]> git.ipfire.org Git - thirdparty/openssl.git/blame_incremental - ssl/ssl_ciph.c
When we want to give a -f argument to $(MAKE), we'd better make sure the
[thirdparty/openssl.git] / ssl / ssl_ciph.c
... / ...
CommitLineData
1/* ssl/ssl_ciph.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58
59#include <stdio.h>
60#include <openssl/objects.h>
61#include <openssl/comp.h>
62#include "ssl_locl.h"
63
64#define SSL_ENC_DES_IDX 0
65#define SSL_ENC_3DES_IDX 1
66#define SSL_ENC_RC4_IDX 2
67#define SSL_ENC_RC2_IDX 3
68#define SSL_ENC_IDEA_IDX 4
69#define SSL_ENC_eFZA_IDX 5
70#define SSL_ENC_NULL_IDX 6
71#define SSL_ENC_AES128_IDX 7
72#define SSL_ENC_AES256_IDX 8
73#define SSL_ENC_NUM_IDX 9
74
75static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
76 NULL,NULL,NULL,NULL,NULL,NULL,
77 };
78
79static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;
80
81#define SSL_MD_MD5_IDX 0
82#define SSL_MD_SHA1_IDX 1
83#define SSL_MD_NUM_IDX 2
84static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
85 NULL,NULL,
86 };
87
88#define CIPHER_ADD 1
89#define CIPHER_KILL 2
90#define CIPHER_DEL 3
91#define CIPHER_ORD 4
92#define CIPHER_SPECIAL 5
93
94typedef struct cipher_order_st
95 {
96 SSL_CIPHER *cipher;
97 int active;
98 int dead;
99 struct cipher_order_st *next,*prev;
100 } CIPHER_ORDER;
101
102static const SSL_CIPHER cipher_aliases[]={
103 /* Don't include eNULL unless specifically enabled. */
104 {0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */
105 {0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */
106 {0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0},
107 {0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */
108 {0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0},
109 {0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0},
110 {0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0},
111 {0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0},
112 {0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0},
113 {0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0},
114 {0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0},
115
116 {0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */
117 {0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0},
118 {0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0},
119 {0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0},
120 {0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0},
121 {0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0},
122 {0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0},
123
124 {0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0},
125 {0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0},
126 {0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0},
127 {0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0},
128 {0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0},
129 {0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0},
130 {0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0},
131 {0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0},
132
133 {0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0},
134 {0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0},
135 {0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0},
136
137 {0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0},
138 {0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
139 {0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
140 {0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
141 {0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0},
142
143 {0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0},
144 {0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0},
145 {0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0},
146
147 {0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
148 {0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
149 {0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK},
150 {0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK},
151 {0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK},
152 {0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK},
153 {0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK},
154 };
155
156static int init_ciphers=1;
157
158static void load_ciphers(void)
159 {
160 init_ciphers=0;
161 ssl_cipher_methods[SSL_ENC_DES_IDX]=
162 EVP_get_cipherbyname(SN_des_cbc);
163 ssl_cipher_methods[SSL_ENC_3DES_IDX]=
164 EVP_get_cipherbyname(SN_des_ede3_cbc);
165 ssl_cipher_methods[SSL_ENC_RC4_IDX]=
166 EVP_get_cipherbyname(SN_rc4);
167 ssl_cipher_methods[SSL_ENC_RC2_IDX]=
168 EVP_get_cipherbyname(SN_rc2_cbc);
169 ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
170 EVP_get_cipherbyname(SN_idea_cbc);
171 ssl_cipher_methods[SSL_ENC_AES128_IDX]=
172 EVP_get_cipherbyname(SN_aes_128_cbc);
173 ssl_cipher_methods[SSL_ENC_AES256_IDX]=
174 EVP_get_cipherbyname(SN_aes_256_cbc);
175
176 ssl_digest_methods[SSL_MD_MD5_IDX]=
177 EVP_get_digestbyname(SN_md5);
178 ssl_digest_methods[SSL_MD_SHA1_IDX]=
179 EVP_get_digestbyname(SN_sha1);
180 }
181
182int ssl_cipher_get_evp(SSL_SESSION *s, const EVP_CIPHER **enc,
183 const EVP_MD **md, SSL_COMP **comp)
184 {
185 int i;
186 SSL_CIPHER *c;
187
188 c=s->cipher;
189 if (c == NULL) return(0);
190 if (comp != NULL)
191 {
192 SSL_COMP ctmp;
193
194 if (s->compress_meth == 0)
195 *comp=NULL;
196 else if (ssl_comp_methods == NULL)
197 {
198 /* bad */
199 *comp=NULL;
200 }
201 else
202 {
203
204 ctmp.id=s->compress_meth;
205 i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
206 if (i >= 0)
207 *comp=sk_SSL_COMP_value(ssl_comp_methods,i);
208 else
209 *comp=NULL;
210 }
211 }
212
213 if ((enc == NULL) || (md == NULL)) return(0);
214
215 switch (c->algorithms & SSL_ENC_MASK)
216 {
217 case SSL_DES:
218 i=SSL_ENC_DES_IDX;
219 break;
220 case SSL_3DES:
221 i=SSL_ENC_3DES_IDX;
222 break;
223 case SSL_RC4:
224 i=SSL_ENC_RC4_IDX;
225 break;
226 case SSL_RC2:
227 i=SSL_ENC_RC2_IDX;
228 break;
229 case SSL_IDEA:
230 i=SSL_ENC_IDEA_IDX;
231 break;
232 case SSL_eNULL:
233 i=SSL_ENC_NULL_IDX;
234 break;
235 case SSL_AES:
236 switch(c->alg_bits)
237 {
238 case 128: i=SSL_ENC_AES128_IDX; break;
239 case 256: i=SSL_ENC_AES256_IDX; break;
240 default: i=-1; break;
241 }
242 break;
243 default:
244 i= -1;
245 break;
246 }
247
248 if ((i < 0) || (i > SSL_ENC_NUM_IDX))
249 *enc=NULL;
250 else
251 {
252 if (i == SSL_ENC_NULL_IDX)
253 *enc=EVP_enc_null();
254 else
255 *enc=ssl_cipher_methods[i];
256 }
257
258 switch (c->algorithms & SSL_MAC_MASK)
259 {
260 case SSL_MD5:
261 i=SSL_MD_MD5_IDX;
262 break;
263 case SSL_SHA1:
264 i=SSL_MD_SHA1_IDX;
265 break;
266 default:
267 i= -1;
268 break;
269 }
270 if ((i < 0) || (i > SSL_MD_NUM_IDX))
271 *md=NULL;
272 else
273 *md=ssl_digest_methods[i];
274
275 if ((*enc != NULL) && (*md != NULL))
276 return(1);
277 else
278 return(0);
279 }
280
281#define ITEM_SEP(a) \
282 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
283
284static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
285 CIPHER_ORDER **tail)
286 {
287 if (curr == *tail) return;
288 if (curr == *head)
289 *head=curr->next;
290 if (curr->prev != NULL)
291 curr->prev->next=curr->next;
292 if (curr->next != NULL) /* should always be true */
293 curr->next->prev=curr->prev;
294 (*tail)->next=curr;
295 curr->prev= *tail;
296 curr->next=NULL;
297 *tail=curr;
298 }
299
300static unsigned long ssl_cipher_get_disabled(void)
301 {
302 unsigned long mask;
303
304 mask = SSL_kFZA;
305#ifdef OPENSSL_NO_RSA
306 mask |= SSL_aRSA|SSL_kRSA;
307#endif
308#ifdef OPENSSL_NO_DSA
309 mask |= SSL_aDSS;
310#endif
311#ifdef OPENSSL_NO_DH
312 mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH;
313#endif
314#ifdef OPENSSL_NO_KRB5
315 mask |= SSL_kKRB5|SSL_aKRB5;
316#endif
317
318#ifdef SSL_FORBID_ENULL
319 mask |= SSL_eNULL;
320#endif
321
322 mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0;
323 mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
324 mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0;
325 mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0;
326 mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
327 mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0;
328 mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0;
329
330 mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0;
331 mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
332
333 return(mask);
334 }
335
336static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
337 int num_of_ciphers, unsigned long mask, CIPHER_ORDER *list,
338 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
339 {
340 int i, list_num;
341 SSL_CIPHER *c;
342
343 /*
344 * We have num_of_ciphers descriptions compiled in, depending on the
345 * method selected (SSLv2 and/or SSLv3, TLSv1 etc).
346 * These will later be sorted in a linked list with at most num
347 * entries.
348 */
349
350 /* Get the initial list of ciphers */
351 list_num = 0; /* actual count of ciphers */
352 for (i = 0; i < num_of_ciphers; i++)
353 {
354 c = ssl_method->get_cipher(i);
355 /* drop those that use any of that is not available */
356 if ((c != NULL) && c->valid && !(c->algorithms & mask))
357 {
358 list[list_num].cipher = c;
359 list[list_num].next = NULL;
360 list[list_num].prev = NULL;
361 list[list_num].active = 0;
362 list_num++;
363#ifdef KSSL_DEBUG
364 printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms);
365#endif /* KSSL_DEBUG */
366 /*
367 if (!sk_push(ca_list,(char *)c)) goto err;
368 */
369 }
370 }
371
372 /*
373 * Prepare linked list from list entries
374 */
375 for (i = 1; i < list_num - 1; i++)
376 {
377 list[i].prev = &(list[i-1]);
378 list[i].next = &(list[i+1]);
379 }
380 if (list_num > 0)
381 {
382 (*head_p) = &(list[0]);
383 (*head_p)->prev = NULL;
384 (*head_p)->next = &(list[1]);
385 (*tail_p) = &(list[list_num - 1]);
386 (*tail_p)->prev = &(list[list_num - 2]);
387 (*tail_p)->next = NULL;
388 }
389 }
390
391static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list,
392 int num_of_group_aliases, unsigned long mask,
393 CIPHER_ORDER *head)
394 {
395 CIPHER_ORDER *ciph_curr;
396 SSL_CIPHER **ca_curr;
397 int i;
398
399 /*
400 * First, add the real ciphers as already collected
401 */
402 ciph_curr = head;
403 ca_curr = ca_list;
404 while (ciph_curr != NULL)
405 {
406 *ca_curr = ciph_curr->cipher;
407 ca_curr++;
408 ciph_curr = ciph_curr->next;
409 }
410
411 /*
412 * Now we add the available ones from the cipher_aliases[] table.
413 * They represent either an algorithm, that must be fully
414 * supported (not match any bit in mask) or represent a cipher
415 * strength value (will be added in any case because algorithms=0).
416 */
417 for (i = 0; i < num_of_group_aliases; i++)
418 {
419 if ((i == 0) || /* always fetch "ALL" */
420 !(cipher_aliases[i].algorithms & mask))
421 {
422 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
423 ca_curr++;
424 }
425 }
426
427 *ca_curr = NULL; /* end of list */
428 }
429
430static void ssl_cipher_apply_rule(unsigned long algorithms, unsigned long mask,
431 unsigned long algo_strength, unsigned long mask_strength,
432 int rule, int strength_bits, CIPHER_ORDER *list,
433 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
434 {
435 CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2;
436 SSL_CIPHER *cp;
437 unsigned long ma, ma_s;
438
439#ifdef CIPHER_DEBUG
440 printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n",
441 rule, algorithms, mask, algo_strength, mask_strength,
442 strength_bits);
443#endif
444
445 curr = head = *head_p;
446 curr2 = head;
447 tail2 = tail = *tail_p;
448 for (;;)
449 {
450 if ((curr == NULL) || (curr == tail2)) break;
451 curr = curr2;
452 curr2 = curr->next;
453
454 cp = curr->cipher;
455
456 /*
457 * Selection criteria is either the number of strength_bits
458 * or the algorithm used.
459 */
460 if (strength_bits == -1)
461 {
462 ma = mask & cp->algorithms;
463 ma_s = mask_strength & cp->algo_strength;
464
465#ifdef CIPHER_DEBUG
466 printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength);
467 printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength);
468#endif
469 /*
470 * Select: if none of the mask bit was met from the
471 * cipher or not all of the bits were met, the
472 * selection does not apply.
473 */
474 if (((ma == 0) && (ma_s == 0)) ||
475 ((ma & algorithms) != ma) ||
476 ((ma_s & algo_strength) != ma_s))
477 continue; /* does not apply */
478 }
479 else if (strength_bits != cp->strength_bits)
480 continue; /* does not apply */
481
482#ifdef CIPHER_DEBUG
483 printf("Action = %d\n", rule);
484#endif
485
486 /* add the cipher if it has not been added yet. */
487 if (rule == CIPHER_ADD)
488 {
489 if (!curr->active)
490 {
491 ll_append_tail(&head, curr, &tail);
492 curr->active = 1;
493 }
494 }
495 /* Move the added cipher to this location */
496 else if (rule == CIPHER_ORD)
497 {
498 if (curr->active)
499 {
500 ll_append_tail(&head, curr, &tail);
501 }
502 }
503 else if (rule == CIPHER_DEL)
504 curr->active = 0;
505 else if (rule == CIPHER_KILL)
506 {
507 if (head == curr)
508 head = curr->next;
509 else
510 curr->prev->next = curr->next;
511 if (tail == curr)
512 tail = curr->prev;
513 curr->active = 0;
514 if (curr->next != NULL)
515 curr->next->prev = curr->prev;
516 if (curr->prev != NULL)
517 curr->prev->next = curr->next;
518 curr->next = NULL;
519 curr->prev = NULL;
520 }
521 }
522
523 *head_p = head;
524 *tail_p = tail;
525 }
526
527static int ssl_cipher_strength_sort(CIPHER_ORDER *list, CIPHER_ORDER **head_p,
528 CIPHER_ORDER **tail_p)
529 {
530 int max_strength_bits, i, *number_uses;
531 CIPHER_ORDER *curr;
532
533 /*
534 * This routine sorts the ciphers with descending strength. The sorting
535 * must keep the pre-sorted sequence, so we apply the normal sorting
536 * routine as '+' movement to the end of the list.
537 */
538 max_strength_bits = 0;
539 curr = *head_p;
540 while (curr != NULL)
541 {
542 if (curr->active &&
543 (curr->cipher->strength_bits > max_strength_bits))
544 max_strength_bits = curr->cipher->strength_bits;
545 curr = curr->next;
546 }
547
548 number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
549 if (!number_uses)
550 {
551 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
552 return(0);
553 }
554 memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
555
556 /*
557 * Now find the strength_bits values actually used
558 */
559 curr = *head_p;
560 while (curr != NULL)
561 {
562 if (curr->active)
563 number_uses[curr->cipher->strength_bits]++;
564 curr = curr->next;
565 }
566 /*
567 * Go through the list of used strength_bits values in descending
568 * order.
569 */
570 for (i = max_strength_bits; i >= 0; i--)
571 if (number_uses[i] > 0)
572 ssl_cipher_apply_rule(0, 0, 0, 0, CIPHER_ORD, i,
573 list, head_p, tail_p);
574
575 OPENSSL_free(number_uses);
576 return(1);
577 }
578
579static int ssl_cipher_process_rulestr(const char *rule_str,
580 CIPHER_ORDER *list, CIPHER_ORDER **head_p,
581 CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list)
582 {
583 unsigned long algorithms, mask, algo_strength, mask_strength;
584 const char *l, *start, *buf;
585 int j, multi, found, rule, retval, ok, buflen;
586 char ch;
587
588 retval = 1;
589 l = rule_str;
590 for (;;)
591 {
592 ch = *l;
593
594 if (ch == '\0')
595 break; /* done */
596 if (ch == '-')
597 { rule = CIPHER_DEL; l++; }
598 else if (ch == '+')
599 { rule = CIPHER_ORD; l++; }
600 else if (ch == '!')
601 { rule = CIPHER_KILL; l++; }
602 else if (ch == '@')
603 { rule = CIPHER_SPECIAL; l++; }
604 else
605 { rule = CIPHER_ADD; }
606
607 if (ITEM_SEP(ch))
608 {
609 l++;
610 continue;
611 }
612
613 algorithms = mask = algo_strength = mask_strength = 0;
614
615 start=l;
616 for (;;)
617 {
618 ch = *l;
619 buf = l;
620 buflen = 0;
621#ifndef CHARSET_EBCDIC
622 while ( ((ch >= 'A') && (ch <= 'Z')) ||
623 ((ch >= '0') && (ch <= '9')) ||
624 ((ch >= 'a') && (ch <= 'z')) ||
625 (ch == '-'))
626#else
627 while ( isalnum(ch) || (ch == '-'))
628#endif
629 {
630 ch = *(++l);
631 buflen++;
632 }
633
634 if (buflen == 0)
635 {
636 /*
637 * We hit something we cannot deal with,
638 * it is no command or separator nor
639 * alphanumeric, so we call this an error.
640 */
641 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
642 SSL_R_INVALID_COMMAND);
643 retval = found = 0;
644 l++;
645 break;
646 }
647
648 if (rule == CIPHER_SPECIAL)
649 {
650 found = 0; /* unused -- avoid compiler warning */
651 break; /* special treatment */
652 }
653
654 /* check for multi-part specification */
655 if (ch == '+')
656 {
657 multi=1;
658 l++;
659 }
660 else
661 multi=0;
662
663 /*
664 * Now search for the cipher alias in the ca_list. Be careful
665 * with the strncmp, because the "buflen" limitation
666 * will make the rule "ADH:SOME" and the cipher
667 * "ADH-MY-CIPHER" look like a match for buflen=3.
668 * So additionally check whether the cipher name found
669 * has the correct length. We can save a strlen() call:
670 * just checking for the '\0' at the right place is
671 * sufficient, we have to strncmp() anyway.
672 */
673 j = found = 0;
674 while (ca_list[j])
675 {
676 if ((ca_list[j]->name[buflen] == '\0') &&
677 !strncmp(buf, ca_list[j]->name, buflen))
678 {
679 found = 1;
680 break;
681 }
682 else
683 j++;
684 }
685 if (!found)
686 break; /* ignore this entry */
687
688 algorithms |= ca_list[j]->algorithms;
689 mask |= ca_list[j]->mask;
690 algo_strength |= ca_list[j]->algo_strength;
691 mask_strength |= ca_list[j]->mask_strength;
692
693 if (!multi) break;
694 }
695
696 /*
697 * Ok, we have the rule, now apply it
698 */
699 if (rule == CIPHER_SPECIAL)
700 { /* special command */
701 ok = 0;
702 if ((buflen == 8) &&
703 !strncmp(buf, "STRENGTH", 8))
704 ok = ssl_cipher_strength_sort(list,
705 head_p, tail_p);
706 else
707 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
708 SSL_R_INVALID_COMMAND);
709 if (ok == 0)
710 retval = 0;
711 /*
712 * We do not support any "multi" options
713 * together with "@", so throw away the
714 * rest of the command, if any left, until
715 * end or ':' is found.
716 */
717 while ((*l != '\0') && ITEM_SEP(*l))
718 l++;
719 }
720 else if (found)
721 {
722 ssl_cipher_apply_rule(algorithms, mask,
723 algo_strength, mask_strength, rule, -1,
724 list, head_p, tail_p);
725 }
726 else
727 {
728 while ((*l != '\0') && ITEM_SEP(*l))
729 l++;
730 }
731 if (*l == '\0') break; /* done */
732 }
733
734 return(retval);
735 }
736
737STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
738 STACK_OF(SSL_CIPHER) **cipher_list,
739 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
740 const char *rule_str)
741 {
742 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
743 unsigned long disabled_mask;
744 STACK_OF(SSL_CIPHER) *cipherstack;
745 const char *rule_p;
746 CIPHER_ORDER *list = NULL, *head = NULL, *tail = NULL, *curr;
747 SSL_CIPHER **ca_list = NULL;
748
749 /*
750 * Return with error if nothing to do.
751 */
752 if (rule_str == NULL) return(NULL);
753
754 if (init_ciphers) load_ciphers();
755
756 /*
757 * To reduce the work to do we only want to process the compiled
758 * in algorithms, so we first get the mask of disabled ciphers.
759 */
760 disabled_mask = ssl_cipher_get_disabled();
761
762 /*
763 * Now we have to collect the available ciphers from the compiled
764 * in ciphers. We cannot get more than the number compiled in, so
765 * it is used for allocation.
766 */
767 num_of_ciphers = ssl_method->num_ciphers();
768#ifdef KSSL_DEBUG
769 printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
770#endif /* KSSL_DEBUG */
771 list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
772 if (list == NULL)
773 {
774 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
775 return(NULL); /* Failure */
776 }
777
778 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask,
779 list, &head, &tail);
780
781 /*
782 * We also need cipher aliases for selecting based on the rule_str.
783 * There might be two types of entries in the rule_str: 1) names
784 * of ciphers themselves 2) aliases for groups of ciphers.
785 * For 1) we need the available ciphers and for 2) the cipher
786 * groups of cipher_aliases added together in one list (otherwise
787 * we would be happy with just the cipher_aliases table).
788 */
789 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
790 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
791 ca_list =
792 (SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
793 if (ca_list == NULL)
794 {
795 OPENSSL_free(list);
796 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
797 return(NULL); /* Failure */
798 }
799 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mask,
800 head);
801
802 /*
803 * If the rule_string begins with DEFAULT, apply the default rule
804 * before using the (possibly available) additional rules.
805 */
806 ok = 1;
807 rule_p = rule_str;
808 if (strncmp(rule_str,"DEFAULT",7) == 0)
809 {
810 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
811 list, &head, &tail, ca_list);
812 rule_p += 7;
813 if (*rule_p == ':')
814 rule_p++;
815 }
816
817 if (ok && (strlen(rule_p) > 0))
818 ok = ssl_cipher_process_rulestr(rule_p, list, &head, &tail,
819 ca_list);
820
821 OPENSSL_free(ca_list); /* Not needed anymore */
822
823 if (!ok)
824 { /* Rule processing failure */
825 OPENSSL_free(list);
826 return(NULL);
827 }
828 /*
829 * Allocate new "cipherstack" for the result, return with error
830 * if we cannot get one.
831 */
832 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL)
833 {
834 OPENSSL_free(list);
835 return(NULL);
836 }
837
838 /*
839 * The cipher selection for the list is done. The ciphers are added
840 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
841 */
842 for (curr = head; curr != NULL; curr = curr->next)
843 {
844 if (curr->active)
845 {
846 sk_SSL_CIPHER_push(cipherstack, curr->cipher);
847#ifdef CIPHER_DEBUG
848 printf("<%s>\n",curr->cipher->name);
849#endif
850 }
851 }
852 OPENSSL_free(list); /* Not needed any longer */
853
854 /*
855 * The following passage is a little bit odd. If pointer variables
856 * were supplied to hold STACK_OF(SSL_CIPHER) return information,
857 * the old memory pointed to is free()ed. Then, however, the
858 * cipher_list entry will be assigned just a copy of the returned
859 * cipher stack. For cipher_list_by_id a copy of the cipher stack
860 * will be created. See next comment...
861 */
862 if (cipher_list != NULL)
863 {
864 if (*cipher_list != NULL)
865 sk_SSL_CIPHER_free(*cipher_list);
866 *cipher_list = cipherstack;
867 }
868
869 if (cipher_list_by_id != NULL)
870 {
871 if (*cipher_list_by_id != NULL)
872 sk_SSL_CIPHER_free(*cipher_list_by_id);
873 *cipher_list_by_id = sk_SSL_CIPHER_dup(cipherstack);
874 }
875
876 /*
877 * Now it is getting really strange. If something failed during
878 * the previous pointer assignment or if one of the pointers was
879 * not requested, the error condition is met. That might be
880 * discussable. The strange thing is however that in this case
881 * the memory "ret" pointed to is "free()ed" and hence the pointer
882 * cipher_list becomes wild. The memory reserved for
883 * cipher_list_by_id however is not "free()ed" and stays intact.
884 */
885 if ( (cipher_list_by_id == NULL) ||
886 (*cipher_list_by_id == NULL) ||
887 (cipher_list == NULL) ||
888 (*cipher_list == NULL))
889 {
890 sk_SSL_CIPHER_free(cipherstack);
891 return(NULL);
892 }
893
894 sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp);
895
896 return(cipherstack);
897 }
898
899char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int len)
900 {
901 int is_export,pkl,kl;
902 char *ver,*exp;
903 char *kx,*au,*enc,*mac;
904 unsigned long alg,alg2,alg_s;
905#ifdef KSSL_DEBUG
906 static char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n";
907#else
908 static char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
909#endif /* KSSL_DEBUG */
910
911 alg=cipher->algorithms;
912 alg_s=cipher->algo_strength;
913 alg2=cipher->algorithm2;
914
915 is_export=SSL_C_IS_EXPORT(cipher);
916 pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
917 kl=SSL_C_EXPORT_KEYLENGTH(cipher);
918 exp=is_export?" export":"";
919
920 if (alg & SSL_SSLV2)
921 ver="SSLv2";
922 else if (alg & SSL_SSLV3)
923 ver="SSLv3";
924 else
925 ver="unknown";
926
927 switch (alg&SSL_MKEY_MASK)
928 {
929 case SSL_kRSA:
930 kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
931 break;
932 case SSL_kDHr:
933 kx="DH/RSA";
934 break;
935 case SSL_kDHd:
936 kx="DH/DSS";
937 break;
938 case SSL_kKRB5: /* VRS */
939 case SSL_KRB5: /* VRS */
940 kx="KRB5";
941 break;
942 case SSL_kFZA:
943 kx="Fortezza";
944 break;
945 case SSL_kEDH:
946 kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
947 break;
948 default:
949 kx="unknown";
950 }
951
952 switch (alg&SSL_AUTH_MASK)
953 {
954 case SSL_aRSA:
955 au="RSA";
956 break;
957 case SSL_aDSS:
958 au="DSS";
959 break;
960 case SSL_aDH:
961 au="DH";
962 break;
963 case SSL_aKRB5: /* VRS */
964 case SSL_KRB5: /* VRS */
965 au="KRB5";
966 break;
967 case SSL_aFZA:
968 case SSL_aNULL:
969 au="None";
970 break;
971 default:
972 au="unknown";
973 break;
974 }
975
976 switch (alg&SSL_ENC_MASK)
977 {
978 case SSL_DES:
979 enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
980 break;
981 case SSL_3DES:
982 enc="3DES(168)";
983 break;
984 case SSL_RC4:
985 enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")
986 :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
987 break;
988 case SSL_RC2:
989 enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
990 break;
991 case SSL_IDEA:
992 enc="IDEA(128)";
993 break;
994 case SSL_eFZA:
995 enc="Fortezza";
996 break;
997 case SSL_eNULL:
998 enc="None";
999 break;
1000 case SSL_AES:
1001 switch(cipher->strength_bits)
1002 {
1003 case 128: enc="AES(128)"; break;
1004 case 192: enc="AES(192)"; break;
1005 case 256: enc="AES(256)"; break;
1006 default: enc="AES(?""?""?)"; break;
1007 }
1008 break;
1009 default:
1010 enc="unknown";
1011 break;
1012 }
1013
1014 switch (alg&SSL_MAC_MASK)
1015 {
1016 case SSL_MD5:
1017 mac="MD5";
1018 break;
1019 case SSL_SHA1:
1020 mac="SHA1";
1021 break;
1022 default:
1023 mac="unknown";
1024 break;
1025 }
1026
1027 if (buf == NULL)
1028 {
1029 len=128;
1030 buf=OPENSSL_malloc(len);
1031 if (buf == NULL) return("OPENSSL_malloc Error");
1032 }
1033 else if (len < 128)
1034 return("Buffer too small");
1035
1036#ifdef KSSL_DEBUG
1037 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp,alg);
1038#else
1039 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp);
1040#endif /* KSSL_DEBUG */
1041 return(buf);
1042 }
1043
1044char *SSL_CIPHER_get_version(SSL_CIPHER *c)
1045 {
1046 int i;
1047
1048 if (c == NULL) return("(NONE)");
1049 i=(int)(c->id>>24L);
1050 if (i == 3)
1051 return("TLSv1/SSLv3");
1052 else if (i == 2)
1053 return("SSLv2");
1054 else
1055 return("unknown");
1056 }
1057
1058/* return the actual cipher being used */
1059const char *SSL_CIPHER_get_name(SSL_CIPHER *c)
1060 {
1061 if (c != NULL)
1062 return(c->name);
1063 return("(NONE)");
1064 }
1065
1066/* number of bits for symmetric cipher */
1067int SSL_CIPHER_get_bits(SSL_CIPHER *c, int *alg_bits)
1068 {
1069 int ret=0;
1070
1071 if (c != NULL)
1072 {
1073 if (alg_bits != NULL) *alg_bits = c->alg_bits;
1074 ret = c->strength_bits;
1075 }
1076 return(ret);
1077 }
1078
1079SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1080 {
1081 SSL_COMP *ctmp;
1082 int i,nn;
1083
1084 if ((n == 0) || (sk == NULL)) return(NULL);
1085 nn=sk_SSL_COMP_num(sk);
1086 for (i=0; i<nn; i++)
1087 {
1088 ctmp=sk_SSL_COMP_value(sk,i);
1089 if (ctmp->id == n)
1090 return(ctmp);
1091 }
1092 return(NULL);
1093 }
1094
1095static int sk_comp_cmp(const SSL_COMP * const *a,
1096 const SSL_COMP * const *b)
1097 {
1098 return((*a)->id-(*b)->id);
1099 }
1100
1101STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1102 {
1103 return(ssl_comp_methods);
1104 }
1105
1106int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1107 {
1108 SSL_COMP *comp;
1109 STACK_OF(SSL_COMP) *sk;
1110
1111 if (cm == NULL || cm->type == NID_undef)
1112 return 1;
1113
1114 MemCheck_off();
1115 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
1116 comp->id=id;
1117 comp->method=cm;
1118 if (ssl_comp_methods == NULL)
1119 sk=ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);
1120 else
1121 sk=ssl_comp_methods;
1122 if ((sk == NULL) || !sk_SSL_COMP_push(sk,comp))
1123 {
1124 MemCheck_on();
1125 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE);
1126 return(0);
1127 }
1128 else
1129 {
1130 MemCheck_on();
1131 return(1);
1132 }
1133 }