]> git.ipfire.org Git - thirdparty/openssl.git/blob - apps/lib/s_cb.c
Fix safestack issues in x509.h
[thirdparty/openssl.git] / apps / lib / s_cb.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* callback functions used by s_client, s_server, and s_time */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h> /* for memcpy() and strcmp() */
14 #include "apps.h"
15 #include <openssl/core_names.h>
16 #include <openssl/params.h>
17 #include <openssl/err.h>
18 #include <openssl/rand.h>
19 #include <openssl/x509.h>
20 #include <openssl/ssl.h>
21 #include <openssl/bn.h>
22 #ifndef OPENSSL_NO_DH
23 # include <openssl/dh.h>
24 #endif
25 #include "s_apps.h"
26
27 #define COOKIE_SECRET_LENGTH 16
28
29 DEFINE_STACK_OF_STRING()
30
31 VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
32
33 #ifndef OPENSSL_NO_SOCK
34 static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
35 static int cookie_initialized = 0;
36 #endif
37 static BIO *bio_keylog = NULL;
38
39 static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
40 {
41 for ( ; list->name; ++list)
42 if (list->retval == val)
43 return list->name;
44 return def;
45 }
46
47 int verify_callback(int ok, X509_STORE_CTX *ctx)
48 {
49 X509 *err_cert;
50 int err, depth;
51
52 err_cert = X509_STORE_CTX_get_current_cert(ctx);
53 err = X509_STORE_CTX_get_error(ctx);
54 depth = X509_STORE_CTX_get_error_depth(ctx);
55
56 if (!verify_args.quiet || !ok) {
57 BIO_printf(bio_err, "depth=%d ", depth);
58 if (err_cert != NULL) {
59 X509_NAME_print_ex(bio_err,
60 X509_get_subject_name(err_cert),
61 0, get_nameopt());
62 BIO_puts(bio_err, "\n");
63 } else {
64 BIO_puts(bio_err, "<no cert>\n");
65 }
66 }
67 if (!ok) {
68 BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
69 X509_verify_cert_error_string(err));
70 if (verify_args.depth < 0 || verify_args.depth >= depth) {
71 if (!verify_args.return_error)
72 ok = 1;
73 verify_args.error = err;
74 } else {
75 ok = 0;
76 verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
77 }
78 }
79 switch (err) {
80 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
81 BIO_puts(bio_err, "issuer= ");
82 X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
83 0, get_nameopt());
84 BIO_puts(bio_err, "\n");
85 break;
86 case X509_V_ERR_CERT_NOT_YET_VALID:
87 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
88 BIO_printf(bio_err, "notBefore=");
89 ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
90 BIO_printf(bio_err, "\n");
91 break;
92 case X509_V_ERR_CERT_HAS_EXPIRED:
93 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
94 BIO_printf(bio_err, "notAfter=");
95 ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
96 BIO_printf(bio_err, "\n");
97 break;
98 case X509_V_ERR_NO_EXPLICIT_POLICY:
99 if (!verify_args.quiet)
100 policies_print(ctx);
101 break;
102 }
103 if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
104 policies_print(ctx);
105 if (ok && !verify_args.quiet)
106 BIO_printf(bio_err, "verify return:%d\n", ok);
107 return ok;
108 }
109
110 int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
111 {
112 if (cert_file != NULL) {
113 if (SSL_CTX_use_certificate_file(ctx, cert_file,
114 SSL_FILETYPE_PEM) <= 0) {
115 BIO_printf(bio_err, "unable to get certificate from '%s'\n",
116 cert_file);
117 ERR_print_errors(bio_err);
118 return 0;
119 }
120 if (key_file == NULL)
121 key_file = cert_file;
122 if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
123 BIO_printf(bio_err, "unable to get private key from '%s'\n",
124 key_file);
125 ERR_print_errors(bio_err);
126 return 0;
127 }
128
129 /*
130 * If we are using DSA, we can copy the parameters from the private
131 * key
132 */
133
134 /*
135 * Now we know that a key and cert have been set against the SSL
136 * context
137 */
138 if (!SSL_CTX_check_private_key(ctx)) {
139 BIO_printf(bio_err,
140 "Private key does not match the certificate public key\n");
141 return 0;
142 }
143 }
144 return 1;
145 }
146
147 int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
148 STACK_OF(X509) *chain, int build_chain)
149 {
150 int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
151 if (cert == NULL)
152 return 1;
153 if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
154 BIO_printf(bio_err, "error setting certificate\n");
155 ERR_print_errors(bio_err);
156 return 0;
157 }
158
159 if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
160 BIO_printf(bio_err, "error setting private key\n");
161 ERR_print_errors(bio_err);
162 return 0;
163 }
164
165 /*
166 * Now we know that a key and cert have been set against the SSL context
167 */
168 if (!SSL_CTX_check_private_key(ctx)) {
169 BIO_printf(bio_err,
170 "Private key does not match the certificate public key\n");
171 return 0;
172 }
173 if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
174 BIO_printf(bio_err, "error setting certificate chain\n");
175 ERR_print_errors(bio_err);
176 return 0;
177 }
178 if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
179 BIO_printf(bio_err, "error building certificate chain\n");
180 ERR_print_errors(bio_err);
181 return 0;
182 }
183 return 1;
184 }
185
186 static STRINT_PAIR cert_type_list[] = {
187 {"RSA sign", TLS_CT_RSA_SIGN},
188 {"DSA sign", TLS_CT_DSS_SIGN},
189 {"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
190 {"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
191 {"ECDSA sign", TLS_CT_ECDSA_SIGN},
192 {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
193 {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
194 {"GOST01 Sign", TLS_CT_GOST01_SIGN},
195 {"GOST12 Sign", TLS_CT_GOST12_IANA_SIGN},
196 {NULL}
197 };
198
199 static void ssl_print_client_cert_types(BIO *bio, SSL *s)
200 {
201 const unsigned char *p;
202 int i;
203 int cert_type_num = SSL_get0_certificate_types(s, &p);
204 if (!cert_type_num)
205 return;
206 BIO_puts(bio, "Client Certificate Types: ");
207 for (i = 0; i < cert_type_num; i++) {
208 unsigned char cert_type = p[i];
209 const char *cname = lookup((int)cert_type, cert_type_list, NULL);
210
211 if (i)
212 BIO_puts(bio, ", ");
213 if (cname != NULL)
214 BIO_puts(bio, cname);
215 else
216 BIO_printf(bio, "UNKNOWN (%d),", cert_type);
217 }
218 BIO_puts(bio, "\n");
219 }
220
221 static const char *get_sigtype(int nid)
222 {
223 switch (nid) {
224 case EVP_PKEY_RSA:
225 return "RSA";
226
227 case EVP_PKEY_RSA_PSS:
228 return "RSA-PSS";
229
230 case EVP_PKEY_DSA:
231 return "DSA";
232
233 case EVP_PKEY_EC:
234 return "ECDSA";
235
236 case NID_ED25519:
237 return "Ed25519";
238
239 case NID_ED448:
240 return "Ed448";
241
242 case NID_id_GostR3410_2001:
243 return "gost2001";
244
245 case NID_id_GostR3410_2012_256:
246 return "gost2012_256";
247
248 case NID_id_GostR3410_2012_512:
249 return "gost2012_512";
250
251 default:
252 return NULL;
253 }
254 }
255
256 static int do_print_sigalgs(BIO *out, SSL *s, int shared)
257 {
258 int i, nsig, client;
259 client = SSL_is_server(s) ? 0 : 1;
260 if (shared)
261 nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
262 else
263 nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
264 if (nsig == 0)
265 return 1;
266
267 if (shared)
268 BIO_puts(out, "Shared ");
269
270 if (client)
271 BIO_puts(out, "Requested ");
272 BIO_puts(out, "Signature Algorithms: ");
273 for (i = 0; i < nsig; i++) {
274 int hash_nid, sign_nid;
275 unsigned char rhash, rsign;
276 const char *sstr = NULL;
277 if (shared)
278 SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
279 &rsign, &rhash);
280 else
281 SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
282 if (i)
283 BIO_puts(out, ":");
284 sstr = get_sigtype(sign_nid);
285 if (sstr)
286 BIO_printf(out, "%s", sstr);
287 else
288 BIO_printf(out, "0x%02X", (int)rsign);
289 if (hash_nid != NID_undef)
290 BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
291 else if (sstr == NULL)
292 BIO_printf(out, "+0x%02X", (int)rhash);
293 }
294 BIO_puts(out, "\n");
295 return 1;
296 }
297
298 int ssl_print_sigalgs(BIO *out, SSL *s)
299 {
300 int nid;
301 if (!SSL_is_server(s))
302 ssl_print_client_cert_types(out, s);
303 do_print_sigalgs(out, s, 0);
304 do_print_sigalgs(out, s, 1);
305 if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
306 BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
307 if (SSL_get_peer_signature_type_nid(s, &nid))
308 BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
309 return 1;
310 }
311
312 #ifndef OPENSSL_NO_EC
313 int ssl_print_point_formats(BIO *out, SSL *s)
314 {
315 int i, nformats;
316 const char *pformats;
317 nformats = SSL_get0_ec_point_formats(s, &pformats);
318 if (nformats <= 0)
319 return 1;
320 BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
321 for (i = 0; i < nformats; i++, pformats++) {
322 if (i)
323 BIO_puts(out, ":");
324 switch (*pformats) {
325 case TLSEXT_ECPOINTFORMAT_uncompressed:
326 BIO_puts(out, "uncompressed");
327 break;
328
329 case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
330 BIO_puts(out, "ansiX962_compressed_prime");
331 break;
332
333 case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
334 BIO_puts(out, "ansiX962_compressed_char2");
335 break;
336
337 default:
338 BIO_printf(out, "unknown(%d)", (int)*pformats);
339 break;
340
341 }
342 }
343 BIO_puts(out, "\n");
344 return 1;
345 }
346
347 int ssl_print_groups(BIO *out, SSL *s, int noshared)
348 {
349 int i, ngroups, *groups, nid;
350 const char *gname;
351
352 ngroups = SSL_get1_groups(s, NULL);
353 if (ngroups <= 0)
354 return 1;
355 groups = app_malloc(ngroups * sizeof(int), "groups to print");
356 SSL_get1_groups(s, groups);
357
358 BIO_puts(out, "Supported Elliptic Groups: ");
359 for (i = 0; i < ngroups; i++) {
360 if (i)
361 BIO_puts(out, ":");
362 nid = groups[i];
363 /* If unrecognised print out hex version */
364 if (nid & TLSEXT_nid_unknown) {
365 BIO_printf(out, "0x%04X", nid & 0xFFFF);
366 } else {
367 /* TODO(TLS1.3): Get group name here */
368 /* Use NIST name for curve if it exists */
369 gname = EC_curve_nid2nist(nid);
370 if (gname == NULL)
371 gname = OBJ_nid2sn(nid);
372 BIO_printf(out, "%s", gname);
373 }
374 }
375 OPENSSL_free(groups);
376 if (noshared) {
377 BIO_puts(out, "\n");
378 return 1;
379 }
380 BIO_puts(out, "\nShared Elliptic groups: ");
381 ngroups = SSL_get_shared_group(s, -1);
382 for (i = 0; i < ngroups; i++) {
383 if (i)
384 BIO_puts(out, ":");
385 nid = SSL_get_shared_group(s, i);
386 /* TODO(TLS1.3): Convert for DH groups */
387 gname = EC_curve_nid2nist(nid);
388 if (gname == NULL)
389 gname = OBJ_nid2sn(nid);
390 BIO_printf(out, "%s", gname);
391 }
392 if (ngroups == 0)
393 BIO_puts(out, "NONE");
394 BIO_puts(out, "\n");
395 return 1;
396 }
397 #endif
398
399 int ssl_print_tmp_key(BIO *out, SSL *s)
400 {
401 EVP_PKEY *key;
402
403 if (!SSL_get_peer_tmp_key(s, &key))
404 return 1;
405 BIO_puts(out, "Server Temp Key: ");
406 switch (EVP_PKEY_id(key)) {
407 case EVP_PKEY_RSA:
408 BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
409 break;
410
411 case EVP_PKEY_DH:
412 BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
413 break;
414 #ifndef OPENSSL_NO_EC
415 case EVP_PKEY_EC:
416 {
417 EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
418 int nid;
419 const char *cname;
420 nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
421 EC_KEY_free(ec);
422 cname = EC_curve_nid2nist(nid);
423 if (cname == NULL)
424 cname = OBJ_nid2sn(nid);
425 BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
426 }
427 break;
428 #endif
429 default:
430 BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)),
431 EVP_PKEY_bits(key));
432 }
433 EVP_PKEY_free(key);
434 return 1;
435 }
436
437 long bio_dump_callback(BIO *bio, int cmd, const char *argp,
438 int argi, long argl, long ret)
439 {
440 BIO *out;
441
442 out = (BIO *)BIO_get_callback_arg(bio);
443 if (out == NULL)
444 return ret;
445
446 if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
447 BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
448 (void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
449 BIO_dump(out, argp, (int)ret);
450 return ret;
451 } else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
452 BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
453 (void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
454 BIO_dump(out, argp, (int)ret);
455 }
456 return ret;
457 }
458
459 void apps_ssl_info_callback(const SSL *s, int where, int ret)
460 {
461 const char *str;
462 int w;
463
464 w = where & ~SSL_ST_MASK;
465
466 if (w & SSL_ST_CONNECT)
467 str = "SSL_connect";
468 else if (w & SSL_ST_ACCEPT)
469 str = "SSL_accept";
470 else
471 str = "undefined";
472
473 if (where & SSL_CB_LOOP) {
474 BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
475 } else if (where & SSL_CB_ALERT) {
476 str = (where & SSL_CB_READ) ? "read" : "write";
477 BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
478 str,
479 SSL_alert_type_string_long(ret),
480 SSL_alert_desc_string_long(ret));
481 } else if (where & SSL_CB_EXIT) {
482 if (ret == 0)
483 BIO_printf(bio_err, "%s:failed in %s\n",
484 str, SSL_state_string_long(s));
485 else if (ret < 0)
486 BIO_printf(bio_err, "%s:error in %s\n",
487 str, SSL_state_string_long(s));
488 }
489 }
490
491 static STRINT_PAIR ssl_versions[] = {
492 {"SSL 3.0", SSL3_VERSION},
493 {"TLS 1.0", TLS1_VERSION},
494 {"TLS 1.1", TLS1_1_VERSION},
495 {"TLS 1.2", TLS1_2_VERSION},
496 {"TLS 1.3", TLS1_3_VERSION},
497 {"DTLS 1.0", DTLS1_VERSION},
498 {"DTLS 1.0 (bad)", DTLS1_BAD_VER},
499 {NULL}
500 };
501
502 static STRINT_PAIR alert_types[] = {
503 {" close_notify", 0},
504 {" end_of_early_data", 1},
505 {" unexpected_message", 10},
506 {" bad_record_mac", 20},
507 {" decryption_failed", 21},
508 {" record_overflow", 22},
509 {" decompression_failure", 30},
510 {" handshake_failure", 40},
511 {" bad_certificate", 42},
512 {" unsupported_certificate", 43},
513 {" certificate_revoked", 44},
514 {" certificate_expired", 45},
515 {" certificate_unknown", 46},
516 {" illegal_parameter", 47},
517 {" unknown_ca", 48},
518 {" access_denied", 49},
519 {" decode_error", 50},
520 {" decrypt_error", 51},
521 {" export_restriction", 60},
522 {" protocol_version", 70},
523 {" insufficient_security", 71},
524 {" internal_error", 80},
525 {" inappropriate_fallback", 86},
526 {" user_canceled", 90},
527 {" no_renegotiation", 100},
528 {" missing_extension", 109},
529 {" unsupported_extension", 110},
530 {" certificate_unobtainable", 111},
531 {" unrecognized_name", 112},
532 {" bad_certificate_status_response", 113},
533 {" bad_certificate_hash_value", 114},
534 {" unknown_psk_identity", 115},
535 {" certificate_required", 116},
536 {NULL}
537 };
538
539 static STRINT_PAIR handshakes[] = {
540 {", HelloRequest", SSL3_MT_HELLO_REQUEST},
541 {", ClientHello", SSL3_MT_CLIENT_HELLO},
542 {", ServerHello", SSL3_MT_SERVER_HELLO},
543 {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
544 {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
545 {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
546 {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
547 {", Certificate", SSL3_MT_CERTIFICATE},
548 {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
549 {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
550 {", ServerHelloDone", SSL3_MT_SERVER_DONE},
551 {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
552 {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
553 {", Finished", SSL3_MT_FINISHED},
554 {", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
555 {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
556 {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
557 {", KeyUpdate", SSL3_MT_KEY_UPDATE},
558 #ifndef OPENSSL_NO_NEXTPROTONEG
559 {", NextProto", SSL3_MT_NEXT_PROTO},
560 #endif
561 {", MessageHash", SSL3_MT_MESSAGE_HASH},
562 {NULL}
563 };
564
565 void msg_cb(int write_p, int version, int content_type, const void *buf,
566 size_t len, SSL *ssl, void *arg)
567 {
568 BIO *bio = arg;
569 const char *str_write_p = write_p ? ">>>" : "<<<";
570 char tmpbuf[128];
571 const char *str_version, *str_content_type = "", *str_details1 = "", *str_details2 = "";
572 const unsigned char* bp = buf;
573
574 if (version == SSL3_VERSION ||
575 version == TLS1_VERSION ||
576 version == TLS1_1_VERSION ||
577 version == TLS1_2_VERSION ||
578 version == TLS1_3_VERSION ||
579 version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
580 str_version = lookup(version, ssl_versions, "???");
581 switch (content_type) {
582 case SSL3_RT_CHANGE_CIPHER_SPEC:
583 /* type 20 */
584 str_content_type = ", ChangeCipherSpec";
585 break;
586 case SSL3_RT_ALERT:
587 /* type 21 */
588 str_content_type = ", Alert";
589 str_details1 = ", ???";
590 if (len == 2) {
591 switch (bp[0]) {
592 case 1:
593 str_details1 = ", warning";
594 break;
595 case 2:
596 str_details1 = ", fatal";
597 break;
598 }
599 str_details2 = lookup((int)bp[1], alert_types, " ???");
600 }
601 break;
602 case SSL3_RT_HANDSHAKE:
603 /* type 22 */
604 str_content_type = ", Handshake";
605 str_details1 = "???";
606 if (len > 0)
607 str_details1 = lookup((int)bp[0], handshakes, "???");
608 break;
609 case SSL3_RT_APPLICATION_DATA:
610 /* type 23 */
611 str_content_type = ", ApplicationData";
612 break;
613 case SSL3_RT_HEADER:
614 /* type 256 */
615 str_content_type = ", RecordHeader";
616 break;
617 case SSL3_RT_INNER_CONTENT_TYPE:
618 /* type 257 */
619 str_content_type = ", InnerContent";
620 break;
621 default:
622 BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, ", Unknown (content_type=%d)", content_type);
623 str_content_type = tmpbuf;
624 }
625 } else {
626 BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, "Not TLS data or unknown version (version=%d, content_type=%d)", version, content_type);
627 str_version = tmpbuf;
628 }
629
630 BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
631 str_content_type, (unsigned long)len, str_details1,
632 str_details2);
633
634 if (len > 0) {
635 size_t num, i;
636
637 BIO_printf(bio, " ");
638 num = len;
639 for (i = 0; i < num; i++) {
640 if (i % 16 == 0 && i > 0)
641 BIO_printf(bio, "\n ");
642 BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
643 }
644 if (i < len)
645 BIO_printf(bio, " ...");
646 BIO_printf(bio, "\n");
647 }
648 (void)BIO_flush(bio);
649 }
650
651 static STRINT_PAIR tlsext_types[] = {
652 {"server name", TLSEXT_TYPE_server_name},
653 {"max fragment length", TLSEXT_TYPE_max_fragment_length},
654 {"client certificate URL", TLSEXT_TYPE_client_certificate_url},
655 {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
656 {"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
657 {"status request", TLSEXT_TYPE_status_request},
658 {"user mapping", TLSEXT_TYPE_user_mapping},
659 {"client authz", TLSEXT_TYPE_client_authz},
660 {"server authz", TLSEXT_TYPE_server_authz},
661 {"cert type", TLSEXT_TYPE_cert_type},
662 {"supported_groups", TLSEXT_TYPE_supported_groups},
663 {"EC point formats", TLSEXT_TYPE_ec_point_formats},
664 {"SRP", TLSEXT_TYPE_srp},
665 {"signature algorithms", TLSEXT_TYPE_signature_algorithms},
666 {"use SRTP", TLSEXT_TYPE_use_srtp},
667 {"session ticket", TLSEXT_TYPE_session_ticket},
668 {"renegotiation info", TLSEXT_TYPE_renegotiate},
669 {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
670 {"TLS padding", TLSEXT_TYPE_padding},
671 #ifdef TLSEXT_TYPE_next_proto_neg
672 {"next protocol", TLSEXT_TYPE_next_proto_neg},
673 #endif
674 #ifdef TLSEXT_TYPE_encrypt_then_mac
675 {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
676 #endif
677 #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
678 {"application layer protocol negotiation",
679 TLSEXT_TYPE_application_layer_protocol_negotiation},
680 #endif
681 #ifdef TLSEXT_TYPE_extended_master_secret
682 {"extended master secret", TLSEXT_TYPE_extended_master_secret},
683 #endif
684 {"key share", TLSEXT_TYPE_key_share},
685 {"supported versions", TLSEXT_TYPE_supported_versions},
686 {"psk", TLSEXT_TYPE_psk},
687 {"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
688 {"certificate authorities", TLSEXT_TYPE_certificate_authorities},
689 {"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
690 {NULL}
691 };
692
693 /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */
694 static STRINT_PAIR signature_tls13_scheme_list[] = {
695 {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */},
696 {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */},
697 /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */
698 /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */
699 {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */},
700 {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */},
701 {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */},
702 {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */},
703 {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */},
704 {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */},
705 {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */},
706 {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */},
707 {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */},
708 {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */},
709 {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */},
710 {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */},
711 {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */},
712 {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */},
713 {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */},
714 {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */},
715 {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */},
716 {NULL}
717 };
718
719 /* from rfc5246 7.4.1.4.1. */
720 static STRINT_PAIR signature_tls12_alg_list[] = {
721 {"anonymous", TLSEXT_signature_anonymous /* 0 */},
722 {"RSA", TLSEXT_signature_rsa /* 1 */},
723 {"DSA", TLSEXT_signature_dsa /* 2 */},
724 {"ECDSA", TLSEXT_signature_ecdsa /* 3 */},
725 {NULL}
726 };
727
728 /* from rfc5246 7.4.1.4.1. */
729 static STRINT_PAIR signature_tls12_hash_list[] = {
730 {"none", TLSEXT_hash_none /* 0 */},
731 {"MD5", TLSEXT_hash_md5 /* 1 */},
732 {"SHA1", TLSEXT_hash_sha1 /* 2 */},
733 {"SHA224", TLSEXT_hash_sha224 /* 3 */},
734 {"SHA256", TLSEXT_hash_sha256 /* 4 */},
735 {"SHA384", TLSEXT_hash_sha384 /* 5 */},
736 {"SHA512", TLSEXT_hash_sha512 /* 6 */},
737 {NULL}
738 };
739
740 void tlsext_cb(SSL *s, int client_server, int type,
741 const unsigned char *data, int len, void *arg)
742 {
743 BIO *bio = arg;
744 const char *extname = lookup(type, tlsext_types, "unknown");
745
746 BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
747 client_server ? "server" : "client", extname, type, len);
748 BIO_dump(bio, (const char *)data, len);
749 (void)BIO_flush(bio);
750 }
751
752 #ifndef OPENSSL_NO_SOCK
753 int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
754 unsigned int *cookie_len)
755 {
756 unsigned char *buffer = NULL;
757 size_t length = 0;
758 unsigned short port;
759 BIO_ADDR *lpeer = NULL, *peer = NULL;
760 int res = 0;
761 EVP_MAC *hmac = NULL;
762 EVP_MAC_CTX *ctx = NULL;
763 OSSL_PARAM params[3], *p = params;
764 size_t mac_len;
765
766 /* Initialize a random secret */
767 if (!cookie_initialized) {
768 if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
769 BIO_printf(bio_err, "error setting random cookie secret\n");
770 return 0;
771 }
772 cookie_initialized = 1;
773 }
774
775 if (SSL_is_dtls(ssl)) {
776 lpeer = peer = BIO_ADDR_new();
777 if (peer == NULL) {
778 BIO_printf(bio_err, "memory full\n");
779 return 0;
780 }
781
782 /* Read peer information */
783 (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
784 } else {
785 peer = ourpeer;
786 }
787
788 /* Create buffer with peer's address and port */
789 if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
790 BIO_printf(bio_err, "Failed getting peer address\n");
791 return 0;
792 }
793 OPENSSL_assert(length != 0);
794 port = BIO_ADDR_rawport(peer);
795 length += sizeof(port);
796 buffer = app_malloc(length, "cookie generate buffer");
797
798 memcpy(buffer, &port, sizeof(port));
799 BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
800
801 /* Calculate HMAC of buffer using the secret */
802 hmac = EVP_MAC_fetch(NULL, "HMAC", NULL);
803 if (hmac == NULL) {
804 BIO_printf(bio_err, "HMAC not found\n");
805 goto end;
806 }
807 ctx = EVP_MAC_CTX_new(hmac);
808 if (ctx == NULL) {
809 BIO_printf(bio_err, "HMAC context allocation failed\n");
810 goto end;
811 }
812 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, "SHA1", 0);
813 *p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, cookie_secret,
814 COOKIE_SECRET_LENGTH);
815 *p = OSSL_PARAM_construct_end();
816 if (!EVP_MAC_CTX_set_params(ctx, params)) {
817 BIO_printf(bio_err, "HMAC context parameter setting failed\n");
818 goto end;
819 }
820 if (!EVP_MAC_init(ctx)) {
821 BIO_printf(bio_err, "HMAC context initialisation failed\n");
822 goto end;
823 }
824 if (!EVP_MAC_update(ctx, buffer, length)) {
825 BIO_printf(bio_err, "HMAC context update failed\n");
826 goto end;
827 }
828 if (!EVP_MAC_final(ctx, cookie, &mac_len, DTLS1_COOKIE_LENGTH)) {
829 BIO_printf(bio_err, "HMAC context final failed\n");
830 goto end;
831 }
832 *cookie_len = (int)mac_len;
833 res = 1;
834 end:
835 OPENSSL_free(buffer);
836 BIO_ADDR_free(lpeer);
837
838 return res;
839 }
840
841 int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
842 unsigned int cookie_len)
843 {
844 unsigned char result[EVP_MAX_MD_SIZE];
845 unsigned int resultlength;
846
847 /* Note: we check cookie_initialized because if it's not,
848 * it cannot be valid */
849 if (cookie_initialized
850 && generate_cookie_callback(ssl, result, &resultlength)
851 && cookie_len == resultlength
852 && memcmp(result, cookie, resultlength) == 0)
853 return 1;
854
855 return 0;
856 }
857
858 int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
859 size_t *cookie_len)
860 {
861 unsigned int temp = 0;
862
863 int res = generate_cookie_callback(ssl, cookie, &temp);
864 *cookie_len = temp;
865 return res;
866 }
867
868 int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
869 size_t cookie_len)
870 {
871 return verify_cookie_callback(ssl, cookie, cookie_len);
872 }
873
874 #endif
875
876 /*
877 * Example of extended certificate handling. Where the standard support of
878 * one certificate per algorithm is not sufficient an application can decide
879 * which certificate(s) to use at runtime based on whatever criteria it deems
880 * appropriate.
881 */
882
883 /* Linked list of certificates, keys and chains */
884 struct ssl_excert_st {
885 int certform;
886 const char *certfile;
887 int keyform;
888 const char *keyfile;
889 const char *chainfile;
890 X509 *cert;
891 EVP_PKEY *key;
892 STACK_OF(X509) *chain;
893 int build_chain;
894 struct ssl_excert_st *next, *prev;
895 };
896
897 static STRINT_PAIR chain_flags[] = {
898 {"Overall Validity", CERT_PKEY_VALID},
899 {"Sign with EE key", CERT_PKEY_SIGN},
900 {"EE signature", CERT_PKEY_EE_SIGNATURE},
901 {"CA signature", CERT_PKEY_CA_SIGNATURE},
902 {"EE key parameters", CERT_PKEY_EE_PARAM},
903 {"CA key parameters", CERT_PKEY_CA_PARAM},
904 {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
905 {"Issuer Name", CERT_PKEY_ISSUER_NAME},
906 {"Certificate Type", CERT_PKEY_CERT_TYPE},
907 {NULL}
908 };
909
910 static void print_chain_flags(SSL *s, int flags)
911 {
912 STRINT_PAIR *pp;
913
914 for (pp = chain_flags; pp->name; ++pp)
915 BIO_printf(bio_err, "\t%s: %s\n",
916 pp->name,
917 (flags & pp->retval) ? "OK" : "NOT OK");
918 BIO_printf(bio_err, "\tSuite B: ");
919 if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
920 BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
921 else
922 BIO_printf(bio_err, "not tested\n");
923 }
924
925 /*
926 * Very basic selection callback: just use any certificate chain reported as
927 * valid. More sophisticated could prioritise according to local policy.
928 */
929 static int set_cert_cb(SSL *ssl, void *arg)
930 {
931 int i, rv;
932 SSL_EXCERT *exc = arg;
933 #ifdef CERT_CB_TEST_RETRY
934 static int retry_cnt;
935 if (retry_cnt < 5) {
936 retry_cnt++;
937 BIO_printf(bio_err,
938 "Certificate callback retry test: count %d\n",
939 retry_cnt);
940 return -1;
941 }
942 #endif
943 SSL_certs_clear(ssl);
944
945 if (exc == NULL)
946 return 1;
947
948 /*
949 * Go to end of list and traverse backwards since we prepend newer
950 * entries this retains the original order.
951 */
952 while (exc->next != NULL)
953 exc = exc->next;
954
955 i = 0;
956
957 while (exc != NULL) {
958 i++;
959 rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
960 BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
961 X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
962 get_nameopt());
963 BIO_puts(bio_err, "\n");
964 print_chain_flags(ssl, rv);
965 if (rv & CERT_PKEY_VALID) {
966 if (!SSL_use_certificate(ssl, exc->cert)
967 || !SSL_use_PrivateKey(ssl, exc->key)) {
968 return 0;
969 }
970 /*
971 * NB: we wouldn't normally do this as it is not efficient
972 * building chains on each connection better to cache the chain
973 * in advance.
974 */
975 if (exc->build_chain) {
976 if (!SSL_build_cert_chain(ssl, 0))
977 return 0;
978 } else if (exc->chain != NULL) {
979 SSL_set1_chain(ssl, exc->chain);
980 }
981 }
982 exc = exc->prev;
983 }
984 return 1;
985 }
986
987 void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
988 {
989 SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
990 }
991
992 static int ssl_excert_prepend(SSL_EXCERT **pexc)
993 {
994 SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
995
996 memset(exc, 0, sizeof(*exc));
997
998 exc->next = *pexc;
999 *pexc = exc;
1000
1001 if (exc->next) {
1002 exc->certform = exc->next->certform;
1003 exc->keyform = exc->next->keyform;
1004 exc->next->prev = exc;
1005 } else {
1006 exc->certform = FORMAT_PEM;
1007 exc->keyform = FORMAT_PEM;
1008 }
1009 return 1;
1010
1011 }
1012
1013 void ssl_excert_free(SSL_EXCERT *exc)
1014 {
1015 SSL_EXCERT *curr;
1016
1017 if (exc == NULL)
1018 return;
1019 while (exc) {
1020 X509_free(exc->cert);
1021 EVP_PKEY_free(exc->key);
1022 sk_X509_pop_free(exc->chain, X509_free);
1023 curr = exc;
1024 exc = exc->next;
1025 OPENSSL_free(curr);
1026 }
1027 }
1028
1029 int load_excert(SSL_EXCERT **pexc)
1030 {
1031 SSL_EXCERT *exc = *pexc;
1032 if (exc == NULL)
1033 return 1;
1034 /* If nothing in list, free and set to NULL */
1035 if (exc->certfile == NULL && exc->next == NULL) {
1036 ssl_excert_free(exc);
1037 *pexc = NULL;
1038 return 1;
1039 }
1040 for (; exc; exc = exc->next) {
1041 if (exc->certfile == NULL) {
1042 BIO_printf(bio_err, "Missing filename\n");
1043 return 0;
1044 }
1045 exc->cert = load_cert(exc->certfile, exc->certform,
1046 "Server Certificate");
1047 if (exc->cert == NULL)
1048 return 0;
1049 if (exc->keyfile != NULL) {
1050 exc->key = load_key(exc->keyfile, exc->keyform,
1051 0, NULL, NULL, "Server Key");
1052 } else {
1053 exc->key = load_key(exc->certfile, exc->certform,
1054 0, NULL, NULL, "Server Key");
1055 }
1056 if (exc->key == NULL)
1057 return 0;
1058 if (exc->chainfile != NULL) {
1059 if (!load_certs(exc->chainfile, &exc->chain, NULL, "Server Chain"))
1060 return 0;
1061 }
1062 }
1063 return 1;
1064 }
1065
1066 enum range { OPT_X_ENUM };
1067
1068 int args_excert(int opt, SSL_EXCERT **pexc)
1069 {
1070 SSL_EXCERT *exc = *pexc;
1071
1072 assert(opt > OPT_X__FIRST);
1073 assert(opt < OPT_X__LAST);
1074
1075 if (exc == NULL) {
1076 if (!ssl_excert_prepend(&exc)) {
1077 BIO_printf(bio_err, " %s: Error initialising xcert\n",
1078 opt_getprog());
1079 goto err;
1080 }
1081 *pexc = exc;
1082 }
1083
1084 switch ((enum range)opt) {
1085 case OPT_X__FIRST:
1086 case OPT_X__LAST:
1087 return 0;
1088 case OPT_X_CERT:
1089 if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
1090 BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
1091 goto err;
1092 }
1093 *pexc = exc;
1094 exc->certfile = opt_arg();
1095 break;
1096 case OPT_X_KEY:
1097 if (exc->keyfile != NULL) {
1098 BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
1099 goto err;
1100 }
1101 exc->keyfile = opt_arg();
1102 break;
1103 case OPT_X_CHAIN:
1104 if (exc->chainfile != NULL) {
1105 BIO_printf(bio_err, "%s: Chain already specified\n",
1106 opt_getprog());
1107 goto err;
1108 }
1109 exc->chainfile = opt_arg();
1110 break;
1111 case OPT_X_CHAIN_BUILD:
1112 exc->build_chain = 1;
1113 break;
1114 case OPT_X_CERTFORM:
1115 if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->certform))
1116 return 0;
1117 break;
1118 case OPT_X_KEYFORM:
1119 if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->keyform))
1120 return 0;
1121 break;
1122 }
1123 return 1;
1124
1125 err:
1126 ERR_print_errors(bio_err);
1127 ssl_excert_free(exc);
1128 *pexc = NULL;
1129 return 0;
1130 }
1131
1132 static void print_raw_cipherlist(SSL *s)
1133 {
1134 const unsigned char *rlist;
1135 static const unsigned char scsv_id[] = { 0, 0xFF };
1136 size_t i, rlistlen, num;
1137 if (!SSL_is_server(s))
1138 return;
1139 num = SSL_get0_raw_cipherlist(s, NULL);
1140 OPENSSL_assert(num == 2);
1141 rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
1142 BIO_puts(bio_err, "Client cipher list: ");
1143 for (i = 0; i < rlistlen; i += num, rlist += num) {
1144 const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
1145 if (i)
1146 BIO_puts(bio_err, ":");
1147 if (c != NULL) {
1148 BIO_puts(bio_err, SSL_CIPHER_get_name(c));
1149 } else if (memcmp(rlist, scsv_id, num) == 0) {
1150 BIO_puts(bio_err, "SCSV");
1151 } else {
1152 size_t j;
1153 BIO_puts(bio_err, "0x");
1154 for (j = 0; j < num; j++)
1155 BIO_printf(bio_err, "%02X", rlist[j]);
1156 }
1157 }
1158 BIO_puts(bio_err, "\n");
1159 }
1160
1161 /*
1162 * Hex encoder for TLSA RRdata, not ':' delimited.
1163 */
1164 static char *hexencode(const unsigned char *data, size_t len)
1165 {
1166 static const char *hex = "0123456789abcdef";
1167 char *out;
1168 char *cp;
1169 size_t outlen = 2 * len + 1;
1170 int ilen = (int) outlen;
1171
1172 if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
1173 BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
1174 opt_getprog(), len);
1175 exit(1);
1176 }
1177 cp = out = app_malloc(ilen, "TLSA hex data buffer");
1178
1179 while (len-- > 0) {
1180 *cp++ = hex[(*data >> 4) & 0x0f];
1181 *cp++ = hex[*data++ & 0x0f];
1182 }
1183 *cp = '\0';
1184 return out;
1185 }
1186
1187 void print_verify_detail(SSL *s, BIO *bio)
1188 {
1189 int mdpth;
1190 EVP_PKEY *mspki;
1191 long verify_err = SSL_get_verify_result(s);
1192
1193 if (verify_err == X509_V_OK) {
1194 const char *peername = SSL_get0_peername(s);
1195
1196 BIO_printf(bio, "Verification: OK\n");
1197 if (peername != NULL)
1198 BIO_printf(bio, "Verified peername: %s\n", peername);
1199 } else {
1200 const char *reason = X509_verify_cert_error_string(verify_err);
1201
1202 BIO_printf(bio, "Verification error: %s\n", reason);
1203 }
1204
1205 if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
1206 uint8_t usage, selector, mtype;
1207 const unsigned char *data = NULL;
1208 size_t dlen = 0;
1209 char *hexdata;
1210
1211 mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
1212
1213 /*
1214 * The TLSA data field can be quite long when it is a certificate,
1215 * public key or even a SHA2-512 digest. Because the initial octets of
1216 * ASN.1 certificates and public keys contain mostly boilerplate OIDs
1217 * and lengths, we show the last 12 bytes of the data instead, as these
1218 * are more likely to distinguish distinct TLSA records.
1219 */
1220 #define TLSA_TAIL_SIZE 12
1221 if (dlen > TLSA_TAIL_SIZE)
1222 hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
1223 else
1224 hexdata = hexencode(data, dlen);
1225 BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n",
1226 usage, selector, mtype,
1227 (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata,
1228 (mspki != NULL) ? "signed the certificate" :
1229 mdpth ? "matched TA certificate" : "matched EE certificate",
1230 mdpth);
1231 OPENSSL_free(hexdata);
1232 }
1233 }
1234
1235 void print_ssl_summary(SSL *s)
1236 {
1237 const SSL_CIPHER *c;
1238 X509 *peer;
1239
1240 BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
1241 print_raw_cipherlist(s);
1242 c = SSL_get_current_cipher(s);
1243 BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
1244 do_print_sigalgs(bio_err, s, 0);
1245 peer = SSL_get0_peer_certificate(s);
1246 if (peer != NULL) {
1247 int nid;
1248
1249 BIO_puts(bio_err, "Peer certificate: ");
1250 X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
1251 0, get_nameopt());
1252 BIO_puts(bio_err, "\n");
1253 if (SSL_get_peer_signature_nid(s, &nid))
1254 BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
1255 if (SSL_get_peer_signature_type_nid(s, &nid))
1256 BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
1257 print_verify_detail(s, bio_err);
1258 } else {
1259 BIO_puts(bio_err, "No peer certificate\n");
1260 }
1261 #ifndef OPENSSL_NO_EC
1262 ssl_print_point_formats(bio_err, s);
1263 if (SSL_is_server(s))
1264 ssl_print_groups(bio_err, s, 1);
1265 else
1266 ssl_print_tmp_key(bio_err, s);
1267 #else
1268 if (!SSL_is_server(s))
1269 ssl_print_tmp_key(bio_err, s);
1270 #endif
1271 }
1272
1273 int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
1274 SSL_CTX *ctx)
1275 {
1276 int i;
1277
1278 SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
1279 for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
1280 const char *flag = sk_OPENSSL_STRING_value(str, i);
1281 const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
1282 if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
1283 if (arg != NULL)
1284 BIO_printf(bio_err, "Error with command: \"%s %s\"\n",
1285 flag, arg);
1286 else
1287 BIO_printf(bio_err, "Error with command: \"%s\"\n", flag);
1288 ERR_print_errors(bio_err);
1289 return 0;
1290 }
1291 }
1292 if (!SSL_CONF_CTX_finish(cctx)) {
1293 BIO_puts(bio_err, "Error finishing context\n");
1294 ERR_print_errors(bio_err);
1295 return 0;
1296 }
1297 return 1;
1298 }
1299
1300 static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
1301 {
1302 X509_CRL *crl;
1303 int i;
1304 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1305 crl = sk_X509_CRL_value(crls, i);
1306 X509_STORE_add_crl(st, crl);
1307 }
1308 return 1;
1309 }
1310
1311 int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
1312 {
1313 X509_STORE *st;
1314 st = SSL_CTX_get_cert_store(ctx);
1315 add_crls_store(st, crls);
1316 if (crl_download)
1317 store_setup_crl_download(st);
1318 return 1;
1319 }
1320
1321 int ssl_load_stores(SSL_CTX *ctx,
1322 const char *vfyCApath, const char *vfyCAfile,
1323 const char *vfyCAstore,
1324 const char *chCApath, const char *chCAfile,
1325 const char *chCAstore,
1326 STACK_OF(X509_CRL) *crls, int crl_download)
1327 {
1328 X509_STORE *vfy = NULL, *ch = NULL;
1329 int rv = 0;
1330 if (vfyCApath != NULL || vfyCAfile != NULL || vfyCAstore != NULL) {
1331 vfy = X509_STORE_new();
1332 if (vfy == NULL)
1333 goto err;
1334 if (vfyCAfile != NULL && !X509_STORE_load_file(vfy, vfyCAfile))
1335 goto err;
1336 if (vfyCApath != NULL && !X509_STORE_load_path(vfy, vfyCApath))
1337 goto err;
1338 if (vfyCAstore != NULL && !X509_STORE_load_store(vfy, vfyCAstore))
1339 goto err;
1340 add_crls_store(vfy, crls);
1341 SSL_CTX_set1_verify_cert_store(ctx, vfy);
1342 if (crl_download)
1343 store_setup_crl_download(vfy);
1344 }
1345 if (chCApath != NULL || chCAfile != NULL || chCAstore != NULL) {
1346 ch = X509_STORE_new();
1347 if (ch == NULL)
1348 goto err;
1349 if (chCAfile != NULL && !X509_STORE_load_file(ch, chCAfile))
1350 goto err;
1351 if (chCApath != NULL && !X509_STORE_load_path(ch, chCApath))
1352 goto err;
1353 if (chCAstore != NULL && !X509_STORE_load_store(ch, chCAstore))
1354 goto err;
1355 SSL_CTX_set1_chain_cert_store(ctx, ch);
1356 }
1357 rv = 1;
1358 err:
1359 X509_STORE_free(vfy);
1360 X509_STORE_free(ch);
1361 return rv;
1362 }
1363
1364 /* Verbose print out of security callback */
1365
1366 typedef struct {
1367 BIO *out;
1368 int verbose;
1369 int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
1370 void *other, void *ex);
1371 } security_debug_ex;
1372
1373 static STRINT_PAIR callback_types[] = {
1374 {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
1375 {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
1376 {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
1377 #ifndef OPENSSL_NO_DH
1378 {"Temp DH key bits", SSL_SECOP_TMP_DH},
1379 #endif
1380 {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
1381 {"Shared Curve", SSL_SECOP_CURVE_SHARED},
1382 {"Check Curve", SSL_SECOP_CURVE_CHECK},
1383 {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED},
1384 {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED},
1385 {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK},
1386 {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
1387 {"Certificate chain EE key", SSL_SECOP_EE_KEY},
1388 {"Certificate chain CA key", SSL_SECOP_CA_KEY},
1389 {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
1390 {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
1391 {"Certificate chain CA digest", SSL_SECOP_CA_MD},
1392 {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
1393 {"SSL compression", SSL_SECOP_COMPRESSION},
1394 {"Session ticket", SSL_SECOP_TICKET},
1395 {NULL}
1396 };
1397
1398 static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
1399 int op, int bits, int nid,
1400 void *other, void *ex)
1401 {
1402 security_debug_ex *sdb = ex;
1403 int rv, show_bits = 1, cert_md = 0;
1404 const char *nm;
1405 int show_nm;
1406 rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
1407 if (rv == 1 && sdb->verbose < 2)
1408 return 1;
1409 BIO_puts(sdb->out, "Security callback: ");
1410
1411 nm = lookup(op, callback_types, NULL);
1412 show_nm = nm != NULL;
1413 switch (op) {
1414 case SSL_SECOP_TICKET:
1415 case SSL_SECOP_COMPRESSION:
1416 show_bits = 0;
1417 show_nm = 0;
1418 break;
1419 case SSL_SECOP_VERSION:
1420 BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
1421 show_bits = 0;
1422 show_nm = 0;
1423 break;
1424 case SSL_SECOP_CA_MD:
1425 case SSL_SECOP_PEER_CA_MD:
1426 cert_md = 1;
1427 break;
1428 case SSL_SECOP_SIGALG_SUPPORTED:
1429 case SSL_SECOP_SIGALG_SHARED:
1430 case SSL_SECOP_SIGALG_CHECK:
1431 case SSL_SECOP_SIGALG_MASK:
1432 show_nm = 0;
1433 break;
1434 }
1435 if (show_nm)
1436 BIO_printf(sdb->out, "%s=", nm);
1437
1438 switch (op & SSL_SECOP_OTHER_TYPE) {
1439
1440 case SSL_SECOP_OTHER_CIPHER:
1441 BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
1442 break;
1443
1444 #ifndef OPENSSL_NO_EC
1445 case SSL_SECOP_OTHER_CURVE:
1446 {
1447 const char *cname;
1448 cname = EC_curve_nid2nist(nid);
1449 if (cname == NULL)
1450 cname = OBJ_nid2sn(nid);
1451 BIO_puts(sdb->out, cname);
1452 }
1453 break;
1454 #endif
1455 #ifndef OPENSSL_NO_DH
1456 case SSL_SECOP_OTHER_DH:
1457 {
1458 DH *dh = other;
1459 EVP_PKEY *pkey = EVP_PKEY_new();
1460 int fail = 1;
1461
1462 if (pkey != NULL) {
1463 if (EVP_PKEY_set1_DH(pkey, dh)) {
1464 BIO_printf(sdb->out, "%d", EVP_PKEY_bits(pkey));
1465 fail = 0;
1466 }
1467
1468 EVP_PKEY_free(pkey);
1469 }
1470 if (fail)
1471 BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x",
1472 op);
1473 break;
1474 }
1475 #endif
1476 case SSL_SECOP_OTHER_CERT:
1477 {
1478 if (cert_md) {
1479 int sig_nid = X509_get_signature_nid(other);
1480 BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
1481 } else {
1482 EVP_PKEY *pkey = X509_get0_pubkey(other);
1483 const char *algname = "";
1484 EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
1485 &algname, EVP_PKEY_get0_asn1(pkey));
1486 BIO_printf(sdb->out, "%s, bits=%d",
1487 algname, EVP_PKEY_bits(pkey));
1488 }
1489 break;
1490 }
1491 case SSL_SECOP_OTHER_SIGALG:
1492 {
1493 const unsigned char *salg = other;
1494 const char *sname = NULL;
1495 int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */
1496 /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */
1497
1498 if (nm != NULL)
1499 BIO_printf(sdb->out, "%s", nm);
1500 else
1501 BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op);
1502
1503 sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL);
1504 if (sname != NULL) {
1505 BIO_printf(sdb->out, " scheme=%s", sname);
1506 } else {
1507 int alg_code = salg[1];
1508 int hash_code = salg[0];
1509 const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL);
1510 const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL);
1511
1512 if (alg_str != NULL && hash_str != NULL)
1513 BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str);
1514 else
1515 BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code);
1516 }
1517 }
1518
1519 }
1520
1521 if (show_bits)
1522 BIO_printf(sdb->out, ", security bits=%d", bits);
1523 BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
1524 return rv;
1525 }
1526
1527 void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
1528 {
1529 static security_debug_ex sdb;
1530
1531 sdb.out = bio_err;
1532 sdb.verbose = verbose;
1533 sdb.old_cb = SSL_CTX_get_security_callback(ctx);
1534 SSL_CTX_set_security_callback(ctx, security_callback_debug);
1535 SSL_CTX_set0_security_ex_data(ctx, &sdb);
1536 }
1537
1538 static void keylog_callback(const SSL *ssl, const char *line)
1539 {
1540 if (bio_keylog == NULL) {
1541 BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
1542 return;
1543 }
1544
1545 /*
1546 * There might be concurrent writers to the keylog file, so we must ensure
1547 * that the given line is written at once.
1548 */
1549 BIO_printf(bio_keylog, "%s\n", line);
1550 (void)BIO_flush(bio_keylog);
1551 }
1552
1553 int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
1554 {
1555 /* Close any open files */
1556 BIO_free_all(bio_keylog);
1557 bio_keylog = NULL;
1558
1559 if (ctx == NULL || keylog_file == NULL) {
1560 /* Keylogging is disabled, OK. */
1561 return 0;
1562 }
1563
1564 /*
1565 * Append rather than write in order to allow concurrent modification.
1566 * Furthermore, this preserves existing keylog files which is useful when
1567 * the tool is run multiple times.
1568 */
1569 bio_keylog = BIO_new_file(keylog_file, "a");
1570 if (bio_keylog == NULL) {
1571 BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
1572 return 1;
1573 }
1574
1575 /* Write a header for seekable, empty files (this excludes pipes). */
1576 if (BIO_tell(bio_keylog) == 0) {
1577 BIO_puts(bio_keylog,
1578 "# SSL/TLS secrets log file, generated by OpenSSL\n");
1579 (void)BIO_flush(bio_keylog);
1580 }
1581 SSL_CTX_set_keylog_callback(ctx, keylog_callback);
1582 return 0;
1583 }
1584
1585 void print_ca_names(BIO *bio, SSL *s)
1586 {
1587 const char *cs = SSL_is_server(s) ? "server" : "client";
1588 const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
1589 int i;
1590
1591 if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
1592 if (!SSL_is_server(s))
1593 BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
1594 return;
1595 }
1596
1597 BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs);
1598 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
1599 X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
1600 BIO_write(bio, "\n", 1);
1601 }
1602 }