]>
Commit | Line | Data |
---|---|---|
1 | /** | |
2 | This module is a submodule of $(MREF std, range). | |
3 | ||
4 | It defines the bidirectional and forward range primitives for arrays: | |
5 | $(LREF empty), $(LREF front), $(LREF back), $(LREF popFront), $(LREF popBack) and $(LREF save). | |
6 | ||
7 | It provides basic range functionality by defining several templates for testing | |
8 | whether a given object is a range, and what kind of range it is: | |
9 | ||
10 | $(SCRIPT inhibitQuickIndex = 1;) | |
11 | $(DIVC quickindex, | |
12 | $(BOOKTABLE , | |
13 | $(TR $(TD $(LREF isInputRange)) | |
14 | $(TD Tests if something is an $(I input range), defined to be | |
15 | something from which one can sequentially read data using the | |
16 | primitives `front`, `popFront`, and `empty`. | |
17 | )) | |
18 | $(TR $(TD $(LREF isOutputRange)) | |
19 | $(TD Tests if something is an $(I output range), defined to be | |
20 | something to which one can sequentially write data using the | |
21 | $(LREF put) primitive. | |
22 | )) | |
23 | $(TR $(TD $(LREF isForwardRange)) | |
24 | $(TD Tests if something is a $(I forward range), defined to be an | |
25 | input range with the additional capability that one can save one's | |
26 | current position with the `save` primitive, thus allowing one to | |
27 | iterate over the same range multiple times. | |
28 | )) | |
29 | $(TR $(TD $(LREF isBidirectionalRange)) | |
30 | $(TD Tests if something is a $(I bidirectional range), that is, a | |
31 | forward range that allows reverse traversal using the primitives $(D | |
32 | back) and `popBack`. | |
33 | )) | |
34 | $(TR $(TD $(LREF isRandomAccessRange)) | |
35 | $(TD Tests if something is a $(I random access range), which is a | |
36 | bidirectional range that also supports the array subscripting | |
37 | operation via the primitive `opIndex`. | |
38 | )) | |
39 | )) | |
40 | ||
41 | It also provides number of templates that test for various range capabilities: | |
42 | ||
43 | $(BOOKTABLE , | |
44 | $(TR $(TD $(LREF hasMobileElements)) | |
45 | $(TD Tests if a given range's elements can be moved around using the | |
46 | primitives `moveFront`, `moveBack`, or `moveAt`. | |
47 | )) | |
48 | $(TR $(TD $(LREF ElementType)) | |
49 | $(TD Returns the element type of a given range. | |
50 | )) | |
51 | $(TR $(TD $(LREF ElementEncodingType)) | |
52 | $(TD Returns the encoding element type of a given range. | |
53 | )) | |
54 | $(TR $(TD $(LREF hasSwappableElements)) | |
55 | $(TD Tests if a range is a forward range with swappable elements. | |
56 | )) | |
57 | $(TR $(TD $(LREF hasAssignableElements)) | |
58 | $(TD Tests if a range is a forward range with mutable elements. | |
59 | )) | |
60 | $(TR $(TD $(LREF hasLvalueElements)) | |
61 | $(TD Tests if a range is a forward range with elements that can be | |
62 | passed by reference and have their address taken. | |
63 | )) | |
64 | $(TR $(TD $(LREF hasLength)) | |
65 | $(TD Tests if a given range has the `length` attribute. | |
66 | )) | |
67 | $(TR $(TD $(LREF isInfinite)) | |
68 | $(TD Tests if a given range is an $(I infinite range). | |
69 | )) | |
70 | $(TR $(TD $(LREF hasSlicing)) | |
71 | $(TD Tests if a given range supports the array slicing operation $(D | |
72 | R[x .. y]). | |
73 | )) | |
74 | ) | |
75 | ||
76 | Finally, it includes some convenience functions for manipulating ranges: | |
77 | ||
78 | $(BOOKTABLE , | |
79 | $(TR $(TD $(LREF popFrontN)) | |
80 | $(TD Advances a given range by up to $(I n) elements. | |
81 | )) | |
82 | $(TR $(TD $(LREF popBackN)) | |
83 | $(TD Advances a given bidirectional range from the right by up to | |
84 | $(I n) elements. | |
85 | )) | |
86 | $(TR $(TD $(LREF popFrontExactly)) | |
87 | $(TD Advances a given range by up exactly $(I n) elements. | |
88 | )) | |
89 | $(TR $(TD $(LREF popBackExactly)) | |
90 | $(TD Advances a given bidirectional range from the right by exactly | |
91 | $(I n) elements. | |
92 | )) | |
93 | $(TR $(TD $(LREF moveFront)) | |
94 | $(TD Removes the front element of a range. | |
95 | )) | |
96 | $(TR $(TD $(LREF moveBack)) | |
97 | $(TD Removes the back element of a bidirectional range. | |
98 | )) | |
99 | $(TR $(TD $(LREF moveAt)) | |
100 | $(TD Removes the $(I i)'th element of a random-access range. | |
101 | )) | |
102 | $(TR $(TD $(LREF walkLength)) | |
103 | $(TD Computes the length of any range in O(n) time. | |
104 | )) | |
105 | $(TR $(TD $(LREF put)) | |
106 | $(TD Outputs element `e` to a range. | |
107 | )) | |
108 | ) | |
109 | ||
110 | Source: $(PHOBOSSRC std/range/primitives.d) | |
111 | ||
112 | License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0). | |
113 | ||
114 | Authors: $(HTTP erdani.com, Andrei Alexandrescu), David Simcha, and | |
115 | $(HTTP jmdavisprog.com, Jonathan M Davis). Credit for some of the ideas | |
116 | in building this module goes to | |
117 | $(HTTP fantascienza.net/leonardo/so/, Leonardo Maffi). | |
118 | */ | |
119 | module std.range.primitives; | |
120 | ||
121 | import std.traits; | |
122 | ||
123 | /** | |
124 | Returns `true` if `R` is an input range. An input range must | |
125 | define the primitives `empty`, `popFront`, and `front`. The | |
126 | following code should compile for any input range. | |
127 | ||
128 | ---- | |
129 | R r; // can define a range object | |
130 | if (r.empty) {} // can test for empty | |
131 | r.popFront(); // can invoke popFront() | |
132 | auto h = r.front; // can get the front of the range of non-void type | |
133 | ---- | |
134 | ||
135 | The following are rules of input ranges are assumed to hold true in all | |
136 | Phobos code. These rules are not checkable at compile-time, so not conforming | |
137 | to these rules when writing ranges or range based code will result in | |
138 | undefined behavior. | |
139 | ||
140 | $(UL | |
141 | $(LI `r.empty` returns `false` if and only if there is more data | |
142 | available in the range.) | |
143 | $(LI `r.empty` evaluated multiple times, without calling | |
144 | `r.popFront`, or otherwise mutating the range object or the | |
145 | underlying data, yields the same result for every evaluation.) | |
146 | $(LI `r.front` returns the current element in the range. | |
147 | It may return by value or by reference.) | |
148 | $(LI `r.front` can be legally evaluated if and only if evaluating | |
149 | `r.empty` has, or would have, equaled `false`.) | |
150 | $(LI `r.front` evaluated multiple times, without calling | |
151 | `r.popFront`, or otherwise mutating the range object or the | |
152 | underlying data, yields the same result for every evaluation.) | |
153 | $(LI `r.popFront` advances to the next element in the range.) | |
154 | $(LI `r.popFront` can be called if and only if evaluating `r.empty` | |
155 | has, or would have, equaled `false`.) | |
156 | ) | |
157 | ||
158 | Also, note that Phobos code assumes that the primitives `r.front` and | |
159 | `r.empty` are $(BIGOH 1) time complexity wise or "cheap" in terms of | |
160 | running time. $(BIGOH) statements in the documentation of range functions | |
161 | are made with this assumption. | |
162 | ||
163 | See_Also: | |
164 | The header of $(MREF std,range) for tutorials on ranges. | |
165 | ||
166 | Params: | |
167 | R = type to be tested | |
168 | E = if present, the elements of the range must be | |
169 | $(DDSUBLINK spec/const3, implicit_qualifier_conversions, qualifier-convertible) | |
170 | to this type | |
171 | ||
172 | Returns: | |
173 | `true` if R is an input range (possibly with element type `E`), `false` if not | |
174 | */ | |
175 | enum bool isInputRange(R) = | |
176 | is(typeof(R.init) == R) | |
177 | && is(typeof((R r) { return r.empty; } (R.init)) == bool) | |
178 | && (is(typeof((return ref R r) => r.front)) || is(typeof(ref (return ref R r) => r.front))) | |
179 | && !is(typeof((R r) { return r.front; } (R.init)) == void) | |
180 | && is(typeof((R r) => r.popFront)); | |
181 | ||
182 | /// ditto | |
183 | enum bool isInputRange(R, E) = | |
184 | .isInputRange!R && isQualifierConvertible!(ElementType!R, E); | |
185 | ||
186 | /// | |
187 | @safe unittest | |
188 | { | |
189 | struct A {} | |
190 | struct B | |
191 | { | |
192 | void popFront(); | |
193 | @property bool empty(); | |
194 | @property int front(); | |
195 | } | |
196 | static assert(!isInputRange!A); | |
197 | static assert( isInputRange!B); | |
198 | static assert( isInputRange!(int[])); | |
199 | static assert( isInputRange!(char[])); | |
200 | static assert(!isInputRange!(char[4])); | |
201 | static assert( isInputRange!(inout(int)[])); | |
202 | static assert(!isInputRange!(int[], string)); | |
203 | static assert( isInputRange!(int[], int)); | |
204 | static assert( isInputRange!(int[], const int)); | |
205 | static assert(!isInputRange!(int[], immutable int)); | |
206 | ||
207 | static assert(!isInputRange!(const(int)[], int)); | |
208 | static assert( isInputRange!(const(int)[], const int)); | |
209 | static assert(!isInputRange!(const(int)[], immutable int)); | |
210 | ||
211 | static assert(!isInputRange!(immutable(int)[], int)); | |
212 | static assert( isInputRange!(immutable(int)[], const int)); | |
213 | static assert( isInputRange!(immutable(int)[], immutable int)); | |
214 | ||
215 | static struct NotDefaultConstructible | |
216 | { | |
217 | @disable this(); | |
218 | void popFront(); | |
219 | @property bool empty(); | |
220 | @property int front(); | |
221 | } | |
222 | static assert( isInputRange!NotDefaultConstructible); | |
223 | ||
224 | static struct NotDefaultConstructibleOrCopyable | |
225 | { | |
226 | @disable this(); | |
227 | @disable this(this); | |
228 | void popFront(); | |
229 | @property bool empty(); | |
230 | @property int front(); | |
231 | } | |
232 | static assert(isInputRange!NotDefaultConstructibleOrCopyable); | |
233 | ||
234 | static struct Frontless | |
235 | { | |
236 | void popFront(); | |
237 | @property bool empty(); | |
238 | } | |
239 | static assert(!isInputRange!Frontless); | |
240 | ||
241 | static struct VoidFront | |
242 | { | |
243 | void popFront(); | |
244 | @property bool empty(); | |
245 | void front(); | |
246 | } | |
247 | static assert(!isInputRange!VoidFront); | |
248 | } | |
249 | // https://issues.dlang.org/show_bug.cgi?id=16034 | |
250 | @safe unittest | |
251 | { | |
252 | struct One | |
253 | { | |
254 | int entry = 1; | |
255 | @disable this(this); | |
256 | } | |
257 | ||
258 | assert(isInputRange!(One[])); | |
259 | } | |
260 | ||
261 | @safe unittest | |
262 | { | |
263 | import std.algorithm.comparison : equal; | |
264 | ||
265 | static struct R | |
266 | { | |
267 | static struct Front | |
268 | { | |
269 | R* impl; | |
270 | @property int value() { return impl._front; } | |
271 | alias value this; | |
272 | } | |
273 | ||
274 | int _front; | |
275 | ||
276 | @property bool empty() { return _front >= 3; } | |
277 | @property auto front() { return Front(&this); } | |
278 | void popFront() { _front++; } | |
279 | } | |
280 | R r; | |
281 | ||
282 | static assert(isInputRange!R); | |
283 | assert(r.equal([ 0, 1, 2 ])); | |
284 | } | |
285 | ||
286 | /+ | |
287 | puts the whole raw element `e` into `r`. doPut will not attempt to | |
288 | iterate, slice or transcode `e` in any way shape or form. It will $(B only) | |
289 | call the correct primitive (`r.put(e)`, $(D r.front = e) or | |
290 | `r(e)` once. | |
291 | ||
292 | This can be important when `e` needs to be placed in `r` unchanged. | |
293 | Furthermore, it can be useful when working with `InputRange`s, as doPut | |
294 | guarantees that no more than a single element will be placed. | |
295 | +/ | |
296 | private void doPut(R, E)(ref R r, auto ref E e) | |
297 | { | |
298 | static if (is(PointerTarget!R == struct)) | |
299 | enum usingPut = hasMember!(PointerTarget!R, "put"); | |
300 | else | |
301 | enum usingPut = hasMember!(R, "put"); | |
302 | ||
303 | static if (usingPut) | |
304 | { | |
305 | static assert(is(typeof(r.put(e))), | |
306 | "Cannot put a " ~ E.stringof ~ " into a " ~ R.stringof ~ "."); | |
307 | r.put(e); | |
308 | } | |
309 | else static if (isNarrowString!R && is(const(E) == const(typeof(r[0])))) | |
310 | { | |
311 | // one character, we can put it | |
312 | r[0] = e; | |
313 | r = r[1 .. $]; | |
314 | } | |
315 | else static if (isNarrowString!R && isNarrowString!E && is(typeof(r[] = e))) | |
316 | { | |
317 | // slice assign. Note that this is a duplicate from put, but because | |
318 | // putChar uses doPut exclusively, we have to copy it here. | |
319 | immutable len = e.length; | |
320 | r[0 .. len] = e; | |
321 | r = r[len .. $]; | |
322 | } | |
323 | else static if (isInputRange!R) | |
324 | { | |
325 | static assert(is(typeof(r.front = e)), | |
326 | "Cannot put a " ~ E.stringof ~ " into a " ~ R.stringof ~ "."); | |
327 | r.front = e; | |
328 | r.popFront(); | |
329 | } | |
330 | else static if (is(typeof(r(e)))) | |
331 | { | |
332 | r(e); | |
333 | } | |
334 | else | |
335 | { | |
336 | static assert(false, | |
337 | "Cannot put a " ~ E.stringof ~ " into a " ~ R.stringof ~ "."); | |
338 | } | |
339 | } | |
340 | ||
341 | @safe unittest | |
342 | { | |
343 | static assert(!isNativeOutputRange!(int, int)); | |
344 | static assert( isNativeOutputRange!(int[], int)); | |
345 | static assert(!isNativeOutputRange!(int[][], int)); | |
346 | ||
347 | static assert(!isNativeOutputRange!(int, int[])); | |
348 | static assert(!isNativeOutputRange!(int[], int[])); | |
349 | static assert( isNativeOutputRange!(int[][], int[])); | |
350 | ||
351 | static assert(!isNativeOutputRange!(int, int[][])); | |
352 | static assert(!isNativeOutputRange!(int[], int[][])); | |
353 | static assert(!isNativeOutputRange!(int[][], int[][])); | |
354 | ||
355 | static assert(!isNativeOutputRange!(int[4], int)); | |
356 | static assert( isNativeOutputRange!(int[4][], int)); //Scary! | |
357 | static assert( isNativeOutputRange!(int[4][], int[4])); | |
358 | ||
359 | static assert( isNativeOutputRange!( char[], char)); | |
360 | static assert(!isNativeOutputRange!( char[], dchar)); | |
361 | static assert( isNativeOutputRange!(dchar[], char)); | |
362 | static assert( isNativeOutputRange!(dchar[], dchar)); | |
363 | ||
364 | } | |
365 | ||
366 | /++ | |
367 | Outputs `e` to `r`. The exact effect is dependent upon the two | |
368 | types. Several cases are accepted, as described below. The code snippets | |
369 | are attempted in order, and the first to compile "wins" and gets | |
370 | evaluated. | |
371 | ||
372 | In this table "doPut" is a method that places `e` into `r`, using the | |
373 | correct primitive: `r.put(e)` if `R` defines `put`, $(D r.front = e) | |
374 | if `r` is an input range (followed by `r.popFront()`), or `r(e)` | |
375 | otherwise. | |
376 | ||
377 | $(BOOKTABLE , | |
378 | $(TR | |
379 | $(TH Code Snippet) | |
380 | $(TH Scenario) | |
381 | ) | |
382 | $(TR | |
383 | $(TD `r.doPut(e);`) | |
384 | $(TD `R` specifically accepts an `E`.) | |
385 | ) | |
386 | $(TR | |
387 | $(TD $(D r.doPut([ e ]);)) | |
388 | $(TD `R` specifically accepts an `E[]`.) | |
389 | ) | |
390 | $(TR | |
391 | $(TD `r.putChar(e);`) | |
392 | $(TD `R` accepts some form of string or character. put will | |
393 | transcode the character `e` accordingly.) | |
394 | ) | |
395 | $(TR | |
396 | $(TD $(D for (; !e.empty; e.popFront()) put(r, e.front);)) | |
397 | $(TD Copying range `E` into `R`.) | |
398 | ) | |
399 | ) | |
400 | ||
401 | Tip: `put` should $(I not) be used "UFCS-style", e.g. `r.put(e)`. | |
402 | Doing this may call `R.put` directly, by-passing any transformation | |
403 | feature provided by `Range.put`. $(D put(r, e)) is prefered. | |
404 | +/ | |
405 | void put(R, E)(ref R r, E e) | |
406 | { | |
407 | //First level: simply straight up put. | |
408 | static if (is(typeof(doPut(r, e)))) | |
409 | { | |
410 | doPut(r, e); | |
411 | } | |
412 | //Optional optimization block for straight up array to array copy. | |
413 | else static if (isDynamicArray!R && | |
414 | !isAutodecodableString!R && | |
415 | isDynamicArray!E && | |
416 | is(typeof(r[] = e[]))) | |
417 | { | |
418 | immutable len = e.length; | |
419 | r[0 .. len] = e[]; | |
420 | r = r[len .. $]; | |
421 | } | |
422 | //Accepts E[] ? | |
423 | else static if (is(typeof(doPut(r, [e]))) && !isDynamicArray!R) | |
424 | { | |
425 | if (__ctfe) | |
426 | { | |
427 | E[1] arr = [e]; | |
428 | doPut(r, arr[]); | |
429 | } | |
430 | else | |
431 | doPut(r, (ref e) @trusted { return (&e)[0 .. 1]; }(e)); | |
432 | } | |
433 | //special case for char to string. | |
434 | else static if (isSomeChar!E && is(typeof(putChar(r, e)))) | |
435 | { | |
436 | putChar(r, e); | |
437 | } | |
438 | //Extract each element from the range | |
439 | //We can use "put" here, so we can recursively test a RoR of E. | |
440 | else static if (isInputRange!E && is(typeof(put(r, e.front)))) | |
441 | { | |
442 | //Special optimization: If E is a narrow string, and r accepts characters no-wider than the string's | |
443 | //Then simply feed the characters 1 by 1. | |
444 | static if (isAutodecodableString!E && !isAggregateType!E && ( | |
445 | (is(E : const char[]) && is(typeof(doPut(r, char.max))) && !is(typeof(doPut(r, dchar.max))) && | |
446 | !is(typeof(doPut(r, wchar.max)))) || | |
447 | (is(E : const wchar[]) && is(typeof(doPut(r, wchar.max))) && !is(typeof(doPut(r, dchar.max)))) ) ) | |
448 | { | |
449 | foreach (c; e) | |
450 | doPut(r, c); | |
451 | } | |
452 | else | |
453 | { | |
454 | for (; !e.empty; e.popFront()) | |
455 | put(r, e.front); | |
456 | } | |
457 | } | |
458 | else | |
459 | { | |
460 | static assert(false, "Cannot put a " ~ E.stringof ~ " into a " ~ R.stringof ~ "."); | |
461 | } | |
462 | } | |
463 | ||
464 | /** | |
465 | * When an output range's `put` method only accepts elements of type | |
466 | * `T`, use the global `put` to handle outputting a `T[]` to the range | |
467 | * or vice-versa. | |
468 | */ | |
469 | @safe pure unittest | |
470 | { | |
471 | import std.traits : isSomeChar; | |
472 | ||
473 | static struct A | |
474 | { | |
475 | string data; | |
476 | ||
477 | void put(C)(C c) | |
478 | if (isSomeChar!C) | |
479 | { | |
480 | data ~= c; | |
481 | } | |
482 | } | |
483 | static assert(isOutputRange!(A, char)); | |
484 | ||
485 | auto a = A(); | |
486 | put(a, "Hello"); | |
487 | assert(a.data == "Hello"); | |
488 | } | |
489 | ||
490 | /** | |
491 | * `put` treats dynamic arrays as array slices, and will call `popFront` | |
492 | * on the slice after an element has been copied. | |
493 | * | |
494 | * Be sure to save the position of the array before calling `put`. | |
495 | */ | |
496 | @safe pure nothrow unittest | |
497 | { | |
498 | int[] a = [1, 2, 3], b = [10, 20]; | |
499 | auto c = a; | |
500 | put(a, b); | |
501 | assert(c == [10, 20, 3]); | |
502 | // at this point, a was advanced twice, so it only contains | |
503 | // its last element while c represents the whole array | |
504 | assert(a == [3]); | |
505 | } | |
506 | ||
507 | /** | |
508 | * It's also possible to `put` any width strings or characters into narrow | |
509 | * strings -- put does the conversion for you. | |
510 | * | |
511 | * Note that putting the same width character as the target buffer type is | |
512 | * `nothrow`, but transcoding can throw a $(REF UTFException, std, utf). | |
513 | */ | |
514 | @safe pure unittest | |
515 | { | |
516 | // the elements must be mutable, so using string or const(char)[] | |
517 | // won't compile | |
518 | char[] s1 = new char[13]; | |
519 | auto r1 = s1; | |
520 | put(r1, "Hello, World!"w); | |
521 | assert(s1 == "Hello, World!"); | |
522 | } | |
523 | ||
524 | @safe pure nothrow unittest | |
525 | { | |
526 | // same thing, just using same character width. | |
527 | char[] s1 = new char[13]; | |
528 | auto r1 = s1; | |
529 | put(r1, "Hello, World!"); | |
530 | assert(s1 == "Hello, World!"); | |
531 | } | |
532 | ||
533 | ||
534 | @safe pure nothrow @nogc unittest | |
535 | { | |
536 | static struct R() { void put(scope const(char)[]) {} } | |
537 | R!() r; | |
538 | put(r, 'a'); | |
539 | } | |
540 | ||
541 | //Helper function to handle chars as quickly and as elegantly as possible | |
542 | //Assumes r.put(e)/r(e) has already been tested | |
543 | private void putChar(R, E)(ref R r, E e) | |
544 | if (isSomeChar!E) | |
545 | { | |
546 | // https://issues.dlang.org/show_bug.cgi?id=9186: Can't use (E[]).init | |
547 | enum csCond = is(typeof(doPut(r, (){ ref const( char)[] cstringInit(); return cstringInit(); }()))); | |
548 | enum wsCond = is(typeof(doPut(r, (){ ref const(wchar)[] wstringInit(); return wstringInit(); }()))); | |
549 | enum dsCond = is(typeof(doPut(r, (){ ref const(dchar)[] dstringInit(); return dstringInit(); }()))); | |
550 | ||
551 | //Use "max" to avoid static type demotion | |
552 | enum ccCond = is(typeof(doPut(r, char.max))); | |
553 | enum wcCond = is(typeof(doPut(r, wchar.max))); | |
554 | //enum dcCond = is(typeof(doPut(r, dchar.max))); | |
555 | ||
556 | //Fast transform a narrow char into a wider string | |
557 | static if ((wsCond && E.sizeof < wchar.sizeof) || (dsCond && E.sizeof < dchar.sizeof)) | |
558 | { | |
559 | enum w = wsCond && E.sizeof < wchar.sizeof; | |
560 | Select!(w, wchar, dchar) c = e; | |
561 | typeof(c)[1] arr = [c]; | |
562 | doPut(r, arr[]); | |
563 | } | |
564 | //Encode a wide char into a narrower string | |
565 | else static if (wsCond || csCond) | |
566 | { | |
567 | import std.utf : encode; | |
568 | /+static+/ Select!(wsCond, wchar[2], char[4]) buf; //static prevents purity. | |
569 | doPut(r, buf[0 .. encode(buf, e)]); | |
570 | } | |
571 | //Slowly encode a wide char into a series of narrower chars | |
572 | else static if (wcCond || ccCond) | |
573 | { | |
574 | import std.encoding : encode; | |
575 | alias C = Select!(wcCond, wchar, char); | |
576 | encode!(C, R)(e, r); | |
577 | } | |
578 | else | |
579 | { | |
580 | static assert(false, "Cannot put a " ~ E.stringof ~ " into a " ~ R.stringof ~ "."); | |
581 | } | |
582 | } | |
583 | ||
584 | pure @safe unittest | |
585 | { | |
586 | auto f = delegate (const(char)[]) {}; | |
587 | putChar(f, cast(dchar)'a'); | |
588 | } | |
589 | ||
590 | ||
591 | @safe pure unittest | |
592 | { | |
593 | static struct R() { void put(scope const(char)[]) {} } | |
594 | R!() r; | |
595 | putChar(r, 'a'); | |
596 | } | |
597 | ||
598 | @safe unittest | |
599 | { | |
600 | struct A {} | |
601 | static assert(!isInputRange!(A)); | |
602 | struct B | |
603 | { | |
604 | void put(int) {} | |
605 | } | |
606 | B b; | |
607 | put(b, 5); | |
608 | } | |
609 | ||
610 | @safe unittest | |
611 | { | |
612 | int[] a = new int[10]; | |
613 | int b; | |
614 | static assert(isInputRange!(typeof(a))); | |
615 | put(a, b); | |
616 | } | |
617 | ||
618 | @safe unittest | |
619 | { | |
620 | void myprint(scope const(char)[] s) { } | |
621 | auto r = &myprint; | |
622 | put(r, 'a'); | |
623 | } | |
624 | ||
625 | @safe unittest | |
626 | { | |
627 | int[] a = new int[10]; | |
628 | static assert(!__traits(compiles, put(a, 1.0L))); | |
629 | put(a, 1); | |
630 | assert(a.length == 9); | |
631 | /* | |
632 | * a[0] = 65; // OK | |
633 | * a[0] = 'A'; // OK | |
634 | * a[0] = "ABC"[0]; // OK | |
635 | * put(a, "ABC"); // OK | |
636 | */ | |
637 | put(a, "ABC"); | |
638 | assert(a.length == 6); | |
639 | } | |
640 | ||
641 | @safe unittest | |
642 | { | |
643 | char[] a = new char[10]; | |
644 | static assert(!__traits(compiles, put(a, 1.0L))); | |
645 | static assert(!__traits(compiles, put(a, 1))); | |
646 | //char[] is now an output range for char, wchar, dchar, and ranges of such. | |
647 | static assert(__traits(compiles, putChar(a, 'a'))); | |
648 | static assert(__traits(compiles, put(a, wchar('a')))); | |
649 | static assert(__traits(compiles, put(a, dchar('a')))); | |
650 | static assert(__traits(compiles, put(a, "ABC"))); | |
651 | static assert(__traits(compiles, put(a, "ABC"w))); | |
652 | static assert(__traits(compiles, put(a, "ABC"d))); | |
653 | } | |
654 | ||
655 | @safe unittest | |
656 | { | |
657 | // attempt putting into narrow strings by transcoding | |
658 | char[] a = new char[10]; | |
659 | auto b = a; | |
660 | put(a, "ABC"w); | |
661 | assert(b[0 .. 3] == "ABC"); | |
662 | assert(a.length == 7); | |
663 | ||
664 | a = b; // reset | |
665 | put(a, 'λ'); | |
666 | assert(b[0 .. 2] == "λ"); | |
667 | assert(a.length == 8); | |
668 | ||
669 | a = b; // reset | |
670 | put(a, "ABC"d); | |
671 | assert(b[0 .. 3] == "ABC"); | |
672 | assert(a.length == 7); | |
673 | ||
674 | a = b; // reset | |
675 | put(a, '𐐷'); | |
676 | assert(b[0 .. 4] == "𐐷"); | |
677 | assert(a.length == 6); | |
678 | ||
679 | wchar[] aw = new wchar[10]; | |
680 | auto bw = aw; | |
681 | put(aw, "ABC"); | |
682 | assert(bw[0 .. 3] == "ABC"w); | |
683 | assert(aw.length == 7); | |
684 | ||
685 | aw = bw; // reset | |
686 | put(aw, 'λ'); | |
687 | assert(bw[0 .. 1] == "λ"w); | |
688 | assert(aw.length == 9); | |
689 | ||
690 | aw = bw; // reset | |
691 | put(aw, "ABC"d); | |
692 | assert(bw[0 .. 3] == "ABC"w); | |
693 | assert(aw.length == 7); | |
694 | ||
695 | aw = bw; // reset | |
696 | put(aw, '𐐷'); | |
697 | assert(bw[0 .. 2] == "𐐷"w); | |
698 | assert(aw.length == 8); | |
699 | ||
700 | aw = bw; // reset | |
701 | put(aw, "𐐷"); // try transcoding from char[] | |
702 | assert(bw[0 .. 2] == "𐐷"w); | |
703 | assert(aw.length == 8); | |
704 | } | |
705 | ||
706 | @safe unittest | |
707 | { | |
708 | int[][] a = new int[][10]; | |
709 | int[] b = new int[10]; | |
710 | int c; | |
711 | put(b, c); | |
712 | assert(b.length == 9); | |
713 | put(a, b); | |
714 | assert(a.length == 9); | |
715 | static assert(!__traits(compiles, put(a, c))); | |
716 | } | |
717 | ||
718 | @safe unittest | |
719 | { | |
720 | int[][] a = new int[][](3); | |
721 | int[] b = [1]; | |
722 | auto aa = a; | |
723 | put(aa, b); | |
724 | assert(aa == [[], []]); | |
725 | assert(a == [[1], [], []]); | |
726 | int[][3] c = [2]; | |
727 | aa = a; | |
728 | put(aa, c[]); | |
729 | assert(aa.empty); | |
730 | assert(a == [[2], [2], [2]]); | |
731 | } | |
732 | ||
733 | @safe unittest | |
734 | { | |
735 | // Test fix for bug 7476. | |
736 | struct LockingTextWriter | |
737 | { | |
738 | void put(dchar c){} | |
739 | } | |
740 | struct RetroResult | |
741 | { | |
742 | bool end = false; | |
743 | @property bool empty() const { return end; } | |
744 | @property dchar front(){ return 'a'; } | |
745 | void popFront(){ end = true; } | |
746 | } | |
747 | LockingTextWriter w; | |
748 | RetroResult re; | |
749 | put(w, re); | |
750 | } | |
751 | ||
752 | @system unittest | |
753 | { | |
754 | import std.conv : to; | |
755 | import std.meta : AliasSeq; | |
756 | import std.typecons : tuple; | |
757 | ||
758 | static struct PutC(C) | |
759 | { | |
760 | string result; | |
761 | void put(const(C) c) { result ~= to!string((&c)[0 .. 1]); } | |
762 | } | |
763 | static struct PutS(C) | |
764 | { | |
765 | string result; | |
766 | void put(const(C)[] s) { result ~= to!string(s); } | |
767 | } | |
768 | static struct PutSS(C) | |
769 | { | |
770 | string result; | |
771 | void put(const(C)[][] ss) | |
772 | { | |
773 | foreach (s; ss) | |
774 | result ~= to!string(s); | |
775 | } | |
776 | } | |
777 | ||
778 | PutS!char p; | |
779 | putChar(p, cast(dchar)'a'); | |
780 | ||
781 | //Source Char | |
782 | static foreach (SC; AliasSeq!(char, wchar, dchar)) | |
783 | {{ | |
784 | SC ch = 'I'; | |
785 | dchar dh = '♥'; | |
786 | immutable(SC)[] s = "日本語!"; | |
787 | immutable(SC)[][] ss = ["日本語", "が", "好き", "ですか", "?"]; | |
788 | ||
789 | //Target Char | |
790 | static foreach (TC; AliasSeq!(char, wchar, dchar)) | |
791 | { | |
792 | //Testing PutC and PutS | |
793 | static foreach (Type; AliasSeq!(PutC!TC, PutS!TC)) | |
794 | {{ | |
795 | Type type; | |
796 | auto sink = new Type(); | |
797 | ||
798 | //Testing put and sink | |
799 | foreach (value ; tuple(type, sink)) | |
800 | { | |
801 | put(value, ch); | |
802 | assert(value.result == "I"); | |
803 | put(value, dh); | |
804 | assert(value.result == "I♥"); | |
805 | put(value, s); | |
806 | assert(value.result == "I♥日本語!"); | |
807 | put(value, ss); | |
808 | assert(value.result == "I♥日本語!日本語が好きですか?"); | |
809 | } | |
810 | }} | |
811 | } | |
812 | }} | |
813 | } | |
814 | ||
815 | @safe unittest | |
816 | { | |
817 | static struct CharRange | |
818 | { | |
819 | char c; | |
820 | enum empty = false; | |
821 | void popFront(){} | |
822 | ref char front() return @property | |
823 | { | |
824 | return c; | |
825 | } | |
826 | } | |
827 | CharRange c; | |
828 | put(c, cast(dchar)'H'); | |
829 | put(c, "hello"d); | |
830 | } | |
831 | ||
832 | // https://issues.dlang.org/show_bug.cgi?id=9823 | |
833 | @system unittest | |
834 | { | |
835 | const(char)[] r; | |
836 | void delegate(const(char)[]) dg = (s) { r = s; }; | |
837 | put(dg, ["ABC"]); | |
838 | assert(r == "ABC"); | |
839 | } | |
840 | ||
841 | // https://issues.dlang.org/show_bug.cgi?id=10571 | |
842 | @safe unittest | |
843 | { | |
844 | import std.format.write : formattedWrite; | |
845 | string buf; | |
846 | formattedWrite((scope const(char)[] s) { buf ~= s; }, "%s", "hello"); | |
847 | assert(buf == "hello"); | |
848 | } | |
849 | ||
850 | @safe unittest | |
851 | { | |
852 | import std.format.write : formattedWrite; | |
853 | import std.meta : AliasSeq; | |
854 | struct PutC(C) | |
855 | { | |
856 | void put(C){} | |
857 | } | |
858 | struct PutS(C) | |
859 | { | |
860 | void put(const(C)[]){} | |
861 | } | |
862 | struct CallC(C) | |
863 | { | |
864 | void opCall(C){} | |
865 | } | |
866 | struct CallS(C) | |
867 | { | |
868 | void opCall(const(C)[]){} | |
869 | } | |
870 | struct FrontC(C) | |
871 | { | |
872 | enum empty = false; | |
873 | auto front()@property{return C.init;} | |
874 | void front(C)@property{} | |
875 | void popFront(){} | |
876 | } | |
877 | struct FrontS(C) | |
878 | { | |
879 | enum empty = false; | |
880 | auto front()@property{return C[].init;} | |
881 | void front(const(C)[])@property{} | |
882 | void popFront(){} | |
883 | } | |
884 | void foo() | |
885 | { | |
886 | static foreach (C; AliasSeq!(char, wchar, dchar)) | |
887 | {{ | |
888 | formattedWrite((C c){}, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
889 | formattedWrite((const(C)[]){}, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
890 | formattedWrite(PutC!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
891 | formattedWrite(PutS!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
892 | CallC!C callC; | |
893 | CallS!C callS; | |
894 | formattedWrite(callC, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
895 | formattedWrite(callS, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
896 | formattedWrite(FrontC!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
897 | formattedWrite(FrontS!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
898 | }} | |
899 | formattedWrite((dchar[]).init, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d); | |
900 | } | |
901 | } | |
902 | ||
903 | /+ | |
904 | Returns `true` if `R` is a native output range for elements of type | |
905 | `E`. An output range is defined functionally as a range that | |
906 | supports the operation $(D doPut(r, e)) as defined above. if $(D doPut(r, e)) | |
907 | is valid, then `put(r,e)` will have the same behavior. | |
908 | ||
909 | The two guarantees isNativeOutputRange gives over the larger `isOutputRange` | |
910 | are: | |
911 | 1: `e` is $(B exactly) what will be placed (not `[e]`, for example). | |
912 | 2: if `E` is a non $(empty) `InputRange`, then placing `e` is | |
913 | guaranteed to not overflow the range. | |
914 | +/ | |
915 | package(std) enum bool isNativeOutputRange(R, E) = | |
916 | is(typeof(doPut(lvalueOf!R, lvalueOf!E))); | |
917 | ||
918 | @safe unittest | |
919 | { | |
920 | int[] r = new int[](4); | |
921 | static assert(isInputRange!(int[])); | |
922 | static assert( isNativeOutputRange!(int[], int)); | |
923 | static assert(!isNativeOutputRange!(int[], int[])); | |
924 | static assert( isOutputRange!(int[], int[])); | |
925 | ||
926 | if (!r.empty) | |
927 | put(r, 1); //guaranteed to succeed | |
928 | if (!r.empty) | |
929 | put(r, [1, 2]); //May actually error out. | |
930 | } | |
931 | ||
932 | /++ | |
933 | Returns `true` if `R` is an output range for elements of type | |
934 | `E`. An output range is defined functionally as a range that | |
935 | supports the operation $(D put(r, e)) as defined above. | |
936 | ||
937 | See_Also: | |
938 | The header of $(MREF std,range) for tutorials on ranges. | |
939 | +/ | |
940 | enum bool isOutputRange(R, E) = | |
941 | is(typeof(put(lvalueOf!R, lvalueOf!E))); | |
942 | ||
943 | /// | |
944 | @safe unittest | |
945 | { | |
946 | void myprint(scope const(char)[] s) { } | |
947 | static assert(isOutputRange!(typeof(&myprint), char)); | |
948 | ||
949 | static assert( isOutputRange!(char[], char)); | |
950 | static assert( isOutputRange!(dchar[], wchar)); | |
951 | static assert( isOutputRange!(dchar[], dchar)); | |
952 | } | |
953 | ||
954 | @safe unittest | |
955 | { | |
956 | import std.array; | |
957 | import std.stdio : writeln; | |
958 | ||
959 | auto app = appender!string(); | |
960 | string s; | |
961 | static assert( isOutputRange!(Appender!string, string)); | |
962 | static assert( isOutputRange!(Appender!string*, string)); | |
963 | static assert(!isOutputRange!(Appender!string, int)); | |
964 | static assert( isOutputRange!(wchar[], wchar)); | |
965 | static assert( isOutputRange!(dchar[], char)); | |
966 | static assert( isOutputRange!(dchar[], string)); | |
967 | static assert( isOutputRange!(dchar[], wstring)); | |
968 | static assert( isOutputRange!(dchar[], dstring)); | |
969 | ||
970 | static assert(!isOutputRange!(const(int)[], int)); | |
971 | static assert(!isOutputRange!(inout(int)[], int)); | |
972 | } | |
973 | ||
974 | ||
975 | /** | |
976 | Returns `true` if `R` is a forward range. A forward range is an | |
977 | input range `r` that can save "checkpoints" by saving `r.save` | |
978 | to another value of type `R`. Notable examples of input ranges that | |
979 | are $(I not) forward ranges are file/socket ranges; copying such a | |
980 | range will not save the position in the stream, and they most likely | |
981 | reuse an internal buffer as the entire stream does not sit in | |
982 | memory. Subsequently, advancing either the original or the copy will | |
983 | advance the stream, so the copies are not independent. | |
984 | ||
985 | The following code should compile for any forward range. | |
986 | ||
987 | ---- | |
988 | static assert(isInputRange!R); | |
989 | R r1; | |
990 | auto s1 = r1.save; | |
991 | static assert(is(typeof(s1) == R)); | |
992 | ---- | |
993 | ||
994 | Saving a range is not duplicating it; in the example above, `r1` | |
995 | and `r2` still refer to the same underlying data. They just | |
996 | navigate that data independently. | |
997 | ||
998 | The semantics of a forward range (not checkable during compilation) | |
999 | are the same as for an input range, with the additional requirement | |
1000 | that backtracking must be possible by saving a copy of the range | |
1001 | object with `save` and using it later. | |
1002 | ||
1003 | `save` behaves in many ways like a copy constructor, and its | |
1004 | implementation typically is done using copy construction. | |
1005 | ||
1006 | The existence of a copy constructor, however, does not imply | |
1007 | the range is a forward range. For example, a range that reads | |
1008 | from a TTY consumes its input and cannot save its place and | |
1009 | read it again, and so cannot be a forward range and cannot | |
1010 | have a `save` function. | |
1011 | ||
1012 | ||
1013 | See_Also: | |
1014 | The header of $(MREF std,range) for tutorials on ranges. | |
1015 | ||
1016 | Params: | |
1017 | R = type to be tested | |
1018 | E = if present, the elements of the range must be | |
1019 | $(DDSUBLINK spec/const3, implicit_qualifier_conversions, qualifier-convertible) | |
1020 | to this type | |
1021 | ||
1022 | Returns: | |
1023 | `true` if R is a forward range (possibly with element type `E`), `false` if not | |
1024 | */ | |
1025 | enum bool isForwardRange(R) = isInputRange!R | |
1026 | && is(typeof((R r) { return r.save; } (R.init)) == R); | |
1027 | ||
1028 | /// ditto | |
1029 | enum bool isForwardRange(R, E) = | |
1030 | .isForwardRange!R && isQualifierConvertible!(ElementType!R, E); | |
1031 | ||
1032 | /// | |
1033 | @safe unittest | |
1034 | { | |
1035 | static assert(!isForwardRange!(int)); | |
1036 | static assert( isForwardRange!(int[])); | |
1037 | static assert( isForwardRange!(inout(int)[])); | |
1038 | ||
1039 | static assert( isForwardRange!(int[], const int)); | |
1040 | static assert(!isForwardRange!(int[], immutable int)); | |
1041 | ||
1042 | static assert(!isForwardRange!(const(int)[], int)); | |
1043 | static assert( isForwardRange!(const(int)[], const int)); | |
1044 | static assert(!isForwardRange!(const(int)[], immutable int)); | |
1045 | ||
1046 | static assert(!isForwardRange!(immutable(int)[], int)); | |
1047 | static assert( isForwardRange!(immutable(int)[], const int)); | |
1048 | static assert( isForwardRange!(immutable(int)[], immutable int)); | |
1049 | } | |
1050 | ||
1051 | @safe unittest | |
1052 | { | |
1053 | // BUG 14544 | |
1054 | struct R14544 | |
1055 | { | |
1056 | int front() { return 0;} | |
1057 | void popFront() {} | |
1058 | bool empty() { return false; } | |
1059 | R14544 save() {return this;} | |
1060 | } | |
1061 | ||
1062 | static assert( isForwardRange!R14544 ); | |
1063 | } | |
1064 | ||
1065 | /** | |
1066 | Returns `true` if `R` is a bidirectional range. A bidirectional | |
1067 | range is a forward range that also offers the primitives `back` and | |
1068 | `popBack`. The following code should compile for any bidirectional | |
1069 | range. | |
1070 | ||
1071 | The semantics of a bidirectional range (not checkable during | |
1072 | compilation) are assumed to be the following (`r` is an object of | |
1073 | type `R`): | |
1074 | ||
1075 | $(UL $(LI `r.back` returns (possibly a reference to) the last | |
1076 | element in the range. Calling `r.back` is allowed only if calling | |
1077 | `r.empty` has, or would have, returned `false`.)) | |
1078 | ||
1079 | See_Also: | |
1080 | The header of $(MREF std,range) for tutorials on ranges. | |
1081 | ||
1082 | Params: | |
1083 | R = type to be tested | |
1084 | E = if present, the elements of the range must be | |
1085 | $(DDSUBLINK spec/const3, implicit_qualifier_conversions, qualifier-convertible) | |
1086 | to this type | |
1087 | ||
1088 | Returns: | |
1089 | `true` if R is a bidirectional range (possibly with element type `E`), `false` if not | |
1090 | */ | |
1091 | enum bool isBidirectionalRange(R) = isForwardRange!R | |
1092 | && is(typeof((R r) => r.popBack)) | |
1093 | && (is(typeof((return ref R r) => r.back)) || is(typeof(ref (return ref R r) => r.back))) | |
1094 | && is(typeof(R.init.back.init) == ElementType!R); | |
1095 | ||
1096 | /// ditto | |
1097 | enum bool isBidirectionalRange(R, E) = | |
1098 | .isBidirectionalRange!R && isQualifierConvertible!(ElementType!R, E); | |
1099 | ||
1100 | /// | |
1101 | @safe unittest | |
1102 | { | |
1103 | alias R = int[]; | |
1104 | R r = [0,1]; | |
1105 | static assert(isForwardRange!R); // is forward range | |
1106 | r.popBack(); // can invoke popBack | |
1107 | auto t = r.back; // can get the back of the range | |
1108 | auto w = r.front; | |
1109 | static assert(is(typeof(t) == typeof(w))); // same type for front and back | |
1110 | ||
1111 | // Checking the element type | |
1112 | static assert( isBidirectionalRange!(int[], const int)); | |
1113 | static assert(!isBidirectionalRange!(int[], immutable int)); | |
1114 | ||
1115 | static assert(!isBidirectionalRange!(const(int)[], int)); | |
1116 | static assert( isBidirectionalRange!(const(int)[], const int)); | |
1117 | static assert(!isBidirectionalRange!(const(int)[], immutable int)); | |
1118 | ||
1119 | static assert(!isBidirectionalRange!(immutable(int)[], int)); | |
1120 | static assert( isBidirectionalRange!(immutable(int)[], const int)); | |
1121 | static assert( isBidirectionalRange!(immutable(int)[], immutable int)); | |
1122 | } | |
1123 | ||
1124 | @safe unittest | |
1125 | { | |
1126 | struct A {} | |
1127 | struct B | |
1128 | { | |
1129 | void popFront(); | |
1130 | @property bool empty(); | |
1131 | @property int front(); | |
1132 | } | |
1133 | struct C | |
1134 | { | |
1135 | @property bool empty(); | |
1136 | @property C save(); | |
1137 | void popFront(); | |
1138 | @property int front(); | |
1139 | void popBack(); | |
1140 | @property int back(); | |
1141 | } | |
1142 | static assert(!isBidirectionalRange!(A)); | |
1143 | static assert(!isBidirectionalRange!(B)); | |
1144 | static assert( isBidirectionalRange!(C)); | |
1145 | static assert( isBidirectionalRange!(int[])); | |
1146 | static assert( isBidirectionalRange!(char[])); | |
1147 | static assert( isBidirectionalRange!(inout(int)[])); | |
1148 | } | |
1149 | ||
1150 | /** | |
1151 | Returns `true` if `R` is a random-access range. A random-access | |
1152 | range is a bidirectional range that also offers the primitive $(D | |
1153 | opIndex), OR an infinite forward range that offers `opIndex`. In | |
1154 | either case, the range must either offer `length` or be | |
1155 | infinite. The following code should compile for any random-access | |
1156 | range. | |
1157 | ||
1158 | The semantics of a random-access range (not checkable during | |
1159 | compilation) are assumed to be the following (`r` is an object of | |
1160 | type `R`): $(UL $(LI `r.opIndex(n)` returns a reference to the | |
1161 | `n`th element in the range.)) | |
1162 | ||
1163 | Although `char[]` and `wchar[]` (as well as their qualified | |
1164 | versions including `string` and `wstring`) are arrays, $(D | |
1165 | isRandomAccessRange) yields `false` for them because they use | |
1166 | variable-length encodings (UTF-8 and UTF-16 respectively). These types | |
1167 | are bidirectional ranges only. | |
1168 | ||
1169 | See_Also: | |
1170 | The header of $(MREF std,range) for tutorials on ranges. | |
1171 | ||
1172 | Params: | |
1173 | R = type to be tested | |
1174 | E = if present, the elements of the range must be | |
1175 | $(DDSUBLINK spec/const3, implicit_qualifier_conversions, qualifier-convertible) | |
1176 | to this type | |
1177 | ||
1178 | Returns: | |
1179 | `true` if R is a random-access range (possibly with element type `E`), `false` if not | |
1180 | */ | |
1181 | enum bool isRandomAccessRange(R) = | |
1182 | is(typeof(lvalueOf!R[1]) == ElementType!R) | |
1183 | && !(isAutodecodableString!R && !isAggregateType!R) | |
1184 | && isForwardRange!R | |
1185 | && (isBidirectionalRange!R || isInfinite!R) | |
1186 | && (hasLength!R || isInfinite!R) | |
1187 | && (isInfinite!R || !is(typeof(lvalueOf!R[$ - 1])) | |
1188 | || is(typeof(lvalueOf!R[$ - 1]) == ElementType!R)); | |
1189 | ||
1190 | /// ditto | |
1191 | enum bool isRandomAccessRange(R, E) = | |
1192 | .isRandomAccessRange!R && isQualifierConvertible!(ElementType!R, E); | |
1193 | ||
1194 | /// | |
1195 | @safe unittest | |
1196 | { | |
1197 | import std.traits : isAggregateType, isAutodecodableString; | |
1198 | ||
1199 | alias R = int[]; | |
1200 | ||
1201 | // range is finite and bidirectional or infinite and forward. | |
1202 | static assert(isBidirectionalRange!R || | |
1203 | isForwardRange!R && isInfinite!R); | |
1204 | ||
1205 | R r = [0,1]; | |
1206 | auto e = r[1]; // can index | |
1207 | auto f = r.front; | |
1208 | static assert(is(typeof(e) == typeof(f))); // same type for indexed and front | |
1209 | static assert(!(isAutodecodableString!R && !isAggregateType!R)); // narrow strings cannot be indexed as ranges | |
1210 | static assert(hasLength!R || isInfinite!R); // must have length or be infinite | |
1211 | ||
1212 | // $ must work as it does with arrays if opIndex works with $ | |
1213 | static if (is(typeof(r[$]))) | |
1214 | { | |
1215 | static assert(is(typeof(f) == typeof(r[$]))); | |
1216 | ||
1217 | // $ - 1 doesn't make sense with infinite ranges but needs to work | |
1218 | // with finite ones. | |
1219 | static if (!isInfinite!R) | |
1220 | static assert(is(typeof(f) == typeof(r[$ - 1]))); | |
1221 | } | |
1222 | ||
1223 | // Checking the element type | |
1224 | static assert( isRandomAccessRange!(int[], const int)); | |
1225 | static assert(!isRandomAccessRange!(int[], immutable int)); | |
1226 | ||
1227 | static assert(!isRandomAccessRange!(const(int)[], int)); | |
1228 | static assert( isRandomAccessRange!(const(int)[], const int)); | |
1229 | static assert(!isRandomAccessRange!(const(int)[], immutable int)); | |
1230 | ||
1231 | static assert(!isRandomAccessRange!(immutable(int)[], int)); | |
1232 | static assert( isRandomAccessRange!(immutable(int)[], const int)); | |
1233 | static assert( isRandomAccessRange!(immutable(int)[], immutable int)); | |
1234 | } | |
1235 | ||
1236 | @safe unittest | |
1237 | { | |
1238 | struct A {} | |
1239 | struct B | |
1240 | { | |
1241 | void popFront(); | |
1242 | @property bool empty(); | |
1243 | @property int front(); | |
1244 | } | |
1245 | struct C | |
1246 | { | |
1247 | void popFront(); | |
1248 | @property bool empty(); | |
1249 | @property int front(); | |
1250 | void popBack(); | |
1251 | @property int back(); | |
1252 | } | |
1253 | struct D | |
1254 | { | |
1255 | @property bool empty(); | |
1256 | @property D save(); | |
1257 | @property int front(); | |
1258 | void popFront(); | |
1259 | @property int back(); | |
1260 | void popBack(); | |
1261 | ref int opIndex(uint); | |
1262 | @property size_t length(); | |
1263 | alias opDollar = length; | |
1264 | //int opSlice(uint, uint); | |
1265 | } | |
1266 | struct E | |
1267 | { | |
1268 | bool empty(); | |
1269 | E save(); | |
1270 | int front(); | |
1271 | void popFront(); | |
1272 | int back(); | |
1273 | void popBack(); | |
1274 | ref int opIndex(uint); | |
1275 | size_t length(); | |
1276 | alias opDollar = length; | |
1277 | //int opSlice(uint, uint); | |
1278 | } | |
1279 | static assert(!isRandomAccessRange!(A)); | |
1280 | static assert(!isRandomAccessRange!(B)); | |
1281 | static assert(!isRandomAccessRange!(C)); | |
1282 | static assert( isRandomAccessRange!(D)); | |
1283 | static assert( isRandomAccessRange!(E)); | |
1284 | static assert( isRandomAccessRange!(int[])); | |
1285 | static assert( isRandomAccessRange!(inout(int)[])); | |
1286 | } | |
1287 | ||
1288 | @safe unittest | |
1289 | { | |
1290 | // Test fix for bug 6935. | |
1291 | struct R | |
1292 | { | |
1293 | @disable this(); | |
1294 | ||
1295 | @property bool empty() const { return false; } | |
1296 | @property int front() const { return 0; } | |
1297 | void popFront() {} | |
1298 | ||
1299 | @property R save() { return this; } | |
1300 | ||
1301 | @property int back() const { return 0; } | |
1302 | void popBack(){} | |
1303 | ||
1304 | int opIndex(size_t n) const { return 0; } | |
1305 | @property size_t length() const { return 0; } | |
1306 | alias opDollar = length; | |
1307 | ||
1308 | void put(int e){ } | |
1309 | } | |
1310 | static assert(isInputRange!R); | |
1311 | static assert(isForwardRange!R); | |
1312 | static assert(isBidirectionalRange!R); | |
1313 | static assert(isRandomAccessRange!R); | |
1314 | static assert(isOutputRange!(R, int)); | |
1315 | } | |
1316 | ||
1317 | /** | |
1318 | Returns `true` iff `R` is an input range that supports the | |
1319 | `moveFront` primitive, as well as `moveBack` and `moveAt` if it's a | |
1320 | bidirectional or random access range. These may be explicitly implemented, or | |
1321 | may work via the default behavior of the module level functions `moveFront` | |
1322 | and friends. The following code should compile for any range | |
1323 | with mobile elements. | |
1324 | ||
1325 | ---- | |
1326 | alias E = ElementType!R; | |
1327 | R r; | |
1328 | static assert(isInputRange!R); | |
1329 | static assert(is(typeof(moveFront(r)) == E)); | |
1330 | static if (isBidirectionalRange!R) | |
1331 | static assert(is(typeof(moveBack(r)) == E)); | |
1332 | static if (isRandomAccessRange!R) | |
1333 | static assert(is(typeof(moveAt(r, 0)) == E)); | |
1334 | ---- | |
1335 | */ | |
1336 | enum bool hasMobileElements(R) = | |
1337 | isInputRange!R | |
1338 | && is(typeof(moveFront(lvalueOf!R)) == ElementType!R) | |
1339 | && (!isBidirectionalRange!R | |
1340 | || is(typeof(moveBack(lvalueOf!R)) == ElementType!R)) | |
1341 | && (!isRandomAccessRange!R | |
1342 | || is(typeof(moveAt(lvalueOf!R, 0)) == ElementType!R)); | |
1343 | ||
1344 | /// | |
1345 | @safe unittest | |
1346 | { | |
1347 | import std.algorithm.iteration : map; | |
1348 | import std.range : iota, repeat; | |
1349 | ||
1350 | static struct HasPostblit | |
1351 | { | |
1352 | this(this) {} | |
1353 | } | |
1354 | ||
1355 | auto nonMobile = map!"a"(repeat(HasPostblit.init)); | |
1356 | static assert(!hasMobileElements!(typeof(nonMobile))); | |
1357 | static assert( hasMobileElements!(int[])); | |
1358 | static assert( hasMobileElements!(inout(int)[])); | |
1359 | static assert( hasMobileElements!(typeof(iota(1000)))); | |
1360 | ||
1361 | static assert( hasMobileElements!( string)); | |
1362 | static assert( hasMobileElements!(dstring)); | |
1363 | static assert( hasMobileElements!( char[])); | |
1364 | static assert( hasMobileElements!(dchar[])); | |
1365 | } | |
1366 | ||
1367 | /** | |
1368 | The element type of `R`. `R` does not have to be a range. The | |
1369 | element type is determined as the type yielded by `r.front` for an | |
1370 | object `r` of type `R`. For example, `ElementType!(T[])` is | |
1371 | `T` if `T[]` isn't a narrow string; if it is, the element type is | |
1372 | `dchar`. If `R` doesn't have `front`, `ElementType!R` is | |
1373 | `void`. | |
1374 | */ | |
1375 | template ElementType(R) | |
1376 | { | |
1377 | static if (is(typeof(R.init.front.init) T)) | |
1378 | alias ElementType = T; | |
1379 | else | |
1380 | alias ElementType = void; | |
1381 | } | |
1382 | ||
1383 | /// | |
1384 | @safe unittest | |
1385 | { | |
1386 | import std.range : iota; | |
1387 | ||
1388 | // Standard arrays: returns the type of the elements of the array | |
1389 | static assert(is(ElementType!(int[]) == int)); | |
1390 | ||
1391 | // Accessing .front retrieves the decoded dchar | |
1392 | static assert(is(ElementType!(char[]) == dchar)); // rvalue | |
1393 | static assert(is(ElementType!(dchar[]) == dchar)); // lvalue | |
1394 | ||
1395 | // Ditto | |
1396 | static assert(is(ElementType!(string) == dchar)); | |
1397 | static assert(is(ElementType!(dstring) == immutable(dchar))); | |
1398 | ||
1399 | // For ranges it gets the type of .front. | |
1400 | auto range = iota(0, 10); | |
1401 | static assert(is(ElementType!(typeof(range)) == int)); | |
1402 | } | |
1403 | ||
1404 | @safe unittest | |
1405 | { | |
1406 | static assert(is(ElementType!(byte[]) == byte)); | |
1407 | static assert(is(ElementType!(wchar[]) == dchar)); // rvalue | |
1408 | static assert(is(ElementType!(wstring) == dchar)); | |
1409 | } | |
1410 | ||
1411 | @safe unittest | |
1412 | { | |
1413 | enum XYZ : string { a = "foo" } | |
1414 | auto x = XYZ.a.front; | |
1415 | immutable char[3] a = "abc"; | |
1416 | int[] i; | |
1417 | void[] buf; | |
1418 | static assert(is(ElementType!(XYZ) == dchar)); | |
1419 | static assert(is(ElementType!(typeof(a)) == dchar)); | |
1420 | static assert(is(ElementType!(typeof(i)) == int)); | |
1421 | static assert(is(ElementType!(typeof(buf)) == void)); | |
1422 | static assert(is(ElementType!(inout(int)[]) == inout(int))); | |
1423 | static assert(is(ElementType!(inout(int[])) == inout(int))); | |
1424 | } | |
1425 | ||
1426 | @safe unittest | |
1427 | { | |
1428 | static assert(is(ElementType!(int[5]) == int)); | |
1429 | static assert(is(ElementType!(int[0]) == int)); | |
1430 | static assert(is(ElementType!(char[5]) == dchar)); | |
1431 | static assert(is(ElementType!(char[0]) == dchar)); | |
1432 | } | |
1433 | ||
1434 | // https://issues.dlang.org/show_bug.cgi?id=11336 | |
1435 | @safe unittest | |
1436 | { | |
1437 | static struct S | |
1438 | { | |
1439 | this(this) @disable; | |
1440 | } | |
1441 | static assert(is(ElementType!(S[]) == S)); | |
1442 | } | |
1443 | ||
1444 | // https://issues.dlang.org/show_bug.cgi?id=11401 | |
1445 | @safe unittest | |
1446 | { | |
1447 | // ElementType should also work for non-@propety 'front' | |
1448 | struct E { ushort id; } | |
1449 | struct R | |
1450 | { | |
1451 | E front() { return E.init; } | |
1452 | } | |
1453 | static assert(is(ElementType!R == E)); | |
1454 | } | |
1455 | ||
1456 | /** | |
1457 | The encoding element type of `R`. For narrow strings (`char[]`, | |
1458 | `wchar[]` and their qualified variants including `string` and | |
1459 | `wstring`), `ElementEncodingType` is the character type of the | |
1460 | string. For all other types, `ElementEncodingType` is the same as | |
1461 | `ElementType`. | |
1462 | */ | |
1463 | template ElementEncodingType(R) | |
1464 | { | |
1465 | static if (is(StringTypeOf!R) && is(R : E[], E)) | |
1466 | alias ElementEncodingType = E; | |
1467 | else | |
1468 | alias ElementEncodingType = ElementType!R; | |
1469 | } | |
1470 | ||
1471 | /// | |
1472 | @safe unittest | |
1473 | { | |
1474 | import std.range : iota; | |
1475 | // internally the range stores the encoded type | |
1476 | static assert(is(ElementEncodingType!(char[]) == char)); | |
1477 | ||
1478 | static assert(is(ElementEncodingType!(wstring) == immutable(wchar))); | |
1479 | ||
1480 | static assert(is(ElementEncodingType!(byte[]) == byte)); | |
1481 | ||
1482 | auto range = iota(0, 10); | |
1483 | static assert(is(ElementEncodingType!(typeof(range)) == int)); | |
1484 | } | |
1485 | ||
1486 | @safe unittest | |
1487 | { | |
1488 | static assert(is(ElementEncodingType!(wchar[]) == wchar)); | |
1489 | static assert(is(ElementEncodingType!(dchar[]) == dchar)); | |
1490 | static assert(is(ElementEncodingType!(string) == immutable(char))); | |
1491 | static assert(is(ElementEncodingType!(dstring) == immutable(dchar))); | |
1492 | static assert(is(ElementEncodingType!(int[]) == int)); | |
1493 | } | |
1494 | ||
1495 | @safe unittest | |
1496 | { | |
1497 | enum XYZ : string { a = "foo" } | |
1498 | auto x = XYZ.a.front; | |
1499 | immutable char[3] a = "abc"; | |
1500 | int[] i; | |
1501 | void[] buf; | |
1502 | static assert(is(ElementType!(XYZ) : dchar)); | |
1503 | static assert(is(ElementEncodingType!(char[]) == char)); | |
1504 | static assert(is(ElementEncodingType!(string) == immutable char)); | |
1505 | static assert(is(ElementType!(typeof(a)) : dchar)); | |
1506 | static assert(is(ElementType!(typeof(i)) == int)); | |
1507 | static assert(is(ElementEncodingType!(typeof(i)) == int)); | |
1508 | static assert(is(ElementType!(typeof(buf)) : void)); | |
1509 | ||
1510 | static assert(is(ElementEncodingType!(inout char[]) : inout(char))); | |
1511 | } | |
1512 | ||
1513 | @safe unittest | |
1514 | { | |
1515 | static assert(is(ElementEncodingType!(int[5]) == int)); | |
1516 | static assert(is(ElementEncodingType!(int[0]) == int)); | |
1517 | static assert(is(ElementEncodingType!(char[5]) == char)); | |
1518 | static assert(is(ElementEncodingType!(char[0]) == char)); | |
1519 | } | |
1520 | ||
1521 | /** | |
1522 | Returns `true` if `R` is an input range and has swappable | |
1523 | elements. The following code should compile for any range | |
1524 | with swappable elements. | |
1525 | ||
1526 | ---- | |
1527 | R r; | |
1528 | static assert(isInputRange!R); | |
1529 | swap(r.front, r.front); | |
1530 | static if (isBidirectionalRange!R) swap(r.back, r.front); | |
1531 | static if (isRandomAccessRange!R) swap(r[0], r.front); | |
1532 | ---- | |
1533 | */ | |
1534 | template hasSwappableElements(R) | |
1535 | { | |
1536 | import std.algorithm.mutation : swap; | |
1537 | enum bool hasSwappableElements = isInputRange!R | |
1538 | && is(typeof((ref R r) => swap(r.front, r.front))) | |
1539 | && (!isBidirectionalRange!R | |
1540 | || is(typeof((ref R r) => swap(r.back, r.front)))) | |
1541 | && (!isRandomAccessRange!R | |
1542 | || is(typeof((ref R r) => swap(r[0], r.front)))); | |
1543 | } | |
1544 | ||
1545 | /// | |
1546 | @safe unittest | |
1547 | { | |
1548 | static assert(!hasSwappableElements!(const int[])); | |
1549 | static assert(!hasSwappableElements!(const(int)[])); | |
1550 | static assert(!hasSwappableElements!(inout(int)[])); | |
1551 | static assert( hasSwappableElements!(int[])); | |
1552 | ||
1553 | static assert(!hasSwappableElements!( string)); | |
1554 | static assert(!hasSwappableElements!(dstring)); | |
1555 | static assert(!hasSwappableElements!( char[])); | |
1556 | static assert( hasSwappableElements!(dchar[])); | |
1557 | } | |
1558 | ||
1559 | /** | |
1560 | Returns `true` if `R` is an input range and has mutable | |
1561 | elements. The following code should compile for any range | |
1562 | with assignable elements. | |
1563 | ||
1564 | ---- | |
1565 | R r; | |
1566 | static assert(isInputRange!R); | |
1567 | r.front = r.front; | |
1568 | static if (isBidirectionalRange!R) r.back = r.front; | |
1569 | static if (isRandomAccessRange!R) r[0] = r.front; | |
1570 | ---- | |
1571 | */ | |
1572 | enum bool hasAssignableElements(R) = isInputRange!R | |
1573 | && is(typeof(lvalueOf!R.front = lvalueOf!R.front)) | |
1574 | && (!isBidirectionalRange!R | |
1575 | || is(typeof(lvalueOf!R.back = lvalueOf!R.back))) | |
1576 | && (!isRandomAccessRange!R | |
1577 | || is(typeof(lvalueOf!R[0] = lvalueOf!R.front))); | |
1578 | ||
1579 | /// | |
1580 | @safe unittest | |
1581 | { | |
1582 | static assert(!hasAssignableElements!(const int[])); | |
1583 | static assert(!hasAssignableElements!(const(int)[])); | |
1584 | static assert( hasAssignableElements!(int[])); | |
1585 | static assert(!hasAssignableElements!(inout(int)[])); | |
1586 | ||
1587 | static assert(!hasAssignableElements!( string)); | |
1588 | static assert(!hasAssignableElements!(dstring)); | |
1589 | static assert(!hasAssignableElements!( char[])); | |
1590 | static assert( hasAssignableElements!(dchar[])); | |
1591 | } | |
1592 | ||
1593 | /** | |
1594 | Tests whether the range `R` has lvalue elements. These are defined as | |
1595 | elements that can be passed by reference and have their address taken. | |
1596 | The following code should compile for any range with lvalue elements. | |
1597 | ---- | |
1598 | void passByRef(ref ElementType!R stuff); | |
1599 | ... | |
1600 | static assert(isInputRange!R); | |
1601 | passByRef(r.front); | |
1602 | static if (isBidirectionalRange!R) passByRef(r.back); | |
1603 | static if (isRandomAccessRange!R) passByRef(r[0]); | |
1604 | ---- | |
1605 | */ | |
1606 | enum bool hasLvalueElements(R) = isInputRange!R | |
1607 | && is(typeof(isLvalue(lvalueOf!R.front))) | |
1608 | && (!isBidirectionalRange!R | |
1609 | || is(typeof(isLvalue(lvalueOf!R.back)))) | |
1610 | && (!isRandomAccessRange!R | |
1611 | || is(typeof(isLvalue(lvalueOf!R[0])))); | |
1612 | ||
1613 | /* Compile successfully if argument of type T is an lvalue | |
1614 | */ | |
1615 | private void isLvalue(T)(T) | |
1616 | if (0); | |
1617 | ||
1618 | private void isLvalue(T)(ref T) | |
1619 | if (1); | |
1620 | ||
1621 | /// | |
1622 | @safe unittest | |
1623 | { | |
1624 | import std.range : iota, chain; | |
1625 | ||
1626 | static assert( hasLvalueElements!(int[])); | |
1627 | static assert( hasLvalueElements!(const(int)[])); | |
1628 | static assert( hasLvalueElements!(inout(int)[])); | |
1629 | static assert( hasLvalueElements!(immutable(int)[])); | |
1630 | static assert(!hasLvalueElements!(typeof(iota(3)))); | |
1631 | ||
1632 | static assert(!hasLvalueElements!( string)); | |
1633 | static assert( hasLvalueElements!(dstring)); | |
1634 | static assert(!hasLvalueElements!( char[])); | |
1635 | static assert( hasLvalueElements!(dchar[])); | |
1636 | ||
1637 | auto c = chain([1, 2, 3], [4, 5, 6]); | |
1638 | static assert( hasLvalueElements!(typeof(c))); | |
1639 | } | |
1640 | ||
1641 | @safe unittest | |
1642 | { | |
1643 | // bugfix 6336 | |
1644 | struct S { immutable int value; } | |
1645 | static assert( isInputRange!(S[])); | |
1646 | static assert( hasLvalueElements!(S[])); | |
1647 | } | |
1648 | ||
1649 | /** | |
1650 | Yields `true` if `R` has a `length` member that returns a value of `size_t` | |
1651 | type. `R` does not have to be a range. If `R` is a range, algorithms in the | |
1652 | standard library are only guaranteed to support `length` with type `size_t`. | |
1653 | ||
1654 | Note that `length` is an optional primitive as no range must implement it. Some | |
1655 | ranges do not store their length explicitly, some cannot compute it without | |
1656 | actually exhausting the range (e.g. socket streams), and some other ranges may | |
1657 | be infinite. | |
1658 | ||
1659 | Although narrow string types (`char[]`, `wchar[]`, and their qualified | |
1660 | derivatives) do define a `length` property, `hasLength` yields `false` for them. | |
1661 | This is because a narrow string's length does not reflect the number of | |
1662 | characters, but instead the number of encoding units, and as such is not useful | |
1663 | with range-oriented algorithms. To use strings as random-access ranges with | |
1664 | length, use $(REF representation, std, string) or $(REF byCodeUnit, std, utf). | |
1665 | */ | |
1666 | template hasLength(R) | |
1667 | { | |
1668 | static if (is(typeof(((R* r) => r.length)(null)) Length)) | |
1669 | enum bool hasLength = is(Length == size_t) && | |
1670 | !(isAutodecodableString!R && !isAggregateType!R); | |
1671 | else | |
1672 | enum bool hasLength = false; | |
1673 | } | |
1674 | ||
1675 | /// | |
1676 | @safe unittest | |
1677 | { | |
1678 | static assert(!hasLength!(char[])); | |
1679 | static assert( hasLength!(int[])); | |
1680 | static assert( hasLength!(inout(int)[])); | |
1681 | ||
1682 | struct A { size_t length() { return 0; } } | |
1683 | struct B { @property size_t length() { return 0; } } | |
1684 | static assert( hasLength!(A)); | |
1685 | static assert( hasLength!(B)); | |
1686 | } | |
1687 | ||
1688 | // test combinations which are invalid on some platforms | |
1689 | @safe unittest | |
1690 | { | |
1691 | struct A { ulong length; } | |
1692 | struct B { @property uint length() { return 0; } } | |
1693 | ||
1694 | static if (is(size_t == uint)) | |
1695 | { | |
1696 | static assert(!hasLength!(A)); | |
1697 | static assert(hasLength!(B)); | |
1698 | } | |
1699 | else static if (is(size_t == ulong)) | |
1700 | { | |
1701 | static assert(hasLength!(A)); | |
1702 | static assert(!hasLength!(B)); | |
1703 | } | |
1704 | } | |
1705 | ||
1706 | // test combinations which are invalid on all platforms | |
1707 | @safe unittest | |
1708 | { | |
1709 | struct A { long length; } | |
1710 | struct B { int length; } | |
1711 | struct C { ubyte length; } | |
1712 | struct D { char length; } | |
1713 | static assert(!hasLength!(A)); | |
1714 | static assert(!hasLength!(B)); | |
1715 | static assert(!hasLength!(C)); | |
1716 | static assert(!hasLength!(D)); | |
1717 | } | |
1718 | ||
1719 | /** | |
1720 | Returns `true` if `R` is an infinite input range. An | |
1721 | infinite input range is an input range that has a statically-defined | |
1722 | enumerated member called `empty` that is always `false`, | |
1723 | for example: | |
1724 | ||
1725 | ---- | |
1726 | struct MyInfiniteRange | |
1727 | { | |
1728 | enum bool empty = false; | |
1729 | ... | |
1730 | } | |
1731 | ---- | |
1732 | */ | |
1733 | ||
1734 | template isInfinite(R) | |
1735 | { | |
1736 | static if (isInputRange!R && __traits(compiles, { enum e = R.empty; })) | |
1737 | enum bool isInfinite = !R.empty; | |
1738 | else | |
1739 | enum bool isInfinite = false; | |
1740 | } | |
1741 | ||
1742 | /// | |
1743 | @safe unittest | |
1744 | { | |
1745 | import std.range : Repeat; | |
1746 | static assert(!isInfinite!(int[])); | |
1747 | static assert( isInfinite!(Repeat!(int))); | |
1748 | } | |
1749 | ||
1750 | /** | |
1751 | Returns `true` if `R` offers a slicing operator with integral boundaries | |
1752 | that returns a forward range type. | |
1753 | ||
1754 | For finite ranges, the result of `opSlice` must be of the same type as the | |
1755 | original range type. If the range defines `opDollar`, then it must support | |
1756 | subtraction. | |
1757 | ||
1758 | For infinite ranges, when $(I not) using `opDollar`, the result of `opSlice` | |
1759 | may be a forward range of any type. However, when using `opDollar`, the result | |
1760 | of `opSlice` must be of the same type as the original range type. | |
1761 | ||
1762 | The following expression must be true for `hasSlicing` to be `true`: | |
1763 | ||
1764 | ---- | |
1765 | isForwardRange!R | |
1766 | && !(isAutodecodableString!R && !isAggregateType!R) | |
1767 | && is(typeof((R r) { return r[1 .. 1].length; } (R.init)) == size_t) | |
1768 | && (is(typeof(lvalueOf!R[1 .. 1]) == R) || isInfinite!R) | |
1769 | && (!is(typeof(lvalueOf!R[0 .. $])) || is(typeof(lvalueOf!R[0 .. $]) == R)) | |
1770 | && (!is(typeof(lvalueOf!R[0 .. $])) || isInfinite!R | |
1771 | || is(typeof(lvalueOf!R[0 .. $ - 1]) == R)) | |
1772 | && is(typeof((ref R r) | |
1773 | { | |
1774 | static assert(isForwardRange!(typeof(r[1 .. 2]))); | |
1775 | })); | |
1776 | ---- | |
1777 | */ | |
1778 | enum bool hasSlicing(R) = isForwardRange!R | |
1779 | && !(isAutodecodableString!R && !isAggregateType!R) | |
1780 | && is(typeof((R r) { return r[1 .. 1].length; } (R.init)) == size_t) | |
1781 | && (is(typeof(lvalueOf!R[1 .. 1]) == R) || isInfinite!R) | |
1782 | && (!is(typeof(lvalueOf!R[0 .. $])) || is(typeof(lvalueOf!R[0 .. $]) == R)) | |
1783 | && (!is(typeof(lvalueOf!R[0 .. $])) || isInfinite!R | |
1784 | || is(typeof(lvalueOf!R[0 .. $ - 1]) == R)) | |
1785 | && is(typeof((ref R r) | |
1786 | { | |
1787 | static assert(isForwardRange!(typeof(r[1 .. 2]))); | |
1788 | })); | |
1789 | ||
1790 | /// | |
1791 | @safe unittest | |
1792 | { | |
1793 | import std.range : takeExactly; | |
1794 | static assert( hasSlicing!(int[])); | |
1795 | static assert( hasSlicing!(const(int)[])); | |
1796 | static assert(!hasSlicing!(const int[])); | |
1797 | static assert( hasSlicing!(inout(int)[])); | |
1798 | static assert(!hasSlicing!(inout int [])); | |
1799 | static assert( hasSlicing!(immutable(int)[])); | |
1800 | static assert(!hasSlicing!(immutable int[])); | |
1801 | static assert(!hasSlicing!string); | |
1802 | static assert( hasSlicing!dstring); | |
1803 | ||
1804 | enum rangeFuncs = "@property int front();" ~ | |
1805 | "void popFront();" ~ | |
1806 | "@property bool empty();" ~ | |
1807 | "@property auto save() { return this; }" ~ | |
1808 | "@property size_t length();"; | |
1809 | ||
1810 | struct A { mixin(rangeFuncs); int opSlice(size_t, size_t); } | |
1811 | struct B { mixin(rangeFuncs); B opSlice(size_t, size_t); } | |
1812 | struct C { mixin(rangeFuncs); @disable this(); C opSlice(size_t, size_t); } | |
1813 | struct D { mixin(rangeFuncs); int[] opSlice(size_t, size_t); } | |
1814 | static assert(!hasSlicing!(A)); | |
1815 | static assert( hasSlicing!(B)); | |
1816 | static assert( hasSlicing!(C)); | |
1817 | static assert(!hasSlicing!(D)); | |
1818 | ||
1819 | struct InfOnes | |
1820 | { | |
1821 | enum empty = false; | |
1822 | void popFront() {} | |
1823 | @property int front() { return 1; } | |
1824 | @property InfOnes save() { return this; } | |
1825 | auto opSlice(size_t i, size_t j) { return takeExactly(this, j - i); } | |
1826 | auto opSlice(size_t i, Dollar d) { return this; } | |
1827 | ||
1828 | struct Dollar {} | |
1829 | Dollar opDollar() const { return Dollar.init; } | |
1830 | } | |
1831 | ||
1832 | static assert(hasSlicing!InfOnes); | |
1833 | } | |
1834 | ||
1835 | // https://issues.dlang.org/show_bug.cgi?id=24348 | |
1836 | @safe unittest | |
1837 | { | |
1838 | static struct Slice | |
1839 | { | |
1840 | size_t length; | |
1841 | bool empty() => length == 0; | |
1842 | int front() => 0; | |
1843 | void popFront() { --length; } | |
1844 | Slice save() => this; | |
1845 | } | |
1846 | ||
1847 | static struct InfZeros | |
1848 | { | |
1849 | enum empty = false; | |
1850 | int front() => 0; | |
1851 | void popFront() {} | |
1852 | InfZeros save() => this; | |
1853 | ||
1854 | Slice opIndex(size_t[2] bounds) | |
1855 | { | |
1856 | size_t i = bounds[0], j = bounds[1]; | |
1857 | size_t length = i <= j ? j - i : 0; | |
1858 | return Slice(length); | |
1859 | } | |
1860 | ||
1861 | size_t[2] opSlice(size_t dim : 0)(size_t i, size_t j) => [i, j]; | |
1862 | } | |
1863 | ||
1864 | static assert(hasSlicing!InfZeros); | |
1865 | } | |
1866 | ||
1867 | /** | |
1868 | This is a best-effort implementation of `length` for any kind of | |
1869 | range. | |
1870 | ||
1871 | If `hasLength!Range`, simply returns `range.length` without | |
1872 | checking `upTo` (when specified). | |
1873 | ||
1874 | Otherwise, walks the range through its length and returns the number | |
1875 | of elements seen. Performes $(BIGOH n) evaluations of `range.empty` | |
1876 | and `range.popFront()`, where `n` is the effective length of $(D | |
1877 | range). | |
1878 | ||
1879 | The `upTo` parameter is useful to "cut the losses" in case | |
1880 | the interest is in seeing whether the range has at least some number | |
1881 | of elements. If the parameter `upTo` is specified, stops if $(D | |
1882 | upTo) steps have been taken and returns `upTo`. | |
1883 | ||
1884 | Infinite ranges are compatible, provided the parameter `upTo` is | |
1885 | specified, in which case the implementation simply returns upTo. | |
1886 | */ | |
1887 | auto walkLength(Range)(Range range) | |
1888 | if (isInputRange!Range && !isInfinite!Range) | |
1889 | { | |
1890 | static if (hasLength!Range) | |
1891 | return range.length; | |
1892 | else | |
1893 | { | |
1894 | size_t result; | |
1895 | static if (autodecodeStrings && isNarrowString!Range) | |
1896 | { | |
1897 | import std.utf : codeUnitLimit; | |
1898 | result = range.length; | |
1899 | foreach (const i, const c; range) | |
1900 | { | |
1901 | if (c >= codeUnitLimit!Range) | |
1902 | { | |
1903 | result = i; | |
1904 | break; | |
1905 | } | |
1906 | } | |
1907 | range = range[result .. $]; | |
1908 | } | |
1909 | for ( ; !range.empty ; range.popFront() ) | |
1910 | ++result; | |
1911 | return result; | |
1912 | } | |
1913 | } | |
1914 | /// ditto | |
1915 | auto walkLength(Range)(Range range, const size_t upTo) | |
1916 | if (isInputRange!Range) | |
1917 | { | |
1918 | static if (hasLength!Range) | |
1919 | return range.length; | |
1920 | else static if (isInfinite!Range) | |
1921 | return upTo; | |
1922 | else | |
1923 | { | |
1924 | size_t result; | |
1925 | static if (autodecodeStrings && isNarrowString!Range) | |
1926 | { | |
1927 | import std.utf : codeUnitLimit; | |
1928 | result = upTo > range.length ? range.length : upTo; | |
1929 | foreach (const i, const c; range[0 .. result]) | |
1930 | { | |
1931 | if (c >= codeUnitLimit!Range) | |
1932 | { | |
1933 | result = i; | |
1934 | break; | |
1935 | } | |
1936 | } | |
1937 | range = range[result .. $]; | |
1938 | } | |
1939 | for ( ; result < upTo && !range.empty ; range.popFront() ) | |
1940 | ++result; | |
1941 | return result; | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | /// | |
1946 | @safe unittest | |
1947 | { | |
1948 | import std.range : iota; | |
1949 | ||
1950 | assert(10.iota.walkLength == 10); | |
1951 | // iota has a length function, and therefore the | |
1952 | // doesn't have to be walked, and the upTo | |
1953 | // parameter is ignored | |
1954 | assert(10.iota.walkLength(5) == 10); | |
1955 | } | |
1956 | ||
1957 | @safe unittest | |
1958 | { | |
1959 | import std.algorithm.iteration : filter; | |
1960 | import std.range : recurrence, take; | |
1961 | ||
1962 | //hasLength Range | |
1963 | int[] a = [ 1, 2, 3 ]; | |
1964 | assert(walkLength(a) == 3); | |
1965 | assert(walkLength(a, 0) == 3); | |
1966 | assert(walkLength(a, 2) == 3); | |
1967 | assert(walkLength(a, 4) == 3); | |
1968 | ||
1969 | //Forward Range | |
1970 | auto b = filter!"true"([1, 2, 3, 4]); | |
1971 | assert(b.walkLength() == 4); | |
1972 | assert(b.walkLength(0) == 0); | |
1973 | assert(b.walkLength(2) == 2); | |
1974 | assert(b.walkLength(4) == 4); | |
1975 | assert(b.walkLength(6) == 4); | |
1976 | ||
1977 | //Infinite Range | |
1978 | auto fibs = recurrence!"a[n-1] + a[n-2]"(1, 1); | |
1979 | assert(!__traits(compiles, fibs.walkLength())); | |
1980 | assert(fibs.take(10).walkLength() == 10); | |
1981 | assert(fibs.walkLength(55) == 55); | |
1982 | } | |
1983 | ||
1984 | /** | |
1985 | `popFrontN` eagerly advances `r` itself (not a copy) up to `n` times | |
1986 | (by calling `r.popFront`). `popFrontN` takes `r` by `ref`, | |
1987 | so it mutates the original range. Completes in $(BIGOH 1) steps for ranges | |
1988 | that support slicing and have length. | |
1989 | Completes in $(BIGOH n) time for all other ranges. | |
1990 | ||
1991 | `popBackN` behaves the same as `popFrontN` but instead removes | |
1992 | elements from the back of the (bidirectional) range instead of the front. | |
1993 | ||
1994 | Returns: | |
1995 | How much `r` was actually advanced, which may be less than `n` if | |
1996 | `r` did not have at least `n` elements. | |
1997 | ||
1998 | See_Also: $(REF drop, std, range), $(REF dropBack, std, range) | |
1999 | */ | |
2000 | size_t popFrontN(Range)(ref Range r, size_t n) | |
2001 | if (isInputRange!Range) | |
2002 | { | |
2003 | static if (hasLength!Range) | |
2004 | { | |
2005 | n = cast(size_t) (n < r.length ? n : r.length); | |
2006 | } | |
2007 | ||
2008 | static if (hasSlicing!Range && is(typeof(r = r[n .. $]))) | |
2009 | { | |
2010 | r = r[n .. $]; | |
2011 | } | |
2012 | else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar. | |
2013 | { | |
2014 | r = r[n .. r.length]; | |
2015 | } | |
2016 | else | |
2017 | { | |
2018 | static if (hasLength!Range) | |
2019 | { | |
2020 | foreach (i; 0 .. n) | |
2021 | r.popFront(); | |
2022 | } | |
2023 | else | |
2024 | { | |
2025 | foreach (i; 0 .. n) | |
2026 | { | |
2027 | if (r.empty) return i; | |
2028 | r.popFront(); | |
2029 | } | |
2030 | } | |
2031 | } | |
2032 | return n; | |
2033 | } | |
2034 | ||
2035 | /// ditto | |
2036 | size_t popBackN(Range)(ref Range r, size_t n) | |
2037 | if (isBidirectionalRange!Range) | |
2038 | { | |
2039 | static if (hasLength!Range) | |
2040 | { | |
2041 | n = cast(size_t) (n < r.length ? n : r.length); | |
2042 | } | |
2043 | ||
2044 | static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n]))) | |
2045 | { | |
2046 | r = r[0 .. $ - n]; | |
2047 | } | |
2048 | else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar. | |
2049 | { | |
2050 | r = r[0 .. r.length - n]; | |
2051 | } | |
2052 | else | |
2053 | { | |
2054 | static if (hasLength!Range) | |
2055 | { | |
2056 | foreach (i; 0 .. n) | |
2057 | r.popBack(); | |
2058 | } | |
2059 | else | |
2060 | { | |
2061 | foreach (i; 0 .. n) | |
2062 | { | |
2063 | if (r.empty) return i; | |
2064 | r.popBack(); | |
2065 | } | |
2066 | } | |
2067 | } | |
2068 | return n; | |
2069 | } | |
2070 | ||
2071 | /// | |
2072 | @safe unittest | |
2073 | { | |
2074 | int[] a = [ 1, 2, 3, 4, 5 ]; | |
2075 | a.popFrontN(2); | |
2076 | assert(a == [ 3, 4, 5 ]); | |
2077 | a.popFrontN(7); | |
2078 | assert(a == [ ]); | |
2079 | } | |
2080 | ||
2081 | /// | |
2082 | @safe unittest | |
2083 | { | |
2084 | import std.algorithm.comparison : equal; | |
2085 | import std.range : iota; | |
2086 | auto LL = iota(1L, 7L); | |
2087 | auto r = popFrontN(LL, 2); | |
2088 | assert(equal(LL, [3L, 4L, 5L, 6L])); | |
2089 | assert(r == 2); | |
2090 | } | |
2091 | ||
2092 | /// | |
2093 | @safe unittest | |
2094 | { | |
2095 | int[] a = [ 1, 2, 3, 4, 5 ]; | |
2096 | a.popBackN(2); | |
2097 | assert(a == [ 1, 2, 3 ]); | |
2098 | a.popBackN(7); | |
2099 | assert(a == [ ]); | |
2100 | } | |
2101 | ||
2102 | /// | |
2103 | @safe unittest | |
2104 | { | |
2105 | import std.algorithm.comparison : equal; | |
2106 | import std.range : iota; | |
2107 | auto LL = iota(1L, 7L); | |
2108 | auto r = popBackN(LL, 2); | |
2109 | assert(equal(LL, [1L, 2L, 3L, 4L])); | |
2110 | assert(r == 2); | |
2111 | } | |
2112 | ||
2113 | /** | |
2114 | Eagerly advances `r` itself (not a copy) exactly `n` times (by | |
2115 | calling `r.popFront`). `popFrontExactly` takes `r` by `ref`, | |
2116 | so it mutates the original range. Completes in $(BIGOH 1) steps for ranges | |
2117 | that support slicing, and have either length or are infinite. | |
2118 | Completes in $(BIGOH n) time for all other ranges. | |
2119 | ||
2120 | Note: Unlike $(LREF popFrontN), `popFrontExactly` will assume that the | |
2121 | range holds at least `n` elements. This makes `popFrontExactly` | |
2122 | faster than `popFrontN`, but it also means that if `range` does | |
2123 | not contain at least `n` elements, it will attempt to call `popFront` | |
2124 | on an empty range, which is undefined behavior. So, only use | |
2125 | `popFrontExactly` when it is guaranteed that `range` holds at least | |
2126 | `n` elements. | |
2127 | ||
2128 | `popBackExactly` will behave the same but instead removes elements from | |
2129 | the back of the (bidirectional) range instead of the front. | |
2130 | ||
2131 | See_Also: $(REF dropExactly, std, range), $(REF dropBackExactly, std, range) | |
2132 | */ | |
2133 | void popFrontExactly(Range)(ref Range r, size_t n) | |
2134 | if (isInputRange!Range) | |
2135 | { | |
2136 | static if (hasLength!Range) | |
2137 | assert(n <= r.length, "range is smaller than amount of items to pop"); | |
2138 | ||
2139 | static if (hasSlicing!Range && is(typeof(r = r[n .. $]))) | |
2140 | r = r[n .. $]; | |
2141 | else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar. | |
2142 | r = r[n .. r.length]; | |
2143 | else | |
2144 | foreach (i; 0 .. n) | |
2145 | r.popFront(); | |
2146 | } | |
2147 | ||
2148 | /// ditto | |
2149 | void popBackExactly(Range)(ref Range r, size_t n) | |
2150 | if (isBidirectionalRange!Range) | |
2151 | { | |
2152 | static if (hasLength!Range) | |
2153 | assert(n <= r.length, "range is smaller than amount of items to pop"); | |
2154 | ||
2155 | static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n]))) | |
2156 | r = r[0 .. $ - n]; | |
2157 | else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar. | |
2158 | r = r[0 .. r.length - n]; | |
2159 | else | |
2160 | foreach (i; 0 .. n) | |
2161 | r.popBack(); | |
2162 | } | |
2163 | ||
2164 | /// | |
2165 | @safe unittest | |
2166 | { | |
2167 | import std.algorithm.comparison : equal; | |
2168 | import std.algorithm.iteration : filterBidirectional; | |
2169 | ||
2170 | auto a = [1, 2, 3]; | |
2171 | a.popFrontExactly(1); | |
2172 | assert(a == [2, 3]); | |
2173 | a.popBackExactly(1); | |
2174 | assert(a == [2]); | |
2175 | ||
2176 | string s = "日本語"; | |
2177 | s.popFrontExactly(1); | |
2178 | assert(s == "本語"); | |
2179 | s.popBackExactly(1); | |
2180 | assert(s == "本"); | |
2181 | ||
2182 | auto bd = filterBidirectional!"true"([1, 2, 3]); | |
2183 | bd.popFrontExactly(1); | |
2184 | assert(bd.equal([2, 3])); | |
2185 | bd.popBackExactly(1); | |
2186 | assert(bd.equal([2])); | |
2187 | } | |
2188 | ||
2189 | /** | |
2190 | Moves the front of `r` out and returns it. | |
2191 | ||
2192 | If `r.front` is a struct with a destructor or copy constructor defined, it | |
2193 | is reset to its `.init` value after its value is moved. Otherwise, it is | |
2194 | left unchanged. | |
2195 | ||
2196 | In either case, `r.front` is left in a destroyable state that does not | |
2197 | allocate any resources. | |
2198 | */ | |
2199 | ElementType!R moveFront(R)(R r) | |
2200 | { | |
2201 | static if (is(typeof(&r.moveFront))) | |
2202 | { | |
2203 | return r.moveFront(); | |
2204 | } | |
2205 | else static if (!hasElaborateCopyConstructor!(ElementType!R)) | |
2206 | { | |
2207 | return r.front; | |
2208 | } | |
2209 | else static if (is(typeof(&(r.front())) == ElementType!R*)) | |
2210 | { | |
2211 | import std.algorithm.mutation : move; | |
2212 | return move(r.front); | |
2213 | } | |
2214 | else | |
2215 | { | |
2216 | static assert(0, | |
2217 | "Cannot move front of a range with a postblit and an rvalue front."); | |
2218 | } | |
2219 | } | |
2220 | ||
2221 | /// | |
2222 | @safe unittest | |
2223 | { | |
2224 | auto a = [ 1, 2, 3 ]; | |
2225 | assert(moveFront(a) == 1); | |
2226 | assert(a.length == 3); | |
2227 | ||
2228 | // define a perfunctory input range | |
2229 | struct InputRange | |
2230 | { | |
2231 | enum bool empty = false; | |
2232 | enum int front = 7; | |
2233 | void popFront() {} | |
2234 | int moveFront() { return 43; } | |
2235 | } | |
2236 | InputRange r; | |
2237 | // calls r.moveFront | |
2238 | assert(moveFront(r) == 43); | |
2239 | } | |
2240 | ||
2241 | @safe unittest | |
2242 | { | |
2243 | struct R | |
2244 | { | |
2245 | @property ref int front() { static int x = 42; return x; } | |
2246 | this(this){} | |
2247 | } | |
2248 | R r; | |
2249 | assert(moveFront(r) == 42); | |
2250 | } | |
2251 | ||
2252 | /** | |
2253 | Moves the back of `r` out and returns it. Leaves `r.back` in a | |
2254 | destroyable state that does not allocate any resources (usually equal | |
2255 | to its `.init` value). | |
2256 | */ | |
2257 | ElementType!R moveBack(R)(R r) | |
2258 | { | |
2259 | static if (is(typeof(&r.moveBack))) | |
2260 | { | |
2261 | return r.moveBack(); | |
2262 | } | |
2263 | else static if (!hasElaborateCopyConstructor!(ElementType!R)) | |
2264 | { | |
2265 | return r.back; | |
2266 | } | |
2267 | else static if (is(typeof(&(r.back())) == ElementType!R*)) | |
2268 | { | |
2269 | import std.algorithm.mutation : move; | |
2270 | return move(r.back); | |
2271 | } | |
2272 | else | |
2273 | { | |
2274 | static assert(0, | |
2275 | "Cannot move back of a range with a postblit and an rvalue back."); | |
2276 | } | |
2277 | } | |
2278 | ||
2279 | /// | |
2280 | @safe unittest | |
2281 | { | |
2282 | struct TestRange | |
2283 | { | |
2284 | int payload = 5; | |
2285 | @property bool empty() { return false; } | |
2286 | @property TestRange save() { return this; } | |
2287 | @property ref int front() return { return payload; } | |
2288 | @property ref int back() return { return payload; } | |
2289 | void popFront() { } | |
2290 | void popBack() { } | |
2291 | } | |
2292 | static assert(isBidirectionalRange!TestRange); | |
2293 | TestRange r; | |
2294 | auto x = moveBack(r); | |
2295 | assert(x == 5); | |
2296 | } | |
2297 | ||
2298 | /** | |
2299 | Moves element at index `i` of `r` out and returns it. Leaves $(D | |
2300 | r[i]) in a destroyable state that does not allocate any resources | |
2301 | (usually equal to its `.init` value). | |
2302 | */ | |
2303 | ElementType!R moveAt(R)(R r, size_t i) | |
2304 | { | |
2305 | static if (is(typeof(&r.moveAt))) | |
2306 | { | |
2307 | return r.moveAt(i); | |
2308 | } | |
2309 | else static if (!hasElaborateCopyConstructor!(ElementType!(R))) | |
2310 | { | |
2311 | return r[i]; | |
2312 | } | |
2313 | else static if (is(typeof(&r[i]) == ElementType!R*)) | |
2314 | { | |
2315 | import std.algorithm.mutation : move; | |
2316 | return move(r[i]); | |
2317 | } | |
2318 | else | |
2319 | { | |
2320 | static assert(0, | |
2321 | "Cannot move element of a range with a postblit and rvalue elements."); | |
2322 | } | |
2323 | } | |
2324 | ||
2325 | /// | |
2326 | @safe unittest | |
2327 | { | |
2328 | auto a = [1,2,3,4]; | |
2329 | foreach (idx, it; a) | |
2330 | { | |
2331 | assert(it == moveAt(a, idx)); | |
2332 | } | |
2333 | } | |
2334 | ||
2335 | @safe unittest | |
2336 | { | |
2337 | import std.internal.test.dummyrange; | |
2338 | ||
2339 | foreach (DummyType; AllDummyRanges) | |
2340 | { | |
2341 | auto d = DummyType.init; | |
2342 | assert(moveFront(d) == 1); | |
2343 | ||
2344 | static if (isBidirectionalRange!DummyType) | |
2345 | { | |
2346 | assert(moveBack(d) == 10); | |
2347 | } | |
2348 | ||
2349 | static if (isRandomAccessRange!DummyType) | |
2350 | { | |
2351 | assert(moveAt(d, 2) == 3); | |
2352 | } | |
2353 | } | |
2354 | } | |
2355 | ||
2356 | /** | |
2357 | Implements the range interface primitive `empty` for types that | |
2358 | obey $(LREF hasLength) property and for narrow strings. Due to the | |
2359 | fact that nonmember functions can be called with the first argument | |
2360 | using the dot notation, `a.empty` is equivalent to `empty(a)`. | |
2361 | */ | |
2362 | @property bool empty(T)(auto ref scope T a) | |
2363 | if (is(typeof(a.length) : size_t)) | |
2364 | { | |
2365 | return !a.length; | |
2366 | } | |
2367 | ||
2368 | /// | |
2369 | @safe pure nothrow unittest | |
2370 | { | |
2371 | auto a = [ 1, 2, 3 ]; | |
2372 | assert(!a.empty); | |
2373 | assert(a[3 .. $].empty); | |
2374 | ||
2375 | int[string] b; | |
2376 | assert(b.empty); | |
2377 | b["zero"] = 0; | |
2378 | assert(!b.empty); | |
2379 | } | |
2380 | ||
2381 | /** | |
2382 | Implements the range interface primitive `save` for built-in | |
2383 | arrays. Due to the fact that nonmember functions can be called with | |
2384 | the first argument using the dot notation, `array.save` is | |
2385 | equivalent to `save(array)`. The function does not duplicate the | |
2386 | content of the array, it simply returns its argument. | |
2387 | */ | |
2388 | @property inout(T)[] save(T)(return scope inout(T)[] a) @safe pure nothrow @nogc | |
2389 | { | |
2390 | return a; | |
2391 | } | |
2392 | ||
2393 | /// | |
2394 | @safe pure nothrow unittest | |
2395 | { | |
2396 | auto a = [ 1, 2, 3 ]; | |
2397 | auto b = a.save; | |
2398 | assert(b is a); | |
2399 | } | |
2400 | ||
2401 | /** | |
2402 | Implements the range interface primitive `popFront` for built-in | |
2403 | arrays. Due to the fact that nonmember functions can be called with | |
2404 | the first argument using the dot notation, `array.popFront` is | |
2405 | equivalent to `popFront(array)`. For $(GLOSSARY narrow strings), | |
2406 | `popFront` automatically advances to the next $(GLOSSARY code | |
2407 | point). | |
2408 | */ | |
2409 | void popFront(T)(scope ref inout(T)[] a) @safe pure nothrow @nogc | |
2410 | if (!isAutodecodableString!(T[]) && !is(T[] == void[])) | |
2411 | { | |
2412 | assert(a.length, "Attempting to popFront() past the end of an array of " ~ T.stringof); | |
2413 | a = a[1 .. $]; | |
2414 | } | |
2415 | ||
2416 | /// | |
2417 | @safe pure nothrow unittest | |
2418 | { | |
2419 | auto a = [ 1, 2, 3 ]; | |
2420 | a.popFront(); | |
2421 | assert(a == [ 2, 3 ]); | |
2422 | } | |
2423 | ||
2424 | @safe unittest | |
2425 | { | |
2426 | static assert(!is(typeof({ int[4] a; popFront(a); }))); | |
2427 | static assert(!is(typeof({ immutable int[] a; popFront(a); }))); | |
2428 | static assert(!is(typeof({ void[] a; popFront(a); }))); | |
2429 | } | |
2430 | ||
2431 | /// ditto | |
2432 | void popFront(C)(scope ref inout(C)[] str) @trusted pure nothrow | |
2433 | if (isAutodecodableString!(C[])) | |
2434 | { | |
2435 | import std.algorithm.comparison : min; | |
2436 | ||
2437 | assert(str.length, "Attempting to popFront() past the end of an array of " ~ C.stringof); | |
2438 | ||
2439 | static if (is(immutable C == immutable char)) | |
2440 | { | |
2441 | static immutable ubyte[] charWidthTab = [ | |
2442 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2443 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2444 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
2445 | 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 1, 1 | |
2446 | ]; | |
2447 | ||
2448 | immutable c = str[0]; | |
2449 | immutable charWidth = c < 192 ? 1 : charWidthTab.ptr[c - 192]; | |
2450 | str = str.ptr[min(str.length, charWidth) .. str.length]; | |
2451 | } | |
2452 | else static if (is(immutable C == immutable wchar)) | |
2453 | { | |
2454 | immutable u = str[0]; | |
2455 | immutable seqLen = 1 + (u >= 0xD800 && u <= 0xDBFF); | |
2456 | str = str.ptr[min(seqLen, str.length) .. str.length]; | |
2457 | } | |
2458 | else static assert(0, "Bad template constraint."); | |
2459 | } | |
2460 | ||
2461 | @safe pure unittest | |
2462 | { | |
2463 | import std.meta : AliasSeq; | |
2464 | ||
2465 | static foreach (S; AliasSeq!(string, wstring, dstring)) | |
2466 | {{ | |
2467 | S s = "\xC2\xA9hello"; | |
2468 | s.popFront(); | |
2469 | assert(s == "hello"); | |
2470 | ||
2471 | S str = "hello\U00010143\u0100\U00010143"; | |
2472 | foreach (dchar c; ['h', 'e', 'l', 'l', 'o', '\U00010143', '\u0100', '\U00010143']) | |
2473 | { | |
2474 | assert(str.front == c); | |
2475 | str.popFront(); | |
2476 | } | |
2477 | assert(str.empty); | |
2478 | ||
2479 | static assert(!is(typeof({ immutable S a; popFront(a); }))); | |
2480 | static assert(!is(typeof({ typeof(S.init[0])[4] a; popFront(a); }))); | |
2481 | }} | |
2482 | ||
2483 | C[] _eatString(C)(C[] str) | |
2484 | { | |
2485 | while (!str.empty) | |
2486 | str.popFront(); | |
2487 | ||
2488 | return str; | |
2489 | } | |
2490 | enum checkCTFE = _eatString("ウェブサイト@La_Verité.com"); | |
2491 | static assert(checkCTFE.empty); | |
2492 | enum checkCTFEW = _eatString("ウェブサイト@La_Verité.com"w); | |
2493 | static assert(checkCTFEW.empty); | |
2494 | } | |
2495 | ||
2496 | // https://issues.dlang.org/show_bug.cgi?id=16090 | |
2497 | @safe unittest | |
2498 | { | |
2499 | string s = "\u00E4"; | |
2500 | assert(s.length == 2); | |
2501 | s = s[0 .. 1]; | |
2502 | assert(s.length == 1); | |
2503 | s.popFront; | |
2504 | assert(s.empty); | |
2505 | } | |
2506 | ||
2507 | @safe unittest | |
2508 | { | |
2509 | wstring s = "\U00010000"; | |
2510 | assert(s.length == 2); | |
2511 | s = s[0 .. 1]; | |
2512 | assert(s.length == 1); | |
2513 | s.popFront; | |
2514 | assert(s.empty); | |
2515 | } | |
2516 | ||
2517 | /** | |
2518 | Implements the range interface primitive `popBack` for built-in | |
2519 | arrays. Due to the fact that nonmember functions can be called with | |
2520 | the first argument using the dot notation, `array.popBack` is | |
2521 | equivalent to `popBack(array)`. For $(GLOSSARY narrow strings), $(D | |
2522 | popFront) automatically eliminates the last $(GLOSSARY code point). | |
2523 | */ | |
2524 | void popBack(T)(scope ref inout(T)[] a) @safe pure nothrow @nogc | |
2525 | if (!isAutodecodableString!(T[]) && !is(T[] == void[])) | |
2526 | { | |
2527 | assert(a.length); | |
2528 | a = a[0 .. $ - 1]; | |
2529 | } | |
2530 | ||
2531 | /// | |
2532 | @safe pure nothrow unittest | |
2533 | { | |
2534 | auto a = [ 1, 2, 3 ]; | |
2535 | a.popBack(); | |
2536 | assert(a == [ 1, 2 ]); | |
2537 | } | |
2538 | ||
2539 | @safe unittest | |
2540 | { | |
2541 | static assert(!is(typeof({ immutable int[] a; popBack(a); }))); | |
2542 | static assert(!is(typeof({ int[4] a; popBack(a); }))); | |
2543 | static assert(!is(typeof({ void[] a; popBack(a); }))); | |
2544 | } | |
2545 | ||
2546 | /// ditto | |
2547 | void popBack(T)(scope ref inout(T)[] a) @safe pure | |
2548 | if (isAutodecodableString!(T[])) | |
2549 | { | |
2550 | import std.utf : strideBack; | |
2551 | assert(a.length, "Attempting to popBack() past the front of an array of " ~ T.stringof); | |
2552 | a = a[0 .. $ - strideBack(a, $)]; | |
2553 | } | |
2554 | ||
2555 | @safe pure unittest | |
2556 | { | |
2557 | import std.meta : AliasSeq; | |
2558 | ||
2559 | static foreach (S; AliasSeq!(string, wstring, dstring)) | |
2560 | {{ | |
2561 | S s = "hello\xE2\x89\xA0"; | |
2562 | s.popBack(); | |
2563 | assert(s == "hello"); | |
2564 | S s3 = "\xE2\x89\xA0"; | |
2565 | auto c = s3.back; | |
2566 | assert(c == cast(dchar)'\u2260'); | |
2567 | s3.popBack(); | |
2568 | assert(s3 == ""); | |
2569 | ||
2570 | S str = "\U00010143\u0100\U00010143hello"; | |
2571 | foreach (dchar ch; ['o', 'l', 'l', 'e', 'h', '\U00010143', '\u0100', '\U00010143']) | |
2572 | { | |
2573 | assert(str.back == ch); | |
2574 | str.popBack(); | |
2575 | } | |
2576 | assert(str.empty); | |
2577 | ||
2578 | static assert(!is(typeof({ immutable S a; popBack(a); }))); | |
2579 | static assert(!is(typeof({ typeof(S.init[0])[4] a; popBack(a); }))); | |
2580 | }} | |
2581 | } | |
2582 | ||
2583 | /** | |
2584 | EXPERIMENTAL: to try out removing autodecoding, set the version | |
2585 | `NoAutodecodeStrings`. Most things are expected to fail with this version | |
2586 | currently. | |
2587 | */ | |
2588 | version (NoAutodecodeStrings) | |
2589 | { | |
2590 | enum autodecodeStrings = false; | |
2591 | } | |
2592 | else | |
2593 | { | |
2594 | /// | |
2595 | enum autodecodeStrings = true; | |
2596 | } | |
2597 | ||
2598 | /** | |
2599 | Implements the range interface primitive `front` for built-in | |
2600 | arrays. Due to the fact that nonmember functions can be called with | |
2601 | the first argument using the dot notation, `array.front` is | |
2602 | equivalent to `front(array)`. For $(GLOSSARY narrow strings), $(D | |
2603 | front) automatically returns the first $(GLOSSARY code point) as _a $(D | |
2604 | dchar). | |
2605 | */ | |
2606 | @property ref inout(T) front(T)(return scope inout(T)[] a) @safe pure nothrow @nogc | |
2607 | if (!isAutodecodableString!(T[]) && !is(T[] == void[])) | |
2608 | { | |
2609 | assert(a.length, "Attempting to fetch the front of an empty array of " ~ T.stringof); | |
2610 | return a[0]; | |
2611 | } | |
2612 | ||
2613 | /// | |
2614 | @safe pure nothrow unittest | |
2615 | { | |
2616 | int[] a = [ 1, 2, 3 ]; | |
2617 | assert(a.front == 1); | |
2618 | } | |
2619 | ||
2620 | @safe pure nothrow unittest | |
2621 | { | |
2622 | auto a = [ 1, 2 ]; | |
2623 | a.front = 4; | |
2624 | assert(a.front == 4); | |
2625 | assert(a == [ 4, 2 ]); | |
2626 | ||
2627 | immutable b = [ 1, 2 ]; | |
2628 | assert(b.front == 1); | |
2629 | ||
2630 | int[2] c = [ 1, 2 ]; | |
2631 | assert(c.front == 1); | |
2632 | } | |
2633 | ||
2634 | /// ditto | |
2635 | @property dchar front(T)(scope const(T)[] a) @safe pure | |
2636 | if (isAutodecodableString!(T[])) | |
2637 | { | |
2638 | import std.utf : decode; | |
2639 | assert(a.length, "Attempting to fetch the front of an empty array of " ~ T.stringof); | |
2640 | size_t i = 0; | |
2641 | return decode(a, i); | |
2642 | } | |
2643 | ||
2644 | /** | |
2645 | Implements the range interface primitive `back` for built-in | |
2646 | arrays. Due to the fact that nonmember functions can be called with | |
2647 | the first argument using the dot notation, `array.back` is | |
2648 | equivalent to `back(array)`. For $(GLOSSARY narrow strings), $(D | |
2649 | back) automatically returns the last $(GLOSSARY code point) as _a $(D | |
2650 | dchar). | |
2651 | */ | |
2652 | @property ref inout(T) back(T)(return scope inout(T)[] a) @safe pure nothrow @nogc | |
2653 | if (!isAutodecodableString!(T[]) && !is(T[] == void[])) | |
2654 | { | |
2655 | assert(a.length, "Attempting to fetch the back of an empty array of " ~ T.stringof); | |
2656 | return a[$ - 1]; | |
2657 | } | |
2658 | ||
2659 | /// | |
2660 | @safe pure nothrow unittest | |
2661 | { | |
2662 | int[] a = [ 1, 2, 3 ]; | |
2663 | assert(a.back == 3); | |
2664 | a.back += 4; | |
2665 | assert(a.back == 7); | |
2666 | } | |
2667 | ||
2668 | @safe pure nothrow unittest | |
2669 | { | |
2670 | immutable b = [ 1, 2, 3 ]; | |
2671 | assert(b.back == 3); | |
2672 | ||
2673 | int[3] c = [ 1, 2, 3 ]; | |
2674 | assert(c.back == 3); | |
2675 | } | |
2676 | ||
2677 | /// ditto | |
2678 | // Specialization for strings | |
2679 | @property dchar back(T)(scope const(T)[] a) @safe pure | |
2680 | if (isAutodecodableString!(T[])) | |
2681 | { | |
2682 | import std.utf : decode, strideBack; | |
2683 | assert(a.length, "Attempting to fetch the back of an empty array of " ~ T.stringof); | |
2684 | size_t i = a.length - strideBack(a, a.length); | |
2685 | return decode(a, i); | |
2686 | } | |
2687 | ||
2688 | /* | |
2689 | Implements `length` for a range by forwarding it to `member`. | |
2690 | */ | |
2691 | package(std) mixin template ImplementLength(alias member) | |
2692 | { | |
2693 | static if (hasLength!(typeof(member))) | |
2694 | { | |
2695 | @property auto length() | |
2696 | { | |
2697 | return member.length; | |
2698 | } | |
2699 | alias opDollar = length; | |
2700 | } | |
2701 | } | |
2702 | ||
2703 | @safe unittest | |
2704 | { | |
2705 | import std.meta : AliasSeq; | |
2706 | ||
2707 | foreach (alias E; AliasSeq!(noreturn, const(noreturn), immutable(noreturn) )) | |
2708 | { | |
2709 | alias R = E[]; | |
2710 | ||
2711 | static assert(isInputRange!R); | |
2712 | static assert(isForwardRange!R); | |
2713 | static assert(isBidirectionalRange!R); | |
2714 | static assert(isRandomAccessRange!R); | |
2715 | } | |
2716 | ||
2717 | static assert(isOutputRange!(noreturn[], noreturn)); | |
2718 | } |