]>
Commit | Line | Data |
---|---|---|
1 | /* More subroutines needed by GCC output code on some machines. */ | |
2 | /* Compile this one with gcc. */ | |
3 | /* Copyright (C) 1989-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GCC. | |
6 | ||
7 | GCC is free software; you can redistribute it and/or modify it under | |
8 | the terms of the GNU General Public License as published by the Free | |
9 | Software Foundation; either version 3, or (at your option) any later | |
10 | version. | |
11 | ||
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 | for more details. | |
16 | ||
17 | Under Section 7 of GPL version 3, you are granted additional | |
18 | permissions described in the GCC Runtime Library Exception, version | |
19 | 3.1, as published by the Free Software Foundation. | |
20 | ||
21 | You should have received a copy of the GNU General Public License and | |
22 | a copy of the GCC Runtime Library Exception along with this program; | |
23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see | |
24 | <http://www.gnu.org/licenses/>. */ | |
25 | ||
26 | #include "tconfig.h" | |
27 | #include "tsystem.h" | |
28 | #include "coretypes.h" | |
29 | #include "tm.h" | |
30 | #include "libgcc_tm.h" | |
31 | ||
32 | #ifdef HAVE_GAS_HIDDEN | |
33 | #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden"))) | |
34 | #else | |
35 | #define ATTRIBUTE_HIDDEN | |
36 | #endif | |
37 | ||
38 | /* Work out the largest "word" size that we can deal with on this target. */ | |
39 | #if MIN_UNITS_PER_WORD > 4 | |
40 | # define LIBGCC2_MAX_UNITS_PER_WORD 8 | |
41 | #elif (MIN_UNITS_PER_WORD > 2 \ | |
42 | || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4)) | |
43 | # define LIBGCC2_MAX_UNITS_PER_WORD 4 | |
44 | #else | |
45 | # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD | |
46 | #endif | |
47 | ||
48 | /* Work out what word size we are using for this compilation. | |
49 | The value can be set on the command line. */ | |
50 | #ifndef LIBGCC2_UNITS_PER_WORD | |
51 | #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD | |
52 | #endif | |
53 | ||
54 | #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD | |
55 | ||
56 | #include "libgcc2.h" | |
57 | \f | |
58 | #ifdef DECLARE_LIBRARY_RENAMES | |
59 | DECLARE_LIBRARY_RENAMES | |
60 | #endif | |
61 | ||
62 | #if defined (L_negdi2) | |
63 | DWtype | |
64 | __negdi2 (DWtype u) | |
65 | { | |
66 | const DWunion uu = {.ll = u}; | |
67 | const DWunion w = { {.low = -uu.s.low, | |
68 | .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } }; | |
69 | ||
70 | return w.ll; | |
71 | } | |
72 | #endif | |
73 | ||
74 | #ifdef L_addvsi3 | |
75 | Wtype | |
76 | __addvSI3 (Wtype a, Wtype b) | |
77 | { | |
78 | Wtype w; | |
79 | ||
80 | if (__builtin_add_overflow (a, b, &w)) | |
81 | abort (); | |
82 | ||
83 | return w; | |
84 | } | |
85 | #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC | |
86 | SItype | |
87 | __addvsi3 (SItype a, SItype b) | |
88 | { | |
89 | SItype w; | |
90 | ||
91 | if (__builtin_add_overflow (a, b, &w)) | |
92 | abort (); | |
93 | ||
94 | return w; | |
95 | } | |
96 | #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ | |
97 | #endif | |
98 | \f | |
99 | #ifdef L_addvdi3 | |
100 | DWtype | |
101 | __addvDI3 (DWtype a, DWtype b) | |
102 | { | |
103 | DWtype w; | |
104 | ||
105 | if (__builtin_add_overflow (a, b, &w)) | |
106 | abort (); | |
107 | ||
108 | return w; | |
109 | } | |
110 | #endif | |
111 | \f | |
112 | #ifdef L_subvsi3 | |
113 | Wtype | |
114 | __subvSI3 (Wtype a, Wtype b) | |
115 | { | |
116 | Wtype w; | |
117 | ||
118 | if (__builtin_sub_overflow (a, b, &w)) | |
119 | abort (); | |
120 | ||
121 | return w; | |
122 | } | |
123 | #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC | |
124 | SItype | |
125 | __subvsi3 (SItype a, SItype b) | |
126 | { | |
127 | SItype w; | |
128 | ||
129 | if (__builtin_sub_overflow (a, b, &w)) | |
130 | abort (); | |
131 | ||
132 | return w; | |
133 | } | |
134 | #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ | |
135 | #endif | |
136 | \f | |
137 | #ifdef L_subvdi3 | |
138 | DWtype | |
139 | __subvDI3 (DWtype a, DWtype b) | |
140 | { | |
141 | DWtype w; | |
142 | ||
143 | if (__builtin_sub_overflow (a, b, &w)) | |
144 | abort (); | |
145 | ||
146 | return w; | |
147 | } | |
148 | #endif | |
149 | \f | |
150 | #ifdef L_mulvsi3 | |
151 | Wtype | |
152 | __mulvSI3 (Wtype a, Wtype b) | |
153 | { | |
154 | Wtype w; | |
155 | ||
156 | if (__builtin_mul_overflow (a, b, &w)) | |
157 | abort (); | |
158 | ||
159 | return w; | |
160 | } | |
161 | #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC | |
162 | SItype | |
163 | __mulvsi3 (SItype a, SItype b) | |
164 | { | |
165 | SItype w; | |
166 | ||
167 | if (__builtin_mul_overflow (a, b, &w)) | |
168 | abort (); | |
169 | ||
170 | return w; | |
171 | } | |
172 | #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ | |
173 | #endif | |
174 | \f | |
175 | #ifdef L_negvsi2 | |
176 | Wtype | |
177 | __negvSI2 (Wtype a) | |
178 | { | |
179 | Wtype w; | |
180 | ||
181 | if (__builtin_sub_overflow (0, a, &w)) | |
182 | abort (); | |
183 | ||
184 | return w; | |
185 | } | |
186 | #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC | |
187 | SItype | |
188 | __negvsi2 (SItype a) | |
189 | { | |
190 | SItype w; | |
191 | ||
192 | if (__builtin_sub_overflow (0, a, &w)) | |
193 | abort (); | |
194 | ||
195 | return w; | |
196 | } | |
197 | #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ | |
198 | #endif | |
199 | \f | |
200 | #ifdef L_negvdi2 | |
201 | DWtype | |
202 | __negvDI2 (DWtype a) | |
203 | { | |
204 | DWtype w; | |
205 | ||
206 | if (__builtin_sub_overflow (0, a, &w)) | |
207 | abort (); | |
208 | ||
209 | return w; | |
210 | } | |
211 | #endif | |
212 | \f | |
213 | #ifdef L_absvsi2 | |
214 | Wtype | |
215 | __absvSI2 (Wtype a) | |
216 | { | |
217 | const Wtype v = 0 - (a < 0); | |
218 | Wtype w; | |
219 | ||
220 | if (__builtin_add_overflow (a, v, &w)) | |
221 | abort (); | |
222 | ||
223 | return v ^ w; | |
224 | } | |
225 | #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC | |
226 | SItype | |
227 | __absvsi2 (SItype a) | |
228 | { | |
229 | const SItype v = 0 - (a < 0); | |
230 | SItype w; | |
231 | ||
232 | if (__builtin_add_overflow (a, v, &w)) | |
233 | abort (); | |
234 | ||
235 | return v ^ w; | |
236 | } | |
237 | #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ | |
238 | #endif | |
239 | \f | |
240 | #ifdef L_absvdi2 | |
241 | DWtype | |
242 | __absvDI2 (DWtype a) | |
243 | { | |
244 | const DWtype v = 0 - (a < 0); | |
245 | DWtype w; | |
246 | ||
247 | if (__builtin_add_overflow (a, v, &w)) | |
248 | abort (); | |
249 | ||
250 | return v ^ w; | |
251 | } | |
252 | #endif | |
253 | \f | |
254 | #ifdef L_mulvdi3 | |
255 | DWtype | |
256 | __mulvDI3 (DWtype u, DWtype v) | |
257 | { | |
258 | /* The unchecked multiplication needs 3 Wtype x Wtype multiplications, | |
259 | but the checked multiplication needs only two. */ | |
260 | const DWunion uu = {.ll = u}; | |
261 | const DWunion vv = {.ll = v}; | |
262 | ||
263 | if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1)) | |
264 | { | |
265 | /* u fits in a single Wtype. */ | |
266 | if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) | |
267 | { | |
268 | /* v fits in a single Wtype as well. */ | |
269 | /* A single multiplication. No overflow risk. */ | |
270 | return (DWtype) uu.s.low * (DWtype) vv.s.low; | |
271 | } | |
272 | else | |
273 | { | |
274 | /* Two multiplications. */ | |
275 | DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low | |
276 | * (UDWtype) (UWtype) vv.s.low}; | |
277 | DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low | |
278 | * (UDWtype) (UWtype) vv.s.high}; | |
279 | ||
280 | if (vv.s.high < 0) | |
281 | w1.s.high -= uu.s.low; | |
282 | if (uu.s.low < 0) | |
283 | w1.ll -= vv.ll; | |
284 | w1.ll += (UWtype) w0.s.high; | |
285 | if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) | |
286 | { | |
287 | w0.s.high = w1.s.low; | |
288 | return w0.ll; | |
289 | } | |
290 | } | |
291 | } | |
292 | else | |
293 | { | |
294 | if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) | |
295 | { | |
296 | /* v fits into a single Wtype. */ | |
297 | /* Two multiplications. */ | |
298 | DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low | |
299 | * (UDWtype) (UWtype) vv.s.low}; | |
300 | DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high | |
301 | * (UDWtype) (UWtype) vv.s.low}; | |
302 | ||
303 | if (uu.s.high < 0) | |
304 | w1.s.high -= vv.s.low; | |
305 | if (vv.s.low < 0) | |
306 | w1.ll -= uu.ll; | |
307 | w1.ll += (UWtype) w0.s.high; | |
308 | if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) | |
309 | { | |
310 | w0.s.high = w1.s.low; | |
311 | return w0.ll; | |
312 | } | |
313 | } | |
314 | else | |
315 | { | |
316 | /* A few sign checks and a single multiplication. */ | |
317 | if (uu.s.high >= 0) | |
318 | { | |
319 | if (vv.s.high >= 0) | |
320 | { | |
321 | if (uu.s.high == 0 && vv.s.high == 0) | |
322 | { | |
323 | const DWtype w = (UDWtype) (UWtype) uu.s.low | |
324 | * (UDWtype) (UWtype) vv.s.low; | |
325 | if (__builtin_expect (w >= 0, 1)) | |
326 | return w; | |
327 | } | |
328 | } | |
329 | else | |
330 | { | |
331 | if (uu.s.high == 0 && vv.s.high == (Wtype) -1) | |
332 | { | |
333 | DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low | |
334 | * (UDWtype) (UWtype) vv.s.low}; | |
335 | ||
336 | ww.s.high -= uu.s.low; | |
337 | if (__builtin_expect (ww.s.high < 0, 1)) | |
338 | return ww.ll; | |
339 | } | |
340 | } | |
341 | } | |
342 | else | |
343 | { | |
344 | if (vv.s.high >= 0) | |
345 | { | |
346 | if (uu.s.high == (Wtype) -1 && vv.s.high == 0) | |
347 | { | |
348 | DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low | |
349 | * (UDWtype) (UWtype) vv.s.low}; | |
350 | ||
351 | ww.s.high -= vv.s.low; | |
352 | if (__builtin_expect (ww.s.high < 0, 1)) | |
353 | return ww.ll; | |
354 | } | |
355 | } | |
356 | else | |
357 | { | |
358 | if ((uu.s.high & vv.s.high) == (Wtype) -1 | |
359 | && (uu.s.low | vv.s.low) != 0) | |
360 | { | |
361 | DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low | |
362 | * (UDWtype) (UWtype) vv.s.low}; | |
363 | ||
364 | ww.s.high -= uu.s.low; | |
365 | ww.s.high -= vv.s.low; | |
366 | if (__builtin_expect (ww.s.high >= 0, 1)) | |
367 | return ww.ll; | |
368 | } | |
369 | } | |
370 | } | |
371 | } | |
372 | } | |
373 | ||
374 | /* Overflow. */ | |
375 | abort (); | |
376 | } | |
377 | #endif | |
378 | \f | |
379 | ||
380 | /* Unless shift functions are defined with full ANSI prototypes, | |
381 | parameter b will be promoted to int if shift_count_type is smaller than an int. */ | |
382 | #ifdef L_lshrdi3 | |
383 | DWtype | |
384 | __lshrdi3 (DWtype u, shift_count_type b) | |
385 | { | |
386 | if (b == 0) | |
387 | return u; | |
388 | ||
389 | const DWunion uu = {.ll = u}; | |
390 | const shift_count_type bm = W_TYPE_SIZE - b; | |
391 | DWunion w; | |
392 | ||
393 | if (bm <= 0) | |
394 | { | |
395 | w.s.high = 0; | |
396 | w.s.low = (UWtype) uu.s.high >> -bm; | |
397 | } | |
398 | else | |
399 | { | |
400 | const UWtype carries = (UWtype) uu.s.high << bm; | |
401 | ||
402 | w.s.high = (UWtype) uu.s.high >> b; | |
403 | w.s.low = ((UWtype) uu.s.low >> b) | carries; | |
404 | } | |
405 | ||
406 | return w.ll; | |
407 | } | |
408 | #endif | |
409 | ||
410 | #ifdef L_ashldi3 | |
411 | DWtype | |
412 | __ashldi3 (DWtype u, shift_count_type b) | |
413 | { | |
414 | if (b == 0) | |
415 | return u; | |
416 | ||
417 | const DWunion uu = {.ll = u}; | |
418 | const shift_count_type bm = W_TYPE_SIZE - b; | |
419 | DWunion w; | |
420 | ||
421 | if (bm <= 0) | |
422 | { | |
423 | w.s.low = 0; | |
424 | w.s.high = (UWtype) uu.s.low << -bm; | |
425 | } | |
426 | else | |
427 | { | |
428 | const UWtype carries = (UWtype) uu.s.low >> bm; | |
429 | ||
430 | w.s.low = (UWtype) uu.s.low << b; | |
431 | w.s.high = ((UWtype) uu.s.high << b) | carries; | |
432 | } | |
433 | ||
434 | return w.ll; | |
435 | } | |
436 | #endif | |
437 | ||
438 | #ifdef L_ashrdi3 | |
439 | DWtype | |
440 | __ashrdi3 (DWtype u, shift_count_type b) | |
441 | { | |
442 | if (b == 0) | |
443 | return u; | |
444 | ||
445 | const DWunion uu = {.ll = u}; | |
446 | const shift_count_type bm = W_TYPE_SIZE - b; | |
447 | DWunion w; | |
448 | ||
449 | if (bm <= 0) | |
450 | { | |
451 | /* w.s.high = 1..1 or 0..0 */ | |
452 | w.s.high = uu.s.high >> (W_TYPE_SIZE - 1); | |
453 | w.s.low = uu.s.high >> -bm; | |
454 | } | |
455 | else | |
456 | { | |
457 | const UWtype carries = (UWtype) uu.s.high << bm; | |
458 | ||
459 | w.s.high = uu.s.high >> b; | |
460 | w.s.low = ((UWtype) uu.s.low >> b) | carries; | |
461 | } | |
462 | ||
463 | return w.ll; | |
464 | } | |
465 | #endif | |
466 | \f | |
467 | #ifdef L_bswapsi2 | |
468 | SItype | |
469 | __bswapsi2 (SItype u) | |
470 | { | |
471 | return ((((u) & 0xff000000u) >> 24) | |
472 | | (((u) & 0x00ff0000u) >> 8) | |
473 | | (((u) & 0x0000ff00u) << 8) | |
474 | | (((u) & 0x000000ffu) << 24)); | |
475 | } | |
476 | #endif | |
477 | #ifdef L_bswapdi2 | |
478 | DItype | |
479 | __bswapdi2 (DItype u) | |
480 | { | |
481 | return ((((u) & 0xff00000000000000ull) >> 56) | |
482 | | (((u) & 0x00ff000000000000ull) >> 40) | |
483 | | (((u) & 0x0000ff0000000000ull) >> 24) | |
484 | | (((u) & 0x000000ff00000000ull) >> 8) | |
485 | | (((u) & 0x00000000ff000000ull) << 8) | |
486 | | (((u) & 0x0000000000ff0000ull) << 24) | |
487 | | (((u) & 0x000000000000ff00ull) << 40) | |
488 | | (((u) & 0x00000000000000ffull) << 56)); | |
489 | } | |
490 | #endif | |
491 | #ifdef L_ffssi2 | |
492 | #undef int | |
493 | int | |
494 | __ffsSI2 (UWtype u) | |
495 | { | |
496 | UWtype count; | |
497 | ||
498 | if (u == 0) | |
499 | return 0; | |
500 | ||
501 | count_trailing_zeros (count, u); | |
502 | return count + 1; | |
503 | } | |
504 | #endif | |
505 | \f | |
506 | #ifdef L_ffsdi2 | |
507 | #undef int | |
508 | int | |
509 | __ffsDI2 (DWtype u) | |
510 | { | |
511 | const DWunion uu = {.ll = u}; | |
512 | UWtype word, count, add; | |
513 | ||
514 | if (uu.s.low != 0) | |
515 | word = uu.s.low, add = 0; | |
516 | else if (uu.s.high != 0) | |
517 | word = uu.s.high, add = W_TYPE_SIZE; | |
518 | else | |
519 | return 0; | |
520 | ||
521 | count_trailing_zeros (count, word); | |
522 | return count + add + 1; | |
523 | } | |
524 | #endif | |
525 | \f | |
526 | #ifdef L_muldi3 | |
527 | DWtype | |
528 | __muldi3 (DWtype u, DWtype v) | |
529 | { | |
530 | const DWunion uu = {.ll = u}; | |
531 | const DWunion vv = {.ll = v}; | |
532 | DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)}; | |
533 | ||
534 | w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high | |
535 | + (UWtype) uu.s.high * (UWtype) vv.s.low); | |
536 | ||
537 | return w.ll; | |
538 | } | |
539 | #endif | |
540 | \f | |
541 | #if (defined (L_udivdi3) || defined (L_divdi3) || \ | |
542 | defined (L_umoddi3) || defined (L_moddi3)) | |
543 | #if defined (sdiv_qrnnd) | |
544 | #define L_udiv_w_sdiv | |
545 | #endif | |
546 | #endif | |
547 | ||
548 | #ifdef L_udiv_w_sdiv | |
549 | #if defined (sdiv_qrnnd) | |
550 | #if (defined (L_udivdi3) || defined (L_divdi3) || \ | |
551 | defined (L_umoddi3) || defined (L_moddi3)) | |
552 | static inline __attribute__ ((__always_inline__)) | |
553 | #endif | |
554 | UWtype | |
555 | __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d) | |
556 | { | |
557 | UWtype q, r; | |
558 | UWtype c0, c1, b1; | |
559 | ||
560 | if ((Wtype) d >= 0) | |
561 | { | |
562 | if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1))) | |
563 | { | |
564 | /* Dividend, divisor, and quotient are nonnegative. */ | |
565 | sdiv_qrnnd (q, r, a1, a0, d); | |
566 | } | |
567 | else | |
568 | { | |
569 | /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */ | |
570 | sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1)); | |
571 | /* Divide (c1*2^32 + c0) by d. */ | |
572 | sdiv_qrnnd (q, r, c1, c0, d); | |
573 | /* Add 2^31 to quotient. */ | |
574 | q += (UWtype) 1 << (W_TYPE_SIZE - 1); | |
575 | } | |
576 | } | |
577 | else | |
578 | { | |
579 | b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ | |
580 | c1 = a1 >> 1; /* A/2 */ | |
581 | c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1); | |
582 | ||
583 | if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ | |
584 | { | |
585 | sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ | |
586 | ||
587 | r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ | |
588 | if ((d & 1) != 0) | |
589 | { | |
590 | if (r >= q) | |
591 | r = r - q; | |
592 | else if (q - r <= d) | |
593 | { | |
594 | r = r - q + d; | |
595 | q--; | |
596 | } | |
597 | else | |
598 | { | |
599 | r = r - q + 2*d; | |
600 | q -= 2; | |
601 | } | |
602 | } | |
603 | } | |
604 | else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ | |
605 | { | |
606 | c1 = (b1 - 1) - c1; | |
607 | c0 = ~c0; /* logical NOT */ | |
608 | ||
609 | sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ | |
610 | ||
611 | q = ~q; /* (A/2)/b1 */ | |
612 | r = (b1 - 1) - r; | |
613 | ||
614 | r = 2*r + (a0 & 1); /* A/(2*b1) */ | |
615 | ||
616 | if ((d & 1) != 0) | |
617 | { | |
618 | if (r >= q) | |
619 | r = r - q; | |
620 | else if (q - r <= d) | |
621 | { | |
622 | r = r - q + d; | |
623 | q--; | |
624 | } | |
625 | else | |
626 | { | |
627 | r = r - q + 2*d; | |
628 | q -= 2; | |
629 | } | |
630 | } | |
631 | } | |
632 | else /* Implies c1 = b1 */ | |
633 | { /* Hence a1 = d - 1 = 2*b1 - 1 */ | |
634 | if (a0 >= -d) | |
635 | { | |
636 | q = -1; | |
637 | r = a0 + d; | |
638 | } | |
639 | else | |
640 | { | |
641 | q = -2; | |
642 | r = a0 + 2*d; | |
643 | } | |
644 | } | |
645 | } | |
646 | ||
647 | *rp = r; | |
648 | return q; | |
649 | } | |
650 | #else | |
651 | /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ | |
652 | UWtype | |
653 | __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)), | |
654 | UWtype a1 __attribute__ ((__unused__)), | |
655 | UWtype a0 __attribute__ ((__unused__)), | |
656 | UWtype d __attribute__ ((__unused__))) | |
657 | { | |
658 | return 0; | |
659 | } | |
660 | #endif | |
661 | #endif | |
662 | \f | |
663 | #if (defined (L_udivdi3) || defined (L_divdi3) || \ | |
664 | defined (L_umoddi3) || defined (L_moddi3) || \ | |
665 | defined (L_divmoddi4)) | |
666 | #define L_udivmoddi4 | |
667 | #endif | |
668 | ||
669 | #ifdef L_clz | |
670 | const UQItype __clz_tab[256] = | |
671 | { | |
672 | 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, | |
673 | 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, | |
674 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | |
675 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | |
676 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
677 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
678 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
679 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 | |
680 | }; | |
681 | #endif | |
682 | \f | |
683 | #ifdef L_clzsi2 | |
684 | #undef int | |
685 | int | |
686 | __clzSI2 (UWtype x) | |
687 | { | |
688 | Wtype ret; | |
689 | ||
690 | count_leading_zeros (ret, x); | |
691 | ||
692 | return ret; | |
693 | } | |
694 | #endif | |
695 | \f | |
696 | #ifdef L_clzdi2 | |
697 | #undef int | |
698 | int | |
699 | __clzDI2 (UDWtype x) | |
700 | { | |
701 | const DWunion uu = {.ll = x}; | |
702 | UWtype word; | |
703 | Wtype ret, add; | |
704 | ||
705 | if (uu.s.high) | |
706 | word = uu.s.high, add = 0; | |
707 | else | |
708 | word = uu.s.low, add = W_TYPE_SIZE; | |
709 | ||
710 | count_leading_zeros (ret, word); | |
711 | return ret + add; | |
712 | } | |
713 | #endif | |
714 | \f | |
715 | #ifdef L_ctzsi2 | |
716 | #undef int | |
717 | int | |
718 | __ctzSI2 (UWtype x) | |
719 | { | |
720 | Wtype ret; | |
721 | ||
722 | count_trailing_zeros (ret, x); | |
723 | ||
724 | return ret; | |
725 | } | |
726 | #endif | |
727 | \f | |
728 | #ifdef L_ctzdi2 | |
729 | #undef int | |
730 | int | |
731 | __ctzDI2 (UDWtype x) | |
732 | { | |
733 | const DWunion uu = {.ll = x}; | |
734 | UWtype word; | |
735 | Wtype ret, add; | |
736 | ||
737 | if (uu.s.low) | |
738 | word = uu.s.low, add = 0; | |
739 | else | |
740 | word = uu.s.high, add = W_TYPE_SIZE; | |
741 | ||
742 | count_trailing_zeros (ret, word); | |
743 | return ret + add; | |
744 | } | |
745 | #endif | |
746 | \f | |
747 | #ifdef L_clrsbsi2 | |
748 | #undef int | |
749 | int | |
750 | __clrsbSI2 (Wtype x) | |
751 | { | |
752 | Wtype ret; | |
753 | ||
754 | if (x < 0) | |
755 | x = ~x; | |
756 | if (x == 0) | |
757 | return W_TYPE_SIZE - 1; | |
758 | count_leading_zeros (ret, x); | |
759 | return ret - 1; | |
760 | } | |
761 | #endif | |
762 | \f | |
763 | #ifdef L_clrsbdi2 | |
764 | #undef int | |
765 | int | |
766 | __clrsbDI2 (DWtype x) | |
767 | { | |
768 | const DWunion uu = {.ll = x}; | |
769 | UWtype word; | |
770 | Wtype ret, add; | |
771 | ||
772 | if (uu.s.high == 0) | |
773 | word = uu.s.low, add = W_TYPE_SIZE; | |
774 | else if (uu.s.high == -1) | |
775 | word = ~uu.s.low, add = W_TYPE_SIZE; | |
776 | else if (uu.s.high >= 0) | |
777 | word = uu.s.high, add = 0; | |
778 | else | |
779 | word = ~uu.s.high, add = 0; | |
780 | ||
781 | if (word == 0) | |
782 | ret = W_TYPE_SIZE; | |
783 | else | |
784 | count_leading_zeros (ret, word); | |
785 | ||
786 | return ret + add - 1; | |
787 | } | |
788 | #endif | |
789 | \f | |
790 | #ifdef L_popcount_tab | |
791 | const UQItype __popcount_tab[256] = | |
792 | { | |
793 | 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, | |
794 | 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, | |
795 | 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, | |
796 | 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, | |
797 | 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, | |
798 | 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, | |
799 | 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, | |
800 | 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 | |
801 | }; | |
802 | #endif | |
803 | \f | |
804 | #if defined(L_popcountsi2) || defined(L_popcountdi2) | |
805 | #define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x) | |
806 | #define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x) | |
807 | #define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x) | |
808 | #if W_TYPE_SIZE == __CHAR_BIT__ | |
809 | #define POPCOUNTCST(x) x | |
810 | #elif W_TYPE_SIZE == 2 * __CHAR_BIT__ | |
811 | #define POPCOUNTCST(x) POPCOUNTCST2 (x) | |
812 | #elif W_TYPE_SIZE == 4 * __CHAR_BIT__ | |
813 | #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x)) | |
814 | #elif W_TYPE_SIZE == 8 * __CHAR_BIT__ | |
815 | #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x))) | |
816 | #endif | |
817 | #endif | |
818 | \f | |
819 | #ifdef L_popcountsi2 | |
820 | #undef int | |
821 | int | |
822 | __popcountSI2 (UWtype x) | |
823 | { | |
824 | /* Force table lookup on targets like AVR and RL78 which only | |
825 | pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually | |
826 | have 1, and other small word targets. */ | |
827 | #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8 | |
828 | x = x - ((x >> 1) & POPCOUNTCST (0x55)); | |
829 | x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33)); | |
830 | x = (x + (x >> 4)) & POPCOUNTCST (0x0F); | |
831 | return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__); | |
832 | #else | |
833 | int i, ret = 0; | |
834 | ||
835 | for (i = 0; i < W_TYPE_SIZE; i += 8) | |
836 | ret += __popcount_tab[(x >> i) & 0xff]; | |
837 | ||
838 | return ret; | |
839 | #endif | |
840 | } | |
841 | #endif | |
842 | \f | |
843 | #ifdef L_popcountdi2 | |
844 | #undef int | |
845 | int | |
846 | __popcountDI2 (UDWtype x) | |
847 | { | |
848 | /* Force table lookup on targets like AVR and RL78 which only | |
849 | pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually | |
850 | have 1, and other small word targets. */ | |
851 | #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8 | |
852 | const DWunion uu = {.ll = x}; | |
853 | UWtype x1 = uu.s.low, x2 = uu.s.high; | |
854 | x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55)); | |
855 | x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55)); | |
856 | x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33)); | |
857 | x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33)); | |
858 | x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F); | |
859 | x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F); | |
860 | x1 += x2; | |
861 | return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__); | |
862 | #else | |
863 | int i, ret = 0; | |
864 | ||
865 | for (i = 0; i < 2*W_TYPE_SIZE; i += 8) | |
866 | ret += __popcount_tab[(x >> i) & 0xff]; | |
867 | ||
868 | return ret; | |
869 | #endif | |
870 | } | |
871 | #endif | |
872 | \f | |
873 | #ifdef L_paritysi2 | |
874 | #undef int | |
875 | int | |
876 | __paritySI2 (UWtype x) | |
877 | { | |
878 | #if W_TYPE_SIZE > 64 | |
879 | # error "fill out the table" | |
880 | #endif | |
881 | #if W_TYPE_SIZE > 32 | |
882 | x ^= x >> 32; | |
883 | #endif | |
884 | #if W_TYPE_SIZE > 16 | |
885 | x ^= x >> 16; | |
886 | #endif | |
887 | x ^= x >> 8; | |
888 | x ^= x >> 4; | |
889 | x &= 0xf; | |
890 | return (0x6996 >> x) & 1; | |
891 | } | |
892 | #endif | |
893 | \f | |
894 | #ifdef L_paritydi2 | |
895 | #undef int | |
896 | int | |
897 | __parityDI2 (UDWtype x) | |
898 | { | |
899 | const DWunion uu = {.ll = x}; | |
900 | UWtype nx = uu.s.low ^ uu.s.high; | |
901 | ||
902 | #if W_TYPE_SIZE > 64 | |
903 | # error "fill out the table" | |
904 | #endif | |
905 | #if W_TYPE_SIZE > 32 | |
906 | nx ^= nx >> 32; | |
907 | #endif | |
908 | #if W_TYPE_SIZE > 16 | |
909 | nx ^= nx >> 16; | |
910 | #endif | |
911 | nx ^= nx >> 8; | |
912 | nx ^= nx >> 4; | |
913 | nx &= 0xf; | |
914 | return (0x6996 >> nx) & 1; | |
915 | } | |
916 | #endif | |
917 | ||
918 | #ifdef L_udivmoddi4 | |
919 | #ifdef TARGET_HAS_NO_HW_DIVIDE | |
920 | ||
921 | #if (defined (L_udivdi3) || defined (L_divdi3) || \ | |
922 | defined (L_umoddi3) || defined (L_moddi3) || \ | |
923 | defined (L_divmoddi4)) | |
924 | static inline __attribute__ ((__always_inline__)) | |
925 | #endif | |
926 | UDWtype | |
927 | __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) | |
928 | { | |
929 | UDWtype q = 0, r = n, y = d; | |
930 | UWtype lz1, lz2, i, k; | |
931 | ||
932 | /* Implements align divisor shift dividend method. This algorithm | |
933 | aligns the divisor under the dividend and then perform number of | |
934 | test-subtract iterations which shift the dividend left. Number of | |
935 | iterations is k + 1 where k is the number of bit positions the | |
936 | divisor must be shifted left to align it under the dividend. | |
937 | quotient bits can be saved in the rightmost positions of the dividend | |
938 | as it shifts left on each test-subtract iteration. */ | |
939 | ||
940 | if (y <= r) | |
941 | { | |
942 | lz1 = __builtin_clzll (d); | |
943 | lz2 = __builtin_clzll (n); | |
944 | ||
945 | k = lz1 - lz2; | |
946 | y = (y << k); | |
947 | ||
948 | /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the | |
949 | aligned divisor. Normal iteration can drops the high order bit | |
950 | of the dividend. Therefore, first test-subtract iteration is a | |
951 | special case, saving its quotient bit in a separate location and | |
952 | not shifting the dividend. */ | |
953 | if (r >= y) | |
954 | { | |
955 | r = r - y; | |
956 | q = (1ULL << k); | |
957 | } | |
958 | ||
959 | if (k > 0) | |
960 | { | |
961 | y = y >> 1; | |
962 | ||
963 | /* k additional iterations where k regular test subtract shift | |
964 | dividend iterations are done. */ | |
965 | i = k; | |
966 | do | |
967 | { | |
968 | if (r >= y) | |
969 | r = ((r - y) << 1) + 1; | |
970 | else | |
971 | r = (r << 1); | |
972 | i = i - 1; | |
973 | } while (i != 0); | |
974 | ||
975 | /* First quotient bit is combined with the quotient bits resulting | |
976 | from the k regular iterations. */ | |
977 | q = q + r; | |
978 | r = r >> k; | |
979 | q = q - (r << k); | |
980 | } | |
981 | } | |
982 | ||
983 | if (rp) | |
984 | *rp = r; | |
985 | return q; | |
986 | } | |
987 | #else | |
988 | ||
989 | #if (defined (L_udivdi3) || defined (L_divdi3) || \ | |
990 | defined (L_umoddi3) || defined (L_moddi3) || \ | |
991 | defined (L_divmoddi4)) | |
992 | static inline __attribute__ ((__always_inline__)) | |
993 | #endif | |
994 | UDWtype | |
995 | __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) | |
996 | { | |
997 | const DWunion nn = {.ll = n}; | |
998 | const DWunion dd = {.ll = d}; | |
999 | DWunion rr; | |
1000 | UWtype d0, d1, n0, n1, n2; | |
1001 | UWtype q0, q1; | |
1002 | UWtype b, bm; | |
1003 | ||
1004 | d0 = dd.s.low; | |
1005 | d1 = dd.s.high; | |
1006 | n0 = nn.s.low; | |
1007 | n1 = nn.s.high; | |
1008 | ||
1009 | #if !UDIV_NEEDS_NORMALIZATION | |
1010 | if (d1 == 0) | |
1011 | { | |
1012 | if (d0 > n1) | |
1013 | { | |
1014 | /* 0q = nn / 0D */ | |
1015 | ||
1016 | udiv_qrnnd (q0, n0, n1, n0, d0); | |
1017 | q1 = 0; | |
1018 | ||
1019 | /* Remainder in n0. */ | |
1020 | } | |
1021 | else | |
1022 | { | |
1023 | /* qq = NN / 0d */ | |
1024 | ||
1025 | if (d0 == 0) | |
1026 | d0 = 1 / d0; /* Divide intentionally by zero. */ | |
1027 | ||
1028 | udiv_qrnnd (q1, n1, 0, n1, d0); | |
1029 | udiv_qrnnd (q0, n0, n1, n0, d0); | |
1030 | ||
1031 | /* Remainder in n0. */ | |
1032 | } | |
1033 | ||
1034 | if (rp != 0) | |
1035 | { | |
1036 | rr.s.low = n0; | |
1037 | rr.s.high = 0; | |
1038 | *rp = rr.ll; | |
1039 | } | |
1040 | } | |
1041 | ||
1042 | #else /* UDIV_NEEDS_NORMALIZATION */ | |
1043 | ||
1044 | if (d1 == 0) | |
1045 | { | |
1046 | if (d0 > n1) | |
1047 | { | |
1048 | /* 0q = nn / 0D */ | |
1049 | ||
1050 | count_leading_zeros (bm, d0); | |
1051 | ||
1052 | if (bm != 0) | |
1053 | { | |
1054 | /* Normalize, i.e. make the most significant bit of the | |
1055 | denominator set. */ | |
1056 | ||
1057 | d0 = d0 << bm; | |
1058 | n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm)); | |
1059 | n0 = n0 << bm; | |
1060 | } | |
1061 | ||
1062 | udiv_qrnnd (q0, n0, n1, n0, d0); | |
1063 | q1 = 0; | |
1064 | ||
1065 | /* Remainder in n0 >> bm. */ | |
1066 | } | |
1067 | else | |
1068 | { | |
1069 | /* qq = NN / 0d */ | |
1070 | ||
1071 | if (d0 == 0) | |
1072 | d0 = 1 / d0; /* Divide intentionally by zero. */ | |
1073 | ||
1074 | count_leading_zeros (bm, d0); | |
1075 | ||
1076 | if (bm == 0) | |
1077 | { | |
1078 | /* From (n1 >= d0) /\ (the most significant bit of d0 is set), | |
1079 | conclude (the most significant bit of n1 is set) /\ (the | |
1080 | leading quotient digit q1 = 1). | |
1081 | ||
1082 | This special case is necessary, not an optimization. | |
1083 | (Shifts counts of W_TYPE_SIZE are undefined.) */ | |
1084 | ||
1085 | n1 -= d0; | |
1086 | q1 = 1; | |
1087 | } | |
1088 | else | |
1089 | { | |
1090 | /* Normalize. */ | |
1091 | ||
1092 | b = W_TYPE_SIZE - bm; | |
1093 | ||
1094 | d0 = d0 << bm; | |
1095 | n2 = n1 >> b; | |
1096 | n1 = (n1 << bm) | (n0 >> b); | |
1097 | n0 = n0 << bm; | |
1098 | ||
1099 | udiv_qrnnd (q1, n1, n2, n1, d0); | |
1100 | } | |
1101 | ||
1102 | /* n1 != d0... */ | |
1103 | ||
1104 | udiv_qrnnd (q0, n0, n1, n0, d0); | |
1105 | ||
1106 | /* Remainder in n0 >> bm. */ | |
1107 | } | |
1108 | ||
1109 | if (rp != 0) | |
1110 | { | |
1111 | rr.s.low = n0 >> bm; | |
1112 | rr.s.high = 0; | |
1113 | *rp = rr.ll; | |
1114 | } | |
1115 | } | |
1116 | #endif /* UDIV_NEEDS_NORMALIZATION */ | |
1117 | ||
1118 | else | |
1119 | { | |
1120 | if (d1 > n1) | |
1121 | { | |
1122 | /* 00 = nn / DD */ | |
1123 | ||
1124 | q0 = 0; | |
1125 | q1 = 0; | |
1126 | ||
1127 | /* Remainder in n1n0. */ | |
1128 | if (rp != 0) | |
1129 | { | |
1130 | rr.s.low = n0; | |
1131 | rr.s.high = n1; | |
1132 | *rp = rr.ll; | |
1133 | } | |
1134 | } | |
1135 | else | |
1136 | { | |
1137 | /* 0q = NN / dd */ | |
1138 | ||
1139 | count_leading_zeros (bm, d1); | |
1140 | if (bm == 0) | |
1141 | { | |
1142 | /* From (n1 >= d1) /\ (the most significant bit of d1 is set), | |
1143 | conclude (the most significant bit of n1 is set) /\ (the | |
1144 | quotient digit q0 = 0 or 1). | |
1145 | ||
1146 | This special case is necessary, not an optimization. */ | |
1147 | ||
1148 | /* The condition on the next line takes advantage of that | |
1149 | n1 >= d1 (true due to program flow). */ | |
1150 | if (n1 > d1 || n0 >= d0) | |
1151 | { | |
1152 | q0 = 1; | |
1153 | sub_ddmmss (n1, n0, n1, n0, d1, d0); | |
1154 | } | |
1155 | else | |
1156 | q0 = 0; | |
1157 | ||
1158 | q1 = 0; | |
1159 | ||
1160 | if (rp != 0) | |
1161 | { | |
1162 | rr.s.low = n0; | |
1163 | rr.s.high = n1; | |
1164 | *rp = rr.ll; | |
1165 | } | |
1166 | } | |
1167 | else | |
1168 | { | |
1169 | UWtype m1, m0; | |
1170 | /* Normalize. */ | |
1171 | ||
1172 | b = W_TYPE_SIZE - bm; | |
1173 | ||
1174 | d1 = (d1 << bm) | (d0 >> b); | |
1175 | d0 = d0 << bm; | |
1176 | n2 = n1 >> b; | |
1177 | n1 = (n1 << bm) | (n0 >> b); | |
1178 | n0 = n0 << bm; | |
1179 | ||
1180 | udiv_qrnnd (q0, n1, n2, n1, d1); | |
1181 | umul_ppmm (m1, m0, q0, d0); | |
1182 | ||
1183 | if (m1 > n1 || (m1 == n1 && m0 > n0)) | |
1184 | { | |
1185 | q0--; | |
1186 | sub_ddmmss (m1, m0, m1, m0, d1, d0); | |
1187 | } | |
1188 | ||
1189 | q1 = 0; | |
1190 | ||
1191 | /* Remainder in (n1n0 - m1m0) >> bm. */ | |
1192 | if (rp != 0) | |
1193 | { | |
1194 | sub_ddmmss (n1, n0, n1, n0, m1, m0); | |
1195 | rr.s.low = (n1 << b) | (n0 >> bm); | |
1196 | rr.s.high = n1 >> bm; | |
1197 | *rp = rr.ll; | |
1198 | } | |
1199 | } | |
1200 | } | |
1201 | } | |
1202 | ||
1203 | const DWunion ww = {{.low = q0, .high = q1}}; | |
1204 | return ww.ll; | |
1205 | } | |
1206 | #endif | |
1207 | #endif | |
1208 | ||
1209 | #ifdef L_divdi3 | |
1210 | DWtype | |
1211 | __divdi3 (DWtype u, DWtype v) | |
1212 | { | |
1213 | Wtype c = 0; | |
1214 | DWunion uu = {.ll = u}; | |
1215 | DWunion vv = {.ll = v}; | |
1216 | DWtype w; | |
1217 | ||
1218 | if (uu.s.high < 0) | |
1219 | c = ~c, | |
1220 | uu.ll = -uu.ll; | |
1221 | if (vv.s.high < 0) | |
1222 | c = ~c, | |
1223 | vv.ll = -vv.ll; | |
1224 | ||
1225 | w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); | |
1226 | if (c) | |
1227 | w = -w; | |
1228 | ||
1229 | return w; | |
1230 | } | |
1231 | #endif | |
1232 | ||
1233 | #ifdef L_moddi3 | |
1234 | DWtype | |
1235 | __moddi3 (DWtype u, DWtype v) | |
1236 | { | |
1237 | Wtype c = 0; | |
1238 | DWunion uu = {.ll = u}; | |
1239 | DWunion vv = {.ll = v}; | |
1240 | DWtype w; | |
1241 | ||
1242 | if (uu.s.high < 0) | |
1243 | c = ~c, | |
1244 | uu.ll = -uu.ll; | |
1245 | if (vv.s.high < 0) | |
1246 | vv.ll = -vv.ll; | |
1247 | ||
1248 | (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w); | |
1249 | if (c) | |
1250 | w = -w; | |
1251 | ||
1252 | return w; | |
1253 | } | |
1254 | #endif | |
1255 | ||
1256 | #ifdef L_divmoddi4 | |
1257 | DWtype | |
1258 | __divmoddi4 (DWtype u, DWtype v, DWtype *rp) | |
1259 | { | |
1260 | Wtype c1 = 0, c2 = 0; | |
1261 | DWunion uu = {.ll = u}; | |
1262 | DWunion vv = {.ll = v}; | |
1263 | DWtype w; | |
1264 | DWtype r; | |
1265 | ||
1266 | if (uu.s.high < 0) | |
1267 | c1 = ~c1, c2 = ~c2, | |
1268 | uu.ll = -uu.ll; | |
1269 | if (vv.s.high < 0) | |
1270 | c1 = ~c1, | |
1271 | vv.ll = -vv.ll; | |
1272 | ||
1273 | w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r); | |
1274 | if (c1) | |
1275 | w = -w; | |
1276 | if (c2) | |
1277 | r = -r; | |
1278 | ||
1279 | *rp = r; | |
1280 | return w; | |
1281 | } | |
1282 | #endif | |
1283 | ||
1284 | #ifdef L_umoddi3 | |
1285 | UDWtype | |
1286 | __umoddi3 (UDWtype u, UDWtype v) | |
1287 | { | |
1288 | UDWtype w; | |
1289 | ||
1290 | (void) __udivmoddi4 (u, v, &w); | |
1291 | ||
1292 | return w; | |
1293 | } | |
1294 | #endif | |
1295 | ||
1296 | #ifdef L_udivdi3 | |
1297 | UDWtype | |
1298 | __udivdi3 (UDWtype n, UDWtype d) | |
1299 | { | |
1300 | return __udivmoddi4 (n, d, (UDWtype *) 0); | |
1301 | } | |
1302 | #endif | |
1303 | \f | |
1304 | #if (defined(__BITINT_MAXWIDTH__) \ | |
1305 | && (defined(L_mulbitint3) || defined(L_divmodbitint4))) | |
1306 | /* _BitInt support. */ | |
1307 | ||
1308 | /* If *P is zero or sign extended (the latter only for PREC < 0) from | |
1309 | some narrower _BitInt value, reduce precision. */ | |
1310 | ||
1311 | static inline __attribute__((__always_inline__)) SItype | |
1312 | bitint_reduce_prec (const UBILtype **p, SItype prec) | |
1313 | { | |
1314 | UWtype mslimb; | |
1315 | SItype i; | |
1316 | if (prec < 0) | |
1317 | { | |
1318 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1319 | i = 0; | |
1320 | #else | |
1321 | i = ((USItype) -1 - prec) / W_TYPE_SIZE; | |
1322 | #endif | |
1323 | mslimb = (*p)[i]; | |
1324 | if (mslimb & ((UWtype) 1 << (((USItype) -1 - prec) % W_TYPE_SIZE))) | |
1325 | { | |
1326 | SItype n = ((USItype) -prec) % W_TYPE_SIZE; | |
1327 | if (n) | |
1328 | { | |
1329 | mslimb |= ((UWtype) -1 << (((USItype) -1 - prec) % W_TYPE_SIZE)); | |
1330 | if (mslimb == (UWtype) -1) | |
1331 | { | |
1332 | prec += n; | |
1333 | if (prec >= -1) | |
1334 | return -2; | |
1335 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1336 | ++*p; | |
1337 | #else | |
1338 | --i; | |
1339 | #endif | |
1340 | mslimb = (*p)[i]; | |
1341 | n = 0; | |
1342 | } | |
1343 | } | |
1344 | while (mslimb == (UWtype) -1) | |
1345 | { | |
1346 | prec += W_TYPE_SIZE; | |
1347 | if (prec >= -1) | |
1348 | return -2; | |
1349 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1350 | ++*p; | |
1351 | #else | |
1352 | --i; | |
1353 | #endif | |
1354 | mslimb = (*p)[i]; | |
1355 | } | |
1356 | if (n == 0) | |
1357 | { | |
1358 | if ((Wtype) mslimb >= 0) | |
1359 | { | |
1360 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1361 | --*p; | |
1362 | #endif | |
1363 | return prec - 1; | |
1364 | } | |
1365 | } | |
1366 | return prec; | |
1367 | } | |
1368 | else | |
1369 | prec = -prec; | |
1370 | } | |
1371 | else | |
1372 | { | |
1373 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1374 | i = 0; | |
1375 | #else | |
1376 | i = ((USItype) prec - 1) / W_TYPE_SIZE; | |
1377 | #endif | |
1378 | mslimb = (*p)[i]; | |
1379 | } | |
1380 | SItype n = ((USItype) prec) % W_TYPE_SIZE; | |
1381 | if (n) | |
1382 | { | |
1383 | mslimb &= ((UWtype) 1 << (((USItype) prec) % W_TYPE_SIZE)) - 1; | |
1384 | if (mslimb == 0) | |
1385 | { | |
1386 | prec -= n; | |
1387 | if (prec == 0) | |
1388 | return 1; | |
1389 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1390 | ++*p; | |
1391 | #else | |
1392 | --i; | |
1393 | #endif | |
1394 | mslimb = (*p)[i]; | |
1395 | } | |
1396 | } | |
1397 | while (mslimb == 0) | |
1398 | { | |
1399 | prec -= W_TYPE_SIZE; | |
1400 | if (prec == 0) | |
1401 | return 1; | |
1402 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1403 | ++*p; | |
1404 | #else | |
1405 | --i; | |
1406 | #endif | |
1407 | mslimb = (*p)[i]; | |
1408 | } | |
1409 | return prec; | |
1410 | } | |
1411 | ||
1412 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1413 | # define BITINT_INC -1 | |
1414 | # define BITINT_END(be, le) (be) | |
1415 | #else | |
1416 | # define BITINT_INC 1 | |
1417 | # define BITINT_END(be, le) (le) | |
1418 | #endif | |
1419 | ||
1420 | #ifdef L_mulbitint3 | |
1421 | /* D = S * L. */ | |
1422 | ||
1423 | static UWtype | |
1424 | bitint_mul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n) | |
1425 | { | |
1426 | UWtype sv, hi, lo, c = 0; | |
1427 | do | |
1428 | { | |
1429 | sv = *s; | |
1430 | s += BITINT_INC; | |
1431 | umul_ppmm (hi, lo, sv, l); | |
1432 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1433 | *d = lo; | |
1434 | d += BITINT_INC; | |
1435 | } | |
1436 | while (--n); | |
1437 | return c; | |
1438 | } | |
1439 | ||
1440 | /* D += S * L. */ | |
1441 | ||
1442 | static UWtype | |
1443 | bitint_addmul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n) | |
1444 | { | |
1445 | UWtype sv, hi, lo, c = 0; | |
1446 | do | |
1447 | { | |
1448 | sv = *s; | |
1449 | s += BITINT_INC; | |
1450 | umul_ppmm (hi, lo, sv, l); | |
1451 | hi += __builtin_add_overflow (lo, *d, &lo); | |
1452 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1453 | *d = lo; | |
1454 | d += BITINT_INC; | |
1455 | } | |
1456 | while (--n); | |
1457 | return c; | |
1458 | } | |
1459 | ||
1460 | /* If XPREC is positive, it is precision in bits | |
1461 | of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE | |
1462 | full limbs and if Xprec%W_TYPE_SIZE one partial limb. | |
1463 | If Xprec is negative, -XPREC is precision in bits | |
1464 | of a signed _BitInt operand. RETPREC should be always | |
1465 | positive. */ | |
1466 | ||
1467 | void | |
1468 | __mulbitint3 (UBILtype *ret, SItype retprec, | |
1469 | const UBILtype *u, SItype uprec, | |
1470 | const UBILtype *v, SItype vprec) | |
1471 | { | |
1472 | uprec = bitint_reduce_prec (&u, uprec); | |
1473 | vprec = bitint_reduce_prec (&v, vprec); | |
1474 | USItype auprec = uprec < 0 ? -uprec : uprec; | |
1475 | USItype avprec = vprec < 0 ? -vprec : vprec; | |
1476 | ||
1477 | /* Prefer non-negative U. | |
1478 | Otherwise make sure V doesn't have higher precision than U. */ | |
1479 | if ((uprec < 0 && vprec >= 0) | |
1480 | || (avprec > auprec && !(uprec >= 0 && vprec < 0))) | |
1481 | { | |
1482 | SItype p; | |
1483 | const UBILtype *t; | |
1484 | p = uprec; uprec = vprec; vprec = p; | |
1485 | p = auprec; auprec = avprec; avprec = p; | |
1486 | t = u; u = v; v = t; | |
1487 | } | |
1488 | ||
1489 | USItype un = auprec / W_TYPE_SIZE; | |
1490 | USItype un2 = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1491 | USItype vn = avprec / W_TYPE_SIZE; | |
1492 | USItype vn2 = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1493 | USItype retn = ((USItype) retprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1494 | USItype retidx, uidx, vidx; | |
1495 | UWtype vv; | |
1496 | /* Indexes of least significant limb. */ | |
1497 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1498 | retidx = retn - 1; | |
1499 | uidx = un2 - 1; | |
1500 | vidx = vn2 - 1; | |
1501 | #else | |
1502 | retidx = 0; | |
1503 | uidx = 0; | |
1504 | vidx = 0; | |
1505 | #endif | |
1506 | if (__builtin_expect (auprec <= W_TYPE_SIZE, 0) && vprec < 0) | |
1507 | { | |
1508 | UWtype uu = u[uidx]; | |
1509 | if (__builtin_expect (auprec < W_TYPE_SIZE, 0)) | |
1510 | uu &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1; | |
1511 | if (uu == 0) | |
1512 | { | |
1513 | /* 0 * negative would be otherwise mishandled below, so | |
1514 | handle it specially. */ | |
1515 | __builtin_memset (ret, 0, retn * sizeof (UWtype)); | |
1516 | return; | |
1517 | } | |
1518 | } | |
1519 | vv = v[vidx]; | |
1520 | if (__builtin_expect (avprec < W_TYPE_SIZE, 0)) | |
1521 | { | |
1522 | if (vprec > 0) | |
1523 | vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1; | |
1524 | else | |
1525 | vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE); | |
1526 | } | |
1527 | ||
1528 | USItype n = un > retn ? retn : un; | |
1529 | USItype n2 = n; | |
1530 | USItype retidx2 = retidx + n * BITINT_INC; | |
1531 | UWtype c = 0, uv = 0; | |
1532 | if (n) | |
1533 | c = bitint_mul_1 (ret + retidx, u + uidx, vv, n); | |
1534 | if (retn > un && un2 != un) | |
1535 | { | |
1536 | UWtype hi, lo; | |
1537 | uv = u[uidx + n * BITINT_INC]; | |
1538 | if (uprec > 0) | |
1539 | uv &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1; | |
1540 | else | |
1541 | uv |= (UWtype) -1 << (auprec % W_TYPE_SIZE); | |
1542 | umul_ppmm (hi, lo, uv, vv); | |
1543 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1544 | ret[retidx2] = lo; | |
1545 | retidx2 += BITINT_INC; | |
1546 | ++n2; | |
1547 | } | |
1548 | if (retn > un2) | |
1549 | { | |
1550 | if (uprec < 0) | |
1551 | { | |
1552 | while (n2 < retn) | |
1553 | { | |
1554 | if (n2 >= un2 + vn2) | |
1555 | break; | |
1556 | UWtype hi, lo; | |
1557 | umul_ppmm (hi, lo, (UWtype) -1, vv); | |
1558 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1559 | ret[retidx2] = lo; | |
1560 | retidx2 += BITINT_INC; | |
1561 | ++n2; | |
1562 | } | |
1563 | } | |
1564 | else | |
1565 | { | |
1566 | ret[retidx2] = c; | |
1567 | retidx2 += BITINT_INC; | |
1568 | ++n2; | |
1569 | } | |
1570 | /* If RET has more limbs than U after precision reduction, | |
1571 | fill in the remaining limbs. */ | |
1572 | while (n2 < retn) | |
1573 | { | |
1574 | if (n2 < un2 + vn2 || (uprec ^ vprec) >= 0) | |
1575 | c = 0; | |
1576 | else | |
1577 | c = (UWtype) -1; | |
1578 | ret[retidx2] = c; | |
1579 | retidx2 += BITINT_INC; | |
1580 | ++n2; | |
1581 | } | |
1582 | } | |
1583 | /* N is now number of possibly non-zero limbs in RET (ignoring | |
1584 | limbs above UN2 + VN2 which if any have been finalized already). */ | |
1585 | USItype end = vprec < 0 ? un2 + vn2 : vn2; | |
1586 | if (retn > un2 + vn2) retn = un2 + vn2; | |
1587 | if (end > retn) end = retn; | |
1588 | for (USItype m = 1; m < end; ++m) | |
1589 | { | |
1590 | retidx += BITINT_INC; | |
1591 | vidx += BITINT_INC; | |
1592 | if (m < vn2) | |
1593 | { | |
1594 | vv = v[vidx]; | |
1595 | if (__builtin_expect (m == vn, 0)) | |
1596 | { | |
1597 | if (vprec > 0) | |
1598 | vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1; | |
1599 | else | |
1600 | vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE); | |
1601 | } | |
1602 | } | |
1603 | else | |
1604 | vv = (UWtype) -1; | |
1605 | if (m + n > retn) | |
1606 | n = retn - m; | |
1607 | c = 0; | |
1608 | if (n) | |
1609 | c = bitint_addmul_1 (ret + retidx, u + uidx, vv, n); | |
1610 | n2 = m + n; | |
1611 | retidx2 = retidx + n * BITINT_INC; | |
1612 | if (n2 < retn && un2 != un) | |
1613 | { | |
1614 | UWtype hi, lo; | |
1615 | umul_ppmm (hi, lo, uv, vv); | |
1616 | hi += __builtin_add_overflow (lo, ret[retidx2], &lo); | |
1617 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1618 | ret[retidx2] = lo; | |
1619 | retidx2 += BITINT_INC; | |
1620 | ++n2; | |
1621 | } | |
1622 | if (uprec < 0) | |
1623 | while (n2 < retn) | |
1624 | { | |
1625 | UWtype hi, lo; | |
1626 | umul_ppmm (hi, lo, (UWtype) -1, vv); | |
1627 | hi += __builtin_add_overflow (lo, ret[retidx2], &lo); | |
1628 | c = __builtin_add_overflow (lo, c, &lo) + hi; | |
1629 | ret[retidx2] = lo; | |
1630 | retidx2 += BITINT_INC; | |
1631 | ++n2; | |
1632 | } | |
1633 | else if (n2 < retn) | |
1634 | { | |
1635 | ret[retidx2] = c; | |
1636 | retidx2 += BITINT_INC; | |
1637 | } | |
1638 | } | |
1639 | } | |
1640 | #endif | |
1641 | ||
1642 | #ifdef L_divmodbitint4 | |
1643 | /* D = -S. */ | |
1644 | ||
1645 | static UWtype | |
1646 | bitint_negate (UBILtype *d, const UBILtype *s, SItype n) | |
1647 | { | |
1648 | UWtype c = 1; | |
1649 | UWtype r = 0; | |
1650 | do | |
1651 | { | |
1652 | UWtype sv = *s, lo; | |
1653 | r |= sv; | |
1654 | s += BITINT_INC; | |
1655 | c = __builtin_add_overflow (~sv, c, &lo); | |
1656 | *d = lo; | |
1657 | d += BITINT_INC; | |
1658 | } | |
1659 | while (--n); | |
1660 | return r; | |
1661 | } | |
1662 | ||
1663 | /* D -= S * L. */ | |
1664 | ||
1665 | static UWtype | |
1666 | bitint_submul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n) | |
1667 | { | |
1668 | UWtype sv, hi, lo, c = 0; | |
1669 | do | |
1670 | { | |
1671 | sv = *s; | |
1672 | s += BITINT_INC; | |
1673 | umul_ppmm (hi, lo, sv, l); | |
1674 | hi += __builtin_sub_overflow (*d, lo, &lo); | |
1675 | c = __builtin_sub_overflow (lo, c, &lo) + hi; | |
1676 | *d = lo; | |
1677 | d += BITINT_INC; | |
1678 | } | |
1679 | while (--n); | |
1680 | return c; | |
1681 | } | |
1682 | ||
1683 | /* If XPREC is positive, it is precision in bits | |
1684 | of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE | |
1685 | full limbs and if Xprec%W_TYPE_SIZE one partial limb. | |
1686 | If Xprec is negative, -XPREC is precision in bits | |
1687 | of a signed _BitInt operand. QPREC and RPREC should be | |
1688 | always non-negative. If either Q or R is NULL (at least | |
1689 | one should be non-NULL), then corresponding QPREC or RPREC | |
1690 | should be 0. */ | |
1691 | ||
1692 | void | |
1693 | __divmodbitint4 (UBILtype *q, SItype qprec, | |
1694 | UBILtype *r, SItype rprec, | |
1695 | const UBILtype *u, SItype uprec, | |
1696 | const UBILtype *v, SItype vprec) | |
1697 | { | |
1698 | uprec = bitint_reduce_prec (&u, uprec); | |
1699 | vprec = bitint_reduce_prec (&v, vprec); | |
1700 | USItype auprec = uprec < 0 ? -uprec : uprec; | |
1701 | USItype avprec = vprec < 0 ? -vprec : vprec; | |
1702 | USItype un = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1703 | USItype vn = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1704 | USItype qn = ((USItype) qprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1705 | USItype rn = ((USItype) rprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE; | |
1706 | USItype up = auprec % W_TYPE_SIZE; | |
1707 | USItype vp = avprec % W_TYPE_SIZE; | |
1708 | /* If vprec < 0 and the top limb of v is all ones and the second most | |
1709 | significant limb has most significant bit clear, then just decrease | |
1710 | vn/avprec/vp, because after negation otherwise v2 would have most | |
1711 | significant limb clear. */ | |
1712 | if (vprec < 0 | |
1713 | && ((v[BITINT_END (0, vn - 1)] | (vp ? ((UWtype) -1 << vp) : 0)) | |
1714 | == (UWtype) -1) | |
1715 | && vn > 1 | |
1716 | && (Wtype) v[BITINT_END (1, vn - 2)] >= 0) | |
1717 | { | |
1718 | /* Unless all bits below the most significant limb are zero. */ | |
1719 | SItype vn2; | |
1720 | for (vn2 = vn - 2; vn2 >= 0; --vn2) | |
1721 | if (v[BITINT_END (vn - 1 - vn2, vn2)]) | |
1722 | { | |
1723 | vp = 0; | |
1724 | --vn; | |
1725 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1726 | ++v; | |
1727 | #endif | |
1728 | break; | |
1729 | } | |
1730 | } | |
1731 | if (__builtin_expect (un < vn, 0)) | |
1732 | { | |
1733 | /* q is 0 and r is u. */ | |
1734 | if (q) | |
1735 | __builtin_memset (q, 0, qn * sizeof (UWtype)); | |
1736 | if (r == NULL) | |
1737 | return; | |
1738 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1739 | r += rn - 1; | |
1740 | u += un - 1; | |
1741 | #endif | |
1742 | if (up) | |
1743 | --un; | |
1744 | if (rn < un) | |
1745 | un = rn; | |
1746 | for (rn -= un; un; --un) | |
1747 | { | |
1748 | *r = *u; | |
1749 | r += BITINT_INC; | |
1750 | u += BITINT_INC; | |
1751 | } | |
1752 | if (!rn) | |
1753 | return; | |
1754 | if (up) | |
1755 | { | |
1756 | if (uprec > 0) | |
1757 | *r = *u & (((UWtype) 1 << up) - 1); | |
1758 | else | |
1759 | *r = *u | ((UWtype) -1 << up); | |
1760 | r += BITINT_INC; | |
1761 | if (!--rn) | |
1762 | return; | |
1763 | } | |
1764 | UWtype c = uprec < 0 ? (UWtype) -1 : (UWtype) 0; | |
1765 | for (; rn; --rn) | |
1766 | { | |
1767 | *r = c; | |
1768 | r += BITINT_INC; | |
1769 | } | |
1770 | return; | |
1771 | } | |
1772 | USItype qn2 = un - vn + 1; | |
1773 | if (qn >= qn2) | |
1774 | qn2 = 0; | |
1775 | USItype sz = un + 1 + vn + qn2; | |
1776 | UBILtype *buf = __builtin_alloca (sz * sizeof (UWtype)); | |
1777 | USItype uidx, vidx; | |
1778 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1779 | uidx = un - 1; | |
1780 | vidx = vn - 1; | |
1781 | #else | |
1782 | uidx = 0; | |
1783 | vidx = 0; | |
1784 | #endif | |
1785 | if (uprec < 0) | |
1786 | bitint_negate (buf + BITINT_END (uidx + 1, 0), u + uidx, un); | |
1787 | else | |
1788 | __builtin_memcpy (buf + BITINT_END (1, 0), u, un * sizeof (UWtype)); | |
1789 | if (up) | |
1790 | buf[BITINT_END (1, un - 1)] &= (((UWtype) 1 << up) - 1); | |
1791 | if (vprec < 0) | |
1792 | bitint_negate (buf + un + 1 + vidx, v + vidx, vn); | |
1793 | else | |
1794 | __builtin_memcpy (buf + un + 1, v, vn * sizeof (UWtype)); | |
1795 | if (vp) | |
1796 | buf[un + 1 + BITINT_END (0, vn - 1)] &= (((UWtype) 1 << vp) - 1); | |
1797 | UBILtype *u2 = buf; | |
1798 | UBILtype *v2 = u2 + un + 1; | |
1799 | UBILtype *q2 = v2 + vn; | |
1800 | if (!qn2) | |
1801 | q2 = q + BITINT_END (qn - (un - vn + 1), 0); | |
1802 | ||
1803 | /* Knuth's algorithm. See also ../gcc/wide-int.cc (divmod_internal_2). */ | |
1804 | ||
1805 | #ifndef UDIV_NEEDS_NORMALIZATION | |
1806 | /* Handle single limb divisor first. */ | |
1807 | if (vn == 1) | |
1808 | { | |
1809 | UWtype vv = v2[0]; | |
1810 | if (vv == 0) | |
1811 | vv = 1 / vv; /* Divide intentionally by zero. */ | |
1812 | UWtype k = 0; | |
1813 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1814 | for (SItype i = 0; i <= un - 1; ++i) | |
1815 | #else | |
1816 | for (SItype i = un - 1; i >= 0; --i) | |
1817 | #endif | |
1818 | udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv); | |
1819 | if (r != NULL) | |
1820 | r[BITINT_END (rn - 1, 0)] = k; | |
1821 | } | |
1822 | else | |
1823 | #endif | |
1824 | { | |
1825 | SItype s; | |
1826 | #ifdef UDIV_NEEDS_NORMALIZATION | |
1827 | if (vn == 1 && v2[0] == 0) | |
1828 | s = 0; | |
1829 | else | |
1830 | #endif | |
1831 | if (sizeof (0U) == sizeof (UWtype)) | |
1832 | s = __builtin_clz (v2[BITINT_END (0, vn - 1)]); | |
1833 | else if (sizeof (0UL) == sizeof (UWtype)) | |
1834 | s = __builtin_clzl (v2[BITINT_END (0, vn - 1)]); | |
1835 | else | |
1836 | s = __builtin_clzll (v2[BITINT_END (0, vn - 1)]); | |
1837 | if (s) | |
1838 | { | |
1839 | /* Normalize by shifting v2 left so that it has msb set. */ | |
1840 | const SItype n = sizeof (UWtype) * __CHAR_BIT__; | |
1841 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1842 | for (SItype i = 0; i < vn - 1; ++i) | |
1843 | #else | |
1844 | for (SItype i = vn - 1; i > 0; --i) | |
1845 | #endif | |
1846 | v2[i] = (v2[i] << s) | (v2[i - BITINT_INC] >> (n - s)); | |
1847 | v2[vidx] = v2[vidx] << s; | |
1848 | /* And shift u2 left by the same amount. */ | |
1849 | u2[BITINT_END (0, un)] = u2[BITINT_END (1, un - 1)] >> (n - s); | |
1850 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1851 | for (SItype i = 1; i < un; ++i) | |
1852 | #else | |
1853 | for (SItype i = un - 1; i > 0; --i) | |
1854 | #endif | |
1855 | u2[i] = (u2[i] << s) | (u2[i - BITINT_INC] >> (n - s)); | |
1856 | u2[BITINT_END (un, 0)] = u2[BITINT_END (un, 0)] << s; | |
1857 | } | |
1858 | else | |
1859 | u2[BITINT_END (0, un)] = 0; | |
1860 | #ifdef UDIV_NEEDS_NORMALIZATION | |
1861 | /* Handle single limb divisor first. */ | |
1862 | if (vn == 1) | |
1863 | { | |
1864 | UWtype vv = v2[0]; | |
1865 | if (vv == 0) | |
1866 | vv = 1 / vv; /* Divide intentionally by zero. */ | |
1867 | UWtype k = u2[BITINT_END (0, un)]; | |
1868 | #if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__ | |
1869 | for (SItype i = 0; i <= un - 1; ++i) | |
1870 | #else | |
1871 | for (SItype i = un - 1; i >= 0; --i) | |
1872 | #endif | |
1873 | udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv); | |
1874 | if (r != NULL) | |
1875 | r[BITINT_END (rn - 1, 0)] = k >> s; | |
1876 | } | |
1877 | else | |
1878 | #endif | |
1879 | { | |
1880 | UWtype vv1 = v2[BITINT_END (0, vn - 1)]; | |
1881 | UWtype vv0 = v2[BITINT_END (1, vn - 2)]; | |
1882 | /* Main loop. */ | |
1883 | for (SItype j = un - vn; j >= 0; --j) | |
1884 | { | |
1885 | /* Compute estimate in qhat. */ | |
1886 | UWtype uv1 = u2[BITINT_END (un - j - vn, j + vn)]; | |
1887 | UWtype uv0 = u2[BITINT_END (un - j - vn + 1, j + vn - 1)]; | |
1888 | UWtype qhat, rhat, hi, lo, c; | |
1889 | if (uv1 >= vv1) | |
1890 | { | |
1891 | /* udiv_qrnnd doesn't support quotients which don't | |
1892 | fit into UWtype, while Knuth's algorithm originally | |
1893 | uses a double-word by word to double-word division. | |
1894 | Fortunately, the algorithm guarantees that uv1 <= vv1, | |
1895 | because if uv1 > vv1, then even if v would have all | |
1896 | bits in all words below vv1 set, the previous iteration | |
1897 | would be supposed to use qhat larger by 1 and subtract | |
1898 | v. With uv1 == vv1 and uv0 >= vv1 the double-word | |
1899 | qhat in Knuth's algorithm would be 1 in the upper word | |
1900 | and 1 in the lower word, say for | |
1901 | uv1 0x8000000000000000ULL | |
1902 | uv0 0xffffffffffffffffULL | |
1903 | vv1 0x8000000000000000ULL | |
1904 | 0x8000000000000000ffffffffffffffffuwb | |
1905 | / 0x8000000000000000uwb == 0x10000000000000001uwb, and | |
1906 | exactly like that also for any other value | |
1907 | > 0x8000000000000000ULL in uv1 and vv1 and uv0 >= uv1. | |
1908 | So we need to subtract one or at most two vv1s from | |
1909 | uv1:uv0 (qhat because of that decreases by 1 or 2 and | |
1910 | is then representable in UWtype) and need to increase | |
1911 | rhat by vv1 once or twice because of that. Now, if | |
1912 | we need to subtract 2 vv1s, i.e. if | |
1913 | uv1 == vv1 && uv0 >= vv1, then rhat (which is uv0 - vv1) | |
1914 | + vv1 computation can't overflow, because it is equal | |
1915 | to uv0 and therefore the original algorithm in that case | |
1916 | performs goto again, but the second vv1 addition must | |
1917 | overflow already because vv1 has msb set from the | |
1918 | canonicalization. */ | |
1919 | uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0); | |
1920 | if (uv1 >= vv1) | |
1921 | { | |
1922 | uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0); | |
1923 | udiv_qrnnd (qhat, rhat, uv1, uv0, vv1); | |
1924 | rhat += 2 * vv1; | |
1925 | } | |
1926 | else | |
1927 | { | |
1928 | udiv_qrnnd (qhat, rhat, uv1, uv0, vv1); | |
1929 | if (!__builtin_add_overflow (rhat, vv1, &rhat)) | |
1930 | goto again; | |
1931 | } | |
1932 | } | |
1933 | else | |
1934 | { | |
1935 | udiv_qrnnd (qhat, rhat, uv1, uv0, vv1); | |
1936 | again: | |
1937 | umul_ppmm (hi, lo, qhat, vv0); | |
1938 | if (hi > rhat | |
1939 | || (hi == rhat | |
1940 | && lo > u2[BITINT_END (un - j - vn + 2, | |
1941 | j + vn - 2)])) | |
1942 | { | |
1943 | --qhat; | |
1944 | if (!__builtin_add_overflow (rhat, vv1, &rhat)) | |
1945 | goto again; | |
1946 | } | |
1947 | } | |
1948 | ||
1949 | c = bitint_submul_1 (u2 + BITINT_END (un - j, j), | |
1950 | v2 + BITINT_END (vn - 1, 0), qhat, vn); | |
1951 | u2[BITINT_END (un - j - vn, j + vn)] -= c; | |
1952 | /* If we've subtracted too much, decrease qhat and | |
1953 | and add back. */ | |
1954 | if ((Wtype) u2[BITINT_END (un - j - vn, j + vn)] < 0) | |
1955 | { | |
1956 | --qhat; | |
1957 | c = 0; | |
1958 | for (USItype i = 0; i < vn; ++i) | |
1959 | { | |
1960 | UWtype s = v2[BITINT_END (vn - 1 - i, i)]; | |
1961 | UWtype d = u2[BITINT_END (un - i - j, i + j)]; | |
1962 | UWtype c1 = __builtin_add_overflow (d, s, &d); | |
1963 | UWtype c2 = __builtin_add_overflow (d, c, &d); | |
1964 | c = c1 + c2; | |
1965 | u2[BITINT_END (un - i - j, i + j)] = d; | |
1966 | } | |
1967 | u2[BITINT_END (un - j - vn, j + vn)] += c; | |
1968 | } | |
1969 | q2[BITINT_END (un - vn - j, j)] = qhat; | |
1970 | } | |
1971 | if (r != NULL) | |
1972 | { | |
1973 | if (s) | |
1974 | { | |
1975 | const SItype n = sizeof (UWtype) * __CHAR_BIT__; | |
1976 | /* Unnormalize remainder. */ | |
1977 | USItype i; | |
1978 | for (i = 0; i < vn && i < rn; ++i) | |
1979 | r[BITINT_END (rn - 1 - i, i)] | |
1980 | = ((u2[BITINT_END (un - i, i)] >> s) | |
1981 | | (u2[BITINT_END (un - i - 1, i + 1)] << (n - s))); | |
1982 | if (i < rn) | |
1983 | r[BITINT_END (rn - vn, vn - 1)] | |
1984 | = u2[BITINT_END (un - vn + 1, vn - 1)] >> s; | |
1985 | } | |
1986 | else if (rn > vn) | |
1987 | __builtin_memcpy (&r[BITINT_END (rn - vn, 0)], | |
1988 | &u2[BITINT_END (un + 1 - vn, 0)], | |
1989 | vn * sizeof (UWtype)); | |
1990 | else | |
1991 | __builtin_memcpy (&r[0], &u2[BITINT_END (un + 1 - rn, 0)], | |
1992 | rn * sizeof (UWtype)); | |
1993 | } | |
1994 | } | |
1995 | } | |
1996 | if (q != NULL) | |
1997 | { | |
1998 | if ((uprec < 0) ^ (vprec < 0)) | |
1999 | { | |
2000 | /* Negative quotient. */ | |
2001 | USItype n; | |
2002 | if (un - vn + 1 > qn) | |
2003 | n = qn; | |
2004 | else | |
2005 | n = un - vn + 1; | |
2006 | SItype c = bitint_negate (q + BITINT_END (qn - 1, 0), | |
2007 | q2 + BITINT_END (un - vn, 0), n) ? -1 : 0; | |
2008 | if (qn > n) | |
2009 | __builtin_memset (q + BITINT_END (0, n), c, | |
2010 | (qn - n) * sizeof (UWtype)); | |
2011 | } | |
2012 | else | |
2013 | { | |
2014 | /* Positive quotient. */ | |
2015 | if (qn2) | |
2016 | __builtin_memcpy (q, q2 + BITINT_END (un - vn + 1 - qn, 0), | |
2017 | qn * sizeof (UWtype)); | |
2018 | else if (qn > un - vn + 1) | |
2019 | __builtin_memset (q + BITINT_END (0, un - vn + 1), 0, | |
2020 | (qn - (un - vn + 1)) * sizeof (UWtype)); | |
2021 | } | |
2022 | } | |
2023 | if (r != NULL) | |
2024 | { | |
2025 | if (uprec < 0) | |
2026 | { | |
2027 | /* Negative remainder. */ | |
2028 | SItype c = bitint_negate (r + BITINT_END (rn - 1, 0), | |
2029 | r + BITINT_END (rn - 1, 0), | |
2030 | rn > vn ? vn : rn) ? -1 : 0; | |
2031 | if (rn > vn) | |
2032 | __builtin_memset (r + BITINT_END (0, vn), c, | |
2033 | (rn - vn) * sizeof (UWtype)); | |
2034 | } | |
2035 | else | |
2036 | { | |
2037 | /* Positive remainder. */ | |
2038 | if (rn > vn) | |
2039 | __builtin_memset (r + BITINT_END (0, vn), 0, | |
2040 | (rn - vn) * sizeof (UWtype)); | |
2041 | } | |
2042 | } | |
2043 | } | |
2044 | #endif | |
2045 | #endif | |
2046 | \f | |
2047 | #ifdef L_cmpdi2 | |
2048 | cmp_return_type | |
2049 | __cmpdi2 (DWtype a, DWtype b) | |
2050 | { | |
2051 | return (a > b) - (a < b) + 1; | |
2052 | } | |
2053 | #endif | |
2054 | ||
2055 | #ifdef L_ucmpdi2 | |
2056 | cmp_return_type | |
2057 | __ucmpdi2 (UDWtype a, UDWtype b) | |
2058 | { | |
2059 | return (a > b) - (a < b) + 1; | |
2060 | } | |
2061 | #endif | |
2062 | \f | |
2063 | #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE | |
2064 | UDWtype | |
2065 | __fixunstfDI (TFtype a) | |
2066 | { | |
2067 | if (a < 0) | |
2068 | return 0; | |
2069 | ||
2070 | /* Compute high word of result, as a flonum. */ | |
2071 | const TFtype b = (a / Wtype_MAXp1_F); | |
2072 | /* Convert that to fixed (but not to DWtype!), | |
2073 | and shift it into the high word. */ | |
2074 | UDWtype v = (UWtype) b; | |
2075 | v <<= W_TYPE_SIZE; | |
2076 | /* Remove high part from the TFtype, leaving the low part as flonum. */ | |
2077 | a -= (TFtype)v; | |
2078 | /* Convert that to fixed (but not to DWtype!) and add it in. | |
2079 | Sometimes A comes out negative. This is significant, since | |
2080 | A has more bits than a long int does. */ | |
2081 | if (a < 0) | |
2082 | v -= (UWtype) (- a); | |
2083 | else | |
2084 | v += (UWtype) a; | |
2085 | return v; | |
2086 | } | |
2087 | #endif | |
2088 | ||
2089 | #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE | |
2090 | DWtype | |
2091 | __fixtfdi (TFtype a) | |
2092 | { | |
2093 | if (a < 0) | |
2094 | return - __fixunstfDI (-a); | |
2095 | return __fixunstfDI (a); | |
2096 | } | |
2097 | #endif | |
2098 | ||
2099 | #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE | |
2100 | UDWtype | |
2101 | __fixunsxfDI (XFtype a) | |
2102 | { | |
2103 | if (a < 0) | |
2104 | return 0; | |
2105 | ||
2106 | /* Compute high word of result, as a flonum. */ | |
2107 | const XFtype b = (a / Wtype_MAXp1_F); | |
2108 | /* Convert that to fixed (but not to DWtype!), | |
2109 | and shift it into the high word. */ | |
2110 | UDWtype v = (UWtype) b; | |
2111 | v <<= W_TYPE_SIZE; | |
2112 | /* Remove high part from the XFtype, leaving the low part as flonum. */ | |
2113 | a -= (XFtype)v; | |
2114 | /* Convert that to fixed (but not to DWtype!) and add it in. | |
2115 | Sometimes A comes out negative. This is significant, since | |
2116 | A has more bits than a long int does. */ | |
2117 | if (a < 0) | |
2118 | v -= (UWtype) (- a); | |
2119 | else | |
2120 | v += (UWtype) a; | |
2121 | return v; | |
2122 | } | |
2123 | #endif | |
2124 | ||
2125 | #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE | |
2126 | DWtype | |
2127 | __fixxfdi (XFtype a) | |
2128 | { | |
2129 | if (a < 0) | |
2130 | return - __fixunsxfDI (-a); | |
2131 | return __fixunsxfDI (a); | |
2132 | } | |
2133 | #endif | |
2134 | ||
2135 | #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE | |
2136 | UDWtype | |
2137 | __fixunsdfDI (DFtype a) | |
2138 | { | |
2139 | /* Get high part of result. The division here will just moves the radix | |
2140 | point and will not cause any rounding. Then the conversion to integral | |
2141 | type chops result as desired. */ | |
2142 | const UWtype hi = a / Wtype_MAXp1_F; | |
2143 | ||
2144 | /* Get low part of result. Convert `hi' to floating type and scale it back, | |
2145 | then subtract this from the number being converted. This leaves the low | |
2146 | part. Convert that to integral type. */ | |
2147 | const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F; | |
2148 | ||
2149 | /* Assemble result from the two parts. */ | |
2150 | return ((UDWtype) hi << W_TYPE_SIZE) | lo; | |
2151 | } | |
2152 | #endif | |
2153 | ||
2154 | #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE | |
2155 | DWtype | |
2156 | __fixdfdi (DFtype a) | |
2157 | { | |
2158 | if (a < 0) | |
2159 | return - __fixunsdfDI (-a); | |
2160 | return __fixunsdfDI (a); | |
2161 | } | |
2162 | #endif | |
2163 | ||
2164 | #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE | |
2165 | UDWtype | |
2166 | __fixunssfDI (SFtype a) | |
2167 | { | |
2168 | #if LIBGCC2_HAS_DF_MODE | |
2169 | /* Convert the SFtype to a DFtype, because that is surely not going | |
2170 | to lose any bits. Some day someone else can write a faster version | |
2171 | that avoids converting to DFtype, and verify it really works right. */ | |
2172 | const DFtype dfa = a; | |
2173 | ||
2174 | /* Get high part of result. The division here will just moves the radix | |
2175 | point and will not cause any rounding. Then the conversion to integral | |
2176 | type chops result as desired. */ | |
2177 | const UWtype hi = dfa / Wtype_MAXp1_F; | |
2178 | ||
2179 | /* Get low part of result. Convert `hi' to floating type and scale it back, | |
2180 | then subtract this from the number being converted. This leaves the low | |
2181 | part. Convert that to integral type. */ | |
2182 | const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F; | |
2183 | ||
2184 | /* Assemble result from the two parts. */ | |
2185 | return ((UDWtype) hi << W_TYPE_SIZE) | lo; | |
2186 | #elif FLT_MANT_DIG < W_TYPE_SIZE | |
2187 | if (a < 1) | |
2188 | return 0; | |
2189 | if (a < Wtype_MAXp1_F) | |
2190 | return (UWtype)a; | |
2191 | if (a < Wtype_MAXp1_F * Wtype_MAXp1_F) | |
2192 | { | |
2193 | /* Since we know that there are fewer significant bits in the SFmode | |
2194 | quantity than in a word, we know that we can convert out all the | |
2195 | significant bits in one step, and thus avoid losing bits. */ | |
2196 | ||
2197 | /* ??? This following loop essentially performs frexpf. If we could | |
2198 | use the real libm function, or poke at the actual bits of the fp | |
2199 | format, it would be significantly faster. */ | |
2200 | ||
2201 | UWtype shift = 0, counter; | |
2202 | SFtype msb; | |
2203 | ||
2204 | a /= Wtype_MAXp1_F; | |
2205 | for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1) | |
2206 | { | |
2207 | SFtype counterf = (UWtype)1 << counter; | |
2208 | if (a >= counterf) | |
2209 | { | |
2210 | shift |= counter; | |
2211 | a /= counterf; | |
2212 | } | |
2213 | } | |
2214 | ||
2215 | /* Rescale into the range of one word, extract the bits of that | |
2216 | one word, and shift the result into position. */ | |
2217 | a *= Wtype_MAXp1_F; | |
2218 | counter = a; | |
2219 | return (DWtype)counter << shift; | |
2220 | } | |
2221 | return -1; | |
2222 | #else | |
2223 | # error | |
2224 | #endif | |
2225 | } | |
2226 | #endif | |
2227 | ||
2228 | #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE | |
2229 | DWtype | |
2230 | __fixsfdi (SFtype a) | |
2231 | { | |
2232 | if (a < 0) | |
2233 | return - __fixunssfDI (-a); | |
2234 | return __fixunssfDI (a); | |
2235 | } | |
2236 | #endif | |
2237 | ||
2238 | #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE | |
2239 | XFtype | |
2240 | __floatdixf (DWtype u) | |
2241 | { | |
2242 | #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__ | |
2243 | # error | |
2244 | #endif | |
2245 | XFtype d = (Wtype) (u >> W_TYPE_SIZE); | |
2246 | d *= Wtype_MAXp1_F; | |
2247 | d += (UWtype)u; | |
2248 | return d; | |
2249 | } | |
2250 | #endif | |
2251 | ||
2252 | #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE | |
2253 | XFtype | |
2254 | __floatundixf (UDWtype u) | |
2255 | { | |
2256 | #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__ | |
2257 | # error | |
2258 | #endif | |
2259 | XFtype d = (UWtype) (u >> W_TYPE_SIZE); | |
2260 | d *= Wtype_MAXp1_F; | |
2261 | d += (UWtype)u; | |
2262 | return d; | |
2263 | } | |
2264 | #endif | |
2265 | ||
2266 | #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE | |
2267 | TFtype | |
2268 | __floatditf (DWtype u) | |
2269 | { | |
2270 | #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__ | |
2271 | # error | |
2272 | #endif | |
2273 | TFtype d = (Wtype) (u >> W_TYPE_SIZE); | |
2274 | d *= Wtype_MAXp1_F; | |
2275 | d += (UWtype)u; | |
2276 | return d; | |
2277 | } | |
2278 | #endif | |
2279 | ||
2280 | #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE | |
2281 | TFtype | |
2282 | __floatunditf (UDWtype u) | |
2283 | { | |
2284 | #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__ | |
2285 | # error | |
2286 | #endif | |
2287 | TFtype d = (UWtype) (u >> W_TYPE_SIZE); | |
2288 | d *= Wtype_MAXp1_F; | |
2289 | d += (UWtype)u; | |
2290 | return d; | |
2291 | } | |
2292 | #endif | |
2293 | ||
2294 | #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \ | |
2295 | || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE) | |
2296 | #define DI_SIZE (W_TYPE_SIZE * 2) | |
2297 | #define F_MODE_OK(SIZE) \ | |
2298 | (SIZE < DI_SIZE \ | |
2299 | && SIZE > (DI_SIZE - SIZE + FSSIZE) \ | |
2300 | && !AVOID_FP_TYPE_CONVERSION(SIZE)) | |
2301 | #if defined(L_floatdisf) | |
2302 | #define FUNC __floatdisf | |
2303 | #define FSTYPE SFtype | |
2304 | #define FSSIZE __LIBGCC_SF_MANT_DIG__ | |
2305 | #else | |
2306 | #define FUNC __floatdidf | |
2307 | #define FSTYPE DFtype | |
2308 | #define FSSIZE __LIBGCC_DF_MANT_DIG__ | |
2309 | #endif | |
2310 | ||
2311 | FSTYPE | |
2312 | FUNC (DWtype u) | |
2313 | { | |
2314 | #if FSSIZE >= W_TYPE_SIZE | |
2315 | /* When the word size is small, we never get any rounding error. */ | |
2316 | FSTYPE f = (Wtype) (u >> W_TYPE_SIZE); | |
2317 | f *= Wtype_MAXp1_F; | |
2318 | f += (UWtype)u; | |
2319 | return f; | |
2320 | #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \ | |
2321 | || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \ | |
2322 | || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) | |
2323 | ||
2324 | #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) | |
2325 | # define FSIZE __LIBGCC_DF_MANT_DIG__ | |
2326 | # define FTYPE DFtype | |
2327 | #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) | |
2328 | # define FSIZE __LIBGCC_XF_MANT_DIG__ | |
2329 | # define FTYPE XFtype | |
2330 | #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) | |
2331 | # define FSIZE __LIBGCC_TF_MANT_DIG__ | |
2332 | # define FTYPE TFtype | |
2333 | #else | |
2334 | # error | |
2335 | #endif | |
2336 | ||
2337 | #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) | |
2338 | ||
2339 | /* Protect against double-rounding error. | |
2340 | Represent any low-order bits, that might be truncated by a bit that | |
2341 | won't be lost. The bit can go in anywhere below the rounding position | |
2342 | of the FSTYPE. A fixed mask and bit position handles all usual | |
2343 | configurations. */ | |
2344 | if (! (- ((DWtype) 1 << FSIZE) < u | |
2345 | && u < ((DWtype) 1 << FSIZE))) | |
2346 | { | |
2347 | if ((UDWtype) u & (REP_BIT - 1)) | |
2348 | { | |
2349 | u &= ~ (REP_BIT - 1); | |
2350 | u |= REP_BIT; | |
2351 | } | |
2352 | } | |
2353 | ||
2354 | /* Do the calculation in a wider type so that we don't lose any of | |
2355 | the precision of the high word while multiplying it. */ | |
2356 | FTYPE f = (Wtype) (u >> W_TYPE_SIZE); | |
2357 | f *= Wtype_MAXp1_F; | |
2358 | f += (UWtype)u; | |
2359 | return (FSTYPE) f; | |
2360 | #else | |
2361 | #if FSSIZE >= W_TYPE_SIZE - 2 | |
2362 | # error | |
2363 | #endif | |
2364 | /* Finally, the word size is larger than the number of bits in the | |
2365 | required FSTYPE, and we've got no suitable wider type. The only | |
2366 | way to avoid double rounding is to special case the | |
2367 | extraction. */ | |
2368 | ||
2369 | /* If there are no high bits set, fall back to one conversion. */ | |
2370 | if ((Wtype)u == u) | |
2371 | return (FSTYPE)(Wtype)u; | |
2372 | ||
2373 | /* Otherwise, find the power of two. */ | |
2374 | Wtype hi = u >> W_TYPE_SIZE; | |
2375 | if (hi < 0) | |
2376 | hi = -(UWtype) hi; | |
2377 | ||
2378 | UWtype count, shift; | |
2379 | #if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE | |
2380 | if (hi == 0) | |
2381 | count = W_TYPE_SIZE; | |
2382 | else | |
2383 | #endif | |
2384 | count_leading_zeros (count, hi); | |
2385 | ||
2386 | /* No leading bits means u == minimum. */ | |
2387 | if (count == 0) | |
2388 | return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0)); | |
2389 | ||
2390 | shift = 1 + W_TYPE_SIZE - count; | |
2391 | ||
2392 | /* Shift down the most significant bits. */ | |
2393 | hi = u >> shift; | |
2394 | ||
2395 | /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ | |
2396 | if ((UWtype)u << (W_TYPE_SIZE - shift)) | |
2397 | hi |= 1; | |
2398 | ||
2399 | /* Convert the one word of data, and rescale. */ | |
2400 | FSTYPE f = hi, e; | |
2401 | if (shift == W_TYPE_SIZE) | |
2402 | e = Wtype_MAXp1_F; | |
2403 | /* The following two cases could be merged if we knew that the target | |
2404 | supported a native unsigned->float conversion. More often, we only | |
2405 | have a signed conversion, and have to add extra fixup code. */ | |
2406 | else if (shift == W_TYPE_SIZE - 1) | |
2407 | e = Wtype_MAXp1_F / 2; | |
2408 | else | |
2409 | e = (Wtype)1 << shift; | |
2410 | return f * e; | |
2411 | #endif | |
2412 | } | |
2413 | #endif | |
2414 | ||
2415 | #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \ | |
2416 | || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE) | |
2417 | #define DI_SIZE (W_TYPE_SIZE * 2) | |
2418 | #define F_MODE_OK(SIZE) \ | |
2419 | (SIZE < DI_SIZE \ | |
2420 | && SIZE > (DI_SIZE - SIZE + FSSIZE) \ | |
2421 | && !AVOID_FP_TYPE_CONVERSION(SIZE)) | |
2422 | #if defined(L_floatundisf) | |
2423 | #define FUNC __floatundisf | |
2424 | #define FSTYPE SFtype | |
2425 | #define FSSIZE __LIBGCC_SF_MANT_DIG__ | |
2426 | #else | |
2427 | #define FUNC __floatundidf | |
2428 | #define FSTYPE DFtype | |
2429 | #define FSSIZE __LIBGCC_DF_MANT_DIG__ | |
2430 | #endif | |
2431 | ||
2432 | FSTYPE | |
2433 | FUNC (UDWtype u) | |
2434 | { | |
2435 | #if FSSIZE >= W_TYPE_SIZE | |
2436 | /* When the word size is small, we never get any rounding error. */ | |
2437 | FSTYPE f = (UWtype) (u >> W_TYPE_SIZE); | |
2438 | f *= Wtype_MAXp1_F; | |
2439 | f += (UWtype)u; | |
2440 | return f; | |
2441 | #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \ | |
2442 | || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \ | |
2443 | || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) | |
2444 | ||
2445 | #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) | |
2446 | # define FSIZE __LIBGCC_DF_MANT_DIG__ | |
2447 | # define FTYPE DFtype | |
2448 | #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) | |
2449 | # define FSIZE __LIBGCC_XF_MANT_DIG__ | |
2450 | # define FTYPE XFtype | |
2451 | #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) | |
2452 | # define FSIZE __LIBGCC_TF_MANT_DIG__ | |
2453 | # define FTYPE TFtype | |
2454 | #else | |
2455 | # error | |
2456 | #endif | |
2457 | ||
2458 | #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) | |
2459 | ||
2460 | /* Protect against double-rounding error. | |
2461 | Represent any low-order bits, that might be truncated by a bit that | |
2462 | won't be lost. The bit can go in anywhere below the rounding position | |
2463 | of the FSTYPE. A fixed mask and bit position handles all usual | |
2464 | configurations. */ | |
2465 | if (u >= ((UDWtype) 1 << FSIZE)) | |
2466 | { | |
2467 | if ((UDWtype) u & (REP_BIT - 1)) | |
2468 | { | |
2469 | u &= ~ (REP_BIT - 1); | |
2470 | u |= REP_BIT; | |
2471 | } | |
2472 | } | |
2473 | ||
2474 | /* Do the calculation in a wider type so that we don't lose any of | |
2475 | the precision of the high word while multiplying it. */ | |
2476 | FTYPE f = (UWtype) (u >> W_TYPE_SIZE); | |
2477 | f *= Wtype_MAXp1_F; | |
2478 | f += (UWtype)u; | |
2479 | return (FSTYPE) f; | |
2480 | #else | |
2481 | #if FSSIZE == W_TYPE_SIZE - 1 | |
2482 | # error | |
2483 | #endif | |
2484 | /* Finally, the word size is larger than the number of bits in the | |
2485 | required FSTYPE, and we've got no suitable wider type. The only | |
2486 | way to avoid double rounding is to special case the | |
2487 | extraction. */ | |
2488 | ||
2489 | /* If there are no high bits set, fall back to one conversion. */ | |
2490 | if ((UWtype)u == u) | |
2491 | return (FSTYPE)(UWtype)u; | |
2492 | ||
2493 | /* Otherwise, find the power of two. */ | |
2494 | UWtype hi = u >> W_TYPE_SIZE; | |
2495 | ||
2496 | UWtype count, shift; | |
2497 | count_leading_zeros (count, hi); | |
2498 | ||
2499 | shift = W_TYPE_SIZE - count; | |
2500 | ||
2501 | /* Shift down the most significant bits. */ | |
2502 | hi = u >> shift; | |
2503 | ||
2504 | /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ | |
2505 | if ((UWtype)u << (W_TYPE_SIZE - shift)) | |
2506 | hi |= 1; | |
2507 | ||
2508 | /* Convert the one word of data, and rescale. */ | |
2509 | FSTYPE f = hi, e; | |
2510 | if (shift == W_TYPE_SIZE) | |
2511 | e = Wtype_MAXp1_F; | |
2512 | /* The following two cases could be merged if we knew that the target | |
2513 | supported a native unsigned->float conversion. More often, we only | |
2514 | have a signed conversion, and have to add extra fixup code. */ | |
2515 | else if (shift == W_TYPE_SIZE - 1) | |
2516 | e = Wtype_MAXp1_F / 2; | |
2517 | else | |
2518 | e = (Wtype)1 << shift; | |
2519 | return f * e; | |
2520 | #endif | |
2521 | } | |
2522 | #endif | |
2523 | ||
2524 | #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE | |
2525 | UWtype | |
2526 | __fixunsxfSI (XFtype a) | |
2527 | { | |
2528 | if (a >= - (DFtype) Wtype_MIN) | |
2529 | return (Wtype) (a + Wtype_MIN) - Wtype_MIN; | |
2530 | return (Wtype) a; | |
2531 | } | |
2532 | #endif | |
2533 | ||
2534 | #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE | |
2535 | UWtype | |
2536 | __fixunsdfSI (DFtype a) | |
2537 | { | |
2538 | if (a >= - (DFtype) Wtype_MIN) | |
2539 | return (Wtype) (a + Wtype_MIN) - Wtype_MIN; | |
2540 | return (Wtype) a; | |
2541 | } | |
2542 | #endif | |
2543 | ||
2544 | #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE | |
2545 | UWtype | |
2546 | __fixunssfSI (SFtype a) | |
2547 | { | |
2548 | if (a >= - (SFtype) Wtype_MIN) | |
2549 | return (Wtype) (a + Wtype_MIN) - Wtype_MIN; | |
2550 | return (Wtype) a; | |
2551 | } | |
2552 | #endif | |
2553 | \f | |
2554 | /* Integer power helper used from __builtin_powi for non-constant | |
2555 | exponents. */ | |
2556 | ||
2557 | #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \ | |
2558 | || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \ | |
2559 | || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \ | |
2560 | || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE) | |
2561 | # if defined(L_powisf2) | |
2562 | # define TYPE SFtype | |
2563 | # define NAME __powisf2 | |
2564 | # elif defined(L_powidf2) | |
2565 | # define TYPE DFtype | |
2566 | # define NAME __powidf2 | |
2567 | # elif defined(L_powixf2) | |
2568 | # define TYPE XFtype | |
2569 | # define NAME __powixf2 | |
2570 | # elif defined(L_powitf2) | |
2571 | # define TYPE TFtype | |
2572 | # define NAME __powitf2 | |
2573 | # endif | |
2574 | ||
2575 | #undef int | |
2576 | #undef unsigned | |
2577 | TYPE | |
2578 | NAME (TYPE x, int m) | |
2579 | { | |
2580 | unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m; | |
2581 | TYPE y = n % 2 ? x : 1; | |
2582 | while (n >>= 1) | |
2583 | { | |
2584 | x = x * x; | |
2585 | if (n % 2) | |
2586 | y = y * x; | |
2587 | } | |
2588 | return m < 0 ? 1/y : y; | |
2589 | } | |
2590 | ||
2591 | #endif | |
2592 | \f | |
2593 | #if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \ | |
2594 | || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \ | |
2595 | || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \ | |
2596 | || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \ | |
2597 | || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE) | |
2598 | ||
2599 | #undef float | |
2600 | #undef double | |
2601 | #undef long | |
2602 | ||
2603 | #if defined(L_mulhc3) || defined(L_divhc3) | |
2604 | # define MTYPE HFtype | |
2605 | # define CTYPE HCtype | |
2606 | # define AMTYPE SFtype | |
2607 | # define MODE hc | |
2608 | # define CEXT __LIBGCC_HF_FUNC_EXT__ | |
2609 | # define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__) | |
2610 | #elif defined(L_mulsc3) || defined(L_divsc3) | |
2611 | # define MTYPE SFtype | |
2612 | # define CTYPE SCtype | |
2613 | # define AMTYPE DFtype | |
2614 | # define MODE sc | |
2615 | # define CEXT __LIBGCC_SF_FUNC_EXT__ | |
2616 | # define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__) | |
2617 | # define RBIG (__LIBGCC_SF_MAX__ / 2) | |
2618 | # define RMIN (__LIBGCC_SF_MIN__) | |
2619 | # define RMIN2 (__LIBGCC_SF_EPSILON__) | |
2620 | # define RMINSCAL (1 / __LIBGCC_SF_EPSILON__) | |
2621 | # define RMAX2 (RBIG * RMIN2) | |
2622 | #elif defined(L_muldc3) || defined(L_divdc3) | |
2623 | # define MTYPE DFtype | |
2624 | # define CTYPE DCtype | |
2625 | # define MODE dc | |
2626 | # define CEXT __LIBGCC_DF_FUNC_EXT__ | |
2627 | # define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__) | |
2628 | # define RBIG (__LIBGCC_DF_MAX__ / 2) | |
2629 | # define RMIN (__LIBGCC_DF_MIN__) | |
2630 | # define RMIN2 (__LIBGCC_DF_EPSILON__) | |
2631 | # define RMINSCAL (1 / __LIBGCC_DF_EPSILON__) | |
2632 | # define RMAX2 (RBIG * RMIN2) | |
2633 | #elif defined(L_mulxc3) || defined(L_divxc3) | |
2634 | # define MTYPE XFtype | |
2635 | # define CTYPE XCtype | |
2636 | # define MODE xc | |
2637 | # define CEXT __LIBGCC_XF_FUNC_EXT__ | |
2638 | # define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__) | |
2639 | # define RBIG (__LIBGCC_XF_MAX__ / 2) | |
2640 | # define RMIN (__LIBGCC_XF_MIN__) | |
2641 | # define RMIN2 (__LIBGCC_XF_EPSILON__) | |
2642 | # define RMINSCAL (1 / __LIBGCC_XF_EPSILON__) | |
2643 | # define RMAX2 (RBIG * RMIN2) | |
2644 | #elif defined(L_multc3) || defined(L_divtc3) | |
2645 | # define MTYPE TFtype | |
2646 | # define CTYPE TCtype | |
2647 | # define MODE tc | |
2648 | # define CEXT __LIBGCC_TF_FUNC_EXT__ | |
2649 | # define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__) | |
2650 | # if __LIBGCC_TF_MANT_DIG__ == 106 | |
2651 | # define RBIG (__LIBGCC_DF_MAX__ / 2) | |
2652 | # define RMIN (__LIBGCC_DF_MIN__) | |
2653 | # define RMIN2 (__LIBGCC_DF_EPSILON__) | |
2654 | # define RMINSCAL (1 / __LIBGCC_DF_EPSILON__) | |
2655 | # else | |
2656 | # define RBIG (__LIBGCC_TF_MAX__ / 2) | |
2657 | # define RMIN (__LIBGCC_TF_MIN__) | |
2658 | # define RMIN2 (__LIBGCC_TF_EPSILON__) | |
2659 | # define RMINSCAL (1 / __LIBGCC_TF_EPSILON__) | |
2660 | # endif | |
2661 | # define RMAX2 (RBIG * RMIN2) | |
2662 | #else | |
2663 | # error | |
2664 | #endif | |
2665 | ||
2666 | #define CONCAT3(A,B,C) _CONCAT3(A,B,C) | |
2667 | #define _CONCAT3(A,B,C) A##B##C | |
2668 | ||
2669 | #define CONCAT2(A,B) _CONCAT2(A,B) | |
2670 | #define _CONCAT2(A,B) A##B | |
2671 | ||
2672 | #define isnan(x) __builtin_isnan (x) | |
2673 | #define isfinite(x) __builtin_isfinite (x) | |
2674 | #define isinf(x) __builtin_isinf (x) | |
2675 | ||
2676 | #undef INFINITY | |
2677 | #define INFINITY CONCAT2(__builtin_huge_val, CEXT) () | |
2678 | #define I 1i | |
2679 | ||
2680 | /* Helpers to make the following code slightly less gross. */ | |
2681 | #define COPYSIGN CONCAT2(__builtin_copysign, CEXT) | |
2682 | #define FABS CONCAT2(__builtin_fabs, CEXT) | |
2683 | ||
2684 | /* Verify that MTYPE matches up with CEXT. */ | |
2685 | extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1]; | |
2686 | ||
2687 | /* Ensure that we've lost any extra precision. */ | |
2688 | #if NOTRUNC | |
2689 | # define TRUNC(x) | |
2690 | #else | |
2691 | # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x)) | |
2692 | #endif | |
2693 | ||
2694 | #if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \ | |
2695 | || defined(L_mulxc3) || defined(L_multc3) | |
2696 | ||
2697 | CTYPE | |
2698 | CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) | |
2699 | { | |
2700 | MTYPE ac, bd, ad, bc, x, y; | |
2701 | CTYPE res; | |
2702 | ||
2703 | ac = a * c; | |
2704 | bd = b * d; | |
2705 | ad = a * d; | |
2706 | bc = b * c; | |
2707 | ||
2708 | TRUNC (ac); | |
2709 | TRUNC (bd); | |
2710 | TRUNC (ad); | |
2711 | TRUNC (bc); | |
2712 | ||
2713 | x = ac - bd; | |
2714 | y = ad + bc; | |
2715 | ||
2716 | if (isnan (x) && isnan (y)) | |
2717 | { | |
2718 | /* Recover infinities that computed as NaN + iNaN. */ | |
2719 | _Bool recalc = 0; | |
2720 | if (isinf (a) || isinf (b)) | |
2721 | { | |
2722 | /* z is infinite. "Box" the infinity and change NaNs in | |
2723 | the other factor to 0. */ | |
2724 | a = COPYSIGN (isinf (a) ? 1 : 0, a); | |
2725 | b = COPYSIGN (isinf (b) ? 1 : 0, b); | |
2726 | if (isnan (c)) c = COPYSIGN (0, c); | |
2727 | if (isnan (d)) d = COPYSIGN (0, d); | |
2728 | recalc = 1; | |
2729 | } | |
2730 | if (isinf (c) || isinf (d)) | |
2731 | { | |
2732 | /* w is infinite. "Box" the infinity and change NaNs in | |
2733 | the other factor to 0. */ | |
2734 | c = COPYSIGN (isinf (c) ? 1 : 0, c); | |
2735 | d = COPYSIGN (isinf (d) ? 1 : 0, d); | |
2736 | if (isnan (a)) a = COPYSIGN (0, a); | |
2737 | if (isnan (b)) b = COPYSIGN (0, b); | |
2738 | recalc = 1; | |
2739 | } | |
2740 | if (!recalc | |
2741 | && (isinf (ac) || isinf (bd) | |
2742 | || isinf (ad) || isinf (bc))) | |
2743 | { | |
2744 | /* Recover infinities from overflow by changing NaNs to 0. */ | |
2745 | if (isnan (a)) a = COPYSIGN (0, a); | |
2746 | if (isnan (b)) b = COPYSIGN (0, b); | |
2747 | if (isnan (c)) c = COPYSIGN (0, c); | |
2748 | if (isnan (d)) d = COPYSIGN (0, d); | |
2749 | recalc = 1; | |
2750 | } | |
2751 | if (recalc) | |
2752 | { | |
2753 | x = INFINITY * (a * c - b * d); | |
2754 | y = INFINITY * (a * d + b * c); | |
2755 | } | |
2756 | } | |
2757 | ||
2758 | __real__ res = x; | |
2759 | __imag__ res = y; | |
2760 | return res; | |
2761 | } | |
2762 | #endif /* complex multiply */ | |
2763 | ||
2764 | #if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \ | |
2765 | || defined(L_divxc3) || defined(L_divtc3) | |
2766 | ||
2767 | CTYPE | |
2768 | CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) | |
2769 | { | |
2770 | #if defined(L_divhc3) \ | |
2771 | || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) ) | |
2772 | ||
2773 | /* Half precision is handled with float precision. | |
2774 | float is handled with double precision when double precision | |
2775 | hardware is available. | |
2776 | Due to the additional precision, the simple complex divide | |
2777 | method (without Smith's method) is sufficient to get accurate | |
2778 | answers and runs slightly faster than Smith's method. */ | |
2779 | ||
2780 | AMTYPE aa, bb, cc, dd; | |
2781 | AMTYPE denom; | |
2782 | MTYPE x, y; | |
2783 | CTYPE res; | |
2784 | aa = a; | |
2785 | bb = b; | |
2786 | cc = c; | |
2787 | dd = d; | |
2788 | ||
2789 | denom = (cc * cc) + (dd * dd); | |
2790 | x = ((aa * cc) + (bb * dd)) / denom; | |
2791 | y = ((bb * cc) - (aa * dd)) / denom; | |
2792 | ||
2793 | #else | |
2794 | MTYPE denom, ratio, x, y; | |
2795 | CTYPE res; | |
2796 | ||
2797 | /* double, extended, long double have significant potential | |
2798 | underflow/overflow errors that can be greatly reduced with | |
2799 | a limited number of tests and adjustments. float is handled | |
2800 | the same way when no HW double is available. | |
2801 | */ | |
2802 | ||
2803 | /* Scale by max(c,d) to reduce chances of denominator overflowing. */ | |
2804 | if (FABS (c) < FABS (d)) | |
2805 | { | |
2806 | /* Prevent underflow when denominator is near max representable. */ | |
2807 | if (FABS (d) >= RBIG) | |
2808 | { | |
2809 | a = a / 2; | |
2810 | b = b / 2; | |
2811 | c = c / 2; | |
2812 | d = d / 2; | |
2813 | } | |
2814 | /* Avoid overflow/underflow issues when c and d are small. | |
2815 | Scaling up helps avoid some underflows. | |
2816 | No new overflow possible since c&d < RMIN2. */ | |
2817 | if (FABS (d) < RMIN2) | |
2818 | { | |
2819 | a = a * RMINSCAL; | |
2820 | b = b * RMINSCAL; | |
2821 | c = c * RMINSCAL; | |
2822 | d = d * RMINSCAL; | |
2823 | } | |
2824 | else | |
2825 | { | |
2826 | if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2)) | |
2827 | || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) | |
2828 | && (FABS (d) < RMAX2))) | |
2829 | { | |
2830 | a = a * RMINSCAL; | |
2831 | b = b * RMINSCAL; | |
2832 | c = c * RMINSCAL; | |
2833 | d = d * RMINSCAL; | |
2834 | } | |
2835 | } | |
2836 | ratio = c / d; | |
2837 | denom = (c * ratio) + d; | |
2838 | /* Choose alternate order of computation if ratio is subnormal. */ | |
2839 | if (FABS (ratio) > RMIN) | |
2840 | { | |
2841 | x = ((a * ratio) + b) / denom; | |
2842 | y = ((b * ratio) - a) / denom; | |
2843 | } | |
2844 | else | |
2845 | { | |
2846 | x = ((c * (a / d)) + b) / denom; | |
2847 | y = ((c * (b / d)) - a) / denom; | |
2848 | } | |
2849 | } | |
2850 | else | |
2851 | { | |
2852 | /* Prevent underflow when denominator is near max representable. */ | |
2853 | if (FABS (c) >= RBIG) | |
2854 | { | |
2855 | a = a / 2; | |
2856 | b = b / 2; | |
2857 | c = c / 2; | |
2858 | d = d / 2; | |
2859 | } | |
2860 | /* Avoid overflow/underflow issues when both c and d are small. | |
2861 | Scaling up helps avoid some underflows. | |
2862 | No new overflow possible since both c&d are less than RMIN2. */ | |
2863 | if (FABS (c) < RMIN2) | |
2864 | { | |
2865 | a = a * RMINSCAL; | |
2866 | b = b * RMINSCAL; | |
2867 | c = c * RMINSCAL; | |
2868 | d = d * RMINSCAL; | |
2869 | } | |
2870 | else | |
2871 | { | |
2872 | if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2)) | |
2873 | || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) | |
2874 | && (FABS (c) < RMAX2))) | |
2875 | { | |
2876 | a = a * RMINSCAL; | |
2877 | b = b * RMINSCAL; | |
2878 | c = c * RMINSCAL; | |
2879 | d = d * RMINSCAL; | |
2880 | } | |
2881 | } | |
2882 | ratio = d / c; | |
2883 | denom = (d * ratio) + c; | |
2884 | /* Choose alternate order of computation if ratio is subnormal. */ | |
2885 | if (FABS (ratio) > RMIN) | |
2886 | { | |
2887 | x = ((b * ratio) + a) / denom; | |
2888 | y = (b - (a * ratio)) / denom; | |
2889 | } | |
2890 | else | |
2891 | { | |
2892 | x = (a + (d * (b / c))) / denom; | |
2893 | y = (b - (d * (a / c))) / denom; | |
2894 | } | |
2895 | } | |
2896 | #endif | |
2897 | ||
2898 | /* Recover infinities and zeros that computed as NaN+iNaN; the only | |
2899 | cases are nonzero/zero, infinite/finite, and finite/infinite. */ | |
2900 | if (isnan (x) && isnan (y)) | |
2901 | { | |
2902 | if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b))) | |
2903 | { | |
2904 | x = COPYSIGN (INFINITY, c) * a; | |
2905 | y = COPYSIGN (INFINITY, c) * b; | |
2906 | } | |
2907 | else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) | |
2908 | { | |
2909 | a = COPYSIGN (isinf (a) ? 1 : 0, a); | |
2910 | b = COPYSIGN (isinf (b) ? 1 : 0, b); | |
2911 | x = INFINITY * (a * c + b * d); | |
2912 | y = INFINITY * (b * c - a * d); | |
2913 | } | |
2914 | else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) | |
2915 | { | |
2916 | c = COPYSIGN (isinf (c) ? 1 : 0, c); | |
2917 | d = COPYSIGN (isinf (d) ? 1 : 0, d); | |
2918 | x = 0.0 * (a * c + b * d); | |
2919 | y = 0.0 * (b * c - a * d); | |
2920 | } | |
2921 | } | |
2922 | ||
2923 | __real__ res = x; | |
2924 | __imag__ res = y; | |
2925 | return res; | |
2926 | } | |
2927 | #endif /* complex divide */ | |
2928 | ||
2929 | #endif /* all complex float routines */ | |
2930 | \f | |
2931 | /* From here on down, the routines use normal data types. */ | |
2932 | ||
2933 | #define SItype bogus_type | |
2934 | #define USItype bogus_type | |
2935 | #define DItype bogus_type | |
2936 | #define UDItype bogus_type | |
2937 | #define SFtype bogus_type | |
2938 | #define DFtype bogus_type | |
2939 | #undef Wtype | |
2940 | #undef UWtype | |
2941 | #undef HWtype | |
2942 | #undef UHWtype | |
2943 | #undef DWtype | |
2944 | #undef UDWtype | |
2945 | ||
2946 | #undef char | |
2947 | #undef short | |
2948 | #undef int | |
2949 | #undef long | |
2950 | #undef unsigned | |
2951 | #undef float | |
2952 | #undef double | |
2953 | \f | |
2954 | #ifdef L__gcc_bcmp | |
2955 | ||
2956 | /* Like bcmp except the sign is meaningful. | |
2957 | Result is negative if S1 is less than S2, | |
2958 | positive if S1 is greater, 0 if S1 and S2 are equal. */ | |
2959 | ||
2960 | int | |
2961 | __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size) | |
2962 | { | |
2963 | while (size > 0) | |
2964 | { | |
2965 | const unsigned char c1 = *s1++, c2 = *s2++; | |
2966 | if (c1 != c2) | |
2967 | return c1 - c2; | |
2968 | size--; | |
2969 | } | |
2970 | return 0; | |
2971 | } | |
2972 | ||
2973 | #endif | |
2974 | \f | |
2975 | /* __eprintf used to be used by GCC's private version of <assert.h>. | |
2976 | We no longer provide that header, but this routine remains in libgcc.a | |
2977 | for binary backward compatibility. Note that it is not included in | |
2978 | the shared version of libgcc. */ | |
2979 | #ifdef L_eprintf | |
2980 | #ifndef inhibit_libc | |
2981 | ||
2982 | #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ | |
2983 | #include <stdio.h> | |
2984 | ||
2985 | void | |
2986 | __eprintf (const char *string, const char *expression, | |
2987 | unsigned int line, const char *filename) | |
2988 | { | |
2989 | fprintf (stderr, string, expression, line, filename); | |
2990 | fflush (stderr); | |
2991 | abort (); | |
2992 | } | |
2993 | ||
2994 | #endif | |
2995 | #endif | |
2996 | ||
2997 | \f | |
2998 | #ifdef L_clear_cache | |
2999 | /* Clear part of an instruction cache. */ | |
3000 | ||
3001 | void | |
3002 | __clear_cache (void *beg __attribute__((__unused__)), | |
3003 | void *end __attribute__((__unused__))) | |
3004 | { | |
3005 | #ifdef CLEAR_INSN_CACHE | |
3006 | /* Cast the void* pointers to char* as some implementations | |
3007 | of the macro assume the pointers can be subtracted from | |
3008 | one another. */ | |
3009 | CLEAR_INSN_CACHE ((char *) beg, (char *) end); | |
3010 | #endif /* CLEAR_INSN_CACHE */ | |
3011 | } | |
3012 | ||
3013 | #endif /* L_clear_cache */ | |
3014 | \f | |
3015 | #ifdef L_trampoline | |
3016 | ||
3017 | /* Jump to a trampoline, loading the static chain address. */ | |
3018 | ||
3019 | #if defined(WINNT) && ! defined(__CYGWIN__) | |
3020 | #define WIN32_LEAN_AND_MEAN | |
3021 | #include <windows.h> | |
3022 | int getpagesize (void); | |
3023 | int mprotect (char *,int, int); | |
3024 | ||
3025 | int | |
3026 | getpagesize (void) | |
3027 | { | |
3028 | #ifdef _ALPHA_ | |
3029 | return 8192; | |
3030 | #else | |
3031 | return 4096; | |
3032 | #endif | |
3033 | } | |
3034 | ||
3035 | int | |
3036 | mprotect (char *addr, int len, int prot) | |
3037 | { | |
3038 | DWORD np, op; | |
3039 | ||
3040 | if (prot == 7) | |
3041 | np = 0x40; | |
3042 | else if (prot == 5) | |
3043 | np = 0x20; | |
3044 | else if (prot == 4) | |
3045 | np = 0x10; | |
3046 | else if (prot == 3) | |
3047 | np = 0x04; | |
3048 | else if (prot == 1) | |
3049 | np = 0x02; | |
3050 | else if (prot == 0) | |
3051 | np = 0x01; | |
3052 | else | |
3053 | return -1; | |
3054 | ||
3055 | if (VirtualProtect (addr, len, np, &op)) | |
3056 | return 0; | |
3057 | else | |
3058 | return -1; | |
3059 | } | |
3060 | ||
3061 | #endif /* WINNT && ! __CYGWIN__ */ | |
3062 | ||
3063 | #ifdef TRANSFER_FROM_TRAMPOLINE | |
3064 | TRANSFER_FROM_TRAMPOLINE | |
3065 | #endif | |
3066 | #endif /* L_trampoline */ | |
3067 | \f | |
3068 | #ifndef __CYGWIN__ | |
3069 | #ifdef L__main | |
3070 | ||
3071 | #include "gbl-ctors.h" | |
3072 | ||
3073 | /* Some systems use __main in a way incompatible with its use in gcc, in these | |
3074 | cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to | |
3075 | give the same symbol without quotes for an alternative entry point. You | |
3076 | must define both, or neither. */ | |
3077 | #ifndef NAME__MAIN | |
3078 | #define NAME__MAIN "__main" | |
3079 | #define SYMBOL__MAIN __main | |
3080 | #endif | |
3081 | ||
3082 | #if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \ | |
3083 | || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__) | |
3084 | #undef HAS_INIT_SECTION | |
3085 | #define HAS_INIT_SECTION | |
3086 | #endif | |
3087 | ||
3088 | #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) | |
3089 | ||
3090 | /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this | |
3091 | code to run constructors. In that case, we need to handle EH here, too. | |
3092 | But MINGW32 is special because it handles CRTSTUFF and EH on its own. */ | |
3093 | ||
3094 | #ifdef __MINGW32__ | |
3095 | #undef __LIBGCC_EH_FRAME_SECTION_NAME__ | |
3096 | #endif | |
3097 | ||
3098 | #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__ | |
3099 | #include "unwind-dw2-fde.h" | |
3100 | extern unsigned char __EH_FRAME_BEGIN__[]; | |
3101 | #endif | |
3102 | ||
3103 | /* Run all the global destructors on exit from the program. */ | |
3104 | ||
3105 | void | |
3106 | __do_global_dtors (void) | |
3107 | { | |
3108 | #ifdef DO_GLOBAL_DTORS_BODY | |
3109 | DO_GLOBAL_DTORS_BODY; | |
3110 | #else | |
3111 | static func_ptr *p = __DTOR_LIST__ + 1; | |
3112 | while (*p) | |
3113 | { | |
3114 | p++; | |
3115 | (*(p-1)) (); | |
3116 | } | |
3117 | #endif | |
3118 | #if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION) | |
3119 | { | |
3120 | static int completed = 0; | |
3121 | if (! completed) | |
3122 | { | |
3123 | completed = 1; | |
3124 | __deregister_frame_info (__EH_FRAME_BEGIN__); | |
3125 | } | |
3126 | } | |
3127 | #endif | |
3128 | } | |
3129 | #endif | |
3130 | ||
3131 | #ifndef HAS_INIT_SECTION | |
3132 | /* Run all the global constructors on entry to the program. */ | |
3133 | ||
3134 | void | |
3135 | __do_global_ctors (void) | |
3136 | { | |
3137 | #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__ | |
3138 | { | |
3139 | static struct object object; | |
3140 | __register_frame_info (__EH_FRAME_BEGIN__, &object); | |
3141 | } | |
3142 | #endif | |
3143 | DO_GLOBAL_CTORS_BODY; | |
3144 | atexit (__do_global_dtors); | |
3145 | } | |
3146 | #endif /* no HAS_INIT_SECTION */ | |
3147 | ||
3148 | #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) | |
3149 | /* Subroutine called automatically by `main'. | |
3150 | Compiling a global function named `main' | |
3151 | produces an automatic call to this function at the beginning. | |
3152 | ||
3153 | For many systems, this routine calls __do_global_ctors. | |
3154 | For systems which support a .init section we use the .init section | |
3155 | to run __do_global_ctors, so we need not do anything here. */ | |
3156 | ||
3157 | extern void SYMBOL__MAIN (void); | |
3158 | void | |
3159 | SYMBOL__MAIN (void) | |
3160 | { | |
3161 | /* Support recursive calls to `main': run initializers just once. */ | |
3162 | static int initialized; | |
3163 | if (! initialized) | |
3164 | { | |
3165 | initialized = 1; | |
3166 | __do_global_ctors (); | |
3167 | } | |
3168 | } | |
3169 | #endif /* no HAS_INIT_SECTION or INVOKE__main */ | |
3170 | ||
3171 | #endif /* L__main */ | |
3172 | #endif /* __CYGWIN__ */ | |
3173 | \f | |
3174 | #ifdef L_ctors | |
3175 | ||
3176 | #include "gbl-ctors.h" | |
3177 | ||
3178 | /* Provide default definitions for the lists of constructors and | |
3179 | destructors, so that we don't get linker errors. These symbols are | |
3180 | intentionally bss symbols, so that gld and/or collect will provide | |
3181 | the right values. */ | |
3182 | ||
3183 | /* We declare the lists here with two elements each, | |
3184 | so that they are valid empty lists if no other definition is loaded. | |
3185 | ||
3186 | If we are using the old "set" extensions to have the gnu linker | |
3187 | collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__ | |
3188 | must be in the bss/common section. | |
3189 | ||
3190 | Long term no port should use those extensions. But many still do. */ | |
3191 | #if !defined(__LIBGCC_INIT_SECTION_ASM_OP__) | |
3192 | #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2) | |
3193 | func_ptr __CTOR_LIST__[2] = {0, 0}; | |
3194 | func_ptr __DTOR_LIST__[2] = {0, 0}; | |
3195 | #else | |
3196 | func_ptr __CTOR_LIST__[2]; | |
3197 | func_ptr __DTOR_LIST__[2]; | |
3198 | #endif | |
3199 | #endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */ | |
3200 | #endif /* L_ctors */ | |
3201 | #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */ |