loop)
427{
428 unsigned i;
429 basic_block *bbs = get_loop_body_in_dom_order (loop);
430 bool res = true;
431
432 for (i = 0; i < loop->num_nodes; i++)
433 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
434 goto end;
435
436 res = false;
437 end:
438 free (bbs);
439 return res;
440}
441
442/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
443 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
444 to their addresses that can be reused. The address of OBJ is known to
445 be invariant in the whole function. Other needed statements are placed
446 right before GSI. */
447
448static tree
449take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
450 gimple_stmt_iterator *gsi)
451{
452 int uid;
453 void **dslot;
454 struct int_tree_map ielt, *nielt;
455 tree *var_p, name, bvar, addr;
456 gimple stmt;
457 gimple_seq stmts;
458
459 /* Since the address of OBJ is invariant, the trees may be shared.
460 Avoid rewriting unrelated parts of the code. */
461 obj = unshare_expr (obj);
462 for (var_p = &obj;
463 handled_component_p (*var_p);
464 var_p = &TREE_OPERAND (*var_p, 0))
465 continue;
466
467 /* Canonicalize the access to base on a MEM_REF. */
468 if (DECL_P (*var_p))
469 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
470
471 /* Assign a canonical SSA name to the address of the base decl used
472 in the address and share it for all accesses and addresses based
473 on it. */
474 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
475 ielt.uid = uid;
476 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
477 if (!*dslot)
478 {
479 if (gsi == NULL)
480 return NULL;
481 addr = TREE_OPERAND (*var_p, 0);
482 bvar = create_tmp_var (TREE_TYPE (addr),
483 get_name (TREE_OPERAND
484 (TREE_OPERAND (*var_p, 0), 0)));
485 add_referenced_var (bvar);
486 stmt = gimple_build_assign (bvar, addr);
487 name = make_ssa_name (bvar, stmt);
488 gimple_assign_set_lhs (stmt, name);
489 gsi_insert_on_edge_immediate (entry, stmt);
490
491 nielt = XNEW (struct int_tree_map);
492 nielt->uid = uid;
493 nielt->to = name;
494 *dslot = nielt;
495 }
496 else
497 name = ((struct int_tree_map *) *dslot)->to;
498
499 /* Express the address in terms of the canonical SSA name. */
500 TREE_OPERAND (*var_p, 0) = name;
501 if (gsi == NULL)
502 return build_fold_addr_expr_with_type (obj, type);
503
504 name = force_gimple_operand (build_addr (obj, current_function_decl),
505 &stmts, true, NULL_TREE);
506 if (!gimple_seq_empty_p (stmts))
507 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
508
509 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
510 {
511 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
512 NULL_TREE);
513 if (!gimple_seq_empty_p (stmts))
514 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
515 }
516
517 return name;
518}
519
520/* Callback for htab_traverse. Create the initialization statement
521 for reduction described in SLOT, and place it at the preheader of
522 the loop described in DATA. */
523
524static int
525initialize_reductions (void **slot, void *data)
526{
527 tree init, c;
528 tree bvar, type, arg;
529 edge e;
530
531 struct reduction_info *const reduc = (struct reduction_info *) *slot;
532 struct loop *loop = (struct loop *) data;
533
534 /* Create initialization in preheader:
535 reduction_variable = initialization value of reduction. */
536
537 /* In the phi node at the header, replace the argument coming
538 from the preheader with the reduction initialization value. */
539
540 /* Create a new variable to initialize the reduction. */
541 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
542 bvar = create_tmp_var (type, "reduction");
543 add_referenced_var (bvar);
544
545 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
546 OMP_CLAUSE_REDUCTION);
547 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
548 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
549
550 init = omp_reduction_init (c, TREE_TYPE (bvar));
551 reduc->init = init;
552
553 /* Replace the argument representing the initialization value
554 with the initialization value for the reduction (neutral
555 element for the particular operation, e.g. 0 for PLUS_EXPR,
556 1 for MULT_EXPR, etc).
557 Keep the old value in a new variable "reduction_initial",
558 that will be taken in consideration after the parallel
559 computing is done. */
560
561 e = loop_preheader_edge (loop);
562 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
563 /* Create new variable to hold the initial value. */
564
565 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
566 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
567 reduc->initial_value = arg;
568 return 1;
569}
570
571struct elv_data
572{
573 struct walk_stmt_info info;
574 edge entry;
575 htab_t decl_address;
576 gimple_stmt_iterator *gsi;
577 bool changed;
578 bool reset;
579};
580
581/* Eliminates references to local variables in *TP out of the single
582 entry single exit region starting at DTA->ENTRY.
583 DECL_ADDRESS contains addresses of the references that had their
584 address taken already. If the expression is changed, CHANGED is
585 set to true. Callback for walk_tree. */
586
587static tree
588eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
589{
590 struct elv_data *const dta = (struct elv_data *) data;
591 tree t = *tp, var, addr, addr_type, type, obj;
592
593 if (DECL_P (t))
594 {
595 *walk_subtrees = 0;
596
597 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
598 return NULL_TREE;
599
600 type = TREE_TYPE (t);
601 addr_type = build_pointer_type (type);
602 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
603 dta->gsi);
604 if (dta->gsi == NULL && addr == NULL_TREE)
605 {
606 dta->reset = true;
607 return NULL_TREE;
608 }
609
610 *tp = build_simple_mem_ref (addr);
611
612 dta->changed = true;
613 return NULL_TREE;
614 }
615
616 if (TREE_CODE (t) == ADDR_EXPR)
617 {
618 /* ADDR_EXPR may appear in two contexts:
619 -- as a gimple operand, when the address taken is a function invariant
620 -- as gimple rhs, when the resulting address in not a function
621 invariant
622 We do not need to do anything special in the latter case (the base of
623 the memory reference whose address is taken may be replaced in the
624 DECL_P case). The former case is more complicated, as we need to
625 ensure that the new address is still a gimple operand. Thus, it
626 is not sufficient to replace just the base of the memory reference --
627 we need to move the whole computation of the address out of the
628 loop. */
629 if (!is_gimple_val (t))
630 return NULL_TREE;
631
632 *walk_subtrees = 0;
633 obj = TREE_OPERAND (t, 0);
634 var = get_base_address (obj);
635 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
636 return NULL_TREE;
637
638 addr_type = TREE_TYPE (t);
639 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
640 dta->gsi);
641 if (dta->gsi == NULL && addr == NULL_TREE)
642 {
643 dta->reset = true;
644 return NULL_TREE;
645 }
646 *tp = addr;
647
648 dta->changed = true;
649 return NULL_TREE;
650 }
651
652 if (!EXPR_P (t))
653 *walk_subtrees = 0;
654
655 return NULL_TREE;
656}
657
658/* Moves the references to local variables in STMT at *GSI out of the single
659 entry single exit region starting at ENTRY. DECL_ADDRESS contains
660 addresses of the references that had their address taken
661 already. */
662
663static void
664eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
665 htab_t decl_address)
666{
667 struct elv_data dta;
668 gimple stmt = gsi_stmt (*gsi);
669
670 memset (&dta.info, '\0', sizeof (dta.info));
671 dta.entry = entry;
672 dta.decl_address = decl_address;
673 dta.changed = false;
674 dta.reset = false;
675
676 if (gimple_debug_bind_p (stmt))
677 {
678 dta.gsi = NULL;
679 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
680 eliminate_local_variables_1, &dta.info, NULL);
681 if (dta.reset)
682 {
683 gimple_debug_bind_reset_value (stmt);
684 dta.changed = true;
685 }
686 }
687 else
688 {
689 dta.gsi = gsi;
690 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
691 }
692
693 if (dta.changed)
694 update_stmt (stmt);
695}
696
697/* Eliminates the references to local variables from the single entry
698 single exit region between the ENTRY and EXIT edges.
699
700 This includes:
701 1) Taking address of a local variable -- these are moved out of the
702 region (and temporary variable is created to hold the address if
703 necessary).
704
705 2) Dereferencing a local variable -- these are replaced with indirect
706 references. */
707
708static void
709eliminate_local_variables (edge entry, edge exit)
710{
711 basic_block bb;
712 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
713 unsigned i;
714 gimple_stmt_iterator gsi;
715 bool has_debug_stmt = false;
716 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
717 free);
718 basic_block entry_bb = entry->src;
719 basic_block exit_bb = exit->dest;
720
721 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
722
723 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
724 if (bb != entry_bb && bb != exit_bb)
725 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
726 if (is_gimple_debug (gsi_stmt (gsi)))
727 {
728 if (gimple_debug_bind_p (gsi_stmt (gsi)))
729 has_debug_stmt = true;
730 }
731 else
732 eliminate_local_variables_stmt (entry, &gsi, decl_address);
733
734 if (has_debug_stmt)
735 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
736 if (bb != entry_bb && bb != exit_bb)
737 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
738 if (gimple_debug_bind_p (gsi_stmt (gsi)))
739 eliminate_local_variables_stmt (entry, &gsi, decl_address);
740
741 htab_delete (decl_address);
742 VEC_free (basic_block, heap, body);
743}
744
745/* Returns true if expression EXPR is not defined between ENTRY and
746 EXIT, i.e. if all its operands are defined outside of the region. */
747
748static bool
749expr_invariant_in_region_p (edge entry, edge exit, tree expr)
750{
751 basic_block entry_bb = entry->src;
752 basic_block exit_bb = exit->dest;
753 basic_block def_bb;
754
755 if (is_gimple_min_invariant (expr))
756 return true;
757
758 if (TREE_CODE (expr) == SSA_NAME)
759 {
760 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
761 if (def_bb
762 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
763 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
764 return false;
765
766 return true;
767 }
768
769 return false;
770}
771
772/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
773 The copies are stored to NAME_COPIES, if NAME was already duplicated,
774 its duplicate stored in NAME_COPIES is returned.
775
776 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
777 duplicated, storing the copies in DECL_COPIES. */
778
779static tree
780separate_decls_in_region_name (tree name,
781 htab_t name_copies, htab_t decl_copies,
782 bool copy_name_p)
783{
784 tree copy, var, var_copy;
785 unsigned idx, uid, nuid;
786 struct int_tree_map ielt, *nielt;
787 struct name_to_copy_elt elt, *nelt;
788 void **slot, **dslot;
789
790 if (TREE_CODE (name) != SSA_NAME)
791 return name;
792
793 idx = SSA_NAME_VERSION (name);
794 elt.version = idx;
795 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
796 copy_name_p ? INSERT : NO_INSERT);
797 if (slot && *slot)
798 return ((struct name_to_copy_elt *) *slot)->new_name;
799
800 var = SSA_NAME_VAR (name);
801 uid = DECL_UID (var);
802 ielt.uid = uid;
803 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
804 if (!*dslot)
805 {
806 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
807 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
808 add_referenced_var (var_copy);
809 nielt = XNEW (struct int_tree_map);
810 nielt->uid = uid;
811 nielt->to = var_copy;
812 *dslot = nielt;
813
814 /* Ensure that when we meet this decl next time, we won't duplicate
815 it again. */
816 nuid = DECL_UID (var_copy);
817 ielt.uid = nuid;
818 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
819 gcc_assert (!*dslot);
820 nielt = XNEW (struct int_tree_map);
821 nielt->uid = nuid;
822 nielt->to = var_copy;
823 *dslot = nielt;
824 }
825 else
826 var_copy = ((struct int_tree_map *) *dslot)->to;
827
828 if (copy_name_p)
829 {
830 copy = duplicate_ssa_name (name, NULL);
831 nelt = XNEW (struct name_to_copy_elt);
832 nelt->version = idx;
833 nelt->new_name = copy;
834 nelt->field = NULL_TREE;
835 *slot = nelt;
836 }
837 else
838 {
839 gcc_assert (!slot);
840 copy = name;
841 }
842
843 SSA_NAME_VAR (copy) = var_copy;
844 return copy;
845}
846
847/* Finds the ssa names used in STMT that are defined outside the
848 region between ENTRY and EXIT and replaces such ssa names with
849 their duplicates. The duplicates are stored to NAME_COPIES. Base
850 decls of all ssa names used in STMT (including those defined in
851 LOOP) are replaced with the new temporary variables; the
852 replacement decls are stored in DECL_COPIES. */
853
854static void
855separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
856 htab_t name_copies, htab_t decl_copies)
857{
858 use_operand_p use;
859 def_operand_p def;
860 ssa_op_iter oi;
861 tree name, copy;
862 bool copy_name_p;
863
864 mark_virtual_ops_for_renaming (stmt);
865
866 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
867 {
868 name = DEF_FROM_PTR (def);
869 gcc_assert (TREE_CODE (name) == SSA_NAME);
870 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
871 false);
872 gcc_assert (copy == name);
873 }
874
875 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
876 {
877 name = USE_FROM_PTR (use);
878 if (TREE_CODE (name) != SSA_NAME)
879 continue;
880
881 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
882 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
883 copy_name_p);
884 SET_USE (use, copy);
885 }
886}
887
888/* Finds the ssa names used in STMT that are defined outside the
889 region between ENTRY and EXIT and replaces such ssa names with
890 their duplicates. The duplicates are stored to NAME_COPIES. Base
891 decls of all ssa names used in STMT (including those defined in
892 LOOP) are replaced with the new temporary variables; the
893 replacement decls are stored in DECL_COPIES. */
894
895static bool
896separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
897 htab_t decl_copies)
898{
899 use_operand_p use;
900 ssa_op_iter oi;
901 tree var, name;
902 struct int_tree_map ielt;
903 struct name_to_copy_elt elt;
904 void **slot, **dslot;
905
906 if (gimple_debug_bind_p (stmt))
907 var = gimple_debug_bind_get_var (stmt);
908 else if (gimple_debug_source_bind_p (stmt))
909 var = gimple_debug_source_bind_get_var (stmt);
910 else
911 return true;
912 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
913 return true;
914 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
915 ielt.uid = DECL_UID (var);
916 dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
917 if (!dslot)
918 return true;
919 if (gimple_debug_bind_p (stmt))
920 gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
921 else if (gimple_debug_source_bind_p (stmt))
922 gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
923
924 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
925 {
926 name = USE_FROM_PTR (use);
927 if (TREE_CODE (name) != SSA_NAME)
928 continue;
929
930 elt.version = SSA_NAME_VERSION (name);
931 slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
932 if (!slot)
933 {
934 gimple_debug_bind_reset_value (stmt);
935 update_stmt (stmt);
936 break;
937 }
938
939 SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
940 }
941
942 return false;
943}
944
945/* Callback for htab_traverse. Adds a field corresponding to the reduction
946 specified in SLOT. The type is passed in DATA. */
947
948static int
949add_field_for_reduction (void **slot, void *data)
950{
951
952 struct reduction_info *const red = (struct reduction_info *) *slot;
953 tree const type = (tree) data;
954 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
955 tree field = build_decl (gimple_location (red->reduc_stmt),
956 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
957
958 insert_field_into_struct (type, field);
959
960 red->field = field;
961
962 return 1;
963}
964
965/* Callback for htab_traverse. Adds a field corresponding to a ssa name
966 described in SLOT. The type is passed in DATA. */
967
968static int
969add_field_for_name (void **slot, void *data)
970{
971 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
972 tree type = (tree) data;
973 tree name = ssa_name (elt->version);
974 tree var = SSA_NAME_VAR (name);
975 tree field = build_decl (DECL_SOURCE_LOCATION (var),
976 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
977
978 insert_field_into_struct (type, field);
979 elt->field = field;
980
981 return 1;
982}
983
984/* Callback for htab_traverse. A local result is the intermediate result
985 computed by a single
986 thread, or the initial value in case no iteration was executed.
987 This function creates a phi node reflecting these values.
988 The phi's result will be stored in NEW_PHI field of the
989 reduction's data structure. */
990
991static int
992create_phi_for_local_result (void **slot, void *data)
993{
994 struct reduction_info *const reduc = (struct reduction_info *) *slot;
995 const struct loop *const loop = (const struct loop *) data;
996 edge e;
997 gimple new_phi;
998 basic_block store_bb;
999 tree local_res;
1000 source_location locus;
1001 tree block;
1002
1003 /* STORE_BB is the block where the phi
1004 should be stored. It is the destination of the loop exit.
1005 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1006 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1007
1008 /* STORE_BB has two predecessors. One coming from the loop
1009 (the reduction's result is computed at the loop),
1010 and another coming from a block preceding the loop,
1011 when no iterations
1012 are executed (the initial value should be taken). */
1013 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1014 e = EDGE_PRED (store_bb, 1);
1015 else
1016 e = EDGE_PRED (store_bb, 0);
1017 local_res
1018 = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
1019 NULL);
1020 locus = gimple_location (reduc->reduc_stmt);
1021 block = gimple_block (reduc->reduc_stmt);
1022 new_phi = create_phi_node (local_res, store_bb);
1023 SSA_NAME_DEF_STMT (local_res) = new_phi;
1024 add_phi_arg (new_phi, reduc->init, e, locus, block);
1025 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1026 FALLTHRU_EDGE (loop->latch), locus, block);
1027 reduc->new_phi = new_phi;
1028
1029 return 1;
1030}
1031
1032struct clsn_data
1033{
1034 tree store;
1035 tree load;
1036
1037 basic_block store_bb;
1038 basic_block load_bb;
1039};
1040
1041/* Callback for htab_traverse. Create an atomic instruction for the
1042 reduction described in SLOT.
1043 DATA annotates the place in memory the atomic operation relates to,
1044 and the basic block it needs to be generated in. */
1045
1046static int
1047create_call_for_reduction_1 (void **slot, void *data)
1048{
1049 struct reduction_info *const reduc = (struct reduction_info *) *slot;
1050 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1051 gimple_stmt_iterator gsi;
1052 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1053 tree load_struct;
1054 basic_block bb;
1055 basic_block new_bb;
1056 edge e;
1057 tree t, addr, ref, x;
1058 tree tmp_load, name;
1059 gimple load;
1060
1061 load_struct = build_simple_mem_ref (clsn_data->load);
1062 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1063
1064 addr = build_addr (t, current_function_decl);
1065
1066 /* Create phi node. */
1067 bb = clsn_data->load_bb;
1068
1069 e = split_block (bb, t);
1070 new_bb = e->dest;
1071
1072 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1073 add_referenced_var (tmp_load);
1074 tmp_load = make_ssa_name (tmp_load, NULL);
1075 load = gimple_build_omp_atomic_load (tmp_load, addr);
1076 SSA_NAME_DEF_STMT (tmp_load) = load;
1077 gsi = gsi_start_bb (new_bb);
1078 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1079
1080 e = split_block (new_bb, load);
1081 new_bb = e->dest;
1082 gsi = gsi_start_bb (new_bb);
1083 ref = tmp_load;
1084 x = fold_build2 (reduc->reduction_code,
1085 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1086 PHI_RESULT (reduc->new_phi));
1087
1088 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1089 GSI_CONTINUE_LINKING);
1090
1091 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1092 return 1;
1093}
1094
1095/* Create the atomic operation at the join point of the threads.
1096 REDUCTION_LIST describes the reductions in the LOOP.
1097 LD_ST_DATA describes the shared data structure where
1098 shared data is stored in and loaded from. */
1099static void
1100create_call_for_reduction (struct loop *loop, htab_t reduction_list,
1101 struct clsn_data *ld_st_data)
1102{
1103 htab_traverse (reduction_list, create_phi_for_local_result, loop);
1104 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1105 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1106 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1107}
1108
1109/* Callback for htab_traverse. Loads the final reduction value at the
1110 join point of all threads, and inserts it in the right place. */
1111
1112static int
1113create_loads_for_reductions (void **slot, void *data)
1114{
1115 struct reduction_info *const red = (struct reduction_info *) *slot;
1116 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1117 gimple stmt;
1118 gimple_stmt_iterator gsi;
1119 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1120 tree load_struct;
1121 tree name;
1122 tree x;
1123
1124 gsi = gsi_after_labels (clsn_data->load_bb);
1125 load_struct = build_simple_mem_ref (clsn_data->load);
1126 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1127 NULL_TREE);
1128
1129 x = load_struct;
1130 name = PHI_RESULT (red->keep_res);
1131 stmt = gimple_build_assign (name, x);
1132 SSA_NAME_DEF_STMT (name) = stmt;
1133
1134 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1135
1136 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1137 !gsi_end_p (gsi); gsi_next (&gsi))
1138 if (gsi_stmt (gsi) == red->keep_res)
1139 {
1140 remove_phi_node (&gsi, false);
1141 return 1;
1142 }
1143 gcc_unreachable ();
1144}
1145
1146/* Load the reduction result that was stored in LD_ST_DATA.
1147 REDUCTION_LIST describes the list of reductions that the
1148 loads should be generated for. */
1149static void
1150create_final_loads_for_reduction (htab_t reduction_list,
1151 struct clsn_data *ld_st_data)
1152{
1153 gimple_stmt_iterator gsi;
1154 tree t;
1155 gimple stmt;
1156
1157 gsi = gsi_after_labels (ld_st_data->load_bb);
1158 t = build_fold_addr_expr (ld_st_data->store);
1159 stmt = gimple_build_assign (ld_st_data->load, t);
1160
1161 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1162 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1163
1164 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1165
1166}
1167
1168/* Callback for htab_traverse. Store the neutral value for the
1169 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1170 1 for MULT_EXPR, etc. into the reduction field.
1171 The reduction is specified in SLOT. The store information is
1172 passed in DATA. */
1173
1174static int
1175create_stores_for_reduction (void **slot, void *data)
1176{
1177 struct reduction_info *const red = (struct reduction_info *) *slot;
1178 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1179 tree t;
1180 gimple stmt;
1181 gimple_stmt_iterator gsi;
1182 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1183
1184 gsi = gsi_last_bb (clsn_data->store_bb);
1185 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1186 stmt = gimple_build_assign (t, red->initial_value);
1187 mark_virtual_ops_for_renaming (stmt);
1188 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1189
1190 return 1;
1191}
1192
1193/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1194 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1195 specified in SLOT. */
1196
1197static int
1198create_loads_and_stores_for_name (void **slot, void *data)
1199{
1200 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1201 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1202 tree t;
1203 gimple stmt;
1204 gimple_stmt_iterator gsi;
1205 tree type = TREE_TYPE (elt->new_name);
1206 tree load_struct;
1207
1208 gsi = gsi_last_bb (clsn_data->store_bb);
1209 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1210 stmt = gimple_build_assign (t, ssa_name (elt->version));
1211 mark_virtual_ops_for_renaming (stmt);
1212 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1213
1214 gsi = gsi_last_bb (clsn_data->load_bb);
1215 load_struct = build_simple_mem_ref (clsn_data->load);
1216 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1217 stmt = gimple_build_assign (elt->new_name, t);
1218 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1219 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1220
1221 return 1;
1222}
1223
1224/* Moves all the variables used in LOOP and defined outside of it (including
1225 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1226 name) to a structure created for this purpose. The code
1227
1228 while (1)
1229 {
1230 use (a);
1231 use (b);
1232 }
1233
1234 is transformed this way:
1235
1236 bb0:
1237 old.a = a;
1238 old.b = b;
1239
1240 bb1:
1241 a' = new->a;
1242 b' = new->b;
1243 while (1)
1244 {
1245 use (a');
1246 use (b');
1247 }
1248
1249 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1250 pointer `new' is intentionally not initialized (the loop will be split to a
1251 separate function later, and `new' will be initialized from its arguments).
1252 LD_ST_DATA holds information about the shared data structure used to pass
1253 information among the threads. It is initialized here, and
1254 gen_parallel_loop will pass it to create_call_for_reduction that
1255 needs this information. REDUCTION_LIST describes the reductions
1256 in LOOP. */
1257
1258static void
1259separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1260 tree *arg_struct, tree *new_arg_struct,
1261 struct clsn_data *ld_st_data)
1262
1263{
1264 basic_block bb1 = split_edge (entry);
1265 basic_block bb0 = single_pred (bb1);
1266 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1267 name_to_copy_elt_eq, free);
1268 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1269 free);
1270 unsigned i;
1271 tree type, type_name, nvar;
1272 gimple_stmt_iterator gsi;
1273 struct clsn_data clsn_data;
1274 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1275 basic_block bb;
1276 basic_block entry_bb = bb1;
1277 basic_block exit_bb = exit->dest;
1278 bool has_debug_stmt = false;
1279
1280 entry = single_succ_edge (entry_bb);
1281 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1282
1283 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1284 {
1285 if (bb != entry_bb && bb != exit_bb)
1286 {
1287 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1288 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1289 name_copies, decl_copies);
1290
1291 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1292 {
1293 gimple stmt = gsi_stmt (gsi);
1294
1295 if (is_gimple_debug (stmt))
1296 has_debug_stmt = true;
1297 else
1298 separate_decls_in_region_stmt (entry, exit, stmt,
1299 name_copies, decl_copies);
1300 }
1301 }
1302 }
1303
1304 /* Now process debug bind stmts. We must not create decls while
1305 processing debug stmts, so we defer their processing so as to
1306 make sure we will have debug info for as many variables as
1307 possible (all of those that were dealt with in the loop above),
1308 and discard those for which we know there's nothing we can
1309 do. */
1310 if (has_debug_stmt)
1311 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1312 if (bb != entry_bb && bb != exit_bb)
1313 {
1314 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1315 {
1316 gimple stmt = gsi_stmt (gsi);
1317
1318 if (is_gimple_debug (stmt))
1319 {
1320 if (separate_decls_in_region_debug (stmt, name_copies,
1321 decl_copies))
1322 {
1323 gsi_remove (&gsi, true);
1324 continue;
1325 }
1326 }
1327
1328 gsi_next (&gsi);
1329 }
1330 }
1331
1332 VEC_free (basic_block, heap, body);
1333
1334 if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
1335 {
1336 /* It may happen that there is nothing to copy (if there are only
1337 loop carried and external variables in the loop). */
1338 *arg_struct = NULL;
1339 *new_arg_struct = NULL;
1340 }
1341 else
1342 {
1343 /* Create the type for the structure to store the ssa names to. */
1344 type = lang_hooks.types.make_type (RECORD_TYPE);
1345 type_name = build_decl (UNKNOWN_LOCATION,
1346 TYPE_DECL, create_tmp_var_name (".paral_data"),
1347 type);
1348 TYPE_NAME (type) = type_name;
1349
1350 htab_traverse (name_copies, add_field_for_name, type);
1351 if (reduction_list && htab_elements (reduction_list) > 0)
1352 {
1353 /* Create the fields for reductions. */
1354 htab_traverse (reduction_list, add_field_for_reduction,
1355 type);
1356 }
1357 layout_type (type);
1358
1359 /* Create the loads and stores. */
1360 *arg_struct = create_tmp_var (type, ".paral_data_store");
1361 add_referenced_var (*arg_struct);
1362 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1363 add_referenced_var (nvar);
1364 *new_arg_struct = make_ssa_name (nvar, NULL);
1365
1366 ld_st_data->store = *arg_struct;
1367 ld_st_data->load = *new_arg_struct;
1368 ld_st_data->store_bb = bb0;
1369 ld_st_data->load_bb = bb1;
1370
1371 htab_traverse (name_copies, create_loads_and_stores_for_name,
1372 ld_st_data);
1373
1374 /* Load the calculation from memory (after the join of the threads). */
1375
1376 if (reduction_list && htab_elements (reduction_list) > 0)
1377 {
1378 htab_traverse (reduction_list, create_stores_for_reduction,
1379 ld_st_data);
1380 clsn_data.load = make_ssa_name (nvar, NULL);
1381 clsn_data.load_bb = exit->dest;
1382 clsn_data.store = ld_st_data->store;
1383 create_final_loads_for_reduction (reduction_list, &clsn_data);
1384 }
1385 }
1386
1387 htab_delete (decl_copies);
1388 htab_delete (name_copies);
1389}
1390
1391/* Bitmap containing uids of functions created by parallelization. We cannot
1392 allocate it from the default obstack, as it must live across compilation
1393 of several functions; we make it gc allocated instead. */
1394
1395static GTY(()) bitmap parallelized_functions;
1396
1397/* Returns true if FN was created by create_loop_fn. */
1398
1399bool
1400parallelized_function_p (tree fn)
1401{
1402 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1403 return false;
1404
1405 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1406}
1407
1408/* Creates and returns an empty function that will receive the body of
1409 a parallelized loop. */
1410
1411static tree
1412create_loop_fn (location_t loc)
1413{
1414 char buf[100];
1415 char *tname;
1416 tree decl, type, name, t;
1417 struct function *act_cfun = cfun;
1418 static unsigned loopfn_num;
1419
1420 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1421 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1422 clean_symbol_name (tname);
1423 name = get_identifier (tname);
1424 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1425
1426 decl = build_decl (loc, FUNCTION_DECL, name, type);
1427 if (!parallelized_functions)
1428 parallelized_functions = BITMAP_GGC_ALLOC ();
1429 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1430
1431 TREE_STATIC (decl) = 1;
1432 TREE_USED (decl) = 1;
1433 DECL_ARTIFICIAL (decl) = 1;
1434 DECL_IGNORED_P (decl) = 0;
1435 TREE_PUBLIC (decl) = 0;
1436 DECL_UNINLINABLE (decl) = 1;
1437 DECL_EXTERNAL (decl) = 0;
1438 DECL_CONTEXT (decl) = NULL_TREE;
1439 DECL_INITIAL (decl) = make_node (BLOCK);
1440
1441 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1442 DECL_ARTIFICIAL (t) = 1;
1443 DECL_IGNORED_P (t) = 1;
1444 DECL_RESULT (decl) = t;
1445
1446 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1447 ptr_type_node);
1448 DECL_ARTIFICIAL (t) = 1;
1449 DECL_ARG_TYPE (t) = ptr_type_node;
1450 DECL_CONTEXT (t) = decl;
1451 TREE_USED (t) = 1;
1452 DECL_ARGUMENTS (decl) = t;
1453
1454 allocate_struct_function (decl, false);
1455
1456 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1457 it. */
1458 set_cfun (act_cfun);
1459
1460 return decl;
1461}
1462
1463/* Moves the exit condition of LOOP to the beginning of its header, and
1464 duplicates the part of the last iteration that gets disabled to the
1465 exit of the loop. NIT is the number of iterations of the loop
1466 (used to initialize the variables in the duplicated part).
1467
1468 TODO: the common case is that latch of the loop is empty and immediately
1469 follows the loop exit. In this case, it would be better not to copy the
1470 body of the loop, but only move the entry of the loop directly before the
1471 exit check and increase the number of iterations of the loop by one.
1472 This may need some additional preconditioning in case NIT = ~0.
1473 REDUCTION_LIST describes the reductions in LOOP. */
1474
1475static void
1476transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1477{
1478 basic_block *bbs, *nbbs, ex_bb, orig_header;
1479 unsigned n;
1480 bool ok;
1481 edge exit = single_dom_exit (loop), hpred;
1482 tree control, control_name, res, t;
1483 gimple phi, nphi, cond_stmt, stmt, cond_nit;
1484 gimple_stmt_iterator gsi;
1485 tree nit_1;
1486
1487 split_block_after_labels (loop->header);
1488 orig_header = single_succ (loop->header);
1489 hpred = single_succ_edge (loop->header);
1490
1491 cond_stmt = last_stmt (exit->src);
1492 control = gimple_cond_lhs (cond_stmt);
1493 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1494
1495 /* Make sure that we have phi nodes on exit for all loop header phis
1496 (create_parallel_loop requires that). */
1497 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1498 {
1499 phi = gsi_stmt (gsi);
1500 res = PHI_RESULT (phi);
1501 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1502 SET_PHI_RESULT (phi, t);
1503 nphi = create_phi_node (res, orig_header);
1504 SSA_NAME_DEF_STMT (res) = nphi;
1505 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION, NULL);
1506
1507 if (res == control)
1508 {
1509 gimple_cond_set_lhs (cond_stmt, t);
1510 update_stmt (cond_stmt);
1511 control = t;
1512 }
1513 }
1514
1515 bbs = get_loop_body_in_dom_order (loop);
1516
1517 for (n = 0; bbs[n] != exit->src; n++)
1518 continue;
1519 nbbs = XNEWVEC (basic_block, n);
1520 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1521 bbs + 1, n, nbbs);
1522 gcc_assert (ok);
1523 free (bbs);
1524 ex_bb = nbbs[0];
1525 free (nbbs);
1526
1527 /* Other than reductions, the only gimple reg that should be copied
1528 out of the loop is the control variable. */
1529 exit = single_dom_exit (loop);
1530 control_name = NULL_TREE;
1531 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1532 {
1533 phi = gsi_stmt (gsi);
1534 res = PHI_RESULT (phi);
1535 if (!is_gimple_reg (res))
1536 {
1537 gsi_next (&gsi);
1538 continue;
1539 }
1540
1541 /* Check if it is a part of reduction. If it is,
1542 keep the phi at the reduction's keep_res field. The
1543 PHI_RESULT of this phi is the resulting value of the reduction
1544 variable when exiting the loop. */
1545
1546 if (htab_elements (reduction_list) > 0)
1547 {
1548 struct reduction_info *red;
1549
1550 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1551 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1552 if (red)
1553 {
1554 red->keep_res = phi;
1555 gsi_next (&gsi);
1556 continue;
1557 }
1558 }
1559 gcc_assert (control_name == NULL_TREE
1560 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1561 control_name = res;
1562 remove_phi_node (&gsi, false);
1563 }
1564 gcc_assert (control_name != NULL_TREE);
1565
1566 /* Initialize the control variable to number of iterations
1567 according to the rhs of the exit condition. */
1568 gsi = gsi_after_labels (ex_bb);
1569 cond_nit = last_stmt (exit->src);
1570 nit_1 = gimple_cond_rhs (cond_nit);
1571 nit_1 = force_gimple_operand_gsi (&gsi,
1572 fold_convert (TREE_TYPE (control_name), nit_1),
1573 false, NULL_TREE, false, GSI_SAME_STMT);
1574 stmt = gimple_build_assign (control_name, nit_1);
1575 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1576 SSA_NAME_DEF_STMT (control_name) = stmt;
1577}
1578
1579/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1580 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1581 NEW_DATA is the variable that should be initialized from the argument
1582 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1583 basic block containing GIMPLE_OMP_PARALLEL tree. */
1584
1585static basic_block
1586create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1587 tree new_data, unsigned n_threads, location_t loc)
1588{
1589 gimple_stmt_iterator gsi;
1590 basic_block bb, paral_bb, for_bb, ex_bb;
1591 tree t, param;
1592 gimple stmt, for_stmt, phi, cond_stmt;
1593 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1594 edge exit, nexit, guard, end, e;
1595
1596 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1597 bb = loop_preheader_edge (loop)->src;
1598 paral_bb = single_pred (bb);
1599 gsi = gsi_last_bb (paral_bb);
1600
1601 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1602 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1603 = build_int_cst (integer_type_node, n_threads);
1604 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1605 gimple_set_location (stmt, loc);
1606
1607 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1608
1609 /* Initialize NEW_DATA. */
1610 if (data)
1611 {
1612 gsi = gsi_after_labels (bb);
1613
1614 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1615 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1616 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1617 SSA_NAME_DEF_STMT (param) = stmt;
1618
1619 stmt = gimple_build_assign (new_data,
1620 fold_convert (TREE_TYPE (new_data), param));
1621 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1622 SSA_NAME_DEF_STMT (new_data) = stmt;
1623 }
1624
1625 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1626 bb = split_loop_exit_edge (single_dom_exit (loop));
1627 gsi = gsi_last_bb (bb);
1628 stmt = gimple_build_omp_return (false);
1629 gimple_set_location (stmt, loc);
1630 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1631
1632 /* Extract data for GIMPLE_OMP_FOR. */
1633 gcc_assert (loop->header == single_dom_exit (loop)->src);
1634 cond_stmt = last_stmt (loop->header);
1635
1636 cvar = gimple_cond_lhs (cond_stmt);
1637 cvar_base = SSA_NAME_VAR (cvar);
1638 phi = SSA_NAME_DEF_STMT (cvar);
1639 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1640 initvar = make_ssa_name (cvar_base, NULL);
1641 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1642 initvar);
1643 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1644
1645 gsi = gsi_last_nondebug_bb (loop->latch);
1646 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1647 gsi_remove (&gsi, true);
1648
1649 /* Prepare cfg. */
1650 for_bb = split_edge (loop_preheader_edge (loop));
1651 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1652 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1653 gcc_assert (exit == single_dom_exit (loop));
1654
1655 guard = make_edge (for_bb, ex_bb, 0);
1656 single_succ_edge (loop->latch)->flags = 0;
1657 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1658 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1659 {
1660 source_location locus;
1661 tree block;
1662 tree def;
1663 phi = gsi_stmt (gsi);
1664 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1665
1666 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1667 locus = gimple_phi_arg_location_from_edge (stmt,
1668 loop_preheader_edge (loop));
1669 block = gimple_phi_arg_block_from_edge (stmt,
1670 loop_preheader_edge (loop));
1671 add_phi_arg (phi, def, guard, locus, block);
1672
1673 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1674 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1675 block = gimple_phi_arg_block_from_edge (stmt, loop_latch_edge (loop));
1676 add_phi_arg (phi, def, end, locus, block);
1677 }
1678 e = redirect_edge_and_branch (exit, nexit->dest);
1679 PENDING_STMT (e) = NULL;
1680
1681 /* Emit GIMPLE_OMP_FOR. */
1682 gimple_cond_set_lhs (cond_stmt, cvar_base);
1683 type = TREE_TYPE (cvar);
1684 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1685 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1686
1687 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1688 gimple_set_location (for_stmt, loc);
1689 gimple_omp_for_set_index (for_stmt, 0, initvar);
1690 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1691 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1692 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1693 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1694 cvar_base,
1695 build_int_cst (type, 1)));
1696
1697 gsi = gsi_last_bb (for_bb);
1698 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1699 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1700
1701 /* Emit GIMPLE_OMP_CONTINUE. */
1702 gsi = gsi_last_bb (loop->latch);
1703 stmt = gimple_build_omp_continue (cvar_next, cvar);
1704 gimple_set_location (stmt, loc);
1705 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1706 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1707
1708 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1709 gsi = gsi_last_bb (ex_bb);
1710 stmt = gimple_build_omp_return (true);
1711 gimple_set_location (stmt, loc);
1712 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1713
1714 /* After the above dom info is hosed. Re-compute it. */
1715 free_dominance_info (CDI_DOMINATORS);
1716 calculate_dominance_info (CDI_DOMINATORS);
1717
1718 return paral_bb;
1719}
1720
1721/* Generates code to execute the iterations of LOOP in N_THREADS
1722 threads in parallel.
1723
1724 NITER describes number of iterations of LOOP.
1725 REDUCTION_LIST describes the reductions existent in the LOOP. */
1726
1727static void
1728gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1729 unsigned n_threads, struct tree_niter_desc *niter)
1730{
1731 loop_iterator li;
1732 tree many_iterations_cond, type, nit;
1733 tree arg_struct, new_arg_struct;
1734 gimple_seq stmts;
1735 basic_block parallel_head;
1736 edge entry, exit;
1737 struct clsn_data clsn_data;
1738 unsigned prob;
1739 location_t loc;
1740 gimple cond_stmt;
1741 unsigned int m_p_thread=2;
1742
1743 /* From
1744
1745 ---------------------------------------------------------------------
1746 loop
1747 {
1748 IV = phi (INIT, IV + STEP)
1749 BODY1;
1750 if (COND)
1751 break;
1752 BODY2;
1753 }
1754 ---------------------------------------------------------------------
1755
1756 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1757 we generate the following code:
1758
1759 ---------------------------------------------------------------------
1760
1761 if (MAY_BE_ZERO
1762 || NITER < MIN_PER_THREAD * N_THREADS)
1763 goto original;
1764
1765 BODY1;
1766 store all local loop-invariant variables used in body of the loop to DATA.
1767 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1768 load the variables from DATA.
1769 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1770 BODY2;
1771 BODY1;
1772 GIMPLE_OMP_CONTINUE;
1773 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1774 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1775 goto end;
1776
1777 original:
1778 loop
1779 {
1780 IV = phi (INIT, IV + STEP)
1781 BODY1;
1782 if (COND)
1783 break;
1784 BODY2;
1785 }
1786
1787 end:
1788
1789 */
1790
1791 /* Create two versions of the loop -- in the old one, we know that the
1792 number of iterations is large enough, and we will transform it into the
1793 loop that will be split to loop_fn, the new one will be used for the
1794 remaining iterations. */
1795
1796 /* We should compute a better number-of-iterations value for outer loops.
1797 That is, if we have
1798
1799 for (i = 0; i < n; ++i)
1800 for (j = 0; j < m; ++j)
1801 ...
1802
1803 we should compute nit = n * m, not nit = n.
1804 Also may_be_zero handling would need to be adjusted. */
1805
1806 type = TREE_TYPE (niter->niter);
1807 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1808 NULL_TREE);
1809 if (stmts)
1810 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1811
1812 if (loop->inner)
1813 m_p_thread=2;
1814 else
1815 m_p_thread=MIN_PER_THREAD;
1816
1817 many_iterations_cond =
1818 fold_build2 (GE_EXPR, boolean_type_node,
1819 nit, build_int_cst (type, m_p_thread * n_threads));
1820
1821 many_iterations_cond
1822 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1823 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1824 many_iterations_cond);
1825 many_iterations_cond
1826 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1827 if (stmts)
1828 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1829 if (!is_gimple_condexpr (many_iterations_cond))
1830 {
1831 many_iterations_cond
1832 = force_gimple_operand (many_iterations_cond, &stmts,
1833 true, NULL_TREE);
1834 if (stmts)
1835 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1836 }
1837
1838 initialize_original_copy_tables ();
1839
1840 /* We assume that the loop usually iterates a lot. */
1841 prob = 4 * REG_BR_PROB_BASE / 5;
1842 loop_version (loop, many_iterations_cond, NULL,
1843 prob, prob, REG_BR_PROB_BASE - prob, true);
1844 update_ssa (TODO_update_ssa);
1845 free_original_copy_tables ();
1846
1847 /* Base all the induction variables in LOOP on a single control one. */
1848 canonicalize_loop_ivs (loop, &nit, true);
1849
1850 /* Ensure that the exit condition is the first statement in the loop. */
1851 transform_to_exit_first_loop (loop, reduction_list, nit);
1852
1853 /* Generate initializations for reductions. */
1854 if (htab_elements (reduction_list) > 0)
1855 htab_traverse (reduction_list, initialize_reductions, loop);
1856
1857 /* Eliminate the references to local variables from the loop. */
1858 gcc_assert (single_exit (loop));
1859 entry = loop_preheader_edge (loop);
1860 exit = single_dom_exit (loop);
1861
1862 eliminate_local_variables (entry, exit);
1863 /* In the old loop, move all variables non-local to the loop to a structure
1864 and back, and create separate decls for the variables used in loop. */
1865 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1866 &new_arg_struct, &clsn_data);
1867
1868 /* Create the parallel constructs. */
1869 loc = UNKNOWN_LOCATION;
1870 cond_stmt = last_stmt (loop->header);
1871 if (cond_stmt)
1872 loc = gimple_location (cond_stmt);
1873 parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1874 new_arg_struct, n_threads, loc);
1875 if (htab_elements (reduction_list) > 0)
1876 create_call_for_reduction (loop, reduction_list, &clsn_data);
1877
1878 scev_reset ();
1879
1880 /* Cancel the loop (it is simpler to do it here rather than to teach the
1881 expander to do it). */
1882 cancel_loop_tree (loop);
1883
1884 /* Free loop bound estimations that could contain references to
1885 removed statements. */
1886 FOR_EACH_LOOP (li, loop, 0)
1887 free_numbers_of_iterations_estimates_loop (loop);
1888
1889 /* Expand the parallel constructs. We do it directly here instead of running
1890 a separate expand_omp pass, since it is more efficient, and less likely to
1891 cause troubles with further analyses not being able to deal with the
1892 OMP trees. */
1893
1894 omp_expand_local (parallel_head);
1895}
1896
1897/* Returns true when LOOP contains vector phi nodes. */
1898
1899static bool
1900loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1901{
1902 unsigned i;
1903 basic_block *bbs = get_loop_body_in_dom_order (loop);
1904 gimple_stmt_iterator gsi;
1905 bool res = true;
1906
1907 for (i = 0; i < loop->num_nodes; i++)
1908 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1909 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1910 goto end;
1911
1912 res = false;
1913 end:
1914 free (bbs);
1915 return res;
1916}
1917
1918/* Create a reduction_info struct, initialize it with REDUC_STMT
1919 and PHI, insert it to the REDUCTION_LIST. */
1920
1921static void
1922build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
1923{
1924 PTR *slot;
1925 struct reduction_info *new_reduction;
1926
1927 gcc_assert (reduc_stmt);
1928
1929 if (dump_file && (dump_flags & TDF_DETAILS))
1930 {
1931 fprintf (dump_file,
1932 "Detected reduction. reduction stmt is: \n");
1933 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1934 fprintf (dump_file, "\n");
1935 }
1936
1937 new_reduction = XCNEW (struct reduction_info);
1938
1939 new_reduction->reduc_stmt = reduc_stmt;
1940 new_reduction->reduc_phi = phi;
1941 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1942 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1943 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
1944 *slot = new_reduction;
1945}
1946
1947/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1948
1949static int
1950set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
1951{
1952 struct reduction_info *const red = (struct reduction_info *) *slot;
1953 gimple_set_uid (red->reduc_phi, red->reduc_version);
1954 return 1;
1955}
1956
1957/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1958
1959static void
1960gather_scalar_reductions (loop_p loop, htab_t reduction_list)
1961{
1962 gimple_stmt_iterator gsi;
1963 loop_vec_info simple_loop_info;
1964
1965 vect_dump = NULL;
1966 simple_loop_info = vect_analyze_loop_form (loop);
1967
1968 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1969 {
1970 gimple phi = gsi_stmt (gsi);
1971 affine_iv iv;
1972 tree res = PHI_RESULT (phi);
1973 bool double_reduc;
1974
1975 if (!is_gimple_reg (res))
1976 continue;
1977
1978 if (!simple_iv (loop, loop, res, &iv, true)
1979 && simple_loop_info)
1980 {
1981 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1982 phi, true,
1983 &double_reduc);
1984 if (reduc_stmt && !double_reduc)
1985 build_new_reduction (reduction_list, reduc_stmt, phi);
1986 }
1987 }
1988 destroy_loop_vec_info (simple_loop_info, true);
1989
1990 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
1991 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
1992 only now. */
1993 htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
1994}
1995
1996/* Try to initialize NITER for code generation part. */
1997
1998static bool
1999try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2000{
2001 edge exit = single_dom_exit (loop);
2002
2003 gcc_assert (exit);
2004
2005 /* We need to know # of iterations, and there should be no uses of values
2006 defined inside loop outside of it, unless the values are invariants of
2007 the loop. */
2008 if (!number_of_iterations_exit (loop, exit, niter, false))
2009 {
2010 if (dump_file && (dump_flags & TDF_DETAILS))
2011 fprintf (dump_file, " FAILED: number of iterations not known\n");
2012 return false;
2013 }
2014
2015 return true;
2016}
2017
2018/* Try to initialize REDUCTION_LIST for code generation part.
2019 REDUCTION_LIST describes the reductions. */
2020
2021static bool
2022try_create_reduction_list (loop_p loop, htab_t reduction_list)
2023{
2024 edge exit = single_dom_exit (loop);
2025 gimple_stmt_iterator gsi;
2026
2027 gcc_assert (exit);
2028
2029 gather_scalar_reductions (loop, reduction_list);
2030
2031
2032 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2033 {
2034 gimple phi = gsi_stmt (gsi);
2035 struct reduction_info *red;
2036 imm_use_iterator imm_iter;
2037 use_operand_p use_p;
2038 gimple reduc_phi;
2039 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2040
2041 if (is_gimple_reg (val))
2042 {
2043 if (dump_file && (dump_flags & TDF_DETAILS))
2044 {
2045 fprintf (dump_file, "phi is ");
2046 print_gimple_stmt (dump_file, phi, 0, 0);
2047 fprintf (dump_file, "arg of phi to exit: value ");
2048 print_generic_expr (dump_file, val, 0);
2049 fprintf (dump_file, " used outside loop\n");
2050 fprintf (dump_file,
2051 " checking if it a part of reduction pattern: \n");
2052 }
2053 if (htab_elements (reduction_list) == 0)
2054 {
2055 if (dump_file && (dump_flags & TDF_DETAILS))
2056 fprintf (dump_file,
2057 " FAILED: it is not a part of reduction.\n");
2058 return false;
2059 }
2060 reduc_phi = NULL;
2061 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2062 {
2063 if (!gimple_debug_bind_p (USE_STMT (use_p))
2064 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2065 {
2066 reduc_phi = USE_STMT (use_p);
2067 break;
2068 }
2069 }
2070 red = reduction_phi (reduction_list, reduc_phi);
2071 if (red == NULL)
2072 {
2073 if (dump_file && (dump_flags & TDF_DETAILS))
2074 fprintf (dump_file,
2075 " FAILED: it is not a part of reduction.\n");
2076 return false;
2077 }
2078 if (dump_file && (dump_flags & TDF_DETAILS))
2079 {
2080 fprintf (dump_file, "reduction phi is ");
2081 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2082 fprintf (dump_file, "reduction stmt is ");
2083 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2084 }
2085 }
2086 }
2087
2088 /* The iterations of the loop may communicate only through bivs whose
2089 iteration space can be distributed efficiently. */
2090 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2091 {
2092 gimple phi = gsi_stmt (gsi);
2093 tree def = PHI_RESULT (phi);
2094 affine_iv iv;
2095
2096 if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
2097 {
2098 struct reduction_info *red;
2099
2100 red = reduction_phi (reduction_list, phi);
2101 if (red == NULL)
2102 {
2103 if (dump_file && (dump_flags & TDF_DETAILS))
2104 fprintf (dump_file,
2105 " FAILED: scalar dependency between iterations\n");
2106 return false;
2107 }
2108 }
2109 }
2110
2111
2112 return true;
2113}
2114
2115/* Detect parallel loops and generate parallel code using libgomp
2116 primitives. Returns true if some loop was parallelized, false
2117 otherwise. */
2118
2119bool
2120parallelize_loops (void)
2121{
2122 unsigned n_threads = flag_tree_parallelize_loops;
2123 bool changed = false;
2124 struct loop *loop;
2125 struct tree_niter_desc niter_desc;
2126 loop_iterator li;
2127 htab_t reduction_list;
2128 struct obstack parloop_obstack;
2129 HOST_WIDE_INT estimated;
2130 LOC loop_loc;
2131
2132 /* Do not parallelize loops in the functions created by parallelization. */
2133 if (parallelized_function_p (cfun->decl))
2134 return false;
2135 if (cfun->has_nonlocal_label)
2136 return false;
2137
2138 gcc_obstack_init (&parloop_obstack);
2139 reduction_list = htab_create (10, reduction_info_hash,
2140 reduction_info_eq, free);
2141 init_stmt_vec_info_vec ();
2142
2143 FOR_EACH_LOOP (li, loop, 0)
2144 {
2145 htab_empty (reduction_list);
2146 if (dump_file && (dump_flags & TDF_DETAILS))
2147 {
2148 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2149 if (loop->inner)
2150 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2151 else
2152 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2153 }
2154
2155 /* If we use autopar in graphite pass, we use its marked dependency
2156 checking results. */
2157 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2158 {
2159 if (dump_file && (dump_flags & TDF_DETAILS))
2160 fprintf (dump_file, "loop is not parallel according to graphite\n");
2161 continue;
2162 }
2163
2164 if (!single_dom_exit (loop))
2165 {
2166
2167 if (dump_file && (dump_flags & TDF_DETAILS))
2168 fprintf (dump_file, "loop is !single_dom_exit\n");
2169
2170 continue;
2171 }
2172
2173 if (/* And of course, the loop must be parallelizable. */
2174 !can_duplicate_loop_p (loop)
2175 || loop_has_blocks_with_irreducible_flag (loop)
2176 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2177 /* FIXME: the check for vector phi nodes could be removed. */
2178 || loop_has_vector_phi_nodes (loop))
2179 continue;
2180
2181 estimated = estimated_stmt_executions_int (loop);
2182 if (estimated == -1)
2183 estimated = max_stmt_executions_int (loop);
2184 /* FIXME: Bypass this check as graphite doesn't update the
2185 count and frequency correctly now. */
2186 if (!flag_loop_parallelize_all
2187 && ((estimated != -1
2188 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2189 /* Do not bother with loops in cold areas. */
2190 || optimize_loop_nest_for_size_p (loop)))
2191 continue;
2192
2193 if (!try_get_loop_niter (loop, &niter_desc))
2194 continue;
2195
2196 if (!try_create_reduction_list (loop, reduction_list))
2197 continue;
2198
2199 if (!flag_loop_parallelize_all
2200 && !loop_parallel_p (loop, &parloop_obstack))
2201 continue;
2202
2203 changed = true;
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 {
2206 if (loop->inner)
2207 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2208 else
2209 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2210 loop_loc = find_loop_location (loop);
2211 if (loop_loc != UNKNOWN_LOC)
2212 fprintf (dump_file, "\nloop at %s:%d: ",
2213 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
2214 }
2215 gen_parallel_loop (loop, reduction_list,
2216 n_threads, &niter_desc);
2217#ifdef ENABLE_CHECKING
2218 verify_flow_info ();
2219 verify_loop_structure ();
2220 verify_loop_closed_ssa (true);
2221#endif
2222 }
2223
2224 free_stmt_vec_info_vec ();
2225 htab_delete (reduction_list);
2226 obstack_free (&parloop_obstack, NULL);
2227
2228 /* Parallelization will cause new function calls to be inserted through
2229 which local variables will escape. Reset the points-to solution
2230 for ESCAPED. */
2231 if (changed)
2232 pt_solution_reset (&cfun->gimple_df->escaped);
2233
2234 return changed;
2235}
2236
2237#include "gt-tree-parloops.h"