]>
Commit | Line | Data |
---|---|---|
1 | /* Implementation of various C99 functions | |
2 | Copyright (C) 2004-2025 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of the GNU Fortran 95 runtime library (libgfortran). | |
5 | ||
6 | Libgfortran is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public | |
8 | License as published by the Free Software Foundation; either | |
9 | version 3 of the License, or (at your option) any later version. | |
10 | ||
11 | Libgfortran is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | Under Section 7 of GPL version 3, you are granted additional | |
17 | permissions described in the GCC Runtime Library Exception, version | |
18 | 3.1, as published by the Free Software Foundation. | |
19 | ||
20 | You should have received a copy of the GNU General Public License and | |
21 | a copy of the GCC Runtime Library Exception along with this program; | |
22 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see | |
23 | <http://www.gnu.org/licenses/>. */ | |
24 | ||
25 | #include "config.h" | |
26 | ||
27 | #define C99_PROTOS_H WE_DONT_WANT_PROTOS_NOW | |
28 | #include "libgfortran.h" | |
29 | ||
30 | /* On a C99 system "I" (with I*I = -1) should be defined in complex.h; | |
31 | if not, we define a fallback version here. */ | |
32 | #ifndef I | |
33 | # if defined(_Imaginary_I) | |
34 | # define I _Imaginary_I | |
35 | # elif defined(_Complex_I) | |
36 | # define I _Complex_I | |
37 | # else | |
38 | # define I (1.0fi) | |
39 | # endif | |
40 | #endif | |
41 | ||
42 | /* Macros to get real and imaginary parts of a complex, and set | |
43 | a complex value. */ | |
44 | #define REALPART(z) (__real__(z)) | |
45 | #define IMAGPART(z) (__imag__(z)) | |
46 | #define COMPLEX_ASSIGN(z_, r_, i_) {__real__(z_) = (r_); __imag__(z_) = (i_);} | |
47 | ||
48 | ||
49 | /* Prototypes are included to silence -Wstrict-prototypes | |
50 | -Wmissing-prototypes. */ | |
51 | ||
52 | ||
53 | /* Wrappers for systems without the various C99 single precision Bessel | |
54 | functions. */ | |
55 | ||
56 | #if defined(HAVE_J0) && ! defined(HAVE_J0F) | |
57 | #define HAVE_J0F 1 | |
58 | float j0f (float); | |
59 | ||
60 | float | |
61 | j0f (float x) | |
62 | { | |
63 | return (float) j0 ((double) x); | |
64 | } | |
65 | #endif | |
66 | ||
67 | #if defined(HAVE_J1) && !defined(HAVE_J1F) | |
68 | #define HAVE_J1F 1 | |
69 | float j1f (float); | |
70 | ||
71 | float j1f (float x) | |
72 | { | |
73 | return (float) j1 ((double) x); | |
74 | } | |
75 | #endif | |
76 | ||
77 | #if defined(HAVE_JN) && !defined(HAVE_JNF) | |
78 | #define HAVE_JNF 1 | |
79 | float jnf (int, float); | |
80 | ||
81 | float | |
82 | jnf (int n, float x) | |
83 | { | |
84 | return (float) jn (n, (double) x); | |
85 | } | |
86 | #endif | |
87 | ||
88 | #if defined(HAVE_Y0) && !defined(HAVE_Y0F) | |
89 | #define HAVE_Y0F 1 | |
90 | float y0f (float); | |
91 | ||
92 | float | |
93 | y0f (float x) | |
94 | { | |
95 | return (float) y0 ((double) x); | |
96 | } | |
97 | #endif | |
98 | ||
99 | #if defined(HAVE_Y1) && !defined(HAVE_Y1F) | |
100 | #define HAVE_Y1F 1 | |
101 | float y1f (float); | |
102 | ||
103 | float | |
104 | y1f (float x) | |
105 | { | |
106 | return (float) y1 ((double) x); | |
107 | } | |
108 | #endif | |
109 | ||
110 | #if defined(HAVE_YN) && !defined(HAVE_YNF) | |
111 | #define HAVE_YNF 1 | |
112 | float ynf (int, float); | |
113 | ||
114 | float | |
115 | ynf (int n, float x) | |
116 | { | |
117 | return (float) yn (n, (double) x); | |
118 | } | |
119 | #endif | |
120 | ||
121 | ||
122 | /* Wrappers for systems without the C99 erff() and erfcf() functions. */ | |
123 | ||
124 | #if defined(HAVE_ERF) && !defined(HAVE_ERFF) | |
125 | #define HAVE_ERFF 1 | |
126 | float erff (float); | |
127 | ||
128 | float | |
129 | erff (float x) | |
130 | { | |
131 | return (float) erf ((double) x); | |
132 | } | |
133 | #endif | |
134 | ||
135 | #if defined(HAVE_ERFC) && !defined(HAVE_ERFCF) | |
136 | #define HAVE_ERFCF 1 | |
137 | float erfcf (float); | |
138 | ||
139 | float | |
140 | erfcf (float x) | |
141 | { | |
142 | return (float) erfc ((double) x); | |
143 | } | |
144 | #endif | |
145 | ||
146 | ||
147 | #ifndef HAVE_ACOSF | |
148 | #define HAVE_ACOSF 1 | |
149 | float acosf (float x); | |
150 | ||
151 | float | |
152 | acosf (float x) | |
153 | { | |
154 | return (float) acos (x); | |
155 | } | |
156 | #endif | |
157 | ||
158 | #if HAVE_ACOSH && !HAVE_ACOSHF | |
159 | float acoshf (float x); | |
160 | ||
161 | float | |
162 | acoshf (float x) | |
163 | { | |
164 | return (float) acosh ((double) x); | |
165 | } | |
166 | #endif | |
167 | ||
168 | #ifndef HAVE_ASINF | |
169 | #define HAVE_ASINF 1 | |
170 | float asinf (float x); | |
171 | ||
172 | float | |
173 | asinf (float x) | |
174 | { | |
175 | return (float) asin (x); | |
176 | } | |
177 | #endif | |
178 | ||
179 | #if HAVE_ASINH && !HAVE_ASINHF | |
180 | float asinhf (float x); | |
181 | ||
182 | float | |
183 | asinhf (float x) | |
184 | { | |
185 | return (float) asinh ((double) x); | |
186 | } | |
187 | #endif | |
188 | ||
189 | #ifndef HAVE_ATAN2F | |
190 | #define HAVE_ATAN2F 1 | |
191 | float atan2f (float y, float x); | |
192 | ||
193 | float | |
194 | atan2f (float y, float x) | |
195 | { | |
196 | return (float) atan2 (y, x); | |
197 | } | |
198 | #endif | |
199 | ||
200 | #ifndef HAVE_ATANF | |
201 | #define HAVE_ATANF 1 | |
202 | float atanf (float x); | |
203 | ||
204 | float | |
205 | atanf (float x) | |
206 | { | |
207 | return (float) atan (x); | |
208 | } | |
209 | #endif | |
210 | ||
211 | #if HAVE_ATANH && !HAVE_ATANHF | |
212 | float atanhf (float x); | |
213 | ||
214 | float | |
215 | atanhf (float x) | |
216 | { | |
217 | return (float) atanh ((double) x); | |
218 | } | |
219 | #endif | |
220 | ||
221 | #ifndef HAVE_CEILF | |
222 | #define HAVE_CEILF 1 | |
223 | float ceilf (float x); | |
224 | ||
225 | float | |
226 | ceilf (float x) | |
227 | { | |
228 | return (float) ceil (x); | |
229 | } | |
230 | #endif | |
231 | ||
232 | #if !defined(HAVE_COPYSIGN) && defined(HAVE_INLINE_BUILTIN_COPYSIGN) | |
233 | #define HAVE_COPYSIGN 1 | |
234 | double copysign (double x, double y); | |
235 | ||
236 | double | |
237 | copysign (double x, double y) | |
238 | { | |
239 | return __builtin_copysign (x, y); | |
240 | } | |
241 | #endif | |
242 | ||
243 | #ifndef HAVE_COPYSIGNF | |
244 | #define HAVE_COPYSIGNF 1 | |
245 | float copysignf (float x, float y); | |
246 | ||
247 | float | |
248 | copysignf (float x, float y) | |
249 | { | |
250 | return (float) copysign (x, y); | |
251 | } | |
252 | #endif | |
253 | ||
254 | #if !defined(HAVE_COPYSIGNL) && defined(HAVE_INLINE_BUILTIN_COPYSIGNL) | |
255 | #define HAVE_COPYSIGNL 1 | |
256 | long double copysignl (long double x, long double y); | |
257 | ||
258 | long double | |
259 | copysignl (long double x, long double y) | |
260 | { | |
261 | return __builtin_copysignl (x, y); | |
262 | } | |
263 | #endif | |
264 | ||
265 | #ifndef HAVE_COSF | |
266 | #define HAVE_COSF 1 | |
267 | float cosf (float x); | |
268 | ||
269 | float | |
270 | cosf (float x) | |
271 | { | |
272 | return (float) cos (x); | |
273 | } | |
274 | #endif | |
275 | ||
276 | #ifndef HAVE_COSHF | |
277 | #define HAVE_COSHF 1 | |
278 | float coshf (float x); | |
279 | ||
280 | float | |
281 | coshf (float x) | |
282 | { | |
283 | return (float) cosh (x); | |
284 | } | |
285 | #endif | |
286 | ||
287 | #ifndef HAVE_EXPF | |
288 | #define HAVE_EXPF 1 | |
289 | float expf (float x); | |
290 | ||
291 | float | |
292 | expf (float x) | |
293 | { | |
294 | return (float) exp (x); | |
295 | } | |
296 | #endif | |
297 | ||
298 | #if !defined(HAVE_FABS) && defined(HAVE_INLINE_BUILTIN_FABS) | |
299 | #define HAVE_FABS 1 | |
300 | double fabs (double x); | |
301 | ||
302 | double | |
303 | fabs (double x) | |
304 | { | |
305 | return __builtin_fabs (x); | |
306 | } | |
307 | #endif | |
308 | ||
309 | #ifndef HAVE_FABSF | |
310 | #define HAVE_FABSF 1 | |
311 | float fabsf (float x); | |
312 | ||
313 | float | |
314 | fabsf (float x) | |
315 | { | |
316 | return (float) fabs (x); | |
317 | } | |
318 | #endif | |
319 | ||
320 | #if !defined(HAVE_FABSL) && defined(HAVE_INLINE_BUILTIN_FABSL) | |
321 | #define HAVE_FABSL 1 | |
322 | long double fabsl (long double x); | |
323 | ||
324 | long double | |
325 | fabsl (long double x) | |
326 | { | |
327 | return __builtin_fabsl (x); | |
328 | } | |
329 | #endif | |
330 | ||
331 | #ifndef HAVE_FLOORF | |
332 | #define HAVE_FLOORF 1 | |
333 | float floorf (float x); | |
334 | ||
335 | float | |
336 | floorf (float x) | |
337 | { | |
338 | return (float) floor (x); | |
339 | } | |
340 | #endif | |
341 | ||
342 | #ifndef HAVE_FMODF | |
343 | #define HAVE_FMODF 1 | |
344 | float fmodf (float x, float y); | |
345 | ||
346 | float | |
347 | fmodf (float x, float y) | |
348 | { | |
349 | return (float) fmod (x, y); | |
350 | } | |
351 | #endif | |
352 | ||
353 | #ifndef HAVE_FREXPF | |
354 | #define HAVE_FREXPF 1 | |
355 | float frexpf (float x, int *exp); | |
356 | ||
357 | float | |
358 | frexpf (float x, int *exp) | |
359 | { | |
360 | return (float) frexp (x, exp); | |
361 | } | |
362 | #endif | |
363 | ||
364 | #ifndef HAVE_HYPOTF | |
365 | #define HAVE_HYPOTF 1 | |
366 | float hypotf (float x, float y); | |
367 | ||
368 | float | |
369 | hypotf (float x, float y) | |
370 | { | |
371 | return (float) hypot (x, y); | |
372 | } | |
373 | #endif | |
374 | ||
375 | #ifndef HAVE_LOGF | |
376 | #define HAVE_LOGF 1 | |
377 | float logf (float x); | |
378 | ||
379 | float | |
380 | logf (float x) | |
381 | { | |
382 | return (float) log (x); | |
383 | } | |
384 | #endif | |
385 | ||
386 | #ifndef HAVE_LOG10F | |
387 | #define HAVE_LOG10F 1 | |
388 | float log10f (float x); | |
389 | ||
390 | float | |
391 | log10f (float x) | |
392 | { | |
393 | return (float) log10 (x); | |
394 | } | |
395 | #endif | |
396 | ||
397 | #ifndef HAVE_SCALBN | |
398 | #define HAVE_SCALBN 1 | |
399 | double scalbn (double x, int y); | |
400 | ||
401 | double | |
402 | scalbn (double x, int y) | |
403 | { | |
404 | #if (FLT_RADIX == 2) && defined(HAVE_LDEXP) | |
405 | return ldexp (x, y); | |
406 | #else | |
407 | return x * pow (FLT_RADIX, y); | |
408 | #endif | |
409 | } | |
410 | #endif | |
411 | ||
412 | #ifndef HAVE_SCALBNF | |
413 | #define HAVE_SCALBNF 1 | |
414 | float scalbnf (float x, int y); | |
415 | ||
416 | float | |
417 | scalbnf (float x, int y) | |
418 | { | |
419 | return (float) scalbn (x, y); | |
420 | } | |
421 | #endif | |
422 | ||
423 | #ifndef HAVE_SINF | |
424 | #define HAVE_SINF 1 | |
425 | float sinf (float x); | |
426 | ||
427 | float | |
428 | sinf (float x) | |
429 | { | |
430 | return (float) sin (x); | |
431 | } | |
432 | #endif | |
433 | ||
434 | #ifndef HAVE_SINHF | |
435 | #define HAVE_SINHF 1 | |
436 | float sinhf (float x); | |
437 | ||
438 | float | |
439 | sinhf (float x) | |
440 | { | |
441 | return (float) sinh (x); | |
442 | } | |
443 | #endif | |
444 | ||
445 | #ifndef HAVE_SQRTF | |
446 | #define HAVE_SQRTF 1 | |
447 | float sqrtf (float x); | |
448 | ||
449 | float | |
450 | sqrtf (float x) | |
451 | { | |
452 | return (float) sqrt (x); | |
453 | } | |
454 | #endif | |
455 | ||
456 | #ifndef HAVE_TANF | |
457 | #define HAVE_TANF 1 | |
458 | float tanf (float x); | |
459 | ||
460 | float | |
461 | tanf (float x) | |
462 | { | |
463 | return (float) tan (x); | |
464 | } | |
465 | #endif | |
466 | ||
467 | #ifndef HAVE_TANHF | |
468 | #define HAVE_TANHF 1 | |
469 | float tanhf (float x); | |
470 | ||
471 | float | |
472 | tanhf (float x) | |
473 | { | |
474 | return (float) tanh (x); | |
475 | } | |
476 | #endif | |
477 | ||
478 | #ifndef HAVE_TRUNC | |
479 | #define HAVE_TRUNC 1 | |
480 | double trunc (double x); | |
481 | ||
482 | double | |
483 | trunc (double x) | |
484 | { | |
485 | if (!isfinite (x)) | |
486 | return x; | |
487 | ||
488 | if (x < 0.0) | |
489 | return - floor (-x); | |
490 | else | |
491 | return floor (x); | |
492 | } | |
493 | #endif | |
494 | ||
495 | #ifndef HAVE_TRUNCF | |
496 | #define HAVE_TRUNCF 1 | |
497 | float truncf (float x); | |
498 | ||
499 | float | |
500 | truncf (float x) | |
501 | { | |
502 | return (float) trunc (x); | |
503 | } | |
504 | #endif | |
505 | ||
506 | #ifndef HAVE_NEXTAFTERF | |
507 | #define HAVE_NEXTAFTERF 1 | |
508 | /* This is a portable implementation of nextafterf that is intended to be | |
509 | independent of the floating point format or its in memory representation. | |
510 | This implementation works correctly with denormalized values. */ | |
511 | float nextafterf (float x, float y); | |
512 | ||
513 | float | |
514 | nextafterf (float x, float y) | |
515 | { | |
516 | /* This variable is marked volatile to avoid excess precision problems | |
517 | on some platforms, including IA-32. */ | |
518 | volatile float delta; | |
519 | float absx, denorm_min; | |
520 | ||
521 | if (isnan (x) || isnan (y)) | |
522 | return x + y; | |
523 | if (x == y) | |
524 | return x; | |
525 | if (!isfinite (x)) | |
526 | return x > 0 ? __FLT_MAX__ : - __FLT_MAX__; | |
527 | ||
528 | /* absx = fabsf (x); */ | |
529 | absx = (x < 0.0) ? -x : x; | |
530 | ||
531 | /* __FLT_DENORM_MIN__ is non-zero iff the target supports denormals. */ | |
532 | if (__FLT_DENORM_MIN__ == 0.0f) | |
533 | denorm_min = __FLT_MIN__; | |
534 | else | |
535 | denorm_min = __FLT_DENORM_MIN__; | |
536 | ||
537 | if (absx < __FLT_MIN__) | |
538 | delta = denorm_min; | |
539 | else | |
540 | { | |
541 | float frac; | |
542 | int exp; | |
543 | ||
544 | /* Discard the fraction from x. */ | |
545 | frac = frexpf (absx, &exp); | |
546 | delta = scalbnf (0.5f, exp); | |
547 | ||
548 | /* Scale x by the epsilon of the representation. By rights we should | |
549 | have been able to combine this with scalbnf, but some targets don't | |
550 | get that correct with denormals. */ | |
551 | delta *= __FLT_EPSILON__; | |
552 | ||
553 | /* If we're going to be reducing the absolute value of X, and doing so | |
554 | would reduce the exponent of X, then the delta to be applied is | |
555 | one exponent smaller. */ | |
556 | if (frac == 0.5f && (y < x) == (x > 0)) | |
557 | delta *= 0.5f; | |
558 | ||
559 | /* If that underflows to zero, then we're back to the minimum. */ | |
560 | if (delta == 0.0f) | |
561 | delta = denorm_min; | |
562 | } | |
563 | ||
564 | if (y < x) | |
565 | delta = -delta; | |
566 | ||
567 | return x + delta; | |
568 | } | |
569 | #endif | |
570 | ||
571 | ||
572 | #ifndef HAVE_POWF | |
573 | #define HAVE_POWF 1 | |
574 | float powf (float x, float y); | |
575 | ||
576 | float | |
577 | powf (float x, float y) | |
578 | { | |
579 | return (float) pow (x, y); | |
580 | } | |
581 | #endif | |
582 | ||
583 | ||
584 | #ifndef HAVE_ROUND | |
585 | #define HAVE_ROUND 1 | |
586 | /* Round to nearest integral value. If the argument is halfway between two | |
587 | integral values then round away from zero. */ | |
588 | double round (double x); | |
589 | ||
590 | double | |
591 | round (double x) | |
592 | { | |
593 | double t; | |
594 | if (!isfinite (x)) | |
595 | return (x); | |
596 | ||
597 | if (x >= 0.0) | |
598 | { | |
599 | t = floor (x); | |
600 | if (t - x <= -0.5) | |
601 | t += 1.0; | |
602 | return (t); | |
603 | } | |
604 | else | |
605 | { | |
606 | t = floor (-x); | |
607 | if (t + x <= -0.5) | |
608 | t += 1.0; | |
609 | return (-t); | |
610 | } | |
611 | } | |
612 | #endif | |
613 | ||
614 | ||
615 | /* Algorithm by Steven G. Kargl. */ | |
616 | ||
617 | #if !defined(HAVE_ROUNDL) | |
618 | #define HAVE_ROUNDL 1 | |
619 | long double roundl (long double x); | |
620 | ||
621 | #if defined(HAVE_CEILL) | |
622 | /* Round to nearest integral value. If the argument is halfway between two | |
623 | integral values then round away from zero. */ | |
624 | ||
625 | long double | |
626 | roundl (long double x) | |
627 | { | |
628 | long double t; | |
629 | if (!isfinite (x)) | |
630 | return (x); | |
631 | ||
632 | if (x >= 0.0) | |
633 | { | |
634 | t = ceill (x); | |
635 | if (t - x > 0.5) | |
636 | t -= 1.0; | |
637 | return (t); | |
638 | } | |
639 | else | |
640 | { | |
641 | t = ceill (-x); | |
642 | if (t + x > 0.5) | |
643 | t -= 1.0; | |
644 | return (-t); | |
645 | } | |
646 | } | |
647 | #else | |
648 | ||
649 | /* Poor version of roundl for system that don't have ceill. */ | |
650 | long double | |
651 | roundl (long double x) | |
652 | { | |
653 | if (x > DBL_MAX || x < -DBL_MAX) | |
654 | { | |
655 | #ifdef HAVE_NEXTAFTERL | |
656 | long double prechalf = nextafterl (0.5L, LDBL_MAX); | |
657 | #else | |
658 | static long double prechalf = 0.5L; | |
659 | #endif | |
660 | return (GFC_INTEGER_LARGEST) (x + (x > 0 ? prechalf : -prechalf)); | |
661 | } | |
662 | else | |
663 | /* Use round(). */ | |
664 | return round ((double) x); | |
665 | } | |
666 | ||
667 | #endif | |
668 | #endif | |
669 | ||
670 | #ifndef HAVE_ROUNDF | |
671 | #define HAVE_ROUNDF 1 | |
672 | /* Round to nearest integral value. If the argument is halfway between two | |
673 | integral values then round away from zero. */ | |
674 | float roundf (float x); | |
675 | ||
676 | float | |
677 | roundf (float x) | |
678 | { | |
679 | float t; | |
680 | if (!isfinite (x)) | |
681 | return (x); | |
682 | ||
683 | if (x >= 0.0) | |
684 | { | |
685 | t = floorf (x); | |
686 | if (t - x <= -0.5) | |
687 | t += 1.0; | |
688 | return (t); | |
689 | } | |
690 | else | |
691 | { | |
692 | t = floorf (-x); | |
693 | if (t + x <= -0.5) | |
694 | t += 1.0; | |
695 | return (-t); | |
696 | } | |
697 | } | |
698 | #endif | |
699 | ||
700 | ||
701 | /* lround{f,,l} and llround{f,,l} functions. */ | |
702 | ||
703 | #if !defined(HAVE_LROUNDF) && defined(HAVE_ROUNDF) | |
704 | #define HAVE_LROUNDF 1 | |
705 | long int lroundf (float x); | |
706 | ||
707 | long int | |
708 | lroundf (float x) | |
709 | { | |
710 | return (long int) roundf (x); | |
711 | } | |
712 | #endif | |
713 | ||
714 | #if !defined(HAVE_LROUND) && defined(HAVE_ROUND) | |
715 | #define HAVE_LROUND 1 | |
716 | long int lround (double x); | |
717 | ||
718 | long int | |
719 | lround (double x) | |
720 | { | |
721 | return (long int) round (x); | |
722 | } | |
723 | #endif | |
724 | ||
725 | #if !defined(HAVE_LROUNDL) && defined(HAVE_ROUNDL) | |
726 | #define HAVE_LROUNDL 1 | |
727 | long int lroundl (long double x); | |
728 | ||
729 | long int | |
730 | lroundl (long double x) | |
731 | { | |
732 | return (long long int) roundl (x); | |
733 | } | |
734 | #endif | |
735 | ||
736 | #if !defined(HAVE_LLROUNDF) && defined(HAVE_ROUNDF) | |
737 | #define HAVE_LLROUNDF 1 | |
738 | long long int llroundf (float x); | |
739 | ||
740 | long long int | |
741 | llroundf (float x) | |
742 | { | |
743 | return (long long int) roundf (x); | |
744 | } | |
745 | #endif | |
746 | ||
747 | #if !defined(HAVE_LLROUND) && defined(HAVE_ROUND) | |
748 | #define HAVE_LLROUND 1 | |
749 | long long int llround (double x); | |
750 | ||
751 | long long int | |
752 | llround (double x) | |
753 | { | |
754 | return (long long int) round (x); | |
755 | } | |
756 | #endif | |
757 | ||
758 | #if !defined(HAVE_LLROUNDL) && defined(HAVE_ROUNDL) | |
759 | #define HAVE_LLROUNDL 1 | |
760 | long long int llroundl (long double x); | |
761 | ||
762 | long long int | |
763 | llroundl (long double x) | |
764 | { | |
765 | return (long long int) roundl (x); | |
766 | } | |
767 | #endif | |
768 | ||
769 | ||
770 | #ifndef HAVE_LOG10L | |
771 | #define HAVE_LOG10L 1 | |
772 | /* log10 function for long double variables. The version provided here | |
773 | reduces the argument until it fits into a double, then use log10. */ | |
774 | long double log10l (long double x); | |
775 | ||
776 | long double | |
777 | log10l (long double x) | |
778 | { | |
779 | #if LDBL_MAX_EXP > DBL_MAX_EXP | |
780 | if (x > DBL_MAX) | |
781 | { | |
782 | double val; | |
783 | int p2_result = 0; | |
784 | if (x > 0x1p16383L) { p2_result += 16383; x /= 0x1p16383L; } | |
785 | if (x > 0x1p8191L) { p2_result += 8191; x /= 0x1p8191L; } | |
786 | if (x > 0x1p4095L) { p2_result += 4095; x /= 0x1p4095L; } | |
787 | if (x > 0x1p2047L) { p2_result += 2047; x /= 0x1p2047L; } | |
788 | if (x > 0x1p1023L) { p2_result += 1023; x /= 0x1p1023L; } | |
789 | val = log10 ((double) x); | |
790 | return (val + p2_result * .30102999566398119521373889472449302L); | |
791 | } | |
792 | #endif | |
793 | #if LDBL_MIN_EXP < DBL_MIN_EXP | |
794 | if (x < DBL_MIN) | |
795 | { | |
796 | double val; | |
797 | int p2_result = 0; | |
798 | if (x < 0x1p-16380L) { p2_result += 16380; x /= 0x1p-16380L; } | |
799 | if (x < 0x1p-8189L) { p2_result += 8189; x /= 0x1p-8189L; } | |
800 | if (x < 0x1p-4093L) { p2_result += 4093; x /= 0x1p-4093L; } | |
801 | if (x < 0x1p-2045L) { p2_result += 2045; x /= 0x1p-2045L; } | |
802 | if (x < 0x1p-1021L) { p2_result += 1021; x /= 0x1p-1021L; } | |
803 | val = fabs (log10 ((double) x)); | |
804 | return (- val - p2_result * .30102999566398119521373889472449302L); | |
805 | } | |
806 | #endif | |
807 | return log10 (x); | |
808 | } | |
809 | #endif | |
810 | ||
811 | ||
812 | #ifndef HAVE_FLOORL | |
813 | #define HAVE_FLOORL 1 | |
814 | long double floorl (long double x); | |
815 | ||
816 | long double | |
817 | floorl (long double x) | |
818 | { | |
819 | /* Zero, possibly signed. */ | |
820 | if (x == 0) | |
821 | return x; | |
822 | ||
823 | /* Large magnitude. */ | |
824 | if (x > DBL_MAX || x < (-DBL_MAX)) | |
825 | return x; | |
826 | ||
827 | /* Small positive values. */ | |
828 | if (x >= 0 && x < DBL_MIN) | |
829 | return 0; | |
830 | ||
831 | /* Small negative values. */ | |
832 | if (x < 0 && x > (-DBL_MIN)) | |
833 | return -1; | |
834 | ||
835 | return floor (x); | |
836 | } | |
837 | #endif | |
838 | ||
839 | ||
840 | #ifndef HAVE_FMODL | |
841 | #define HAVE_FMODL 1 | |
842 | long double fmodl (long double x, long double y); | |
843 | ||
844 | long double | |
845 | fmodl (long double x, long double y) | |
846 | { | |
847 | if (y == 0.0L) | |
848 | return 0.0L; | |
849 | ||
850 | /* Need to check that the result has the same sign as x and magnitude | |
851 | less than the magnitude of y. */ | |
852 | return x - floorl (x / y) * y; | |
853 | } | |
854 | #endif | |
855 | ||
856 | ||
857 | #if !defined(HAVE_CABSF) | |
858 | #define HAVE_CABSF 1 | |
859 | float cabsf (float complex z); | |
860 | ||
861 | float | |
862 | cabsf (float complex z) | |
863 | { | |
864 | return hypotf (REALPART (z), IMAGPART (z)); | |
865 | } | |
866 | #endif | |
867 | ||
868 | #if !defined(HAVE_CABS) | |
869 | #define HAVE_CABS 1 | |
870 | double cabs (double complex z); | |
871 | ||
872 | double | |
873 | cabs (double complex z) | |
874 | { | |
875 | return hypot (REALPART (z), IMAGPART (z)); | |
876 | } | |
877 | #endif | |
878 | ||
879 | #if !defined(HAVE_CABSL) && defined(HAVE_HYPOTL) | |
880 | #define HAVE_CABSL 1 | |
881 | long double cabsl (long double complex z); | |
882 | ||
883 | long double | |
884 | cabsl (long double complex z) | |
885 | { | |
886 | return hypotl (REALPART (z), IMAGPART (z)); | |
887 | } | |
888 | #endif | |
889 | ||
890 | ||
891 | #if !defined(HAVE_CARGF) | |
892 | #define HAVE_CARGF 1 | |
893 | float cargf (float complex z); | |
894 | ||
895 | float | |
896 | cargf (float complex z) | |
897 | { | |
898 | return atan2f (IMAGPART (z), REALPART (z)); | |
899 | } | |
900 | #endif | |
901 | ||
902 | #if !defined(HAVE_CARG) | |
903 | #define HAVE_CARG 1 | |
904 | double carg (double complex z); | |
905 | ||
906 | double | |
907 | carg (double complex z) | |
908 | { | |
909 | return atan2 (IMAGPART (z), REALPART (z)); | |
910 | } | |
911 | #endif | |
912 | ||
913 | #if !defined(HAVE_CARGL) && defined(HAVE_ATAN2L) | |
914 | #define HAVE_CARGL 1 | |
915 | long double cargl (long double complex z); | |
916 | ||
917 | long double | |
918 | cargl (long double complex z) | |
919 | { | |
920 | return atan2l (IMAGPART (z), REALPART (z)); | |
921 | } | |
922 | #endif | |
923 | ||
924 | ||
925 | /* exp(z) = exp(a)*(cos(b) + i sin(b)) */ | |
926 | #if !defined(HAVE_CEXPF) | |
927 | #define HAVE_CEXPF 1 | |
928 | float complex cexpf (float complex z); | |
929 | ||
930 | float complex | |
931 | cexpf (float complex z) | |
932 | { | |
933 | float a, b; | |
934 | float complex v; | |
935 | ||
936 | a = REALPART (z); | |
937 | b = IMAGPART (z); | |
938 | COMPLEX_ASSIGN (v, cosf (b), sinf (b)); | |
939 | return expf (a) * v; | |
940 | } | |
941 | #endif | |
942 | ||
943 | #if !defined(HAVE_CEXP) | |
944 | #define HAVE_CEXP 1 | |
945 | double complex cexp (double complex z); | |
946 | ||
947 | double complex | |
948 | cexp (double complex z) | |
949 | { | |
950 | double a, b; | |
951 | double complex v; | |
952 | ||
953 | a = REALPART (z); | |
954 | b = IMAGPART (z); | |
955 | COMPLEX_ASSIGN (v, cos (b), sin (b)); | |
956 | return exp (a) * v; | |
957 | } | |
958 | #endif | |
959 | ||
960 | #if !defined(HAVE_CEXPL) && defined(HAVE_COSL) && defined(HAVE_SINL) && defined(HAVE_EXPL) | |
961 | #define HAVE_CEXPL 1 | |
962 | long double complex cexpl (long double complex z); | |
963 | ||
964 | long double complex | |
965 | cexpl (long double complex z) | |
966 | { | |
967 | long double a, b; | |
968 | long double complex v; | |
969 | ||
970 | a = REALPART (z); | |
971 | b = IMAGPART (z); | |
972 | COMPLEX_ASSIGN (v, cosl (b), sinl (b)); | |
973 | return expl (a) * v; | |
974 | } | |
975 | #endif | |
976 | ||
977 | ||
978 | /* log(z) = log (cabs(z)) + i*carg(z) */ | |
979 | #if !defined(HAVE_CLOGF) | |
980 | #define HAVE_CLOGF 1 | |
981 | float complex clogf (float complex z); | |
982 | ||
983 | float complex | |
984 | clogf (float complex z) | |
985 | { | |
986 | float complex v; | |
987 | ||
988 | COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z)); | |
989 | return v; | |
990 | } | |
991 | #endif | |
992 | ||
993 | #if !defined(HAVE_CLOG) | |
994 | #define HAVE_CLOG 1 | |
995 | double complex clog (double complex z); | |
996 | ||
997 | double complex | |
998 | clog (double complex z) | |
999 | { | |
1000 | double complex v; | |
1001 | ||
1002 | COMPLEX_ASSIGN (v, log (cabs (z)), carg (z)); | |
1003 | return v; | |
1004 | } | |
1005 | #endif | |
1006 | ||
1007 | #if !defined(HAVE_CLOGL) && defined(HAVE_LOGL) && defined(HAVE_CABSL) && defined(HAVE_CARGL) | |
1008 | #define HAVE_CLOGL 1 | |
1009 | long double complex clogl (long double complex z); | |
1010 | ||
1011 | long double complex | |
1012 | clogl (long double complex z) | |
1013 | { | |
1014 | long double complex v; | |
1015 | ||
1016 | COMPLEX_ASSIGN (v, logl (cabsl (z)), cargl (z)); | |
1017 | return v; | |
1018 | } | |
1019 | #endif | |
1020 | ||
1021 | ||
1022 | /* log10(z) = log10 (cabs(z)) + i*carg(z) */ | |
1023 | #if !defined(HAVE_CLOG10F) | |
1024 | #define HAVE_CLOG10F 1 | |
1025 | float complex clog10f (float complex z); | |
1026 | ||
1027 | float complex | |
1028 | clog10f (float complex z) | |
1029 | { | |
1030 | float complex v; | |
1031 | ||
1032 | COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z)); | |
1033 | return v; | |
1034 | } | |
1035 | #endif | |
1036 | ||
1037 | #if !defined(HAVE_CLOG10) | |
1038 | #define HAVE_CLOG10 1 | |
1039 | double complex clog10 (double complex z); | |
1040 | ||
1041 | double complex | |
1042 | clog10 (double complex z) | |
1043 | { | |
1044 | double complex v; | |
1045 | ||
1046 | COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z)); | |
1047 | return v; | |
1048 | } | |
1049 | #endif | |
1050 | ||
1051 | #if !defined(HAVE_CLOG10L) && defined(HAVE_LOG10L) && defined(HAVE_CABSL) && defined(HAVE_CARGL) | |
1052 | #define HAVE_CLOG10L 1 | |
1053 | long double complex clog10l (long double complex z); | |
1054 | ||
1055 | long double complex | |
1056 | clog10l (long double complex z) | |
1057 | { | |
1058 | long double complex v; | |
1059 | ||
1060 | COMPLEX_ASSIGN (v, log10l (cabsl (z)), cargl (z)); | |
1061 | return v; | |
1062 | } | |
1063 | #endif | |
1064 | ||
1065 | ||
1066 | /* pow(base, power) = cexp (power * clog (base)) */ | |
1067 | #if !defined(HAVE_CPOWF) | |
1068 | #define HAVE_CPOWF 1 | |
1069 | float complex cpowf (float complex base, float complex power); | |
1070 | ||
1071 | float complex | |
1072 | cpowf (float complex base, float complex power) | |
1073 | { | |
1074 | return cexpf (power * clogf (base)); | |
1075 | } | |
1076 | #endif | |
1077 | ||
1078 | #if !defined(HAVE_CPOW) | |
1079 | #define HAVE_CPOW 1 | |
1080 | double complex cpow (double complex base, double complex power); | |
1081 | ||
1082 | double complex | |
1083 | cpow (double complex base, double complex power) | |
1084 | { | |
1085 | return cexp (power * clog (base)); | |
1086 | } | |
1087 | #endif | |
1088 | ||
1089 | #if !defined(HAVE_CPOWL) && defined(HAVE_CEXPL) && defined(HAVE_CLOGL) | |
1090 | #define HAVE_CPOWL 1 | |
1091 | long double complex cpowl (long double complex base, long double complex power); | |
1092 | ||
1093 | long double complex | |
1094 | cpowl (long double complex base, long double complex power) | |
1095 | { | |
1096 | return cexpl (power * clogl (base)); | |
1097 | } | |
1098 | #endif | |
1099 | ||
1100 | ||
1101 | /* sqrt(z). Algorithm pulled from glibc. */ | |
1102 | #if !defined(HAVE_CSQRTF) | |
1103 | #define HAVE_CSQRTF 1 | |
1104 | float complex csqrtf (float complex z); | |
1105 | ||
1106 | float complex | |
1107 | csqrtf (float complex z) | |
1108 | { | |
1109 | float re, im; | |
1110 | float complex v; | |
1111 | ||
1112 | re = REALPART (z); | |
1113 | im = IMAGPART (z); | |
1114 | if (im == 0) | |
1115 | { | |
1116 | if (re < 0) | |
1117 | { | |
1118 | COMPLEX_ASSIGN (v, 0, copysignf (sqrtf (-re), im)); | |
1119 | } | |
1120 | else | |
1121 | { | |
1122 | COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0, im)); | |
1123 | } | |
1124 | } | |
1125 | else if (re == 0) | |
1126 | { | |
1127 | float r; | |
1128 | ||
1129 | r = sqrtf (0.5 * fabsf (im)); | |
1130 | ||
1131 | COMPLEX_ASSIGN (v, r, copysignf (r, im)); | |
1132 | } | |
1133 | else | |
1134 | { | |
1135 | float d, r, s; | |
1136 | ||
1137 | d = hypotf (re, im); | |
1138 | /* Use the identity 2 Re res Im res = Im x | |
1139 | to avoid cancellation error in d +/- Re x. */ | |
1140 | if (re > 0) | |
1141 | { | |
1142 | r = sqrtf (0.5 * d + 0.5 * re); | |
1143 | s = (0.5 * im) / r; | |
1144 | } | |
1145 | else | |
1146 | { | |
1147 | s = sqrtf (0.5 * d - 0.5 * re); | |
1148 | r = fabsf ((0.5 * im) / s); | |
1149 | } | |
1150 | ||
1151 | COMPLEX_ASSIGN (v, r, copysignf (s, im)); | |
1152 | } | |
1153 | return v; | |
1154 | } | |
1155 | #endif | |
1156 | ||
1157 | #if !defined(HAVE_CSQRT) | |
1158 | #define HAVE_CSQRT 1 | |
1159 | double complex csqrt (double complex z); | |
1160 | ||
1161 | double complex | |
1162 | csqrt (double complex z) | |
1163 | { | |
1164 | double re, im; | |
1165 | double complex v; | |
1166 | ||
1167 | re = REALPART (z); | |
1168 | im = IMAGPART (z); | |
1169 | if (im == 0) | |
1170 | { | |
1171 | if (re < 0) | |
1172 | { | |
1173 | COMPLEX_ASSIGN (v, 0, copysign (sqrt (-re), im)); | |
1174 | } | |
1175 | else | |
1176 | { | |
1177 | COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0, im)); | |
1178 | } | |
1179 | } | |
1180 | else if (re == 0) | |
1181 | { | |
1182 | double r; | |
1183 | ||
1184 | r = sqrt (0.5 * fabs (im)); | |
1185 | ||
1186 | COMPLEX_ASSIGN (v, r, copysign (r, im)); | |
1187 | } | |
1188 | else | |
1189 | { | |
1190 | double d, r, s; | |
1191 | ||
1192 | d = hypot (re, im); | |
1193 | /* Use the identity 2 Re res Im res = Im x | |
1194 | to avoid cancellation error in d +/- Re x. */ | |
1195 | if (re > 0) | |
1196 | { | |
1197 | r = sqrt (0.5 * d + 0.5 * re); | |
1198 | s = (0.5 * im) / r; | |
1199 | } | |
1200 | else | |
1201 | { | |
1202 | s = sqrt (0.5 * d - 0.5 * re); | |
1203 | r = fabs ((0.5 * im) / s); | |
1204 | } | |
1205 | ||
1206 | COMPLEX_ASSIGN (v, r, copysign (s, im)); | |
1207 | } | |
1208 | return v; | |
1209 | } | |
1210 | #endif | |
1211 | ||
1212 | #if !defined(HAVE_CSQRTL) && defined(HAVE_COPYSIGNL) && defined(HAVE_SQRTL) && defined(HAVE_FABSL) && defined(HAVE_HYPOTL) | |
1213 | #define HAVE_CSQRTL 1 | |
1214 | long double complex csqrtl (long double complex z); | |
1215 | ||
1216 | long double complex | |
1217 | csqrtl (long double complex z) | |
1218 | { | |
1219 | long double re, im; | |
1220 | long double complex v; | |
1221 | ||
1222 | re = REALPART (z); | |
1223 | im = IMAGPART (z); | |
1224 | if (im == 0) | |
1225 | { | |
1226 | if (re < 0) | |
1227 | { | |
1228 | COMPLEX_ASSIGN (v, 0, copysignl (sqrtl (-re), im)); | |
1229 | } | |
1230 | else | |
1231 | { | |
1232 | COMPLEX_ASSIGN (v, fabsl (sqrtl (re)), copysignl (0, im)); | |
1233 | } | |
1234 | } | |
1235 | else if (re == 0) | |
1236 | { | |
1237 | long double r; | |
1238 | ||
1239 | r = sqrtl (0.5 * fabsl (im)); | |
1240 | ||
1241 | COMPLEX_ASSIGN (v, copysignl (r, im), r); | |
1242 | } | |
1243 | else | |
1244 | { | |
1245 | long double d, r, s; | |
1246 | ||
1247 | d = hypotl (re, im); | |
1248 | /* Use the identity 2 Re res Im res = Im x | |
1249 | to avoid cancellation error in d +/- Re x. */ | |
1250 | if (re > 0) | |
1251 | { | |
1252 | r = sqrtl (0.5 * d + 0.5 * re); | |
1253 | s = (0.5 * im) / r; | |
1254 | } | |
1255 | else | |
1256 | { | |
1257 | s = sqrtl (0.5 * d - 0.5 * re); | |
1258 | r = fabsl ((0.5 * im) / s); | |
1259 | } | |
1260 | ||
1261 | COMPLEX_ASSIGN (v, r, copysignl (s, im)); | |
1262 | } | |
1263 | return v; | |
1264 | } | |
1265 | #endif | |
1266 | ||
1267 | ||
1268 | /* sinh(a + i b) = sinh(a) cos(b) + i cosh(a) sin(b) */ | |
1269 | #if !defined(HAVE_CSINHF) | |
1270 | #define HAVE_CSINHF 1 | |
1271 | float complex csinhf (float complex a); | |
1272 | ||
1273 | float complex | |
1274 | csinhf (float complex a) | |
1275 | { | |
1276 | float r, i; | |
1277 | float complex v; | |
1278 | ||
1279 | r = REALPART (a); | |
1280 | i = IMAGPART (a); | |
1281 | COMPLEX_ASSIGN (v, sinhf (r) * cosf (i), coshf (r) * sinf (i)); | |
1282 | return v; | |
1283 | } | |
1284 | #endif | |
1285 | ||
1286 | #if !defined(HAVE_CSINH) | |
1287 | #define HAVE_CSINH 1 | |
1288 | double complex csinh (double complex a); | |
1289 | ||
1290 | double complex | |
1291 | csinh (double complex a) | |
1292 | { | |
1293 | double r, i; | |
1294 | double complex v; | |
1295 | ||
1296 | r = REALPART (a); | |
1297 | i = IMAGPART (a); | |
1298 | COMPLEX_ASSIGN (v, sinh (r) * cos (i), cosh (r) * sin (i)); | |
1299 | return v; | |
1300 | } | |
1301 | #endif | |
1302 | ||
1303 | #if !defined(HAVE_CSINHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL) | |
1304 | #define HAVE_CSINHL 1 | |
1305 | long double complex csinhl (long double complex a); | |
1306 | ||
1307 | long double complex | |
1308 | csinhl (long double complex a) | |
1309 | { | |
1310 | long double r, i; | |
1311 | long double complex v; | |
1312 | ||
1313 | r = REALPART (a); | |
1314 | i = IMAGPART (a); | |
1315 | COMPLEX_ASSIGN (v, sinhl (r) * cosl (i), coshl (r) * sinl (i)); | |
1316 | return v; | |
1317 | } | |
1318 | #endif | |
1319 | ||
1320 | ||
1321 | /* cosh(a + i b) = cosh(a) cos(b) + i sinh(a) sin(b) */ | |
1322 | #if !defined(HAVE_CCOSHF) | |
1323 | #define HAVE_CCOSHF 1 | |
1324 | float complex ccoshf (float complex a); | |
1325 | ||
1326 | float complex | |
1327 | ccoshf (float complex a) | |
1328 | { | |
1329 | float r, i; | |
1330 | float complex v; | |
1331 | ||
1332 | r = REALPART (a); | |
1333 | i = IMAGPART (a); | |
1334 | COMPLEX_ASSIGN (v, coshf (r) * cosf (i), sinhf (r) * sinf (i)); | |
1335 | return v; | |
1336 | } | |
1337 | #endif | |
1338 | ||
1339 | #if !defined(HAVE_CCOSH) | |
1340 | #define HAVE_CCOSH 1 | |
1341 | double complex ccosh (double complex a); | |
1342 | ||
1343 | double complex | |
1344 | ccosh (double complex a) | |
1345 | { | |
1346 | double r, i; | |
1347 | double complex v; | |
1348 | ||
1349 | r = REALPART (a); | |
1350 | i = IMAGPART (a); | |
1351 | COMPLEX_ASSIGN (v, cosh (r) * cos (i), sinh (r) * sin (i)); | |
1352 | return v; | |
1353 | } | |
1354 | #endif | |
1355 | ||
1356 | #if !defined(HAVE_CCOSHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL) | |
1357 | #define HAVE_CCOSHL 1 | |
1358 | long double complex ccoshl (long double complex a); | |
1359 | ||
1360 | long double complex | |
1361 | ccoshl (long double complex a) | |
1362 | { | |
1363 | long double r, i; | |
1364 | long double complex v; | |
1365 | ||
1366 | r = REALPART (a); | |
1367 | i = IMAGPART (a); | |
1368 | COMPLEX_ASSIGN (v, coshl (r) * cosl (i), sinhl (r) * sinl (i)); | |
1369 | return v; | |
1370 | } | |
1371 | #endif | |
1372 | ||
1373 | ||
1374 | /* tanh(a + i b) = (tanh(a) + i tan(b)) / (1 + i tanh(a) tan(b)) */ | |
1375 | #if !defined(HAVE_CTANHF) | |
1376 | #define HAVE_CTANHF 1 | |
1377 | float complex ctanhf (float complex a); | |
1378 | ||
1379 | float complex | |
1380 | ctanhf (float complex a) | |
1381 | { | |
1382 | float rt, it; | |
1383 | float complex n, d; | |
1384 | ||
1385 | rt = tanhf (REALPART (a)); | |
1386 | it = tanf (IMAGPART (a)); | |
1387 | COMPLEX_ASSIGN (n, rt, it); | |
1388 | COMPLEX_ASSIGN (d, 1, rt * it); | |
1389 | ||
1390 | return n / d; | |
1391 | } | |
1392 | #endif | |
1393 | ||
1394 | #if !defined(HAVE_CTANH) | |
1395 | #define HAVE_CTANH 1 | |
1396 | double complex ctanh (double complex a); | |
1397 | double complex | |
1398 | ctanh (double complex a) | |
1399 | { | |
1400 | double rt, it; | |
1401 | double complex n, d; | |
1402 | ||
1403 | rt = tanh (REALPART (a)); | |
1404 | it = tan (IMAGPART (a)); | |
1405 | COMPLEX_ASSIGN (n, rt, it); | |
1406 | COMPLEX_ASSIGN (d, 1, rt * it); | |
1407 | ||
1408 | return n / d; | |
1409 | } | |
1410 | #endif | |
1411 | ||
1412 | #if !defined(HAVE_CTANHL) && defined(HAVE_TANL) && defined(HAVE_TANHL) | |
1413 | #define HAVE_CTANHL 1 | |
1414 | long double complex ctanhl (long double complex a); | |
1415 | ||
1416 | long double complex | |
1417 | ctanhl (long double complex a) | |
1418 | { | |
1419 | long double rt, it; | |
1420 | long double complex n, d; | |
1421 | ||
1422 | rt = tanhl (REALPART (a)); | |
1423 | it = tanl (IMAGPART (a)); | |
1424 | COMPLEX_ASSIGN (n, rt, it); | |
1425 | COMPLEX_ASSIGN (d, 1, rt * it); | |
1426 | ||
1427 | return n / d; | |
1428 | } | |
1429 | #endif | |
1430 | ||
1431 | ||
1432 | /* sin(a + i b) = sin(a) cosh(b) + i cos(a) sinh(b) */ | |
1433 | #if !defined(HAVE_CSINF) | |
1434 | #define HAVE_CSINF 1 | |
1435 | float complex csinf (float complex a); | |
1436 | ||
1437 | float complex | |
1438 | csinf (float complex a) | |
1439 | { | |
1440 | float r, i; | |
1441 | float complex v; | |
1442 | ||
1443 | r = REALPART (a); | |
1444 | i = IMAGPART (a); | |
1445 | COMPLEX_ASSIGN (v, sinf (r) * coshf (i), cosf (r) * sinhf (i)); | |
1446 | return v; | |
1447 | } | |
1448 | #endif | |
1449 | ||
1450 | #if !defined(HAVE_CSIN) | |
1451 | #define HAVE_CSIN 1 | |
1452 | double complex csin (double complex a); | |
1453 | ||
1454 | double complex | |
1455 | csin (double complex a) | |
1456 | { | |
1457 | double r, i; | |
1458 | double complex v; | |
1459 | ||
1460 | r = REALPART (a); | |
1461 | i = IMAGPART (a); | |
1462 | COMPLEX_ASSIGN (v, sin (r) * cosh (i), cos (r) * sinh (i)); | |
1463 | return v; | |
1464 | } | |
1465 | #endif | |
1466 | ||
1467 | #if !defined(HAVE_CSINL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL) | |
1468 | #define HAVE_CSINL 1 | |
1469 | long double complex csinl (long double complex a); | |
1470 | ||
1471 | long double complex | |
1472 | csinl (long double complex a) | |
1473 | { | |
1474 | long double r, i; | |
1475 | long double complex v; | |
1476 | ||
1477 | r = REALPART (a); | |
1478 | i = IMAGPART (a); | |
1479 | COMPLEX_ASSIGN (v, sinl (r) * coshl (i), cosl (r) * sinhl (i)); | |
1480 | return v; | |
1481 | } | |
1482 | #endif | |
1483 | ||
1484 | ||
1485 | /* cos(a + i b) = cos(a) cosh(b) - i sin(a) sinh(b) */ | |
1486 | #if !defined(HAVE_CCOSF) | |
1487 | #define HAVE_CCOSF 1 | |
1488 | float complex ccosf (float complex a); | |
1489 | ||
1490 | float complex | |
1491 | ccosf (float complex a) | |
1492 | { | |
1493 | float r, i; | |
1494 | float complex v; | |
1495 | ||
1496 | r = REALPART (a); | |
1497 | i = IMAGPART (a); | |
1498 | COMPLEX_ASSIGN (v, cosf (r) * coshf (i), - (sinf (r) * sinhf (i))); | |
1499 | return v; | |
1500 | } | |
1501 | #endif | |
1502 | ||
1503 | #if !defined(HAVE_CCOS) | |
1504 | #define HAVE_CCOS 1 | |
1505 | double complex ccos (double complex a); | |
1506 | ||
1507 | double complex | |
1508 | ccos (double complex a) | |
1509 | { | |
1510 | double r, i; | |
1511 | double complex v; | |
1512 | ||
1513 | r = REALPART (a); | |
1514 | i = IMAGPART (a); | |
1515 | COMPLEX_ASSIGN (v, cos (r) * cosh (i), - (sin (r) * sinh (i))); | |
1516 | return v; | |
1517 | } | |
1518 | #endif | |
1519 | ||
1520 | #if !defined(HAVE_CCOSL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL) | |
1521 | #define HAVE_CCOSL 1 | |
1522 | long double complex ccosl (long double complex a); | |
1523 | ||
1524 | long double complex | |
1525 | ccosl (long double complex a) | |
1526 | { | |
1527 | long double r, i; | |
1528 | long double complex v; | |
1529 | ||
1530 | r = REALPART (a); | |
1531 | i = IMAGPART (a); | |
1532 | COMPLEX_ASSIGN (v, cosl (r) * coshl (i), - (sinl (r) * sinhl (i))); | |
1533 | return v; | |
1534 | } | |
1535 | #endif | |
1536 | ||
1537 | ||
1538 | /* tan(a + i b) = (tan(a) + i tanh(b)) / (1 - i tan(a) tanh(b)) */ | |
1539 | #if !defined(HAVE_CTANF) | |
1540 | #define HAVE_CTANF 1 | |
1541 | float complex ctanf (float complex a); | |
1542 | ||
1543 | float complex | |
1544 | ctanf (float complex a) | |
1545 | { | |
1546 | float rt, it; | |
1547 | float complex n, d; | |
1548 | ||
1549 | rt = tanf (REALPART (a)); | |
1550 | it = tanhf (IMAGPART (a)); | |
1551 | COMPLEX_ASSIGN (n, rt, it); | |
1552 | COMPLEX_ASSIGN (d, 1, - (rt * it)); | |
1553 | ||
1554 | return n / d; | |
1555 | } | |
1556 | #endif | |
1557 | ||
1558 | #if !defined(HAVE_CTAN) | |
1559 | #define HAVE_CTAN 1 | |
1560 | double complex ctan (double complex a); | |
1561 | ||
1562 | double complex | |
1563 | ctan (double complex a) | |
1564 | { | |
1565 | double rt, it; | |
1566 | double complex n, d; | |
1567 | ||
1568 | rt = tan (REALPART (a)); | |
1569 | it = tanh (IMAGPART (a)); | |
1570 | COMPLEX_ASSIGN (n, rt, it); | |
1571 | COMPLEX_ASSIGN (d, 1, - (rt * it)); | |
1572 | ||
1573 | return n / d; | |
1574 | } | |
1575 | #endif | |
1576 | ||
1577 | #if !defined(HAVE_CTANL) && defined(HAVE_TANL) && defined(HAVE_TANHL) | |
1578 | #define HAVE_CTANL 1 | |
1579 | long double complex ctanl (long double complex a); | |
1580 | ||
1581 | long double complex | |
1582 | ctanl (long double complex a) | |
1583 | { | |
1584 | long double rt, it; | |
1585 | long double complex n, d; | |
1586 | ||
1587 | rt = tanl (REALPART (a)); | |
1588 | it = tanhl (IMAGPART (a)); | |
1589 | COMPLEX_ASSIGN (n, rt, it); | |
1590 | COMPLEX_ASSIGN (d, 1, - (rt * it)); | |
1591 | ||
1592 | return n / d; | |
1593 | } | |
1594 | #endif | |
1595 | ||
1596 | ||
1597 | /* Complex ASIN. Returns wrongly NaN for infinite arguments. | |
1598 | Algorithm taken from Abramowitz & Stegun. */ | |
1599 | ||
1600 | #if !defined(HAVE_CASINF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF) | |
1601 | #define HAVE_CASINF 1 | |
1602 | complex float casinf (complex float z); | |
1603 | ||
1604 | complex float | |
1605 | casinf (complex float z) | |
1606 | { | |
1607 | return -I*clogf (I*z + csqrtf (1.0f-z*z)); | |
1608 | } | |
1609 | #endif | |
1610 | ||
1611 | ||
1612 | #if !defined(HAVE_CASIN) && defined(HAVE_CLOG) && defined(HAVE_CSQRT) | |
1613 | #define HAVE_CASIN 1 | |
1614 | complex double casin (complex double z); | |
1615 | ||
1616 | complex double | |
1617 | casin (complex double z) | |
1618 | { | |
1619 | return -I*clog (I*z + csqrt (1.0-z*z)); | |
1620 | } | |
1621 | #endif | |
1622 | ||
1623 | ||
1624 | #if !defined(HAVE_CASINL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL) | |
1625 | #define HAVE_CASINL 1 | |
1626 | complex long double casinl (complex long double z); | |
1627 | ||
1628 | complex long double | |
1629 | casinl (complex long double z) | |
1630 | { | |
1631 | return -I*clogl (I*z + csqrtl (1.0L-z*z)); | |
1632 | } | |
1633 | #endif | |
1634 | ||
1635 | ||
1636 | /* Complex ACOS. Returns wrongly NaN for infinite arguments. | |
1637 | Algorithm taken from Abramowitz & Stegun. */ | |
1638 | ||
1639 | #if !defined(HAVE_CACOSF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF) | |
1640 | #define HAVE_CACOSF 1 | |
1641 | complex float cacosf (complex float z); | |
1642 | ||
1643 | complex float | |
1644 | cacosf (complex float z) | |
1645 | { | |
1646 | return -I*clogf (z + I*csqrtf (1.0f-z*z)); | |
1647 | } | |
1648 | #endif | |
1649 | ||
1650 | ||
1651 | #if !defined(HAVE_CACOS) && defined(HAVE_CLOG) && defined(HAVE_CSQRT) | |
1652 | #define HAVE_CACOS 1 | |
1653 | complex double cacos (complex double z); | |
1654 | ||
1655 | complex double | |
1656 | cacos (complex double z) | |
1657 | { | |
1658 | return -I*clog (z + I*csqrt (1.0-z*z)); | |
1659 | } | |
1660 | #endif | |
1661 | ||
1662 | ||
1663 | #if !defined(HAVE_CACOSL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL) | |
1664 | #define HAVE_CACOSL 1 | |
1665 | complex long double cacosl (complex long double z); | |
1666 | ||
1667 | complex long double | |
1668 | cacosl (complex long double z) | |
1669 | { | |
1670 | return -I*clogl (z + I*csqrtl (1.0L-z*z)); | |
1671 | } | |
1672 | #endif | |
1673 | ||
1674 | ||
1675 | /* Complex ATAN. Returns wrongly NaN for infinite arguments. | |
1676 | Algorithm taken from Abramowitz & Stegun. */ | |
1677 | ||
1678 | #if !defined(HAVE_CATANF) && defined(HAVE_CLOGF) | |
1679 | #define HAVE_CACOSF 1 | |
1680 | complex float catanf (complex float z); | |
1681 | ||
1682 | complex float | |
1683 | catanf (complex float z) | |
1684 | { | |
1685 | return I*clogf ((I+z)/(I-z))/2.0f; | |
1686 | } | |
1687 | #endif | |
1688 | ||
1689 | ||
1690 | #if !defined(HAVE_CATAN) && defined(HAVE_CLOG) | |
1691 | #define HAVE_CACOS 1 | |
1692 | complex double catan (complex double z); | |
1693 | ||
1694 | complex double | |
1695 | catan (complex double z) | |
1696 | { | |
1697 | return I*clog ((I+z)/(I-z))/2.0; | |
1698 | } | |
1699 | #endif | |
1700 | ||
1701 | ||
1702 | #if !defined(HAVE_CATANL) && defined(HAVE_CLOGL) | |
1703 | #define HAVE_CACOSL 1 | |
1704 | complex long double catanl (complex long double z); | |
1705 | ||
1706 | complex long double | |
1707 | catanl (complex long double z) | |
1708 | { | |
1709 | return I*clogl ((I+z)/(I-z))/2.0L; | |
1710 | } | |
1711 | #endif | |
1712 | ||
1713 | ||
1714 | /* Complex ASINH. Returns wrongly NaN for infinite arguments. | |
1715 | Algorithm taken from Abramowitz & Stegun. */ | |
1716 | ||
1717 | #if !defined(HAVE_CASINHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF) | |
1718 | #define HAVE_CASINHF 1 | |
1719 | complex float casinhf (complex float z); | |
1720 | ||
1721 | complex float | |
1722 | casinhf (complex float z) | |
1723 | { | |
1724 | return clogf (z + csqrtf (z*z+1.0f)); | |
1725 | } | |
1726 | #endif | |
1727 | ||
1728 | ||
1729 | #if !defined(HAVE_CASINH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT) | |
1730 | #define HAVE_CASINH 1 | |
1731 | complex double casinh (complex double z); | |
1732 | ||
1733 | complex double | |
1734 | casinh (complex double z) | |
1735 | { | |
1736 | return clog (z + csqrt (z*z+1.0)); | |
1737 | } | |
1738 | #endif | |
1739 | ||
1740 | ||
1741 | #if !defined(HAVE_CASINHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL) | |
1742 | #define HAVE_CASINHL 1 | |
1743 | complex long double casinhl (complex long double z); | |
1744 | ||
1745 | complex long double | |
1746 | casinhl (complex long double z) | |
1747 | { | |
1748 | return clogl (z + csqrtl (z*z+1.0L)); | |
1749 | } | |
1750 | #endif | |
1751 | ||
1752 | ||
1753 | /* Complex ACOSH. Returns wrongly NaN for infinite arguments. | |
1754 | Algorithm taken from Abramowitz & Stegun. */ | |
1755 | ||
1756 | #if !defined(HAVE_CACOSHF) && defined(HAVE_CLOGF) && defined(HAVE_CSQRTF) | |
1757 | #define HAVE_CACOSHF 1 | |
1758 | complex float cacoshf (complex float z); | |
1759 | ||
1760 | complex float | |
1761 | cacoshf (complex float z) | |
1762 | { | |
1763 | return clogf (z + csqrtf (z-1.0f) * csqrtf (z+1.0f)); | |
1764 | } | |
1765 | #endif | |
1766 | ||
1767 | ||
1768 | #if !defined(HAVE_CACOSH) && defined(HAVE_CLOG) && defined(HAVE_CSQRT) | |
1769 | #define HAVE_CACOSH 1 | |
1770 | complex double cacosh (complex double z); | |
1771 | ||
1772 | complex double | |
1773 | cacosh (complex double z) | |
1774 | { | |
1775 | return clog (z + csqrt (z-1.0) * csqrt (z+1.0)); | |
1776 | } | |
1777 | #endif | |
1778 | ||
1779 | ||
1780 | #if !defined(HAVE_CACOSHL) && defined(HAVE_CLOGL) && defined(HAVE_CSQRTL) | |
1781 | #define HAVE_CACOSHL 1 | |
1782 | complex long double cacoshl (complex long double z); | |
1783 | ||
1784 | complex long double | |
1785 | cacoshl (complex long double z) | |
1786 | { | |
1787 | return clogl (z + csqrtl (z-1.0L) * csqrtl (z+1.0L)); | |
1788 | } | |
1789 | #endif | |
1790 | ||
1791 | ||
1792 | /* Complex ATANH. Returns wrongly NaN for infinite arguments. | |
1793 | Algorithm taken from Abramowitz & Stegun. */ | |
1794 | ||
1795 | #if !defined(HAVE_CATANHF) && defined(HAVE_CLOGF) | |
1796 | #define HAVE_CATANHF 1 | |
1797 | complex float catanhf (complex float z); | |
1798 | ||
1799 | complex float | |
1800 | catanhf (complex float z) | |
1801 | { | |
1802 | return clogf ((1.0f+z)/(1.0f-z))/2.0f; | |
1803 | } | |
1804 | #endif | |
1805 | ||
1806 | ||
1807 | #if !defined(HAVE_CATANH) && defined(HAVE_CLOG) | |
1808 | #define HAVE_CATANH 1 | |
1809 | complex double catanh (complex double z); | |
1810 | ||
1811 | complex double | |
1812 | catanh (complex double z) | |
1813 | { | |
1814 | return clog ((1.0+z)/(1.0-z))/2.0; | |
1815 | } | |
1816 | #endif | |
1817 | ||
1818 | #if !defined(HAVE_CATANHL) && defined(HAVE_CLOGL) | |
1819 | #define HAVE_CATANHL 1 | |
1820 | complex long double catanhl (complex long double z); | |
1821 | ||
1822 | complex long double | |
1823 | catanhl (complex long double z) | |
1824 | { | |
1825 | return clogl ((1.0L+z)/(1.0L-z))/2.0L; | |
1826 | } | |
1827 | #endif | |
1828 | ||
1829 | ||
1830 | #if !defined(HAVE_TGAMMA) | |
1831 | #define HAVE_TGAMMA 1 | |
1832 | double tgamma (double); | |
1833 | ||
1834 | /* Fallback tgamma() function. Uses the algorithm from | |
1835 | http://www.netlib.org/specfun/gamma and references therein. */ | |
1836 | ||
1837 | #undef SQRTPI | |
1838 | #define SQRTPI 0.9189385332046727417803297 | |
1839 | ||
1840 | #undef PI | |
1841 | #define PI 3.1415926535897932384626434 | |
1842 | ||
1843 | double | |
1844 | tgamma (double x) | |
1845 | { | |
1846 | int i, n, parity; | |
1847 | double fact, res, sum, xden, xnum, y, y1, ysq, z; | |
1848 | ||
1849 | static double p[8] = { | |
1850 | -1.71618513886549492533811e0, 2.47656508055759199108314e1, | |
1851 | -3.79804256470945635097577e2, 6.29331155312818442661052e2, | |
1852 | 8.66966202790413211295064e2, -3.14512729688483675254357e4, | |
1853 | -3.61444134186911729807069e4, 6.64561438202405440627855e4 }; | |
1854 | ||
1855 | static double q[8] = { | |
1856 | -3.08402300119738975254353e1, 3.15350626979604161529144e2, | |
1857 | -1.01515636749021914166146e3, -3.10777167157231109440444e3, | |
1858 | 2.25381184209801510330112e4, 4.75584627752788110767815e3, | |
1859 | -1.34659959864969306392456e5, -1.15132259675553483497211e5 }; | |
1860 | ||
1861 | static double c[7] = { -1.910444077728e-03, | |
1862 | 8.4171387781295e-04, -5.952379913043012e-04, | |
1863 | 7.93650793500350248e-04, -2.777777777777681622553e-03, | |
1864 | 8.333333333333333331554247e-02, 5.7083835261e-03 }; | |
1865 | ||
1866 | static const double xminin = 2.23e-308; | |
1867 | static const double xbig = 171.624; | |
1868 | static const double xnan = __builtin_nan ("0x0"), xinf = __builtin_inf (); | |
1869 | static double eps = 0; | |
1870 | ||
1871 | if (eps == 0) | |
1872 | eps = nextafter (1., 2.) - 1.; | |
1873 | ||
1874 | parity = 0; | |
1875 | fact = 1; | |
1876 | n = 0; | |
1877 | y = x; | |
1878 | ||
1879 | if (isnan (x)) | |
1880 | return x; | |
1881 | ||
1882 | if (y <= 0) | |
1883 | { | |
1884 | y = -x; | |
1885 | y1 = trunc (y); | |
1886 | res = y - y1; | |
1887 | ||
1888 | if (res != 0) | |
1889 | { | |
1890 | if (y1 != trunc (y1*0.5l)*2) | |
1891 | parity = 1; | |
1892 | fact = -PI / sin (PI*res); | |
1893 | y = y + 1; | |
1894 | } | |
1895 | else | |
1896 | return x == 0 ? copysign (xinf, x) : xnan; | |
1897 | } | |
1898 | ||
1899 | if (y < eps) | |
1900 | { | |
1901 | if (y >= xminin) | |
1902 | res = 1 / y; | |
1903 | else | |
1904 | return xinf; | |
1905 | } | |
1906 | else if (y < 13) | |
1907 | { | |
1908 | y1 = y; | |
1909 | if (y < 1) | |
1910 | { | |
1911 | z = y; | |
1912 | y = y + 1; | |
1913 | } | |
1914 | else | |
1915 | { | |
1916 | n = (int)y - 1; | |
1917 | y = y - n; | |
1918 | z = y - 1; | |
1919 | } | |
1920 | ||
1921 | xnum = 0; | |
1922 | xden = 1; | |
1923 | for (i = 0; i < 8; i++) | |
1924 | { | |
1925 | xnum = (xnum + p[i]) * z; | |
1926 | xden = xden * z + q[i]; | |
1927 | } | |
1928 | ||
1929 | res = xnum / xden + 1; | |
1930 | ||
1931 | if (y1 < y) | |
1932 | res = res / y1; | |
1933 | else if (y1 > y) | |
1934 | for (i = 1; i <= n; i++) | |
1935 | { | |
1936 | res = res * y; | |
1937 | y = y + 1; | |
1938 | } | |
1939 | } | |
1940 | else | |
1941 | { | |
1942 | if (y < xbig) | |
1943 | { | |
1944 | ysq = y * y; | |
1945 | sum = c[6]; | |
1946 | for (i = 0; i < 6; i++) | |
1947 | sum = sum / ysq + c[i]; | |
1948 | ||
1949 | sum = sum/y - y + SQRTPI; | |
1950 | sum = sum + (y - 0.5) * log (y); | |
1951 | res = exp (sum); | |
1952 | } | |
1953 | else | |
1954 | return x < 0 ? xnan : xinf; | |
1955 | } | |
1956 | ||
1957 | if (parity) | |
1958 | res = -res; | |
1959 | if (fact != 1) | |
1960 | res = fact / res; | |
1961 | ||
1962 | return res; | |
1963 | } | |
1964 | #endif | |
1965 | ||
1966 | ||
1967 | ||
1968 | #if !defined(HAVE_LGAMMA) | |
1969 | #define HAVE_LGAMMA 1 | |
1970 | double lgamma (double); | |
1971 | ||
1972 | /* Fallback lgamma() function. Uses the algorithm from | |
1973 | http://www.netlib.org/specfun/algama and references therein, | |
1974 | except for negative arguments (where netlib would return +Inf) | |
1975 | where we use the following identity: | |
1976 | lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y) | |
1977 | */ | |
1978 | ||
1979 | double | |
1980 | lgamma (double y) | |
1981 | { | |
1982 | ||
1983 | #undef SQRTPI | |
1984 | #define SQRTPI 0.9189385332046727417803297 | |
1985 | ||
1986 | #undef PI | |
1987 | #define PI 3.1415926535897932384626434 | |
1988 | ||
1989 | #define PNT68 0.6796875 | |
1990 | #define D1 -0.5772156649015328605195174 | |
1991 | #define D2 0.4227843350984671393993777 | |
1992 | #define D4 1.791759469228055000094023 | |
1993 | ||
1994 | static double p1[8] = { | |
1995 | 4.945235359296727046734888e0, 2.018112620856775083915565e2, | |
1996 | 2.290838373831346393026739e3, 1.131967205903380828685045e4, | |
1997 | 2.855724635671635335736389e4, 3.848496228443793359990269e4, | |
1998 | 2.637748787624195437963534e4, 7.225813979700288197698961e3 }; | |
1999 | static double q1[8] = { | |
2000 | 6.748212550303777196073036e1, 1.113332393857199323513008e3, | |
2001 | 7.738757056935398733233834e3, 2.763987074403340708898585e4, | |
2002 | 5.499310206226157329794414e4, 6.161122180066002127833352e4, | |
2003 | 3.635127591501940507276287e4, 8.785536302431013170870835e3 }; | |
2004 | static double p2[8] = { | |
2005 | 4.974607845568932035012064e0, 5.424138599891070494101986e2, | |
2006 | 1.550693864978364947665077e4, 1.847932904445632425417223e5, | |
2007 | 1.088204769468828767498470e6, 3.338152967987029735917223e6, | |
2008 | 5.106661678927352456275255e6, 3.074109054850539556250927e6 }; | |
2009 | static double q2[8] = { | |
2010 | 1.830328399370592604055942e2, 7.765049321445005871323047e3, | |
2011 | 1.331903827966074194402448e5, 1.136705821321969608938755e6, | |
2012 | 5.267964117437946917577538e6, 1.346701454311101692290052e7, | |
2013 | 1.782736530353274213975932e7, 9.533095591844353613395747e6 }; | |
2014 | static double p4[8] = { | |
2015 | 1.474502166059939948905062e4, 2.426813369486704502836312e6, | |
2016 | 1.214755574045093227939592e8, 2.663432449630976949898078e9, | |
2017 | 2.940378956634553899906876e10, 1.702665737765398868392998e11, | |
2018 | 4.926125793377430887588120e11, 5.606251856223951465078242e11 }; | |
2019 | static double q4[8] = { | |
2020 | 2.690530175870899333379843e3, 6.393885654300092398984238e5, | |
2021 | 4.135599930241388052042842e7, 1.120872109616147941376570e9, | |
2022 | 1.488613728678813811542398e10, 1.016803586272438228077304e11, | |
2023 | 3.417476345507377132798597e11, 4.463158187419713286462081e11 }; | |
2024 | static double c[7] = { | |
2025 | -1.910444077728e-03, 8.4171387781295e-04, | |
2026 | -5.952379913043012e-04, 7.93650793500350248e-04, | |
2027 | -2.777777777777681622553e-03, 8.333333333333333331554247e-02, | |
2028 | 5.7083835261e-03 }; | |
2029 | ||
2030 | static double xbig = 2.55e305, xinf = __builtin_inf (), eps = 0, | |
2031 | frtbig = 2.25e76; | |
2032 | ||
2033 | int i; | |
2034 | double corr, res, xden, xm1, xm2, xm4, xnum, ysq; | |
2035 | ||
2036 | if (eps == 0) | |
2037 | eps = __builtin_nextafter (1., 2.) - 1.; | |
2038 | ||
2039 | if ((y > 0) && (y <= xbig)) | |
2040 | { | |
2041 | if (y <= eps) | |
2042 | res = -log (y); | |
2043 | else if (y <= 1.5) | |
2044 | { | |
2045 | if (y < PNT68) | |
2046 | { | |
2047 | corr = -log (y); | |
2048 | xm1 = y; | |
2049 | } | |
2050 | else | |
2051 | { | |
2052 | corr = 0; | |
2053 | xm1 = (y - 0.5) - 0.5; | |
2054 | } | |
2055 | ||
2056 | if ((y <= 0.5) || (y >= PNT68)) | |
2057 | { | |
2058 | xden = 1; | |
2059 | xnum = 0; | |
2060 | for (i = 0; i < 8; i++) | |
2061 | { | |
2062 | xnum = xnum*xm1 + p1[i]; | |
2063 | xden = xden*xm1 + q1[i]; | |
2064 | } | |
2065 | res = corr + (xm1 * (D1 + xm1*(xnum/xden))); | |
2066 | } | |
2067 | else | |
2068 | { | |
2069 | xm2 = (y - 0.5) - 0.5; | |
2070 | xden = 1; | |
2071 | xnum = 0; | |
2072 | for (i = 0; i < 8; i++) | |
2073 | { | |
2074 | xnum = xnum*xm2 + p2[i]; | |
2075 | xden = xden*xm2 + q2[i]; | |
2076 | } | |
2077 | res = corr + xm2 * (D2 + xm2*(xnum/xden)); | |
2078 | } | |
2079 | } | |
2080 | else if (y <= 4) | |
2081 | { | |
2082 | xm2 = y - 2; | |
2083 | xden = 1; | |
2084 | xnum = 0; | |
2085 | for (i = 0; i < 8; i++) | |
2086 | { | |
2087 | xnum = xnum*xm2 + p2[i]; | |
2088 | xden = xden*xm2 + q2[i]; | |
2089 | } | |
2090 | res = xm2 * (D2 + xm2*(xnum/xden)); | |
2091 | } | |
2092 | else if (y <= 12) | |
2093 | { | |
2094 | xm4 = y - 4; | |
2095 | xden = -1; | |
2096 | xnum = 0; | |
2097 | for (i = 0; i < 8; i++) | |
2098 | { | |
2099 | xnum = xnum*xm4 + p4[i]; | |
2100 | xden = xden*xm4 + q4[i]; | |
2101 | } | |
2102 | res = D4 + xm4*(xnum/xden); | |
2103 | } | |
2104 | else | |
2105 | { | |
2106 | res = 0; | |
2107 | if (y <= frtbig) | |
2108 | { | |
2109 | res = c[6]; | |
2110 | ysq = y * y; | |
2111 | for (i = 0; i < 6; i++) | |
2112 | res = res / ysq + c[i]; | |
2113 | } | |
2114 | res = res/y; | |
2115 | corr = log (y); | |
2116 | res = res + SQRTPI - 0.5*corr; | |
2117 | res = res + y*(corr-1); | |
2118 | } | |
2119 | } | |
2120 | else if (y < 0 && __builtin_floor (y) != y) | |
2121 | { | |
2122 | /* lgamma(y) = log(pi/(|y*sin(pi*y)|)) - lgamma(-y) | |
2123 | For abs(y) very close to zero, we use a series expansion to | |
2124 | the first order in y to avoid overflow. */ | |
2125 | if (y > -1.e-100) | |
2126 | res = -2 * log (fabs (y)) - lgamma (-y); | |
2127 | else | |
2128 | res = log (PI / fabs (y * sin (PI * y))) - lgamma (-y); | |
2129 | } | |
2130 | else | |
2131 | res = xinf; | |
2132 | ||
2133 | return res; | |
2134 | } | |
2135 | #endif | |
2136 | ||
2137 | ||
2138 | #if defined(HAVE_TGAMMA) && !defined(HAVE_TGAMMAF) | |
2139 | #define HAVE_TGAMMAF 1 | |
2140 | float tgammaf (float); | |
2141 | ||
2142 | float | |
2143 | tgammaf (float x) | |
2144 | { | |
2145 | return (float) tgamma ((double) x); | |
2146 | } | |
2147 | #endif | |
2148 | ||
2149 | #if defined(HAVE_LGAMMA) && !defined(HAVE_LGAMMAF) | |
2150 | #define HAVE_LGAMMAF 1 | |
2151 | float lgammaf (float); | |
2152 | ||
2153 | float | |
2154 | lgammaf (float x) | |
2155 | { | |
2156 | return (float) lgamma ((double) x); | |
2157 | } | |
2158 | #endif | |
2159 | ||
2160 | #ifndef HAVE_FMA | |
2161 | #define HAVE_FMA 1 | |
2162 | double fma (double, double, double); | |
2163 | ||
2164 | double | |
2165 | fma (double x, double y, double z) | |
2166 | { | |
2167 | return x * y + z; | |
2168 | } | |
2169 | #endif | |
2170 | ||
2171 | #ifndef HAVE_FMAF | |
2172 | #define HAVE_FMAF 1 | |
2173 | float fmaf (float, float, float); | |
2174 | ||
2175 | float | |
2176 | fmaf (float x, float y, float z) | |
2177 | { | |
2178 | return fma (x, y, z); | |
2179 | } | |
2180 | #endif | |
2181 | ||
2182 | #ifndef HAVE_FMAL | |
2183 | #define HAVE_FMAL 1 | |
2184 | long double fmal (long double, long double, long double); | |
2185 | ||
2186 | long double | |
2187 | fmal (long double x, long double y, long double z) | |
2188 | { | |
2189 | return x * y + z; | |
2190 | } | |
2191 | #endif |