]> git.ipfire.org Git - thirdparty/glibc.git/blame_incremental - math/test-tgmath.c
Linux: Fix typo in comment in termios_internals.h
[thirdparty/glibc.git] / math / test-tgmath.c
... / ...
CommitLineData
1/* Test compilation of tgmath macros.
2 Copyright (C) 2001-2025 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19#ifndef HAVE_MAIN
20#include <float.h>
21#include <math.h>
22#include <stdint.h>
23#include <stdio.h>
24#include <tgmath.h>
25
26//#define DEBUG
27
28static void compile_test (void);
29static void compile_testf (void);
30#if LDBL_MANT_DIG > DBL_MANT_DIG
31static void compile_testl (void);
32#endif
33
34float fx;
35double dx;
36long double lx;
37const float fy = 1.25;
38const double dy = 1.25;
39const long double ly = 1.25;
40complex float fz;
41complex double dz;
42complex long double lz;
43
44volatile int count_double;
45volatile int count_float;
46volatile int count_ldouble;
47volatile int count_cdouble;
48volatile int count_cfloat;
49volatile int count_cldouble;
50
51#define NCALLS 194
52#define NCALLS_INT 4
53#define NCCALLS 47
54
55static int
56do_test (void)
57{
58 int result = 0;
59
60 count_float = count_double = count_ldouble = 0;
61 count_cfloat = count_cdouble = count_cldouble = 0;
62 compile_test ();
63 if (count_float != 0 || count_cfloat != 0)
64 {
65 puts ("float function called for double test");
66 result = 1;
67 }
68 if (count_ldouble != 0 || count_cldouble != 0)
69 {
70 puts ("long double function called for double test");
71 result = 1;
72 }
73 if (count_double < NCALLS + NCALLS_INT)
74 {
75 printf ("double functions not called often enough (%d)\n",
76 count_double);
77 result = 1;
78 }
79 else if (count_double > NCALLS + NCALLS_INT)
80 {
81 printf ("double functions called too often (%d)\n",
82 count_double);
83 result = 1;
84 }
85 if (count_cdouble < NCCALLS)
86 {
87 printf ("double complex functions not called often enough (%d)\n",
88 count_cdouble);
89 result = 1;
90 }
91 else if (count_cdouble > NCCALLS)
92 {
93 printf ("double complex functions called too often (%d)\n",
94 count_cdouble);
95 result = 1;
96 }
97
98 count_float = count_double = count_ldouble = 0;
99 count_cfloat = count_cdouble = count_cldouble = 0;
100 compile_testf ();
101 if (count_double != 0 || count_cdouble != 0)
102 {
103 puts ("double function called for float test");
104 result = 1;
105 }
106 if (count_ldouble != 0 || count_cldouble != 0)
107 {
108 puts ("long double function called for float test");
109 result = 1;
110 }
111 if (count_float < NCALLS)
112 {
113 printf ("float functions not called often enough (%d)\n", count_float);
114 result = 1;
115 }
116 else if (count_float > NCALLS)
117 {
118 printf ("float functions called too often (%d)\n",
119 count_double);
120 result = 1;
121 }
122 if (count_cfloat < NCCALLS)
123 {
124 printf ("float complex functions not called often enough (%d)\n",
125 count_cfloat);
126 result = 1;
127 }
128 else if (count_cfloat > NCCALLS)
129 {
130 printf ("float complex functions called too often (%d)\n",
131 count_cfloat);
132 result = 1;
133 }
134
135#if LDBL_MANT_DIG > DBL_MANT_DIG
136 count_float = count_double = count_ldouble = 0;
137 count_cfloat = count_cdouble = count_cldouble = 0;
138 compile_testl ();
139 if (count_float != 0 || count_cfloat != 0)
140 {
141 puts ("float function called for long double test");
142 result = 1;
143 }
144 if (count_double != 0 || count_cdouble != 0)
145 {
146 puts ("double function called for long double test");
147 result = 1;
148 }
149 if (count_ldouble < NCALLS)
150 {
151 printf ("long double functions not called often enough (%d)\n",
152 count_ldouble);
153 result = 1;
154 }
155 else if (count_ldouble > NCALLS)
156 {
157 printf ("long double functions called too often (%d)\n",
158 count_double);
159 result = 1;
160 }
161 if (count_cldouble < NCCALLS)
162 {
163 printf ("long double complex functions not called often enough (%d)\n",
164 count_cldouble);
165 result = 1;
166 }
167 else if (count_cldouble > NCCALLS)
168 {
169 printf ("long double complex functions called too often (%d)\n",
170 count_cldouble);
171 result = 1;
172 }
173#endif
174
175 return result;
176}
177
178/* Now generate the three functions. */
179#define HAVE_MAIN
180
181#define F(name) name
182#define TYPE double
183#define TEST_INT 1
184#define x dx
185#define y dy
186#define z dz
187#define count count_double
188#define ccount count_cdouble
189#include "test-tgmath.c"
190
191#define F(name) name##f
192#define TYPE float
193#define x fx
194#define y fy
195#define z fz
196#define count count_float
197#define ccount count_cfloat
198#include "test-tgmath.c"
199
200#if LDBL_MANT_DIG > DBL_MANT_DIG
201#define F(name) name##l
202#define TYPE long double
203#define x lx
204#define y ly
205#define z lz
206#define count count_ldouble
207#define ccount count_cldouble
208#include "test-tgmath.c"
209#endif
210
211#define TEST_FUNCTION do_test ()
212#include "../test-skeleton.c"
213
214#else
215
216#ifdef DEBUG
217#define P() puts (__FUNCTION__)
218#else
219#define P()
220#endif
221
222static void
223F(compile_test) (void)
224{
225 TYPE a, b, c = 1.0;
226 complex TYPE d;
227 int i = 2;
228 int saved_count;
229 long int j;
230 long long int k = 2;
231 intmax_t m;
232 uintmax_t um;
233
234 a = cos (cos (x));
235 a = cospi (cospi (x));
236 b = acospi (acospi (a));
237 b = acos (acos (a));
238 a = sin (sin (x));
239 b = sinpi (sinpi (x));
240 b = asinpi (asinpi (a));
241 b = asin (asin (a));
242 a = tan (tan (x));
243 b = tanpi (tanpi (x));
244 b = atanpi (atanpi (a));
245 b = atan (atan (a));
246 c = atan2 (atan2 (a, c), atan2 (b, x));
247 b = atan2pi (atan2pi (a, c), atan2pi (b, x));
248 a = cosh (cosh (x));
249 b = acosh (acosh (a));
250 a = sinh (sinh (x));
251 b = asinh (asinh (a));
252 a = tanh (tanh (x));
253 b = atanh (atanh (a));
254 a = exp (exp (x));
255 b = log (log (a));
256 a = log10 (log10 (x));
257 b = ldexp (ldexp (a, 1), 5);
258 a = frexp (frexp (x, &i), &i);
259 b = expm1 (expm1 (a));
260 a = exp2m1 (exp2m1 (b));
261 b = exp10m1 (exp10m1 (a));
262 a = log1p (log1p (x));
263 b = logb (logb (a));
264 a = exp2 (exp2 (x));
265 a = exp10 (exp10 (x));
266 b = log2 (log2 (a));
267 a = log2p1 (log2p1 (x));
268 a = log10p1 (log10p1 (x));
269 a = logp1 (logp1 (x));
270 a = pow (pow (x, a), pow (c, b));
271 b = pown (pown (x, k), k);
272 b = compoundn (compoundn (x, k), k);
273 b = rootn (rootn (x, k), k);
274 a = powr (powr (x, a), powr (c, b));
275 b = sqrt (sqrt (a));
276 a = rsqrt (rsqrt (b));
277 a = hypot (hypot (x, b), hypot (c, a));
278 b = cbrt (cbrt (a));
279 a = ceil (ceil (x));
280 b = fabs (fabs (a));
281 a = floor (floor (x));
282 b = fmod (fmod (a, b), fmod (c, x));
283 a = nearbyint (nearbyint (x));
284 b = round (round (a));
285 c = roundeven (roundeven (a));
286 a = trunc (trunc (x));
287 b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
288 j = lrint (x) + lround (a);
289 k = llrint (b) + llround (c);
290 m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
291 um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
292 a = erf (erf (x));
293 b = erfc (erfc (a));
294 a = tgamma (tgamma (x));
295 b = lgamma (lgamma (a));
296 a = rint (rint (x));
297 b = nextafter (nextafter (a, b), nextafter (c, x));
298 a = nextdown (nextdown (a));
299 b = nexttoward (nexttoward (x, a), c);
300 a = nextup (nextup (a));
301 b = remainder (remainder (a, b), remainder (c, x));
302 a = scalb (scalb (x, a), (TYPE) (6));
303 k = scalbn (a, 7) + scalbln (c, 10l);
304 i = ilogb (x);
305 j = llogb (x);
306 a = fdim (fdim (x, a), fdim (c, b));
307 b = fmax (fmax (a, x), fmax (c, b));
308 a = fmin (fmin (x, a), fmin (c, b));
309 b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
310 a = fminmag (fminmag (x, a), fminmag (c, b));
311 b = fmaximum (fmaximum (a, x), fmaximum (c, b));
312 a = fminimum (fminimum (x, a), fminimum (c, b));
313 b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
314 a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
315 b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
316 a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
317 b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
318 a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
319 b = fma (sin (a), sin (x), sin (c));
320
321#ifdef TEST_INT
322 a = atan2 (i, b);
323 b = remquo (i, a, &i);
324 c = fma (i, b, i);
325 a = pow (i, c);
326#endif
327 x = a + b + c + i + j + k + m + um;
328
329 saved_count = count;
330 if (ccount != 0)
331 ccount = -10000;
332
333 d = cos (cos (z));
334 z = acos (acos (d));
335 d = sin (sin (z));
336 z = asin (asin (d));
337 d = tan (tan (z));
338 z = atan (atan (d));
339 d = cosh (cosh (z));
340 z = acosh (acosh (d));
341 d = sinh (sinh (z));
342 z = asinh (asinh (d));
343 d = tanh (tanh (z));
344 z = atanh (atanh (d));
345 d = exp (exp (z));
346 z = log (log (d));
347 d = sqrt (sqrt (z));
348 z = conj (conj (d));
349 d = fabs (conj (a));
350 z = pow (pow (a, d), pow (b, z));
351 d = cproj (cproj (z));
352 z += fabs (cproj (a));
353 a = carg (carg (z));
354 b = creal (creal (d));
355 c = cimag (cimag (z));
356 x += a + b + c + i + j + k;
357 z += d;
358
359 if (saved_count != count)
360 count = -10000;
361
362 if (0)
363 {
364 a = cos (y);
365 a = cospi (y);
366 a = acos (y);
367 a = acospi (y);
368 a = sin (y);
369 a = sinpi (y);
370 a = asin (y);
371 a = asinpi (y);
372 a = tan (y);
373 a = tanpi (y);
374 a = atan (y);
375 a = atanpi (y);
376 a = atan2 (y, y);
377 a = atan2pi (y, y);
378 a = cosh (y);
379 a = acosh (y);
380 a = sinh (y);
381 a = asinh (y);
382 a = tanh (y);
383 a = atanh (y);
384 a = exp (y);
385 a = log (y);
386 a = log10 (y);
387 a = ldexp (y, 5);
388 a = frexp (y, &i);
389 a = expm1 (y);
390 a = exp2m1 (y);
391 a = exp10m1 (y);
392 a = log1p (y);
393 a = logb (y);
394 a = exp2 (y);
395 a = exp10 (y);
396 a = log2 (y);
397 a = log2p1 (y);
398 a = log10p1 (y);
399 a = logp1 (y);
400 a = pow (y, y);
401 a = pown (y, 12345);
402 a = compoundn (y, 12345);
403 a = rootn (y, 12345);
404 a = powr (y, y);
405 a = sqrt (y);
406 a = rsqrt (y);
407 a = hypot (y, y);
408 a = cbrt (y);
409 a = ceil (y);
410 a = fabs (y);
411 a = floor (y);
412 a = fmod (y, y);
413 a = nearbyint (y);
414 a = round (y);
415 a = roundeven (y);
416 a = trunc (y);
417 a = remquo (y, y, &i);
418 j = lrint (y) + lround (y);
419 k = llrint (y) + llround (y);
420 m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
421 um = (ufromfp (y, FP_INT_TONEAREST, 8)
422 + ufromfpx (y, FP_INT_TOWARDZERO, 9));
423 a = erf (y);
424 a = erfc (y);
425 a = tgamma (y);
426 a = lgamma (y);
427 a = rint (y);
428 a = nextafter (y, y);
429 a = nexttoward (y, y);
430 a = remainder (y, y);
431 a = scalb (y, (const TYPE) (6));
432 k = scalbn (y, 7) + scalbln (y, 10l);
433 i = ilogb (y);
434 j = llogb (y);
435 a = fdim (y, y);
436 a = fmax (y, y);
437 a = fmin (y, y);
438 a = fmaxmag (y, y);
439 a = fminmag (y, y);
440 a = fmaximum (y, y);
441 a = fminimum (y, y);
442 a = fmaximum_num (y, y);
443 a = fminimum_num (y, y);
444 a = fmaximum_mag (y, y);
445 a = fminimum_mag (y, y);
446 a = fmaximum_mag_num (y, y);
447 a = fminimum_mag_num (y, y);
448 a = fma (y, y, y);
449
450#ifdef TEST_INT
451 a = atan2 (i, y);
452 a = remquo (i, y, &i);
453 a = fma (i, y, i);
454 a = pow (i, y);
455#endif
456
457 d = cos ((const complex TYPE) z);
458 d = acos ((const complex TYPE) z);
459 d = sin ((const complex TYPE) z);
460 d = asin ((const complex TYPE) z);
461 d = tan ((const complex TYPE) z);
462 d = atan ((const complex TYPE) z);
463 d = cosh ((const complex TYPE) z);
464 d = acosh ((const complex TYPE) z);
465 d = sinh ((const complex TYPE) z);
466 d = asinh ((const complex TYPE) z);
467 d = tanh ((const complex TYPE) z);
468 d = atanh ((const complex TYPE) z);
469 d = exp ((const complex TYPE) z);
470 d = log ((const complex TYPE) z);
471 d = sqrt ((const complex TYPE) z);
472 d = pow ((const complex TYPE) z, (const complex TYPE) z);
473 d = fabs ((const complex TYPE) z);
474 d = carg ((const complex TYPE) z);
475 d = creal ((const complex TYPE) z);
476 d = cimag ((const complex TYPE) z);
477 d = conj ((const complex TYPE) z);
478 d = cproj ((const complex TYPE) z);
479 }
480}
481#undef x
482#undef y
483#undef z
484
485
486TYPE
487(F(cos)) (TYPE x)
488{
489 ++count;
490 P ();
491 return x;
492}
493
494TYPE
495(F(cospi)) (TYPE x)
496{
497 ++count;
498 P ();
499 return x;
500}
501
502TYPE
503(F(acos)) (TYPE x)
504{
505 ++count;
506 P ();
507 return x;
508}
509
510TYPE
511(F(acospi)) (TYPE x)
512{
513 ++count;
514 P ();
515 return x;
516}
517
518TYPE
519(F(sin)) (TYPE x)
520{
521 ++count;
522 P ();
523 return x;
524}
525
526TYPE
527(F(sinpi)) (TYPE x)
528{
529 ++count;
530 P ();
531 return x;
532}
533
534TYPE
535(F(asin)) (TYPE x)
536{
537 ++count;
538 P ();
539 return x;
540}
541
542TYPE
543(F(asinpi)) (TYPE x)
544{
545 ++count;
546 P ();
547 return x;
548}
549
550TYPE
551(F(tan)) (TYPE x)
552{
553 ++count;
554 P ();
555 return x;
556}
557
558TYPE
559(F(tanpi)) (TYPE x)
560{
561 ++count;
562 P ();
563 return x;
564}
565
566TYPE
567(F(atan)) (TYPE x)
568{
569 ++count;
570 P ();
571 return x;
572}
573
574TYPE
575(F(atan2)) (TYPE x, TYPE y)
576{
577 ++count;
578 P ();
579 return x + y;
580}
581
582TYPE
583(F(atanpi)) (TYPE x)
584{
585 ++count;
586 P ();
587 return x;
588}
589
590TYPE
591(F(atan2pi)) (TYPE x, TYPE y)
592{
593 ++count;
594 P ();
595 return x + y;
596}
597
598TYPE
599(F(cosh)) (TYPE x)
600{
601 ++count;
602 P ();
603 return x;
604}
605
606TYPE
607(F(acosh)) (TYPE x)
608{
609 ++count;
610 P ();
611 return x;
612}
613
614TYPE
615(F(sinh)) (TYPE x)
616{
617 ++count;
618 P ();
619 return x;
620}
621
622TYPE
623(F(asinh)) (TYPE x)
624{
625 ++count;
626 P ();
627 return x;
628}
629
630TYPE
631(F(tanh)) (TYPE x)
632{
633 ++count;
634 P ();
635 return x;
636}
637
638TYPE
639(F(atanh)) (TYPE x)
640{
641 ++count;
642 P ();
643 return x;
644}
645
646TYPE
647(F(exp)) (TYPE x)
648{
649 ++count;
650 P ();
651 return x;
652}
653
654TYPE
655(F(log)) (TYPE x)
656{
657 ++count;
658 P ();
659 return x;
660}
661
662TYPE
663(F(log10)) (TYPE x)
664{
665 ++count;
666 P ();
667 return x;
668}
669
670TYPE
671(F(ldexp)) (TYPE x, int y)
672{
673 ++count;
674 P ();
675 return x + y;
676}
677
678TYPE
679(F(frexp)) (TYPE x, int *y)
680{
681 ++count;
682 P ();
683 return x + *y;
684}
685
686TYPE
687(F(expm1)) (TYPE x)
688{
689 ++count;
690 P ();
691 return x;
692}
693
694TYPE
695(F(exp2m1)) (TYPE x)
696{
697 ++count;
698 P ();
699 return x;
700}
701
702TYPE
703(F(exp10m1)) (TYPE x)
704{
705 ++count;
706 P ();
707 return x;
708}
709
710TYPE
711(F(log1p)) (TYPE x)
712{
713 ++count;
714 P ();
715 return x;
716}
717
718TYPE
719(F(logb)) (TYPE x)
720{
721 ++count;
722 P ();
723 return x;
724}
725
726TYPE
727(F(exp10)) (TYPE x)
728{
729 ++count;
730 P ();
731 return x;
732}
733
734TYPE
735(F(exp2)) (TYPE x)
736{
737 ++count;
738 P ();
739 return x;
740}
741
742TYPE
743(F(log2)) (TYPE x)
744{
745 ++count;
746 P ();
747 return x;
748}
749
750TYPE
751(F(log2p1)) (TYPE x)
752{
753 ++count;
754 P ();
755 return x;
756}
757
758TYPE
759(F(log10p1)) (TYPE x)
760{
761 ++count;
762 P ();
763 return x;
764}
765
766TYPE
767(F(logp1)) (TYPE x)
768{
769 ++count;
770 P ();
771 return x;
772}
773
774TYPE
775(F(pow)) (TYPE x, TYPE y)
776{
777 ++count;
778 P ();
779 return x + y;
780}
781
782TYPE
783(F(pown)) (TYPE x, long long int y)
784{
785 ++count;
786 P ();
787 return x + y;
788}
789
790TYPE
791(F(powr)) (TYPE x, TYPE y)
792{
793 ++count;
794 P ();
795 return x + y;
796}
797
798TYPE
799(F(compoundn)) (TYPE x, long long int y)
800{
801 ++count;
802 P ();
803 return x + y;
804}
805
806TYPE
807(F(rootn)) (TYPE x, long long int y)
808{
809 ++count;
810 P ();
811 return x + y;
812}
813
814TYPE
815(F(sqrt)) (TYPE x)
816{
817 ++count;
818 P ();
819 return x;
820}
821
822TYPE
823(F(rsqrt)) (TYPE x)
824{
825 ++count;
826 P ();
827 return x;
828}
829
830TYPE
831(F(hypot)) (TYPE x, TYPE y)
832{
833 ++count;
834 P ();
835 return x + y;
836}
837
838TYPE
839(F(cbrt)) (TYPE x)
840{
841 ++count;
842 P ();
843 return x;
844}
845
846TYPE
847(F(ceil)) (TYPE x)
848{
849 ++count;
850 P ();
851 return x;
852}
853
854TYPE
855(F(fabs)) (TYPE x)
856{
857 ++count;
858 P ();
859 return x;
860}
861
862TYPE
863(F(floor)) (TYPE x)
864{
865 ++count;
866 P ();
867 return x;
868}
869
870TYPE
871(F(fmod)) (TYPE x, TYPE y)
872{
873 ++count;
874 P ();
875 return x + y;
876}
877
878TYPE
879(F(nearbyint)) (TYPE x)
880{
881 ++count;
882 P ();
883 return x;
884}
885
886TYPE
887(F(round)) (TYPE x)
888{
889 ++count;
890 P ();
891 return x;
892}
893
894TYPE
895(F(roundeven)) (TYPE x)
896{
897 ++count;
898 P ();
899 return x;
900}
901
902TYPE
903(F(trunc)) (TYPE x)
904{
905 ++count;
906 P ();
907 return x;
908}
909
910TYPE
911(F(remquo)) (TYPE x, TYPE y, int *i)
912{
913 ++count;
914 P ();
915 return x + y + *i;
916}
917
918long int
919(F(lrint)) (TYPE x)
920{
921 ++count;
922 P ();
923 return x;
924}
925
926long int
927(F(lround)) (TYPE x)
928{
929 ++count;
930 P ();
931 return x;
932}
933
934long long int
935(F(llrint)) (TYPE x)
936{
937 ++count;
938 P ();
939 return x;
940}
941
942long long int
943(F(llround)) (TYPE x)
944{
945 ++count;
946 P ();
947 return x;
948}
949
950intmax_t
951(F(fromfp)) (TYPE x, int round, unsigned int width)
952{
953 ++count;
954 P ();
955 return x;
956}
957
958intmax_t
959(F(fromfpx)) (TYPE x, int round, unsigned int width)
960{
961 ++count;
962 P ();
963 return x;
964}
965
966uintmax_t
967(F(ufromfp)) (TYPE x, int round, unsigned int width)
968{
969 ++count;
970 P ();
971 return x;
972}
973
974uintmax_t
975(F(ufromfpx)) (TYPE x, int round, unsigned int width)
976{
977 ++count;
978 P ();
979 return x;
980}
981
982TYPE
983(F(erf)) (TYPE x)
984{
985 ++count;
986 P ();
987 return x;
988}
989
990TYPE
991(F(erfc)) (TYPE x)
992{
993 ++count;
994 P ();
995 return x;
996}
997
998TYPE
999(F(tgamma)) (TYPE x)
1000{
1001 ++count;
1002 P ();
1003 return x;
1004}
1005
1006TYPE
1007(F(lgamma)) (TYPE x)
1008{
1009 ++count;
1010 P ();
1011 return x;
1012}
1013
1014TYPE
1015(F(rint)) (TYPE x)
1016{
1017 ++count;
1018 P ();
1019 return x;
1020}
1021
1022TYPE
1023(F(nextafter)) (TYPE x, TYPE y)
1024{
1025 ++count;
1026 P ();
1027 return x + y;
1028}
1029
1030TYPE
1031(F(nextdown)) (TYPE x)
1032{
1033 ++count;
1034 P ();
1035 return x;
1036}
1037
1038TYPE
1039(F(nexttoward)) (TYPE x, long double y)
1040{
1041 ++count;
1042 P ();
1043 return x + y;
1044}
1045
1046TYPE
1047(F(nextup)) (TYPE x)
1048{
1049 ++count;
1050 P ();
1051 return x;
1052}
1053
1054TYPE
1055(F(remainder)) (TYPE x, TYPE y)
1056{
1057 ++count;
1058 P ();
1059 return x + y;
1060}
1061
1062TYPE
1063(F(scalb)) (TYPE x, TYPE y)
1064{
1065 ++count;
1066 P ();
1067 return x + y;
1068}
1069
1070TYPE
1071(F(scalbn)) (TYPE x, int y)
1072{
1073 ++count;
1074 P ();
1075 return x + y;
1076}
1077
1078TYPE
1079(F(scalbln)) (TYPE x, long int y)
1080{
1081 ++count;
1082 P ();
1083 return x + y;
1084}
1085
1086int
1087(F(ilogb)) (TYPE x)
1088{
1089 ++count;
1090 P ();
1091 return x;
1092}
1093
1094long int
1095(F(llogb)) (TYPE x)
1096{
1097 ++count;
1098 P ();
1099 return x;
1100}
1101
1102TYPE
1103(F(fdim)) (TYPE x, TYPE y)
1104{
1105 ++count;
1106 P ();
1107 return x + y;
1108}
1109
1110TYPE
1111(F(fmin)) (TYPE x, TYPE y)
1112{
1113 ++count;
1114 P ();
1115 return x + y;
1116}
1117
1118TYPE
1119(F(fmax)) (TYPE x, TYPE y)
1120{
1121 ++count;
1122 P ();
1123 return x + y;
1124}
1125
1126TYPE
1127(F(fminmag)) (TYPE x, TYPE y)
1128{
1129 ++count;
1130 P ();
1131 return x + y;
1132}
1133
1134TYPE
1135(F(fmaxmag)) (TYPE x, TYPE y)
1136{
1137 ++count;
1138 P ();
1139 return x + y;
1140}
1141
1142TYPE
1143(F(fminimum)) (TYPE x, TYPE y)
1144{
1145 ++count;
1146 P ();
1147 return x + y;
1148}
1149
1150TYPE
1151(F(fmaximum)) (TYPE x, TYPE y)
1152{
1153 ++count;
1154 P ();
1155 return x + y;
1156}
1157
1158TYPE
1159(F(fminimum_num)) (TYPE x, TYPE y)
1160{
1161 ++count;
1162 P ();
1163 return x + y;
1164}
1165
1166TYPE
1167(F(fmaximum_num)) (TYPE x, TYPE y)
1168{
1169 ++count;
1170 P ();
1171 return x + y;
1172}
1173
1174TYPE
1175(F(fminimum_mag)) (TYPE x, TYPE y)
1176{
1177 ++count;
1178 P ();
1179 return x + y;
1180}
1181
1182TYPE
1183(F(fmaximum_mag)) (TYPE x, TYPE y)
1184{
1185 ++count;
1186 P ();
1187 return x + y;
1188}
1189
1190TYPE
1191(F(fminimum_mag_num)) (TYPE x, TYPE y)
1192{
1193 ++count;
1194 P ();
1195 return x + y;
1196}
1197
1198TYPE
1199(F(fmaximum_mag_num)) (TYPE x, TYPE y)
1200{
1201 ++count;
1202 P ();
1203 return x + y;
1204}
1205
1206TYPE
1207(F(fma)) (TYPE x, TYPE y, TYPE z)
1208{
1209 ++count;
1210 P ();
1211 return x + y + z;
1212}
1213
1214complex TYPE
1215(F(cacos)) (complex TYPE x)
1216{
1217 ++ccount;
1218 P ();
1219 return x;
1220}
1221
1222complex TYPE
1223(F(casin)) (complex TYPE x)
1224{
1225 ++ccount;
1226 P ();
1227 return x;
1228}
1229
1230complex TYPE
1231(F(catan)) (complex TYPE x)
1232{
1233 ++ccount;
1234 P ();
1235 return x;
1236}
1237
1238complex TYPE
1239(F(ccos)) (complex TYPE x)
1240{
1241 ++ccount;
1242 P ();
1243 return x;
1244}
1245
1246complex TYPE
1247(F(csin)) (complex TYPE x)
1248{
1249 ++ccount;
1250 P ();
1251 return x;
1252}
1253
1254complex TYPE
1255(F(ctan)) (complex TYPE x)
1256{
1257 ++ccount;
1258 P ();
1259 return x;
1260}
1261
1262complex TYPE
1263(F(cacosh)) (complex TYPE x)
1264{
1265 ++ccount;
1266 P ();
1267 return x;
1268}
1269
1270complex TYPE
1271(F(casinh)) (complex TYPE x)
1272{
1273 ++ccount;
1274 P ();
1275 return x;
1276}
1277
1278complex TYPE
1279(F(catanh)) (complex TYPE x)
1280{
1281 ++ccount;
1282 P ();
1283 return x;
1284}
1285
1286complex TYPE
1287(F(ccosh)) (complex TYPE x)
1288{
1289 ++ccount;
1290 P ();
1291 return x;
1292}
1293
1294complex TYPE
1295(F(csinh)) (complex TYPE x)
1296{
1297 ++ccount;
1298 P ();
1299 return x;
1300}
1301
1302complex TYPE
1303(F(ctanh)) (complex TYPE x)
1304{
1305 ++ccount;
1306 P ();
1307 return x;
1308}
1309
1310complex TYPE
1311(F(cexp)) (complex TYPE x)
1312{
1313 ++ccount;
1314 P ();
1315 return x;
1316}
1317
1318complex TYPE
1319(F(clog)) (complex TYPE x)
1320{
1321 ++ccount;
1322 P ();
1323 return x;
1324}
1325
1326complex TYPE
1327(F(csqrt)) (complex TYPE x)
1328{
1329 ++ccount;
1330 P ();
1331 return x;
1332}
1333
1334complex TYPE
1335(F(cpow)) (complex TYPE x, complex TYPE y)
1336{
1337 ++ccount;
1338 P ();
1339 return x + y;
1340}
1341
1342TYPE
1343(F(cabs)) (complex TYPE x)
1344{
1345 ++ccount;
1346 P ();
1347 return x;
1348}
1349
1350TYPE
1351(F(carg)) (complex TYPE x)
1352{
1353 ++ccount;
1354 P ();
1355 return x;
1356}
1357
1358TYPE
1359(F(creal)) (complex TYPE x)
1360{
1361 ++ccount;
1362 P ();
1363 return __real__ x;
1364}
1365
1366TYPE
1367(F(cimag)) (complex TYPE x)
1368{
1369 ++ccount;
1370 P ();
1371 return __imag__ x;
1372}
1373
1374complex TYPE
1375(F(conj)) (complex TYPE x)
1376{
1377 ++ccount;
1378 P ();
1379 return x;
1380}
1381
1382complex TYPE
1383(F(cproj)) (complex TYPE x)
1384{
1385 ++ccount;
1386 P ();
1387 return x;
1388}
1389
1390#undef F
1391#undef TYPE
1392#undef count
1393#undef ccount
1394#undef TEST_INT
1395#endif