]>
Commit | Line | Data |
---|---|---|
1 | /* Header file for the value range relational processing. | |
2 | Copyright (C) 2020-2025 Free Software Foundation, Inc. | |
3 | Contributed by Andrew MacLeod <amacleod@redhat.com> | |
4 | ||
5 | This file is part of GCC. | |
6 | ||
7 | GCC is free software; you can redistribute it and/or modify it under | |
8 | the terms of the GNU General Public License as published by the Free | |
9 | Software Foundation; either version 3, or (at your option) any later | |
10 | version. | |
11 | ||
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 | for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GCC; see the file COPYING3. If not see | |
19 | <http://www.gnu.org/licenses/>. */ | |
20 | ||
21 | #include "config.h" | |
22 | #include "system.h" | |
23 | #include "coretypes.h" | |
24 | #include "backend.h" | |
25 | #include "tree.h" | |
26 | #include "gimple.h" | |
27 | #include "ssa.h" | |
28 | ||
29 | #include "gimple-range.h" | |
30 | #include "tree-pretty-print.h" | |
31 | #include "gimple-pretty-print.h" | |
32 | #include "alloc-pool.h" | |
33 | #include "dominance.h" | |
34 | ||
35 | static const char *const kind_string[VREL_LAST] = | |
36 | { "varying", "undefined", "<", "<=", ">", ">=", "==", "!=", "pe8", "pe16", | |
37 | "pe32", "pe64" }; | |
38 | ||
39 | // Print a relation_kind REL to file F. | |
40 | ||
41 | void | |
42 | print_relation (FILE *f, relation_kind rel) | |
43 | { | |
44 | fprintf (f, " %s ", kind_string[rel]); | |
45 | } | |
46 | ||
47 | // This table is used to negate the operands. op1 REL op2 -> !(op1 REL op2). | |
48 | static const unsigned char rr_negate_table[VREL_LAST] = { | |
49 | VREL_VARYING, VREL_UNDEFINED, VREL_GE, VREL_GT, VREL_LE, VREL_LT, VREL_NE, | |
50 | VREL_EQ }; | |
51 | ||
52 | // Negate the relation, as in logical negation. | |
53 | ||
54 | relation_kind | |
55 | relation_negate (relation_kind r) | |
56 | { | |
57 | return relation_kind (rr_negate_table [r]); | |
58 | } | |
59 | ||
60 | // This table is used to swap the operands. op1 REL op2 -> op2 REL op1. | |
61 | static const unsigned char rr_swap_table[VREL_LAST] = { | |
62 | VREL_VARYING, VREL_UNDEFINED, VREL_GT, VREL_GE, VREL_LT, VREL_LE, VREL_EQ, | |
63 | VREL_NE }; | |
64 | ||
65 | // Return the relation as if the operands were swapped. | |
66 | ||
67 | relation_kind | |
68 | relation_swap (relation_kind r) | |
69 | { | |
70 | return relation_kind (rr_swap_table [r]); | |
71 | } | |
72 | ||
73 | // This table is used to perform an intersection between 2 relations. | |
74 | ||
75 | static const unsigned char rr_intersect_table[VREL_LAST][VREL_LAST] = { | |
76 | // VREL_VARYING | |
77 | { VREL_VARYING, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_GT, VREL_GE, VREL_EQ, | |
78 | VREL_NE }, | |
79 | // VREL_UNDEFINED | |
80 | { VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, | |
81 | VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED }, | |
82 | // VREL_LT | |
83 | { VREL_LT, VREL_UNDEFINED, VREL_LT, VREL_LT, VREL_UNDEFINED, VREL_UNDEFINED, | |
84 | VREL_UNDEFINED, VREL_LT }, | |
85 | // VREL_LE | |
86 | { VREL_LE, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_UNDEFINED, VREL_EQ, | |
87 | VREL_EQ, VREL_LT }, | |
88 | // VREL_GT | |
89 | { VREL_GT, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_GT, VREL_GT, | |
90 | VREL_UNDEFINED, VREL_GT }, | |
91 | // VREL_GE | |
92 | { VREL_GE, VREL_UNDEFINED, VREL_UNDEFINED, VREL_EQ, VREL_GT, VREL_GE, | |
93 | VREL_EQ, VREL_GT }, | |
94 | // VREL_EQ | |
95 | { VREL_EQ, VREL_UNDEFINED, VREL_UNDEFINED, VREL_EQ, VREL_UNDEFINED, VREL_EQ, | |
96 | VREL_EQ, VREL_UNDEFINED }, | |
97 | // VREL_NE | |
98 | { VREL_NE, VREL_UNDEFINED, VREL_LT, VREL_LT, VREL_GT, VREL_GT, | |
99 | VREL_UNDEFINED, VREL_NE } }; | |
100 | ||
101 | ||
102 | // Intersect relation R1 with relation R2 and return the resulting relation. | |
103 | ||
104 | relation_kind | |
105 | relation_intersect (relation_kind r1, relation_kind r2) | |
106 | { | |
107 | return relation_kind (rr_intersect_table[r1][r2]); | |
108 | } | |
109 | ||
110 | ||
111 | // This table is used to perform a union between 2 relations. | |
112 | ||
113 | static const unsigned char rr_union_table[VREL_LAST][VREL_LAST] = { | |
114 | // VREL_VARYING | |
115 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
116 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
117 | // VREL_UNDEFINED | |
118 | { VREL_VARYING, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_GT, VREL_GE, | |
119 | VREL_EQ, VREL_NE }, | |
120 | // VREL_LT | |
121 | { VREL_VARYING, VREL_LT, VREL_LT, VREL_LE, VREL_NE, VREL_VARYING, VREL_LE, | |
122 | VREL_NE }, | |
123 | // VREL_LE | |
124 | { VREL_VARYING, VREL_LE, VREL_LE, VREL_LE, VREL_VARYING, VREL_VARYING, | |
125 | VREL_LE, VREL_VARYING }, | |
126 | // VREL_GT | |
127 | { VREL_VARYING, VREL_GT, VREL_NE, VREL_VARYING, VREL_GT, VREL_GE, VREL_GE, | |
128 | VREL_NE }, | |
129 | // VREL_GE | |
130 | { VREL_VARYING, VREL_GE, VREL_VARYING, VREL_VARYING, VREL_GE, VREL_GE, | |
131 | VREL_GE, VREL_VARYING }, | |
132 | // VREL_EQ | |
133 | { VREL_VARYING, VREL_EQ, VREL_LE, VREL_LE, VREL_GE, VREL_GE, VREL_EQ, | |
134 | VREL_VARYING }, | |
135 | // VREL_NE | |
136 | { VREL_VARYING, VREL_NE, VREL_NE, VREL_VARYING, VREL_NE, VREL_VARYING, | |
137 | VREL_VARYING, VREL_NE } }; | |
138 | ||
139 | // Union relation R1 with relation R2 and return the result. | |
140 | ||
141 | relation_kind | |
142 | relation_union (relation_kind r1, relation_kind r2) | |
143 | { | |
144 | return relation_kind (rr_union_table[r1][r2]); | |
145 | } | |
146 | ||
147 | ||
148 | // This table is used to determine transitivity between 2 relations. | |
149 | // (A relation0 B) and (B relation1 C) implies (A result C) | |
150 | ||
151 | static const unsigned char rr_transitive_table[VREL_LAST][VREL_LAST] = { | |
152 | // VREL_VARYING | |
153 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
154 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
155 | // VREL_UNDEFINED | |
156 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
157 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
158 | // VREL_LT | |
159 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LT, VREL_VARYING, VREL_VARYING, | |
160 | VREL_LT, VREL_VARYING }, | |
161 | // VREL_LE | |
162 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LE, VREL_VARYING, VREL_VARYING, | |
163 | VREL_LE, VREL_VARYING }, | |
164 | // VREL_GT | |
165 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_GT, VREL_GT, | |
166 | VREL_GT, VREL_VARYING }, | |
167 | // VREL_GE | |
168 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_GT, VREL_GE, | |
169 | VREL_GE, VREL_VARYING }, | |
170 | // VREL_EQ | |
171 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LE, VREL_GT, VREL_GE, VREL_EQ, | |
172 | VREL_VARYING }, | |
173 | // VREL_NE | |
174 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
175 | VREL_VARYING, VREL_VARYING, VREL_VARYING } }; | |
176 | ||
177 | // Apply transitive operation between relation R1 and relation R2, and | |
178 | // return the resulting relation, if any. | |
179 | ||
180 | relation_kind | |
181 | relation_transitive (relation_kind r1, relation_kind r2) | |
182 | { | |
183 | return relation_kind (rr_transitive_table[r1][r2]); | |
184 | } | |
185 | ||
186 | // When one name is an equivalence of another, ensure the equivalence | |
187 | // range is correct. Specifically for floating point, a +0 is also | |
188 | // equivalent to a -0 which may not be reflected. See PR 111694. | |
189 | ||
190 | void | |
191 | adjust_equivalence_range (vrange &range) | |
192 | { | |
193 | if (range.undefined_p () || !is_a<frange> (range)) | |
194 | return; | |
195 | ||
196 | frange fr = as_a<frange> (range); | |
197 | // If range includes 0 make sure both signs of zero are included. | |
198 | if (fr.contains_p (dconst0) || fr.contains_p (dconstm0)) | |
199 | { | |
200 | frange zeros (range.type (), dconstm0, dconst0); | |
201 | range.union_ (zeros); | |
202 | } | |
203 | } | |
204 | ||
205 | // Given an equivalence set EQUIV, set all the bits in B that are still valid | |
206 | // members of EQUIV in basic block BB. | |
207 | ||
208 | void | |
209 | relation_oracle::valid_equivs (bitmap b, const_bitmap equivs, basic_block bb) | |
210 | { | |
211 | unsigned i; | |
212 | bitmap_iterator bi; | |
213 | EXECUTE_IF_SET_IN_BITMAP (equivs, 0, i, bi) | |
214 | { | |
215 | tree ssa = ssa_name (i); | |
216 | if (ssa && !SSA_NAME_IN_FREE_LIST (ssa)) | |
217 | { | |
218 | const_bitmap ssa_equiv = equiv_set (ssa, bb); | |
219 | if (ssa_equiv == equivs) | |
220 | bitmap_set_bit (b, i); | |
221 | } | |
222 | } | |
223 | } | |
224 | ||
225 | // Return any known relation between SSA1 and SSA2 before stmt S is executed. | |
226 | // If GET_RANGE is true, query the range of both operands first to ensure | |
227 | // the definitions have been processed and any relations have be created. | |
228 | ||
229 | relation_kind | |
230 | relation_oracle::query (gimple *s, tree ssa1, tree ssa2) | |
231 | { | |
232 | if (TREE_CODE (ssa1) != SSA_NAME || TREE_CODE (ssa2) != SSA_NAME) | |
233 | return VREL_VARYING; | |
234 | return query (gimple_bb (s), ssa1, ssa2); | |
235 | } | |
236 | ||
237 | // Return any known relation between SSA1 and SSA2 on edge E. | |
238 | // If GET_RANGE is true, query the range of both operands first to ensure | |
239 | // the definitions have been processed and any relations have be created. | |
240 | ||
241 | relation_kind | |
242 | relation_oracle::query (edge e, tree ssa1, tree ssa2) | |
243 | { | |
244 | basic_block bb; | |
245 | if (TREE_CODE (ssa1) != SSA_NAME || TREE_CODE (ssa2) != SSA_NAME) | |
246 | return VREL_VARYING; | |
247 | ||
248 | // Use destination block if it has a single predecessor, and this picks | |
249 | // up any relation on the edge. | |
250 | // Otherwise choose the src edge and the result is the same as on-exit. | |
251 | if (!single_pred_p (e->dest)) | |
252 | bb = e->src; | |
253 | else | |
254 | bb = e->dest; | |
255 | ||
256 | return query (bb, ssa1, ssa2); | |
257 | } | |
258 | // ------------------------------------------------------------------------- | |
259 | ||
260 | // The very first element in the m_equiv chain is actually just a summary | |
261 | // element in which the m_names bitmap is used to indicate that an ssa_name | |
262 | // has an equivalence set in this block. | |
263 | // This allows for much faster traversal of the DOM chain, as a search for | |
264 | // SSA_NAME simply requires walking the DOM chain until a block is found | |
265 | // which has the bit for SSA_NAME set. Then scan for the equivalency set in | |
266 | // that block. No previous lists need be searched. | |
267 | ||
268 | // If SSA has an equivalence in this list, find and return it. | |
269 | // Otherwise return NULL. | |
270 | ||
271 | equiv_chain * | |
272 | equiv_chain::find (unsigned ssa) | |
273 | { | |
274 | equiv_chain *ptr = NULL; | |
275 | // If there are equiv sets and SSA is in one in this list, find it. | |
276 | // Otherwise return NULL. | |
277 | if (bitmap_bit_p (m_names, ssa)) | |
278 | { | |
279 | for (ptr = m_next; ptr; ptr = ptr->m_next) | |
280 | if (bitmap_bit_p (ptr->m_names, ssa)) | |
281 | break; | |
282 | } | |
283 | return ptr; | |
284 | } | |
285 | ||
286 | // Dump the names in this equivalence set. | |
287 | ||
288 | void | |
289 | equiv_chain::dump (FILE *f) const | |
290 | { | |
291 | bitmap_iterator bi; | |
292 | unsigned i; | |
293 | ||
294 | if (!m_names || bitmap_empty_p (m_names)) | |
295 | return; | |
296 | fprintf (f, "Equivalence set : ["); | |
297 | unsigned c = 0; | |
298 | EXECUTE_IF_SET_IN_BITMAP (m_names, 0, i, bi) | |
299 | { | |
300 | if (ssa_name (i)) | |
301 | { | |
302 | if (c++) | |
303 | fprintf (f, ", "); | |
304 | print_generic_expr (f, ssa_name (i), TDF_SLIM); | |
305 | } | |
306 | } | |
307 | fprintf (f, "]\n"); | |
308 | } | |
309 | ||
310 | // Instantiate an equivalency oracle. | |
311 | ||
312 | equiv_oracle::equiv_oracle () | |
313 | { | |
314 | bitmap_obstack_initialize (&m_bitmaps); | |
315 | m_equiv.create (0); | |
316 | m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
317 | m_equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
318 | bitmap_tree_view (m_equiv_set); | |
319 | obstack_init (&m_chain_obstack); | |
320 | m_self_equiv.create (0); | |
321 | m_self_equiv.safe_grow_cleared (num_ssa_names + 1); | |
322 | m_partial.create (0); | |
323 | m_partial.safe_grow_cleared (num_ssa_names + 1); | |
324 | } | |
325 | ||
326 | // Destruct an equivalency oracle. | |
327 | ||
328 | equiv_oracle::~equiv_oracle () | |
329 | { | |
330 | m_partial.release (); | |
331 | m_self_equiv.release (); | |
332 | obstack_free (&m_chain_obstack, NULL); | |
333 | m_equiv.release (); | |
334 | bitmap_obstack_release (&m_bitmaps); | |
335 | } | |
336 | ||
337 | // Add a partial equivalence R between OP1 and OP2. | |
338 | ||
339 | void | |
340 | equiv_oracle::add_partial_equiv (relation_kind r, tree op1, tree op2) | |
341 | { | |
342 | int v1 = SSA_NAME_VERSION (op1); | |
343 | int v2 = SSA_NAME_VERSION (op2); | |
344 | int prec2 = TYPE_PRECISION (TREE_TYPE (op2)); | |
345 | int bits = pe_to_bits (r); | |
346 | gcc_checking_assert (bits && prec2 >= bits); | |
347 | ||
348 | if (v1 >= (int)m_partial.length () || v2 >= (int)m_partial.length ()) | |
349 | m_partial.safe_grow_cleared (num_ssa_names + 1); | |
350 | gcc_checking_assert (v1 < (int)m_partial.length () | |
351 | && v2 < (int)m_partial.length ()); | |
352 | ||
353 | pe_slice &pe1 = m_partial[v1]; | |
354 | pe_slice &pe2 = m_partial[v2]; | |
355 | ||
356 | if (pe1.members) | |
357 | { | |
358 | // If the definition pe1 already has an entry, either the stmt is | |
359 | // being re-evaluated, or the def was used before being registered. | |
360 | // In either case, if PE2 has an entry, we simply do nothing. | |
361 | if (pe2.members) | |
362 | return; | |
363 | // If there are no uses of op2, do not register. | |
364 | if (has_zero_uses (op2)) | |
365 | return; | |
366 | // PE1 is the LHS and already has members, so everything in the set | |
367 | // should be a slice of PE2 rather than PE1. | |
368 | pe2.code = pe_min (r, pe1.code); | |
369 | pe2.ssa_base = op2; | |
370 | pe2.members = pe1.members; | |
371 | bitmap_iterator bi; | |
372 | unsigned x; | |
373 | EXECUTE_IF_SET_IN_BITMAP (pe1.members, 0, x, bi) | |
374 | { | |
375 | m_partial[x].ssa_base = op2; | |
376 | m_partial[x].code = pe_min (m_partial[x].code, pe2.code); | |
377 | } | |
378 | bitmap_set_bit (pe1.members, v2); | |
379 | return; | |
380 | } | |
381 | if (pe2.members) | |
382 | { | |
383 | // If there are no uses of op1, do not register. | |
384 | if (has_zero_uses (op1)) | |
385 | return; | |
386 | pe1.ssa_base = pe2.ssa_base; | |
387 | // If pe2 is a 16 bit value, but only an 8 bit copy, we can't be any | |
388 | // more than an 8 bit equivalence here, so choose MIN value. | |
389 | pe1.code = pe_min (r, pe2.code); | |
390 | pe1.members = pe2.members; | |
391 | bitmap_set_bit (pe1.members, v1); | |
392 | } | |
393 | else | |
394 | { | |
395 | // If there are no uses of either operand, do not register. | |
396 | if (has_zero_uses (op1) || has_zero_uses (op2)) | |
397 | return; | |
398 | // Neither name has an entry, simply create op1 as slice of op2. | |
399 | pe2.code = bits_to_pe (TYPE_PRECISION (TREE_TYPE (op2))); | |
400 | if (pe2.code == VREL_VARYING) | |
401 | return; | |
402 | pe2.ssa_base = op2; | |
403 | pe2.members = BITMAP_ALLOC (&m_bitmaps); | |
404 | bitmap_set_bit (pe2.members, v2); | |
405 | pe1.ssa_base = op2; | |
406 | pe1.code = r; | |
407 | pe1.members = pe2.members; | |
408 | bitmap_set_bit (pe1.members, v1); | |
409 | } | |
410 | } | |
411 | ||
412 | // Return the set of partial equivalences associated with NAME. The bitmap | |
413 | // will be NULL if there are none. | |
414 | ||
415 | const pe_slice * | |
416 | equiv_oracle::partial_equiv_set (tree name) | |
417 | { | |
418 | int v = SSA_NAME_VERSION (name); | |
419 | if (v >= (int)m_partial.length ()) | |
420 | return NULL; | |
421 | return &m_partial[v]; | |
422 | } | |
423 | ||
424 | // Query if there is a partial equivalence between SSA1 and SSA2. Return | |
425 | // VREL_VARYING if there is not one. If BASE is non-null, return the base | |
426 | // ssa-name this is a slice of. | |
427 | ||
428 | relation_kind | |
429 | equiv_oracle::partial_equiv (tree ssa1, tree ssa2, tree *base) const | |
430 | { | |
431 | int v1 = SSA_NAME_VERSION (ssa1); | |
432 | int v2 = SSA_NAME_VERSION (ssa2); | |
433 | ||
434 | if (v1 >= (int)m_partial.length () || v2 >= (int)m_partial.length ()) | |
435 | return VREL_VARYING; | |
436 | ||
437 | const pe_slice &pe1 = m_partial[v1]; | |
438 | const pe_slice &pe2 = m_partial[v2]; | |
439 | if (pe1.members && pe2.members == pe1.members) | |
440 | { | |
441 | if (base) | |
442 | *base = pe1.ssa_base; | |
443 | return pe_min (pe1.code, pe2.code); | |
444 | } | |
445 | return VREL_VARYING; | |
446 | } | |
447 | ||
448 | ||
449 | // Find and return the equivalency set for SSA along the dominators of BB. | |
450 | // This is the external API. | |
451 | ||
452 | const_bitmap | |
453 | equiv_oracle::equiv_set (tree ssa, basic_block bb) | |
454 | { | |
455 | // Search the dominator tree for an equivalency. | |
456 | equiv_chain *equiv = find_equiv_dom (ssa, bb); | |
457 | if (equiv) | |
458 | return equiv->m_names; | |
459 | ||
460 | // Otherwise return a cached equiv set containing just this SSA. | |
461 | unsigned v = SSA_NAME_VERSION (ssa); | |
462 | if (v >= m_self_equiv.length ()) | |
463 | m_self_equiv.safe_grow_cleared (num_ssa_names + 1); | |
464 | ||
465 | if (!m_self_equiv[v]) | |
466 | { | |
467 | m_self_equiv[v] = BITMAP_ALLOC (&m_bitmaps); | |
468 | bitmap_set_bit (m_self_equiv[v], v); | |
469 | } | |
470 | return m_self_equiv[v]; | |
471 | } | |
472 | ||
473 | // Query if there is a relation (equivalence) between 2 SSA_NAMEs. | |
474 | ||
475 | relation_kind | |
476 | equiv_oracle::query (basic_block bb, tree ssa1, tree ssa2) | |
477 | { | |
478 | // If the 2 ssa names share the same equiv set, they are equal. | |
479 | if (equiv_set (ssa1, bb) == equiv_set (ssa2, bb)) | |
480 | return VREL_EQ; | |
481 | ||
482 | // Check if there is a partial equivalence. | |
483 | return partial_equiv (ssa1, ssa2); | |
484 | } | |
485 | ||
486 | // Query if there is a relation (equivalence) between 2 SSA_NAMEs. | |
487 | ||
488 | relation_kind | |
489 | equiv_oracle::query (basic_block bb ATTRIBUTE_UNUSED, const_bitmap e1, | |
490 | const_bitmap e2) | |
491 | { | |
492 | // If the 2 ssa names share the same equiv set, they are equal. | |
493 | if (bitmap_equal_p (e1, e2)) | |
494 | return VREL_EQ; | |
495 | return VREL_VARYING; | |
496 | } | |
497 | ||
498 | // If SSA has an equivalence in block BB, find and return it. | |
499 | // Otherwise return NULL. | |
500 | ||
501 | equiv_chain * | |
502 | equiv_oracle::find_equiv_block (unsigned ssa, int bb) const | |
503 | { | |
504 | if (bb >= (int)m_equiv.length () || !m_equiv[bb]) | |
505 | return NULL; | |
506 | ||
507 | return m_equiv[bb]->find (ssa); | |
508 | } | |
509 | ||
510 | // Starting at block BB, walk the dominator chain looking for the nearest | |
511 | // equivalence set containing NAME. | |
512 | ||
513 | equiv_chain * | |
514 | equiv_oracle::find_equiv_dom (tree name, basic_block bb) const | |
515 | { | |
516 | unsigned v = SSA_NAME_VERSION (name); | |
517 | // Short circuit looking for names which have no equivalences. | |
518 | // Saves time looking for something which does not exist. | |
519 | if (!bitmap_bit_p (m_equiv_set, v)) | |
520 | return NULL; | |
521 | ||
522 | // NAME has at least once equivalence set, check to see if it has one along | |
523 | // the dominator tree. | |
524 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
525 | { | |
526 | equiv_chain *ptr = find_equiv_block (v, bb->index); | |
527 | if (ptr) | |
528 | return ptr; | |
529 | } | |
530 | return NULL; | |
531 | } | |
532 | ||
533 | // Register equivalence between ssa_name V and set EQUIV in block BB, | |
534 | ||
535 | bitmap | |
536 | equiv_oracle::register_equiv (basic_block bb, unsigned v, equiv_chain *equiv) | |
537 | { | |
538 | // V will have an equivalency now. | |
539 | bitmap_set_bit (m_equiv_set, v); | |
540 | ||
541 | // If that equiv chain is in this block, simply use it. | |
542 | if (equiv->m_bb == bb) | |
543 | { | |
544 | bitmap_set_bit (equiv->m_names, v); | |
545 | bitmap_set_bit (m_equiv[bb->index]->m_names, v); | |
546 | return NULL; | |
547 | } | |
548 | ||
549 | // Otherwise create an equivalence for this block which is a copy | |
550 | // of equiv, the add V to the set. | |
551 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
552 | valid_equivs (b, equiv->m_names, bb); | |
553 | bitmap_set_bit (b, v); | |
554 | return b; | |
555 | } | |
556 | ||
557 | // Register equivalence between set equiv_1 and equiv_2 in block BB. | |
558 | // Return NULL if either name can be merged with the other. Otherwise | |
559 | // return a pointer to the combined bitmap of names. This allows the | |
560 | // caller to do any setup required for a new element. | |
561 | ||
562 | bitmap | |
563 | equiv_oracle::register_equiv (basic_block bb, equiv_chain *equiv_1, | |
564 | equiv_chain *equiv_2) | |
565 | { | |
566 | // If equiv_1 is already in BB, use it as the combined set. | |
567 | if (equiv_1->m_bb == bb) | |
568 | { | |
569 | valid_equivs (equiv_1->m_names, equiv_2->m_names, bb); | |
570 | // Its hard to delete from a single linked list, so | |
571 | // just clear the second one. | |
572 | if (equiv_2->m_bb == bb) | |
573 | bitmap_clear (equiv_2->m_names); | |
574 | else | |
575 | // Ensure the new names are in the summary for BB. | |
576 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_1->m_names); | |
577 | return NULL; | |
578 | } | |
579 | // If equiv_2 is in BB, use it for the combined set. | |
580 | if (equiv_2->m_bb == bb) | |
581 | { | |
582 | valid_equivs (equiv_2->m_names, equiv_1->m_names, bb); | |
583 | // Ensure the new names are in the summary. | |
584 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_2->m_names); | |
585 | return NULL; | |
586 | } | |
587 | ||
588 | // At this point, neither equivalence is from this block. | |
589 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
590 | valid_equivs (b, equiv_1->m_names, bb); | |
591 | valid_equivs (b, equiv_2->m_names, bb); | |
592 | return b; | |
593 | } | |
594 | ||
595 | // Create an equivalency set containing only SSA in its definition block. | |
596 | // This is done the first time SSA is registered in an equivalency and blocks | |
597 | // any DOM searches past the definition. | |
598 | ||
599 | void | |
600 | equiv_oracle::register_initial_def (tree ssa) | |
601 | { | |
602 | if (SSA_NAME_IS_DEFAULT_DEF (ssa)) | |
603 | return; | |
604 | basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (ssa)); | |
605 | ||
606 | // If defining stmt is not in the IL, simply return. | |
607 | if (!bb) | |
608 | return; | |
609 | gcc_checking_assert (!find_equiv_dom (ssa, bb)); | |
610 | ||
611 | unsigned v = SSA_NAME_VERSION (ssa); | |
612 | bitmap_set_bit (m_equiv_set, v); | |
613 | bitmap equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
614 | bitmap_set_bit (equiv_set, v); | |
615 | add_equiv_to_block (bb, equiv_set); | |
616 | } | |
617 | ||
618 | // Register an equivalence between SSA1 and SSA2 in block BB. | |
619 | // The equivalence oracle maintains a vector of equivalencies indexed by basic | |
620 | // block. When an equivalence between SSA1 and SSA2 is registered in block BB, | |
621 | // a query is made as to what equivalences both names have already, and | |
622 | // any preexisting equivalences are merged to create a single equivalence | |
623 | // containing all the ssa_names in this basic block. | |
624 | ||
625 | void | |
626 | equiv_oracle::record (basic_block bb, relation_kind k, tree ssa1, tree ssa2) | |
627 | { | |
628 | // Process partial equivalencies. | |
629 | if (relation_partial_equiv_p (k)) | |
630 | { | |
631 | add_partial_equiv (k, ssa1, ssa2); | |
632 | return; | |
633 | } | |
634 | // Only handle equality relations. | |
635 | if (k != VREL_EQ) | |
636 | return; | |
637 | ||
638 | unsigned v1 = SSA_NAME_VERSION (ssa1); | |
639 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
640 | ||
641 | // If this is the first time an ssa_name has an equivalency registered | |
642 | // create a self-equivalency record in the def block. | |
643 | if (!bitmap_bit_p (m_equiv_set, v1)) | |
644 | register_initial_def (ssa1); | |
645 | if (!bitmap_bit_p (m_equiv_set, v2)) | |
646 | register_initial_def (ssa2); | |
647 | ||
648 | equiv_chain *equiv_1 = find_equiv_dom (ssa1, bb); | |
649 | equiv_chain *equiv_2 = find_equiv_dom (ssa2, bb); | |
650 | ||
651 | // Check if they are the same set | |
652 | if (equiv_1 && equiv_1 == equiv_2) | |
653 | return; | |
654 | ||
655 | bitmap equiv_set; | |
656 | ||
657 | // Case where we have 2 SSA_NAMEs that are not in any set. | |
658 | if (!equiv_1 && !equiv_2) | |
659 | { | |
660 | bitmap_set_bit (m_equiv_set, v1); | |
661 | bitmap_set_bit (m_equiv_set, v2); | |
662 | ||
663 | equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
664 | bitmap_set_bit (equiv_set, v1); | |
665 | bitmap_set_bit (equiv_set, v2); | |
666 | } | |
667 | else if (!equiv_1 && equiv_2) | |
668 | equiv_set = register_equiv (bb, v1, equiv_2); | |
669 | else if (equiv_1 && !equiv_2) | |
670 | equiv_set = register_equiv (bb, v2, equiv_1); | |
671 | else | |
672 | equiv_set = register_equiv (bb, equiv_1, equiv_2); | |
673 | ||
674 | // A non-null return is a bitmap that is to be added to the current | |
675 | // block as a new equivalence. | |
676 | if (!equiv_set) | |
677 | return; | |
678 | ||
679 | add_equiv_to_block (bb, equiv_set); | |
680 | } | |
681 | ||
682 | // Add an equivalency record in block BB containing bitmap EQUIV_SET. | |
683 | // Note the internal caller is responsible for allocating EQUIV_SET properly. | |
684 | ||
685 | void | |
686 | equiv_oracle::add_equiv_to_block (basic_block bb, bitmap equiv_set) | |
687 | { | |
688 | equiv_chain *ptr; | |
689 | ||
690 | // Check if this is the first time a block has an equivalence added. | |
691 | // and create a header block. And set the summary for this block. | |
692 | limit_check (bb); | |
693 | if (!m_equiv[bb->index]) | |
694 | { | |
695 | ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
696 | sizeof (equiv_chain)); | |
697 | ptr->m_names = BITMAP_ALLOC (&m_bitmaps); | |
698 | bitmap_copy (ptr->m_names, equiv_set); | |
699 | ptr->m_bb = bb; | |
700 | ptr->m_next = NULL; | |
701 | m_equiv[bb->index] = ptr; | |
702 | } | |
703 | ||
704 | // Now create the element for this equiv set and initialize it. | |
705 | ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, sizeof (equiv_chain)); | |
706 | ptr->m_names = equiv_set; | |
707 | ptr->m_bb = bb; | |
708 | gcc_checking_assert (bb->index < (int)m_equiv.length ()); | |
709 | ptr->m_next = m_equiv[bb->index]->m_next; | |
710 | m_equiv[bb->index]->m_next = ptr; | |
711 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_set); | |
712 | } | |
713 | ||
714 | // Make sure the BB vector is big enough and grow it if needed. | |
715 | ||
716 | void | |
717 | equiv_oracle::limit_check (basic_block bb) | |
718 | { | |
719 | int i = (bb) ? bb->index : last_basic_block_for_fn (cfun); | |
720 | if (i >= (int)m_equiv.length ()) | |
721 | m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
722 | } | |
723 | ||
724 | // Dump the equivalence sets in BB to file F. | |
725 | ||
726 | void | |
727 | equiv_oracle::dump (FILE *f, basic_block bb) const | |
728 | { | |
729 | if (bb->index >= (int)m_equiv.length ()) | |
730 | return; | |
731 | // Process equivalences. | |
732 | if (m_equiv[bb->index]) | |
733 | { | |
734 | equiv_chain *ptr = m_equiv[bb->index]->m_next; | |
735 | for (; ptr; ptr = ptr->m_next) | |
736 | ptr->dump (f); | |
737 | } | |
738 | // Look for partial equivalences defined in this block.. | |
739 | for (unsigned i = 0; i < num_ssa_names; i++) | |
740 | { | |
741 | tree name = ssa_name (i); | |
742 | if (!gimple_range_ssa_p (name) || !SSA_NAME_DEF_STMT (name)) | |
743 | continue; | |
744 | if (i >= m_partial.length ()) | |
745 | break; | |
746 | tree base = m_partial[i].ssa_base; | |
747 | if (base && name != base && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb) | |
748 | { | |
749 | relation_kind k = partial_equiv (name, base); | |
750 | if (k != VREL_VARYING) | |
751 | { | |
752 | value_relation vr (k, name, base); | |
753 | fprintf (f, "Partial equiv "); | |
754 | vr.dump (f); | |
755 | fputc ('\n',f); | |
756 | } | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
761 | // Dump all equivalence sets known to the oracle. | |
762 | ||
763 | void | |
764 | equiv_oracle::dump (FILE *f) const | |
765 | { | |
766 | fprintf (f, "Equivalency dump\n"); | |
767 | for (unsigned i = 0; i < m_equiv.length (); i++) | |
768 | if (m_equiv[i] && BASIC_BLOCK_FOR_FN (cfun, i)) | |
769 | { | |
770 | fprintf (f, "BB%d\n", i); | |
771 | dump (f, BASIC_BLOCK_FOR_FN (cfun, i)); | |
772 | } | |
773 | } | |
774 | ||
775 | ||
776 | // -------------------------------------------------------------------------- | |
777 | ||
778 | // Adjust the relation by Swapping the operands and relation. | |
779 | ||
780 | void | |
781 | value_relation::swap () | |
782 | { | |
783 | related = relation_swap (related); | |
784 | tree tmp = name1; | |
785 | name1 = name2; | |
786 | name2 = tmp; | |
787 | } | |
788 | ||
789 | // Perform an intersection between 2 relations. *this &&= p. | |
790 | // Return false if the relations cannot be intersected. | |
791 | ||
792 | bool | |
793 | value_relation::intersect (value_relation &p) | |
794 | { | |
795 | // Save previous value | |
796 | relation_kind old = related; | |
797 | ||
798 | if (p.op1 () == op1 () && p.op2 () == op2 ()) | |
799 | related = relation_intersect (kind (), p.kind ()); | |
800 | else if (p.op2 () == op1 () && p.op1 () == op2 ()) | |
801 | related = relation_intersect (kind (), relation_swap (p.kind ())); | |
802 | else | |
803 | return false; | |
804 | ||
805 | return old != related; | |
806 | } | |
807 | ||
808 | // Perform a union between 2 relations. *this ||= p. | |
809 | ||
810 | bool | |
811 | value_relation::union_ (value_relation &p) | |
812 | { | |
813 | // Save previous value | |
814 | relation_kind old = related; | |
815 | ||
816 | if (p.op1 () == op1 () && p.op2 () == op2 ()) | |
817 | related = relation_union (kind(), p.kind()); | |
818 | else if (p.op2 () == op1 () && p.op1 () == op2 ()) | |
819 | related = relation_union (kind(), relation_swap (p.kind ())); | |
820 | else | |
821 | return false; | |
822 | ||
823 | return old != related; | |
824 | } | |
825 | ||
826 | // Identify and apply any transitive relations between REL | |
827 | // and THIS. Return true if there was a transformation. | |
828 | ||
829 | bool | |
830 | value_relation::apply_transitive (const value_relation &rel) | |
831 | { | |
832 | relation_kind k = VREL_VARYING; | |
833 | ||
834 | // Identify any common operand, and normalize the relations to | |
835 | // the form : A < B B < C produces A < C | |
836 | if (rel.op1 () == name2) | |
837 | { | |
838 | // A < B B < C | |
839 | if (rel.op2 () == name1) | |
840 | return false; | |
841 | k = relation_transitive (kind (), rel.kind ()); | |
842 | if (k != VREL_VARYING) | |
843 | { | |
844 | related = k; | |
845 | name2 = rel.op2 (); | |
846 | return true; | |
847 | } | |
848 | } | |
849 | else if (rel.op1 () == name1) | |
850 | { | |
851 | // B > A B < C | |
852 | if (rel.op2 () == name2) | |
853 | return false; | |
854 | k = relation_transitive (relation_swap (kind ()), rel.kind ()); | |
855 | if (k != VREL_VARYING) | |
856 | { | |
857 | related = k; | |
858 | name1 = name2; | |
859 | name2 = rel.op2 (); | |
860 | return true; | |
861 | } | |
862 | } | |
863 | else if (rel.op2 () == name2) | |
864 | { | |
865 | // A < B C > B | |
866 | if (rel.op1 () == name1) | |
867 | return false; | |
868 | k = relation_transitive (kind (), relation_swap (rel.kind ())); | |
869 | if (k != VREL_VARYING) | |
870 | { | |
871 | related = k; | |
872 | name2 = rel.op1 (); | |
873 | return true; | |
874 | } | |
875 | } | |
876 | else if (rel.op2 () == name1) | |
877 | { | |
878 | // B > A C > B | |
879 | if (rel.op1 () == name2) | |
880 | return false; | |
881 | k = relation_transitive (relation_swap (kind ()), | |
882 | relation_swap (rel.kind ())); | |
883 | if (k != VREL_VARYING) | |
884 | { | |
885 | related = k; | |
886 | name1 = name2; | |
887 | name2 = rel.op1 (); | |
888 | return true; | |
889 | } | |
890 | } | |
891 | return false; | |
892 | } | |
893 | ||
894 | // Create a trio from this value relation given LHS, OP1 and OP2. | |
895 | ||
896 | relation_trio | |
897 | value_relation::create_trio (tree lhs, tree op1, tree op2) | |
898 | { | |
899 | relation_kind lhs_1; | |
900 | if (lhs == name1 && op1 == name2) | |
901 | lhs_1 = related; | |
902 | else if (lhs == name2 && op1 == name1) | |
903 | lhs_1 = relation_swap (related); | |
904 | else | |
905 | lhs_1 = VREL_VARYING; | |
906 | ||
907 | relation_kind lhs_2; | |
908 | if (lhs == name1 && op2 == name2) | |
909 | lhs_2 = related; | |
910 | else if (lhs == name2 && op2 == name1) | |
911 | lhs_2 = relation_swap (related); | |
912 | else | |
913 | lhs_2 = VREL_VARYING; | |
914 | ||
915 | relation_kind op_op; | |
916 | if (op1 == name1 && op2 == name2) | |
917 | op_op = related; | |
918 | else if (op1 == name2 && op2 == name1) | |
919 | op_op = relation_swap (related); | |
920 | else if (op1 == op2) | |
921 | op_op = VREL_EQ; | |
922 | else | |
923 | op_op = VREL_VARYING; | |
924 | ||
925 | return relation_trio (lhs_1, lhs_2, op_op); | |
926 | } | |
927 | ||
928 | // Dump the relation to file F. | |
929 | ||
930 | void | |
931 | value_relation::dump (FILE *f) const | |
932 | { | |
933 | if (!name1 || !name2) | |
934 | { | |
935 | fprintf (f, "no relation registered"); | |
936 | return; | |
937 | } | |
938 | fputc ('(', f); | |
939 | print_generic_expr (f, op1 (), TDF_SLIM); | |
940 | print_relation (f, kind ()); | |
941 | print_generic_expr (f, op2 (), TDF_SLIM); | |
942 | fputc(')', f); | |
943 | } | |
944 | ||
945 | // This container is used to link relations in a chain. | |
946 | ||
947 | class relation_chain : public value_relation | |
948 | { | |
949 | public: | |
950 | relation_chain *m_next; | |
951 | }; | |
952 | ||
953 | // Given relation record PTR in block BB, return the next relation in the | |
954 | // list. If PTR is NULL, retreive the first relation in BB. | |
955 | // If NAME is sprecified, return only relations which include NAME. | |
956 | // Return NULL when there are no relations left. | |
957 | ||
958 | relation_chain * | |
959 | dom_oracle::next_relation (basic_block bb, relation_chain *ptr, | |
960 | tree name) const | |
961 | { | |
962 | relation_chain *p; | |
963 | // No value_relation pointer is used to intialize the iterator. | |
964 | if (!ptr) | |
965 | { | |
966 | int bbi = bb->index; | |
967 | if (bbi >= (int)m_relations.length()) | |
968 | return NULL; | |
969 | else | |
970 | p = m_relations[bbi].m_head; | |
971 | } | |
972 | else | |
973 | p = ptr->m_next; | |
974 | ||
975 | if (name) | |
976 | for ( ; p; p = p->m_next) | |
977 | if (p->op1 () == name || p->op2 () == name) | |
978 | break; | |
979 | return p; | |
980 | } | |
981 | ||
982 | // Instatiate a block relation iterator to iterate over the relations | |
983 | // on exit from block BB in ORACLE. Limit this to relations involving NAME | |
984 | // if specified. Return the first such relation in VR if there is one. | |
985 | ||
986 | block_relation_iterator::block_relation_iterator (const relation_oracle *oracle, | |
987 | basic_block bb, | |
988 | value_relation &vr, | |
989 | tree name) | |
990 | { | |
991 | m_oracle = oracle; | |
992 | m_bb = bb; | |
993 | m_name = name; | |
994 | m_ptr = oracle->next_relation (bb, NULL, m_name); | |
995 | if (m_ptr) | |
996 | { | |
997 | m_done = false; | |
998 | vr = *m_ptr; | |
999 | } | |
1000 | else | |
1001 | m_done = true; | |
1002 | } | |
1003 | ||
1004 | // Retreive the next relation from the iterator and return it in VR. | |
1005 | ||
1006 | void | |
1007 | block_relation_iterator::get_next_relation (value_relation &vr) | |
1008 | { | |
1009 | m_ptr = m_oracle->next_relation (m_bb, m_ptr, m_name); | |
1010 | if (m_ptr) | |
1011 | { | |
1012 | vr = *m_ptr; | |
1013 | if (m_name) | |
1014 | { | |
1015 | if (vr.op1 () != m_name) | |
1016 | { | |
1017 | gcc_checking_assert (vr.op2 () == m_name); | |
1018 | vr.swap (); | |
1019 | } | |
1020 | } | |
1021 | } | |
1022 | else | |
1023 | m_done = true; | |
1024 | } | |
1025 | ||
1026 | // ------------------------------------------------------------------------ | |
1027 | ||
1028 | // Find the relation between any ssa_name in B1 and any name in B2 in LIST. | |
1029 | // This will allow equivalencies to be applied to any SSA_NAME in a relation. | |
1030 | ||
1031 | relation_kind | |
1032 | relation_chain_head::find_relation (const_bitmap b1, const_bitmap b2) const | |
1033 | { | |
1034 | if (!m_names) | |
1035 | return VREL_VARYING; | |
1036 | ||
1037 | // If both b1 and b2 aren't referenced in this block, cant be a relation | |
1038 | if (!bitmap_intersect_p (m_names, b1) || !bitmap_intersect_p (m_names, b2)) | |
1039 | return VREL_VARYING; | |
1040 | ||
1041 | // Search for the first relation that contains BOTH an element from B1 | |
1042 | // and B2, and return that relation. | |
1043 | for (relation_chain *ptr = m_head; ptr ; ptr = ptr->m_next) | |
1044 | { | |
1045 | unsigned op1 = SSA_NAME_VERSION (ptr->op1 ()); | |
1046 | unsigned op2 = SSA_NAME_VERSION (ptr->op2 ()); | |
1047 | if (bitmap_bit_p (b1, op1) && bitmap_bit_p (b2, op2)) | |
1048 | return ptr->kind (); | |
1049 | if (bitmap_bit_p (b1, op2) && bitmap_bit_p (b2, op1)) | |
1050 | return relation_swap (ptr->kind ()); | |
1051 | } | |
1052 | ||
1053 | return VREL_VARYING; | |
1054 | } | |
1055 | ||
1056 | // Instantiate a relation oracle. | |
1057 | ||
1058 | dom_oracle::dom_oracle (bool do_trans_p) | |
1059 | { | |
1060 | m_do_trans_p = do_trans_p; | |
1061 | m_relations.create (0); | |
1062 | m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
1063 | m_relation_set = BITMAP_ALLOC (&m_bitmaps); | |
1064 | m_tmp = BITMAP_ALLOC (&m_bitmaps); | |
1065 | m_tmp2 = BITMAP_ALLOC (&m_bitmaps); | |
1066 | } | |
1067 | ||
1068 | // Destruct a relation oracle. | |
1069 | ||
1070 | dom_oracle::~dom_oracle () | |
1071 | { | |
1072 | m_relations.release (); | |
1073 | } | |
1074 | ||
1075 | // Register relation K between ssa_name OP1 and OP2 on STMT. | |
1076 | ||
1077 | void | |
1078 | relation_oracle::record (gimple *stmt, relation_kind k, tree op1, tree op2) | |
1079 | { | |
1080 | gcc_checking_assert (TREE_CODE (op1) == SSA_NAME); | |
1081 | gcc_checking_assert (TREE_CODE (op2) == SSA_NAME); | |
1082 | gcc_checking_assert (stmt && gimple_bb (stmt)); | |
1083 | ||
1084 | // Don't register lack of a relation. | |
1085 | if (k == VREL_VARYING) | |
1086 | return; | |
1087 | ||
1088 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1089 | { | |
1090 | value_relation vr (k, op1, op2); | |
1091 | fprintf (dump_file, " Registering value_relation "); | |
1092 | vr.dump (dump_file); | |
1093 | fprintf (dump_file, " (bb%d) at ", gimple_bb (stmt)->index); | |
1094 | print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); | |
1095 | } | |
1096 | ||
1097 | // If an equivalence is being added between a PHI and one of its arguments | |
1098 | // make sure that that argument is not defined in the same block. | |
1099 | // This can happen along back edges and the equivalence will not be | |
1100 | // applicable as it would require a use before def. | |
1101 | if (k == VREL_EQ && is_a<gphi *> (stmt)) | |
1102 | { | |
1103 | tree phi_def = gimple_phi_result (stmt); | |
1104 | gcc_checking_assert (phi_def == op1 || phi_def == op2); | |
1105 | tree arg = op2; | |
1106 | if (phi_def == op2) | |
1107 | arg = op1; | |
1108 | if (gimple_bb (stmt) == gimple_bb (SSA_NAME_DEF_STMT (arg))) | |
1109 | { | |
1110 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1111 | { | |
1112 | fprintf (dump_file, " Not registered due to "); | |
1113 | print_generic_expr (dump_file, arg, TDF_SLIM); | |
1114 | fprintf (dump_file, " being defined in the same block.\n"); | |
1115 | } | |
1116 | return; | |
1117 | } | |
1118 | } | |
1119 | record (gimple_bb (stmt), k, op1, op2); | |
1120 | } | |
1121 | ||
1122 | // Register relation K between ssa_name OP1 and OP2 on edge E. | |
1123 | ||
1124 | void | |
1125 | relation_oracle::record (edge e, relation_kind k, tree op1, tree op2) | |
1126 | { | |
1127 | gcc_checking_assert (TREE_CODE (op1) == SSA_NAME); | |
1128 | gcc_checking_assert (TREE_CODE (op2) == SSA_NAME); | |
1129 | ||
1130 | // Do not register lack of relation, or blocks which have more than | |
1131 | // edge E for a predecessor. | |
1132 | if (k == VREL_VARYING || !single_pred_p (e->dest)) | |
1133 | return; | |
1134 | ||
1135 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1136 | { | |
1137 | value_relation vr (k, op1, op2); | |
1138 | fprintf (dump_file, " Registering value_relation "); | |
1139 | vr.dump (dump_file); | |
1140 | fprintf (dump_file, " on (%d->%d)\n", e->src->index, e->dest->index); | |
1141 | } | |
1142 | ||
1143 | record (e->dest, k, op1, op2); | |
1144 | } | |
1145 | ||
1146 | // Register relation K between OP! and OP2 in block BB. | |
1147 | // This creates the record and searches for existing records in the dominator | |
1148 | // tree to merge with. | |
1149 | ||
1150 | void | |
1151 | dom_oracle::record (basic_block bb, relation_kind k, tree op1, tree op2) | |
1152 | { | |
1153 | // If the 2 ssa_names are the same, do nothing. An equivalence is implied, | |
1154 | // and no other relation makes sense. | |
1155 | if (op1 == op2) | |
1156 | return; | |
1157 | ||
1158 | // Equivalencies are handled by the equivalence oracle. | |
1159 | if (relation_equiv_p (k)) | |
1160 | equiv_oracle::record (bb, k, op1, op2); | |
1161 | else | |
1162 | { | |
1163 | // if neither op1 nor op2 are in a relation before this is registered, | |
1164 | // there will be no transitive. | |
1165 | bool check = bitmap_bit_p (m_relation_set, SSA_NAME_VERSION (op1)) | |
1166 | || bitmap_bit_p (m_relation_set, SSA_NAME_VERSION (op2)); | |
1167 | relation_chain *ptr = set_one_relation (bb, k, op1, op2); | |
1168 | if (ptr && check | |
1169 | && (m_relations[bb->index].m_num_relations | |
1170 | < param_relation_block_limit)) | |
1171 | register_transitives (bb, *ptr); | |
1172 | } | |
1173 | } | |
1174 | ||
1175 | // Register relation K between OP! and OP2 in block BB. | |
1176 | // This creates the record and searches for existing records in the dominator | |
1177 | // tree to merge with. Return the record, or NULL if no record was created. | |
1178 | ||
1179 | relation_chain * | |
1180 | dom_oracle::set_one_relation (basic_block bb, relation_kind k, tree op1, | |
1181 | tree op2) | |
1182 | { | |
1183 | gcc_checking_assert (k != VREL_VARYING && k != VREL_EQ); | |
1184 | ||
1185 | value_relation vr(k, op1, op2); | |
1186 | int bbi = bb->index; | |
1187 | ||
1188 | if (bbi >= (int)m_relations.length()) | |
1189 | m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
1190 | ||
1191 | // Summary bitmap indicating what ssa_names have relations in this BB. | |
1192 | bitmap bm = m_relations[bbi].m_names; | |
1193 | if (!bm) | |
1194 | bm = m_relations[bbi].m_names = BITMAP_ALLOC (&m_bitmaps); | |
1195 | unsigned v1 = SSA_NAME_VERSION (op1); | |
1196 | unsigned v2 = SSA_NAME_VERSION (op2); | |
1197 | ||
1198 | relation_kind curr; | |
1199 | relation_chain *ptr; | |
1200 | curr = find_relation_block (bbi, v1, v2, &ptr); | |
1201 | // There is an existing relation in this block, just intersect with it. | |
1202 | if (curr != VREL_VARYING) | |
1203 | { | |
1204 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1205 | { | |
1206 | fprintf (dump_file, " Intersecting with existing "); | |
1207 | ptr->dump (dump_file); | |
1208 | } | |
1209 | // Check into whether we can simply replace the relation rather than | |
1210 | // intersecting it. This may help with some optimistic iterative | |
1211 | // updating algorithms. | |
1212 | bool new_rel = ptr->intersect (vr); | |
1213 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1214 | { | |
1215 | fprintf (dump_file, " to produce "); | |
1216 | ptr->dump (dump_file); | |
1217 | fprintf (dump_file, " %s.\n", new_rel ? "Updated" : "No Change"); | |
1218 | } | |
1219 | // If there was no change, return no record.. | |
1220 | if (!new_rel) | |
1221 | return NULL; | |
1222 | } | |
1223 | else | |
1224 | { | |
1225 | if (m_relations[bbi].m_num_relations >= param_relation_block_limit) | |
1226 | { | |
1227 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1228 | fprintf (dump_file, " Not registered due to bb being full\n"); | |
1229 | return NULL; | |
1230 | } | |
1231 | m_relations[bbi].m_num_relations++; | |
1232 | // Check for an existing relation further up the DOM chain. | |
1233 | // By including dominating relations, The first one found in any search | |
1234 | // will be the aggregate of all the previous ones. | |
1235 | curr = find_relation_dom (bb, v1, v2); | |
1236 | if (curr != VREL_VARYING) | |
1237 | k = relation_intersect (curr, k); | |
1238 | ||
1239 | bitmap_set_bit (bm, v1); | |
1240 | bitmap_set_bit (bm, v2); | |
1241 | bitmap_set_bit (m_relation_set, v1); | |
1242 | bitmap_set_bit (m_relation_set, v2); | |
1243 | ||
1244 | ptr = (relation_chain *) obstack_alloc (&m_chain_obstack, | |
1245 | sizeof (relation_chain)); | |
1246 | ptr->set_relation (k, op1, op2); | |
1247 | ptr->m_next = m_relations[bbi].m_head; | |
1248 | m_relations[bbi].m_head = ptr; | |
1249 | } | |
1250 | return ptr; | |
1251 | } | |
1252 | ||
1253 | // Starting at ROOT_BB search the DOM tree looking for relations which | |
1254 | // may produce transitive relations to RELATION. EQUIV1 and EQUIV2 are | |
1255 | // bitmaps for op1/op2 and any of their equivalences that should also be | |
1256 | // considered. | |
1257 | ||
1258 | void | |
1259 | dom_oracle::register_transitives (basic_block root_bb, | |
1260 | const value_relation &relation) | |
1261 | { | |
1262 | // Only register transitives if they are requested. | |
1263 | if (!m_do_trans_p) | |
1264 | return; | |
1265 | basic_block bb; | |
1266 | // Only apply transitives to certain kinds of operations. | |
1267 | switch (relation.kind ()) | |
1268 | { | |
1269 | case VREL_LE: | |
1270 | case VREL_LT: | |
1271 | case VREL_GT: | |
1272 | case VREL_GE: | |
1273 | break; | |
1274 | default: | |
1275 | return; | |
1276 | } | |
1277 | ||
1278 | const_bitmap equiv1 = equiv_set (relation.op1 (), root_bb); | |
1279 | const_bitmap equiv2 = equiv_set (relation.op2 (), root_bb); | |
1280 | ||
1281 | const unsigned work_budget = param_transitive_relations_work_bound; | |
1282 | unsigned avail_budget = work_budget; | |
1283 | for (bb = root_bb; bb; | |
1284 | /* Advancing to the next immediate dominator eats from the budget, | |
1285 | if none is left after that there's no point to continue. */ | |
1286 | bb = (--avail_budget > 0 | |
1287 | ? get_immediate_dominator (CDI_DOMINATORS, bb) : nullptr)) | |
1288 | { | |
1289 | int bbi = bb->index; | |
1290 | if (bbi >= (int)m_relations.length()) | |
1291 | continue; | |
1292 | const_bitmap bm = m_relations[bbi].m_names; | |
1293 | if (!bm) | |
1294 | continue; | |
1295 | if (!bitmap_intersect_p (bm, equiv1) && !bitmap_intersect_p (bm, equiv2)) | |
1296 | continue; | |
1297 | // At least one of the 2 ops has a relation in this block. | |
1298 | relation_chain *ptr; | |
1299 | for (ptr = m_relations[bbi].m_head; ptr ; ptr = ptr->m_next) | |
1300 | { | |
1301 | // In the presence of an equivalence, 2 operands may do not | |
1302 | // naturally match. ie with equivalence a_2 == b_3 | |
1303 | // given c_1 < a_2 && b_3 < d_4 | |
1304 | // convert the second relation (b_3 < d_4) to match any | |
1305 | // equivalences to found in the first relation. | |
1306 | // ie convert b_3 < d_4 to a_2 < d_4, which then exposes the | |
1307 | // transitive operation: c_1 < a_2 && a_2 < d_4 -> c_1 < d_4 | |
1308 | ||
1309 | tree r1, r2; | |
1310 | tree p1 = ptr->op1 (); | |
1311 | tree p2 = ptr->op2 (); | |
1312 | // Find which equivalence is in the first operand. | |
1313 | if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p1))) | |
1314 | r1 = p1; | |
1315 | else if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p2))) | |
1316 | r1 = p2; | |
1317 | else | |
1318 | r1 = NULL_TREE; | |
1319 | ||
1320 | // Find which equivalence is in the second operand. | |
1321 | if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p1))) | |
1322 | r2 = p1; | |
1323 | else if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p2))) | |
1324 | r2 = p2; | |
1325 | else | |
1326 | r2 = NULL_TREE; | |
1327 | ||
1328 | // Ignore if both NULL (not relevant relation) or the same, | |
1329 | if (r1 == r2) | |
1330 | ; | |
1331 | ||
1332 | else | |
1333 | { | |
1334 | // Any operand not an equivalence, just take the real operand. | |
1335 | if (!r1) | |
1336 | r1 = relation.op1 (); | |
1337 | if (!r2) | |
1338 | r2 = relation.op2 (); | |
1339 | ||
1340 | value_relation nr (relation.kind (), r1, r2); | |
1341 | if (nr.apply_transitive (*ptr)) | |
1342 | { | |
1343 | // If the new relation is already present we know any | |
1344 | // further processing is already reflected above it. | |
1345 | // When we ran into the limit of relations on root_bb | |
1346 | // we can give up as well. | |
1347 | if (!set_one_relation (root_bb, nr.kind (), | |
1348 | nr.op1 (), nr.op2 ())) | |
1349 | return; | |
1350 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1351 | { | |
1352 | fprintf (dump_file, | |
1353 | " Registering transitive relation "); | |
1354 | nr.dump (dump_file); | |
1355 | fputc ('\n', dump_file); | |
1356 | } | |
1357 | } | |
1358 | } | |
1359 | /* Processed one relation, abort if we've eaten up our budget. */ | |
1360 | if (--avail_budget == 0) | |
1361 | return; | |
1362 | } | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | // Find the relation between any ssa_name in B1 and any name in B2 in block BB. | |
1367 | // This will allow equivalencies to be applied to any SSA_NAME in a relation. | |
1368 | ||
1369 | relation_kind | |
1370 | dom_oracle::find_relation_block (unsigned bb, const_bitmap b1, | |
1371 | const_bitmap b2) const | |
1372 | { | |
1373 | if (bb >= m_relations.length()) | |
1374 | return VREL_VARYING; | |
1375 | ||
1376 | return m_relations[bb].find_relation (b1, b2); | |
1377 | } | |
1378 | ||
1379 | // Search the DOM tree for a relation between an element of equivalency set B1 | |
1380 | // and B2, starting with block BB. | |
1381 | ||
1382 | relation_kind | |
1383 | dom_oracle::query (basic_block bb, const_bitmap b1, const_bitmap b2) | |
1384 | { | |
1385 | relation_kind r; | |
1386 | if (bitmap_equal_p (b1, b2)) | |
1387 | return VREL_EQ; | |
1388 | ||
1389 | // If either name does not occur in a relation anywhere, there isn't one. | |
1390 | if (!bitmap_intersect_p (m_relation_set, b1) | |
1391 | || !bitmap_intersect_p (m_relation_set, b2)) | |
1392 | return VREL_VARYING; | |
1393 | ||
1394 | // Search each block in the DOM tree checking. | |
1395 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
1396 | { | |
1397 | r = find_relation_block (bb->index, b1, b2); | |
1398 | if (r != VREL_VARYING) | |
1399 | return r; | |
1400 | } | |
1401 | return VREL_VARYING; | |
1402 | ||
1403 | } | |
1404 | ||
1405 | // Find a relation in block BB between ssa version V1 and V2. If a relation | |
1406 | // is found, return a pointer to the chain object in OBJ. | |
1407 | ||
1408 | relation_kind | |
1409 | dom_oracle::find_relation_block (int bb, unsigned v1, unsigned v2, | |
1410 | relation_chain **obj) const | |
1411 | { | |
1412 | if (bb >= (int)m_relations.length()) | |
1413 | return VREL_VARYING; | |
1414 | ||
1415 | const_bitmap bm = m_relations[bb].m_names; | |
1416 | if (!bm) | |
1417 | return VREL_VARYING; | |
1418 | ||
1419 | // If both b1 and b2 aren't referenced in this block, cant be a relation | |
1420 | if (!bitmap_bit_p (bm, v1) || !bitmap_bit_p (bm, v2)) | |
1421 | return VREL_VARYING; | |
1422 | ||
1423 | relation_chain *ptr; | |
1424 | for (ptr = m_relations[bb].m_head; ptr ; ptr = ptr->m_next) | |
1425 | { | |
1426 | unsigned op1 = SSA_NAME_VERSION (ptr->op1 ()); | |
1427 | unsigned op2 = SSA_NAME_VERSION (ptr->op2 ()); | |
1428 | if (v1 == op1 && v2 == op2) | |
1429 | { | |
1430 | if (obj) | |
1431 | *obj = ptr; | |
1432 | return ptr->kind (); | |
1433 | } | |
1434 | if (v1 == op2 && v2 == op1) | |
1435 | { | |
1436 | if (obj) | |
1437 | *obj = ptr; | |
1438 | return relation_swap (ptr->kind ()); | |
1439 | } | |
1440 | } | |
1441 | ||
1442 | return VREL_VARYING; | |
1443 | } | |
1444 | ||
1445 | // Find a relation between SSA version V1 and V2 in the dominator tree | |
1446 | // starting with block BB | |
1447 | ||
1448 | relation_kind | |
1449 | dom_oracle::find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const | |
1450 | { | |
1451 | relation_kind r; | |
1452 | // IF either name does not occur in a relation anywhere, there isn't one. | |
1453 | if (!bitmap_bit_p (m_relation_set, v1) || !bitmap_bit_p (m_relation_set, v2)) | |
1454 | return VREL_VARYING; | |
1455 | ||
1456 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
1457 | { | |
1458 | r = find_relation_block (bb->index, v1, v2); | |
1459 | if (r != VREL_VARYING) | |
1460 | return r; | |
1461 | } | |
1462 | return VREL_VARYING; | |
1463 | ||
1464 | } | |
1465 | ||
1466 | // Query if there is a relation between SSA1 and SS2 in block BB or a | |
1467 | // dominator of BB | |
1468 | ||
1469 | relation_kind | |
1470 | dom_oracle::query (basic_block bb, tree ssa1, tree ssa2) | |
1471 | { | |
1472 | relation_kind kind; | |
1473 | unsigned v1 = SSA_NAME_VERSION (ssa1); | |
1474 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
1475 | if (v1 == v2) | |
1476 | return VREL_EQ; | |
1477 | ||
1478 | // If v1 or v2 do not have any relations or equivalences, a partial | |
1479 | // equivalence is the only possibility. | |
1480 | if ((!bitmap_bit_p (m_relation_set, v1) && !has_equiv_p (v1)) | |
1481 | || (!bitmap_bit_p (m_relation_set, v2) && !has_equiv_p (v2))) | |
1482 | return partial_equiv (ssa1, ssa2); | |
1483 | ||
1484 | // Check for equivalence first. They must be in each equivalency set. | |
1485 | const_bitmap equiv1 = equiv_set (ssa1, bb); | |
1486 | const_bitmap equiv2 = equiv_set (ssa2, bb); | |
1487 | if (bitmap_bit_p (equiv1, v2) && bitmap_bit_p (equiv2, v1)) | |
1488 | return VREL_EQ; | |
1489 | ||
1490 | kind = partial_equiv (ssa1, ssa2); | |
1491 | if (kind != VREL_VARYING) | |
1492 | return kind; | |
1493 | ||
1494 | // Initially look for a direct relationship and just return that. | |
1495 | kind = find_relation_dom (bb, v1, v2); | |
1496 | if (kind != VREL_VARYING) | |
1497 | return kind; | |
1498 | ||
1499 | // Query using the equivalence sets. | |
1500 | kind = query (bb, equiv1, equiv2); | |
1501 | return kind; | |
1502 | } | |
1503 | ||
1504 | // Dump all the relations in block BB to file F. | |
1505 | ||
1506 | void | |
1507 | dom_oracle::dump (FILE *f, basic_block bb) const | |
1508 | { | |
1509 | equiv_oracle::dump (f,bb); | |
1510 | ||
1511 | if (bb->index >= (int)m_relations.length ()) | |
1512 | return; | |
1513 | if (!m_relations[bb->index].m_names) | |
1514 | return; | |
1515 | ||
1516 | value_relation vr; | |
1517 | FOR_EACH_RELATION_BB (this, bb, vr) | |
1518 | { | |
1519 | fprintf (f, "Relational : "); | |
1520 | vr.dump (f); | |
1521 | fprintf (f, "\n"); | |
1522 | } | |
1523 | } | |
1524 | ||
1525 | // Dump all the relations known to file F. | |
1526 | ||
1527 | void | |
1528 | dom_oracle::dump (FILE *f) const | |
1529 | { | |
1530 | fprintf (f, "Relation dump\n"); | |
1531 | for (unsigned i = 0; i < m_relations.length (); i++) | |
1532 | if (BASIC_BLOCK_FOR_FN (cfun, i)) | |
1533 | { | |
1534 | fprintf (f, "BB%d\n", i); | |
1535 | dump (f, BASIC_BLOCK_FOR_FN (cfun, i)); | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | void | |
1540 | relation_oracle::debug () const | |
1541 | { | |
1542 | dump (stderr); | |
1543 | } | |
1544 | ||
1545 | path_oracle::path_oracle (relation_oracle *oracle) | |
1546 | { | |
1547 | set_root_oracle (oracle); | |
1548 | bitmap_obstack_initialize (&m_bitmaps); | |
1549 | obstack_init (&m_chain_obstack); | |
1550 | ||
1551 | // Initialize header records. | |
1552 | m_equiv.m_names = BITMAP_ALLOC (&m_bitmaps); | |
1553 | m_equiv.m_bb = NULL; | |
1554 | m_equiv.m_next = NULL; | |
1555 | m_relations.m_names = BITMAP_ALLOC (&m_bitmaps); | |
1556 | m_relations.m_head = NULL; | |
1557 | m_killed_defs = BITMAP_ALLOC (&m_bitmaps); | |
1558 | } | |
1559 | ||
1560 | path_oracle::~path_oracle () | |
1561 | { | |
1562 | obstack_free (&m_chain_obstack, NULL); | |
1563 | bitmap_obstack_release (&m_bitmaps); | |
1564 | } | |
1565 | ||
1566 | // Return the equiv set for SSA, and if there isn't one, check for equivs | |
1567 | // starting in block BB. | |
1568 | ||
1569 | const_bitmap | |
1570 | path_oracle::equiv_set (tree ssa, basic_block bb) | |
1571 | { | |
1572 | // Check the list first. | |
1573 | equiv_chain *ptr = m_equiv.find (SSA_NAME_VERSION (ssa)); | |
1574 | if (ptr) | |
1575 | return ptr->m_names; | |
1576 | ||
1577 | // Otherwise defer to the root oracle. | |
1578 | if (m_root) | |
1579 | return m_root->equiv_set (ssa, bb); | |
1580 | ||
1581 | // Allocate a throw away bitmap if there isn't a root oracle. | |
1582 | bitmap tmp = BITMAP_ALLOC (&m_bitmaps); | |
1583 | bitmap_set_bit (tmp, SSA_NAME_VERSION (ssa)); | |
1584 | return tmp; | |
1585 | } | |
1586 | ||
1587 | // Register an equivalence between SSA1 and SSA2 resolving unknowns from | |
1588 | // block BB. | |
1589 | ||
1590 | void | |
1591 | path_oracle::register_equiv (basic_block bb, tree ssa1, tree ssa2) | |
1592 | { | |
1593 | const_bitmap equiv_1 = equiv_set (ssa1, bb); | |
1594 | const_bitmap equiv_2 = equiv_set (ssa2, bb); | |
1595 | ||
1596 | // Check if they are the same set, if so, we're done. | |
1597 | if (bitmap_equal_p (equiv_1, equiv_2)) | |
1598 | return; | |
1599 | ||
1600 | // Don't mess around, simply create a new record and insert it first. | |
1601 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
1602 | valid_equivs (b, equiv_1, bb); | |
1603 | valid_equivs (b, equiv_2, bb); | |
1604 | ||
1605 | equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
1606 | sizeof (equiv_chain)); | |
1607 | ptr->m_names = b; | |
1608 | ptr->m_bb = NULL; | |
1609 | ptr->m_next = m_equiv.m_next; | |
1610 | m_equiv.m_next = ptr; | |
1611 | bitmap_ior_into (m_equiv.m_names, b); | |
1612 | } | |
1613 | ||
1614 | // Register killing definition of an SSA_NAME. | |
1615 | ||
1616 | void | |
1617 | path_oracle::killing_def (tree ssa) | |
1618 | { | |
1619 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1620 | { | |
1621 | fprintf (dump_file, " Registering killing_def (path_oracle) "); | |
1622 | print_generic_expr (dump_file, ssa, TDF_SLIM); | |
1623 | fprintf (dump_file, "\n"); | |
1624 | } | |
1625 | ||
1626 | unsigned v = SSA_NAME_VERSION (ssa); | |
1627 | ||
1628 | bitmap_set_bit (m_killed_defs, v); | |
1629 | bitmap_set_bit (m_equiv.m_names, v); | |
1630 | ||
1631 | // Now add an equivalency with itself so we don't look to the root oracle. | |
1632 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
1633 | bitmap_set_bit (b, v); | |
1634 | equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
1635 | sizeof (equiv_chain)); | |
1636 | ptr->m_names = b; | |
1637 | ptr->m_bb = NULL; | |
1638 | ptr->m_next = m_equiv.m_next; | |
1639 | m_equiv.m_next = ptr; | |
1640 | ||
1641 | // Walk the relation list and remove SSA from any relations. | |
1642 | if (!bitmap_bit_p (m_relations.m_names, v)) | |
1643 | return; | |
1644 | ||
1645 | bitmap_clear_bit (m_relations.m_names, v); | |
1646 | relation_chain **prev = &(m_relations.m_head); | |
1647 | relation_chain *next = NULL; | |
1648 | for (relation_chain *ptr = m_relations.m_head; ptr; ptr = next) | |
1649 | { | |
1650 | gcc_checking_assert (*prev == ptr); | |
1651 | next = ptr->m_next; | |
1652 | if (SSA_NAME_VERSION (ptr->op1 ()) == v | |
1653 | || SSA_NAME_VERSION (ptr->op2 ()) == v) | |
1654 | *prev = ptr->m_next; | |
1655 | else | |
1656 | prev = &(ptr->m_next); | |
1657 | } | |
1658 | } | |
1659 | ||
1660 | // Register relation K between SSA1 and SSA2, resolving unknowns by | |
1661 | // querying from BB. | |
1662 | ||
1663 | void | |
1664 | path_oracle::record (basic_block bb, relation_kind k, tree ssa1, tree ssa2) | |
1665 | { | |
1666 | // If the 2 ssa_names are the same, do nothing. An equivalence is implied, | |
1667 | // and no other relation makes sense. | |
1668 | if (ssa1 == ssa2) | |
1669 | return; | |
1670 | ||
1671 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
1672 | { | |
1673 | value_relation vr (k, ssa1, ssa2); | |
1674 | fprintf (dump_file, " Registering value_relation (path_oracle) "); | |
1675 | vr.dump (dump_file); | |
1676 | fprintf (dump_file, " (root: bb%d)\n", bb->index); | |
1677 | } | |
1678 | ||
1679 | relation_kind curr = query (bb, ssa1, ssa2); | |
1680 | if (curr != VREL_VARYING) | |
1681 | k = relation_intersect (curr, k); | |
1682 | ||
1683 | if (k == VREL_EQ) | |
1684 | { | |
1685 | register_equiv (bb, ssa1, ssa2); | |
1686 | return; | |
1687 | } | |
1688 | ||
1689 | bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa1)); | |
1690 | bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa2)); | |
1691 | relation_chain *ptr = (relation_chain *) obstack_alloc (&m_chain_obstack, | |
1692 | sizeof (relation_chain)); | |
1693 | ptr->set_relation (k, ssa1, ssa2); | |
1694 | ptr->m_next = m_relations.m_head; | |
1695 | m_relations.m_head = ptr; | |
1696 | } | |
1697 | ||
1698 | // Query for a relationship between equiv set B1 and B2, resolving unknowns | |
1699 | // starting at block BB. | |
1700 | ||
1701 | relation_kind | |
1702 | path_oracle::query (basic_block bb, const_bitmap b1, const_bitmap b2) | |
1703 | { | |
1704 | if (bitmap_equal_p (b1, b2)) | |
1705 | return VREL_EQ; | |
1706 | ||
1707 | relation_kind k = m_relations.find_relation (b1, b2); | |
1708 | ||
1709 | // Do not look at the root oracle for names that have been killed | |
1710 | // along the path. | |
1711 | if (bitmap_intersect_p (m_killed_defs, b1) | |
1712 | || bitmap_intersect_p (m_killed_defs, b2)) | |
1713 | return k; | |
1714 | ||
1715 | if (k == VREL_VARYING && m_root) | |
1716 | k = m_root->query (bb, b1, b2); | |
1717 | ||
1718 | return k; | |
1719 | } | |
1720 | ||
1721 | // Query for a relationship between SSA1 and SSA2, resolving unknowns | |
1722 | // starting at block BB. | |
1723 | ||
1724 | relation_kind | |
1725 | path_oracle::query (basic_block bb, tree ssa1, tree ssa2) | |
1726 | { | |
1727 | unsigned v1 = SSA_NAME_VERSION (ssa1); | |
1728 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
1729 | ||
1730 | if (v1 == v2) | |
1731 | return VREL_EQ; | |
1732 | ||
1733 | const_bitmap equiv_1 = equiv_set (ssa1, bb); | |
1734 | const_bitmap equiv_2 = equiv_set (ssa2, bb); | |
1735 | if (bitmap_bit_p (equiv_1, v2) && bitmap_bit_p (equiv_2, v1)) | |
1736 | return VREL_EQ; | |
1737 | ||
1738 | return query (bb, equiv_1, equiv_2); | |
1739 | } | |
1740 | ||
1741 | // Reset any relations registered on this path. ORACLE is the root | |
1742 | // oracle to use. | |
1743 | ||
1744 | void | |
1745 | path_oracle::reset_path (relation_oracle *oracle) | |
1746 | { | |
1747 | set_root_oracle (oracle); | |
1748 | m_equiv.m_next = NULL; | |
1749 | bitmap_clear (m_equiv.m_names); | |
1750 | m_relations.m_head = NULL; | |
1751 | bitmap_clear (m_relations.m_names); | |
1752 | bitmap_clear (m_killed_defs); | |
1753 | } | |
1754 | ||
1755 | // Dump relation in basic block... Do nothing here. | |
1756 | ||
1757 | void | |
1758 | path_oracle::dump (FILE *, basic_block) const | |
1759 | { | |
1760 | } | |
1761 | ||
1762 | // Dump the relations and equivalencies found in the path. | |
1763 | ||
1764 | void | |
1765 | path_oracle::dump (FILE *f) const | |
1766 | { | |
1767 | equiv_chain *ptr = m_equiv.m_next; | |
1768 | relation_chain *ptr2 = m_relations.m_head; | |
1769 | ||
1770 | if (ptr || ptr2) | |
1771 | fprintf (f, "\npath_oracle:\n"); | |
1772 | ||
1773 | for (; ptr; ptr = ptr->m_next) | |
1774 | ptr->dump (f); | |
1775 | ||
1776 | for (; ptr2; ptr2 = ptr2->m_next) | |
1777 | { | |
1778 | fprintf (f, "Relational : "); | |
1779 | ptr2->dump (f); | |
1780 | fprintf (f, "\n"); | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | // ------------------------------------------------------------------------ | |
1785 | // EQUIV iterator. Although we have bitmap iterators, don't expose that it | |
1786 | // is currently a bitmap. Use an export iterator to hide future changes. | |
1787 | ||
1788 | // Construct a basic iterator over an equivalence bitmap. | |
1789 | ||
1790 | equiv_relation_iterator::equiv_relation_iterator (relation_oracle *oracle, | |
1791 | basic_block bb, tree name, | |
1792 | bool full, bool partial) | |
1793 | { | |
1794 | m_name = name; | |
1795 | m_oracle = oracle; | |
1796 | m_pe = partial ? oracle->partial_equiv_set (name) : NULL; | |
1797 | m_bm = NULL; | |
1798 | if (full) | |
1799 | m_bm = oracle->equiv_set (name, bb); | |
1800 | if (!m_bm && m_pe) | |
1801 | m_bm = m_pe->members; | |
1802 | if (m_bm) | |
1803 | bmp_iter_set_init (&m_bi, m_bm, 1, &m_y); | |
1804 | } | |
1805 | ||
1806 | // Move to the next export bitmap spot. | |
1807 | ||
1808 | void | |
1809 | equiv_relation_iterator::next () | |
1810 | { | |
1811 | bmp_iter_next (&m_bi, &m_y); | |
1812 | } | |
1813 | ||
1814 | // Fetch the name of the next export in the export list. Return NULL if | |
1815 | // iteration is done. | |
1816 | ||
1817 | tree | |
1818 | equiv_relation_iterator::get_name (relation_kind *rel) | |
1819 | { | |
1820 | if (!m_bm) | |
1821 | return NULL_TREE; | |
1822 | ||
1823 | while (bmp_iter_set (&m_bi, &m_y)) | |
1824 | { | |
1825 | // Do not return self. | |
1826 | tree t = ssa_name (m_y); | |
1827 | if (t && t != m_name) | |
1828 | { | |
1829 | relation_kind k = VREL_EQ; | |
1830 | if (m_pe && m_bm == m_pe->members) | |
1831 | { | |
1832 | const pe_slice *equiv_pe = m_oracle->partial_equiv_set (t); | |
1833 | if (equiv_pe && equiv_pe->members == m_pe->members) | |
1834 | k = pe_min (m_pe->code, equiv_pe->code); | |
1835 | else | |
1836 | k = VREL_VARYING; | |
1837 | } | |
1838 | if (relation_equiv_p (k)) | |
1839 | { | |
1840 | if (rel) | |
1841 | *rel = k; | |
1842 | return t; | |
1843 | } | |
1844 | } | |
1845 | next (); | |
1846 | } | |
1847 | ||
1848 | // Process partial equivs after full equivs if both were requested. | |
1849 | if (m_pe && m_bm != m_pe->members) | |
1850 | { | |
1851 | m_bm = m_pe->members; | |
1852 | if (m_bm) | |
1853 | { | |
1854 | // Recursively call back to process First PE. | |
1855 | bmp_iter_set_init (&m_bi, m_bm, 1, &m_y); | |
1856 | return get_name (rel); | |
1857 | } | |
1858 | } | |
1859 | return NULL_TREE; | |
1860 | } | |
1861 | ||
1862 | #if CHECKING_P | |
1863 | #include "selftest.h" | |
1864 | ||
1865 | namespace selftest | |
1866 | { | |
1867 | void | |
1868 | relation_tests () | |
1869 | { | |
1870 | // rr_*_table tables use unsigned char rather than relation_kind. | |
1871 | ASSERT_LT (VREL_LAST, UCHAR_MAX); | |
1872 | // Verify commutativity of relation_intersect and relation_union. | |
1873 | for (relation_kind r1 = VREL_VARYING; r1 < VREL_PE8; | |
1874 | r1 = relation_kind (r1 + 1)) | |
1875 | for (relation_kind r2 = VREL_VARYING; r2 < VREL_PE8; | |
1876 | r2 = relation_kind (r2 + 1)) | |
1877 | { | |
1878 | ASSERT_EQ (relation_intersect (r1, r2), relation_intersect (r2, r1)); | |
1879 | ASSERT_EQ (relation_union (r1, r2), relation_union (r2, r1)); | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | } // namespace selftest | |
1884 | ||
1885 | #endif // CHECKING_P |