]> git.ipfire.org Git - thirdparty/openssl.git/blob - apps/lib/s_cb.c
Fix stacks of OPENSSL_STRING, OPENSSL_CSTRING and OPENSSL_BLOCK
[thirdparty/openssl.git] / apps / lib / s_cb.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* callback functions used by s_client, s_server, and s_time */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h> /* for memcpy() and strcmp() */
14 #include "apps.h"
15 #include <openssl/core_names.h>
16 #include <openssl/params.h>
17 #include <openssl/err.h>
18 #include <openssl/rand.h>
19 #include <openssl/x509.h>
20 #include <openssl/ssl.h>
21 #include <openssl/bn.h>
22 #ifndef OPENSSL_NO_DH
23 # include <openssl/dh.h>
24 #endif
25 #include "s_apps.h"
26
27 #define COOKIE_SECRET_LENGTH 16
28
29 VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
30
31 #ifndef OPENSSL_NO_SOCK
32 static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
33 static int cookie_initialized = 0;
34 #endif
35 static BIO *bio_keylog = NULL;
36
37 static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
38 {
39 for ( ; list->name; ++list)
40 if (list->retval == val)
41 return list->name;
42 return def;
43 }
44
45 int verify_callback(int ok, X509_STORE_CTX *ctx)
46 {
47 X509 *err_cert;
48 int err, depth;
49
50 err_cert = X509_STORE_CTX_get_current_cert(ctx);
51 err = X509_STORE_CTX_get_error(ctx);
52 depth = X509_STORE_CTX_get_error_depth(ctx);
53
54 if (!verify_args.quiet || !ok) {
55 BIO_printf(bio_err, "depth=%d ", depth);
56 if (err_cert != NULL) {
57 X509_NAME_print_ex(bio_err,
58 X509_get_subject_name(err_cert),
59 0, get_nameopt());
60 BIO_puts(bio_err, "\n");
61 } else {
62 BIO_puts(bio_err, "<no cert>\n");
63 }
64 }
65 if (!ok) {
66 BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
67 X509_verify_cert_error_string(err));
68 if (verify_args.depth < 0 || verify_args.depth >= depth) {
69 if (!verify_args.return_error)
70 ok = 1;
71 verify_args.error = err;
72 } else {
73 ok = 0;
74 verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
75 }
76 }
77 switch (err) {
78 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
79 BIO_puts(bio_err, "issuer= ");
80 X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
81 0, get_nameopt());
82 BIO_puts(bio_err, "\n");
83 break;
84 case X509_V_ERR_CERT_NOT_YET_VALID:
85 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
86 BIO_printf(bio_err, "notBefore=");
87 ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
88 BIO_printf(bio_err, "\n");
89 break;
90 case X509_V_ERR_CERT_HAS_EXPIRED:
91 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
92 BIO_printf(bio_err, "notAfter=");
93 ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
94 BIO_printf(bio_err, "\n");
95 break;
96 case X509_V_ERR_NO_EXPLICIT_POLICY:
97 if (!verify_args.quiet)
98 policies_print(ctx);
99 break;
100 }
101 if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
102 policies_print(ctx);
103 if (ok && !verify_args.quiet)
104 BIO_printf(bio_err, "verify return:%d\n", ok);
105 return ok;
106 }
107
108 int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
109 {
110 if (cert_file != NULL) {
111 if (SSL_CTX_use_certificate_file(ctx, cert_file,
112 SSL_FILETYPE_PEM) <= 0) {
113 BIO_printf(bio_err, "unable to get certificate from '%s'\n",
114 cert_file);
115 ERR_print_errors(bio_err);
116 return 0;
117 }
118 if (key_file == NULL)
119 key_file = cert_file;
120 if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
121 BIO_printf(bio_err, "unable to get private key from '%s'\n",
122 key_file);
123 ERR_print_errors(bio_err);
124 return 0;
125 }
126
127 /*
128 * If we are using DSA, we can copy the parameters from the private
129 * key
130 */
131
132 /*
133 * Now we know that a key and cert have been set against the SSL
134 * context
135 */
136 if (!SSL_CTX_check_private_key(ctx)) {
137 BIO_printf(bio_err,
138 "Private key does not match the certificate public key\n");
139 return 0;
140 }
141 }
142 return 1;
143 }
144
145 int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
146 STACK_OF(X509) *chain, int build_chain)
147 {
148 int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
149 if (cert == NULL)
150 return 1;
151 if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
152 BIO_printf(bio_err, "error setting certificate\n");
153 ERR_print_errors(bio_err);
154 return 0;
155 }
156
157 if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
158 BIO_printf(bio_err, "error setting private key\n");
159 ERR_print_errors(bio_err);
160 return 0;
161 }
162
163 /*
164 * Now we know that a key and cert have been set against the SSL context
165 */
166 if (!SSL_CTX_check_private_key(ctx)) {
167 BIO_printf(bio_err,
168 "Private key does not match the certificate public key\n");
169 return 0;
170 }
171 if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
172 BIO_printf(bio_err, "error setting certificate chain\n");
173 ERR_print_errors(bio_err);
174 return 0;
175 }
176 if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
177 BIO_printf(bio_err, "error building certificate chain\n");
178 ERR_print_errors(bio_err);
179 return 0;
180 }
181 return 1;
182 }
183
184 static STRINT_PAIR cert_type_list[] = {
185 {"RSA sign", TLS_CT_RSA_SIGN},
186 {"DSA sign", TLS_CT_DSS_SIGN},
187 {"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
188 {"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
189 {"ECDSA sign", TLS_CT_ECDSA_SIGN},
190 {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
191 {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
192 {"GOST01 Sign", TLS_CT_GOST01_SIGN},
193 {"GOST12 Sign", TLS_CT_GOST12_IANA_SIGN},
194 {NULL}
195 };
196
197 static void ssl_print_client_cert_types(BIO *bio, SSL *s)
198 {
199 const unsigned char *p;
200 int i;
201 int cert_type_num = SSL_get0_certificate_types(s, &p);
202 if (!cert_type_num)
203 return;
204 BIO_puts(bio, "Client Certificate Types: ");
205 for (i = 0; i < cert_type_num; i++) {
206 unsigned char cert_type = p[i];
207 const char *cname = lookup((int)cert_type, cert_type_list, NULL);
208
209 if (i)
210 BIO_puts(bio, ", ");
211 if (cname != NULL)
212 BIO_puts(bio, cname);
213 else
214 BIO_printf(bio, "UNKNOWN (%d),", cert_type);
215 }
216 BIO_puts(bio, "\n");
217 }
218
219 static const char *get_sigtype(int nid)
220 {
221 switch (nid) {
222 case EVP_PKEY_RSA:
223 return "RSA";
224
225 case EVP_PKEY_RSA_PSS:
226 return "RSA-PSS";
227
228 case EVP_PKEY_DSA:
229 return "DSA";
230
231 case EVP_PKEY_EC:
232 return "ECDSA";
233
234 case NID_ED25519:
235 return "Ed25519";
236
237 case NID_ED448:
238 return "Ed448";
239
240 case NID_id_GostR3410_2001:
241 return "gost2001";
242
243 case NID_id_GostR3410_2012_256:
244 return "gost2012_256";
245
246 case NID_id_GostR3410_2012_512:
247 return "gost2012_512";
248
249 default:
250 return NULL;
251 }
252 }
253
254 static int do_print_sigalgs(BIO *out, SSL *s, int shared)
255 {
256 int i, nsig, client;
257 client = SSL_is_server(s) ? 0 : 1;
258 if (shared)
259 nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
260 else
261 nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
262 if (nsig == 0)
263 return 1;
264
265 if (shared)
266 BIO_puts(out, "Shared ");
267
268 if (client)
269 BIO_puts(out, "Requested ");
270 BIO_puts(out, "Signature Algorithms: ");
271 for (i = 0; i < nsig; i++) {
272 int hash_nid, sign_nid;
273 unsigned char rhash, rsign;
274 const char *sstr = NULL;
275 if (shared)
276 SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
277 &rsign, &rhash);
278 else
279 SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
280 if (i)
281 BIO_puts(out, ":");
282 sstr = get_sigtype(sign_nid);
283 if (sstr)
284 BIO_printf(out, "%s", sstr);
285 else
286 BIO_printf(out, "0x%02X", (int)rsign);
287 if (hash_nid != NID_undef)
288 BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
289 else if (sstr == NULL)
290 BIO_printf(out, "+0x%02X", (int)rhash);
291 }
292 BIO_puts(out, "\n");
293 return 1;
294 }
295
296 int ssl_print_sigalgs(BIO *out, SSL *s)
297 {
298 int nid;
299 if (!SSL_is_server(s))
300 ssl_print_client_cert_types(out, s);
301 do_print_sigalgs(out, s, 0);
302 do_print_sigalgs(out, s, 1);
303 if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
304 BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
305 if (SSL_get_peer_signature_type_nid(s, &nid))
306 BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
307 return 1;
308 }
309
310 #ifndef OPENSSL_NO_EC
311 int ssl_print_point_formats(BIO *out, SSL *s)
312 {
313 int i, nformats;
314 const char *pformats;
315 nformats = SSL_get0_ec_point_formats(s, &pformats);
316 if (nformats <= 0)
317 return 1;
318 BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
319 for (i = 0; i < nformats; i++, pformats++) {
320 if (i)
321 BIO_puts(out, ":");
322 switch (*pformats) {
323 case TLSEXT_ECPOINTFORMAT_uncompressed:
324 BIO_puts(out, "uncompressed");
325 break;
326
327 case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
328 BIO_puts(out, "ansiX962_compressed_prime");
329 break;
330
331 case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
332 BIO_puts(out, "ansiX962_compressed_char2");
333 break;
334
335 default:
336 BIO_printf(out, "unknown(%d)", (int)*pformats);
337 break;
338
339 }
340 }
341 BIO_puts(out, "\n");
342 return 1;
343 }
344
345 int ssl_print_groups(BIO *out, SSL *s, int noshared)
346 {
347 int i, ngroups, *groups, nid;
348 const char *gname;
349
350 ngroups = SSL_get1_groups(s, NULL);
351 if (ngroups <= 0)
352 return 1;
353 groups = app_malloc(ngroups * sizeof(int), "groups to print");
354 SSL_get1_groups(s, groups);
355
356 BIO_puts(out, "Supported Elliptic Groups: ");
357 for (i = 0; i < ngroups; i++) {
358 if (i)
359 BIO_puts(out, ":");
360 nid = groups[i];
361 /* If unrecognised print out hex version */
362 if (nid & TLSEXT_nid_unknown) {
363 BIO_printf(out, "0x%04X", nid & 0xFFFF);
364 } else {
365 /* TODO(TLS1.3): Get group name here */
366 /* Use NIST name for curve if it exists */
367 gname = EC_curve_nid2nist(nid);
368 if (gname == NULL)
369 gname = OBJ_nid2sn(nid);
370 BIO_printf(out, "%s", gname);
371 }
372 }
373 OPENSSL_free(groups);
374 if (noshared) {
375 BIO_puts(out, "\n");
376 return 1;
377 }
378 BIO_puts(out, "\nShared Elliptic groups: ");
379 ngroups = SSL_get_shared_group(s, -1);
380 for (i = 0; i < ngroups; i++) {
381 if (i)
382 BIO_puts(out, ":");
383 nid = SSL_get_shared_group(s, i);
384 /* TODO(TLS1.3): Convert for DH groups */
385 gname = EC_curve_nid2nist(nid);
386 if (gname == NULL)
387 gname = OBJ_nid2sn(nid);
388 BIO_printf(out, "%s", gname);
389 }
390 if (ngroups == 0)
391 BIO_puts(out, "NONE");
392 BIO_puts(out, "\n");
393 return 1;
394 }
395 #endif
396
397 int ssl_print_tmp_key(BIO *out, SSL *s)
398 {
399 EVP_PKEY *key;
400
401 if (!SSL_get_peer_tmp_key(s, &key))
402 return 1;
403 BIO_puts(out, "Server Temp Key: ");
404 switch (EVP_PKEY_id(key)) {
405 case EVP_PKEY_RSA:
406 BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key));
407 break;
408
409 case EVP_PKEY_DH:
410 BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key));
411 break;
412 #ifndef OPENSSL_NO_EC
413 case EVP_PKEY_EC:
414 {
415 EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
416 int nid;
417 const char *cname;
418 nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
419 EC_KEY_free(ec);
420 cname = EC_curve_nid2nist(nid);
421 if (cname == NULL)
422 cname = OBJ_nid2sn(nid);
423 BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key));
424 }
425 break;
426 #endif
427 default:
428 BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)),
429 EVP_PKEY_bits(key));
430 }
431 EVP_PKEY_free(key);
432 return 1;
433 }
434
435 long bio_dump_callback(BIO *bio, int cmd, const char *argp,
436 int argi, long argl, long ret)
437 {
438 BIO *out;
439
440 out = (BIO *)BIO_get_callback_arg(bio);
441 if (out == NULL)
442 return ret;
443
444 if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) {
445 BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n",
446 (void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
447 BIO_dump(out, argp, (int)ret);
448 return ret;
449 } else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) {
450 BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n",
451 (void *)bio, (void *)argp, (unsigned long)argi, ret, ret);
452 BIO_dump(out, argp, (int)ret);
453 }
454 return ret;
455 }
456
457 void apps_ssl_info_callback(const SSL *s, int where, int ret)
458 {
459 const char *str;
460 int w;
461
462 w = where & ~SSL_ST_MASK;
463
464 if (w & SSL_ST_CONNECT)
465 str = "SSL_connect";
466 else if (w & SSL_ST_ACCEPT)
467 str = "SSL_accept";
468 else
469 str = "undefined";
470
471 if (where & SSL_CB_LOOP) {
472 BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
473 } else if (where & SSL_CB_ALERT) {
474 str = (where & SSL_CB_READ) ? "read" : "write";
475 BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
476 str,
477 SSL_alert_type_string_long(ret),
478 SSL_alert_desc_string_long(ret));
479 } else if (where & SSL_CB_EXIT) {
480 if (ret == 0)
481 BIO_printf(bio_err, "%s:failed in %s\n",
482 str, SSL_state_string_long(s));
483 else if (ret < 0)
484 BIO_printf(bio_err, "%s:error in %s\n",
485 str, SSL_state_string_long(s));
486 }
487 }
488
489 static STRINT_PAIR ssl_versions[] = {
490 {"SSL 3.0", SSL3_VERSION},
491 {"TLS 1.0", TLS1_VERSION},
492 {"TLS 1.1", TLS1_1_VERSION},
493 {"TLS 1.2", TLS1_2_VERSION},
494 {"TLS 1.3", TLS1_3_VERSION},
495 {"DTLS 1.0", DTLS1_VERSION},
496 {"DTLS 1.0 (bad)", DTLS1_BAD_VER},
497 {NULL}
498 };
499
500 static STRINT_PAIR alert_types[] = {
501 {" close_notify", 0},
502 {" end_of_early_data", 1},
503 {" unexpected_message", 10},
504 {" bad_record_mac", 20},
505 {" decryption_failed", 21},
506 {" record_overflow", 22},
507 {" decompression_failure", 30},
508 {" handshake_failure", 40},
509 {" bad_certificate", 42},
510 {" unsupported_certificate", 43},
511 {" certificate_revoked", 44},
512 {" certificate_expired", 45},
513 {" certificate_unknown", 46},
514 {" illegal_parameter", 47},
515 {" unknown_ca", 48},
516 {" access_denied", 49},
517 {" decode_error", 50},
518 {" decrypt_error", 51},
519 {" export_restriction", 60},
520 {" protocol_version", 70},
521 {" insufficient_security", 71},
522 {" internal_error", 80},
523 {" inappropriate_fallback", 86},
524 {" user_canceled", 90},
525 {" no_renegotiation", 100},
526 {" missing_extension", 109},
527 {" unsupported_extension", 110},
528 {" certificate_unobtainable", 111},
529 {" unrecognized_name", 112},
530 {" bad_certificate_status_response", 113},
531 {" bad_certificate_hash_value", 114},
532 {" unknown_psk_identity", 115},
533 {" certificate_required", 116},
534 {NULL}
535 };
536
537 static STRINT_PAIR handshakes[] = {
538 {", HelloRequest", SSL3_MT_HELLO_REQUEST},
539 {", ClientHello", SSL3_MT_CLIENT_HELLO},
540 {", ServerHello", SSL3_MT_SERVER_HELLO},
541 {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
542 {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
543 {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
544 {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
545 {", Certificate", SSL3_MT_CERTIFICATE},
546 {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
547 {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
548 {", ServerHelloDone", SSL3_MT_SERVER_DONE},
549 {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
550 {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
551 {", Finished", SSL3_MT_FINISHED},
552 {", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
553 {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
554 {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
555 {", KeyUpdate", SSL3_MT_KEY_UPDATE},
556 #ifndef OPENSSL_NO_NEXTPROTONEG
557 {", NextProto", SSL3_MT_NEXT_PROTO},
558 #endif
559 {", MessageHash", SSL3_MT_MESSAGE_HASH},
560 {NULL}
561 };
562
563 void msg_cb(int write_p, int version, int content_type, const void *buf,
564 size_t len, SSL *ssl, void *arg)
565 {
566 BIO *bio = arg;
567 const char *str_write_p = write_p ? ">>>" : "<<<";
568 char tmpbuf[128];
569 const char *str_version, *str_content_type = "", *str_details1 = "", *str_details2 = "";
570 const unsigned char* bp = buf;
571
572 if (version == SSL3_VERSION ||
573 version == TLS1_VERSION ||
574 version == TLS1_1_VERSION ||
575 version == TLS1_2_VERSION ||
576 version == TLS1_3_VERSION ||
577 version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
578 str_version = lookup(version, ssl_versions, "???");
579 switch (content_type) {
580 case SSL3_RT_CHANGE_CIPHER_SPEC:
581 /* type 20 */
582 str_content_type = ", ChangeCipherSpec";
583 break;
584 case SSL3_RT_ALERT:
585 /* type 21 */
586 str_content_type = ", Alert";
587 str_details1 = ", ???";
588 if (len == 2) {
589 switch (bp[0]) {
590 case 1:
591 str_details1 = ", warning";
592 break;
593 case 2:
594 str_details1 = ", fatal";
595 break;
596 }
597 str_details2 = lookup((int)bp[1], alert_types, " ???");
598 }
599 break;
600 case SSL3_RT_HANDSHAKE:
601 /* type 22 */
602 str_content_type = ", Handshake";
603 str_details1 = "???";
604 if (len > 0)
605 str_details1 = lookup((int)bp[0], handshakes, "???");
606 break;
607 case SSL3_RT_APPLICATION_DATA:
608 /* type 23 */
609 str_content_type = ", ApplicationData";
610 break;
611 case SSL3_RT_HEADER:
612 /* type 256 */
613 str_content_type = ", RecordHeader";
614 break;
615 case SSL3_RT_INNER_CONTENT_TYPE:
616 /* type 257 */
617 str_content_type = ", InnerContent";
618 break;
619 default:
620 BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, ", Unknown (content_type=%d)", content_type);
621 str_content_type = tmpbuf;
622 }
623 } else {
624 BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, "Not TLS data or unknown version (version=%d, content_type=%d)", version, content_type);
625 str_version = tmpbuf;
626 }
627
628 BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
629 str_content_type, (unsigned long)len, str_details1,
630 str_details2);
631
632 if (len > 0) {
633 size_t num, i;
634
635 BIO_printf(bio, " ");
636 num = len;
637 for (i = 0; i < num; i++) {
638 if (i % 16 == 0 && i > 0)
639 BIO_printf(bio, "\n ");
640 BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
641 }
642 if (i < len)
643 BIO_printf(bio, " ...");
644 BIO_printf(bio, "\n");
645 }
646 (void)BIO_flush(bio);
647 }
648
649 static STRINT_PAIR tlsext_types[] = {
650 {"server name", TLSEXT_TYPE_server_name},
651 {"max fragment length", TLSEXT_TYPE_max_fragment_length},
652 {"client certificate URL", TLSEXT_TYPE_client_certificate_url},
653 {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
654 {"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
655 {"status request", TLSEXT_TYPE_status_request},
656 {"user mapping", TLSEXT_TYPE_user_mapping},
657 {"client authz", TLSEXT_TYPE_client_authz},
658 {"server authz", TLSEXT_TYPE_server_authz},
659 {"cert type", TLSEXT_TYPE_cert_type},
660 {"supported_groups", TLSEXT_TYPE_supported_groups},
661 {"EC point formats", TLSEXT_TYPE_ec_point_formats},
662 {"SRP", TLSEXT_TYPE_srp},
663 {"signature algorithms", TLSEXT_TYPE_signature_algorithms},
664 {"use SRTP", TLSEXT_TYPE_use_srtp},
665 {"session ticket", TLSEXT_TYPE_session_ticket},
666 {"renegotiation info", TLSEXT_TYPE_renegotiate},
667 {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
668 {"TLS padding", TLSEXT_TYPE_padding},
669 #ifdef TLSEXT_TYPE_next_proto_neg
670 {"next protocol", TLSEXT_TYPE_next_proto_neg},
671 #endif
672 #ifdef TLSEXT_TYPE_encrypt_then_mac
673 {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
674 #endif
675 #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
676 {"application layer protocol negotiation",
677 TLSEXT_TYPE_application_layer_protocol_negotiation},
678 #endif
679 #ifdef TLSEXT_TYPE_extended_master_secret
680 {"extended master secret", TLSEXT_TYPE_extended_master_secret},
681 #endif
682 {"key share", TLSEXT_TYPE_key_share},
683 {"supported versions", TLSEXT_TYPE_supported_versions},
684 {"psk", TLSEXT_TYPE_psk},
685 {"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
686 {"certificate authorities", TLSEXT_TYPE_certificate_authorities},
687 {"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
688 {NULL}
689 };
690
691 /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */
692 static STRINT_PAIR signature_tls13_scheme_list[] = {
693 {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */},
694 {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */},
695 /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */
696 /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */
697 {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */},
698 {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */},
699 {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */},
700 {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */},
701 {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */},
702 {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */},
703 {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */},
704 {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */},
705 {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */},
706 {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */},
707 {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */},
708 {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */},
709 {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */},
710 {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */},
711 {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */},
712 {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */},
713 {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */},
714 {NULL}
715 };
716
717 /* from rfc5246 7.4.1.4.1. */
718 static STRINT_PAIR signature_tls12_alg_list[] = {
719 {"anonymous", TLSEXT_signature_anonymous /* 0 */},
720 {"RSA", TLSEXT_signature_rsa /* 1 */},
721 {"DSA", TLSEXT_signature_dsa /* 2 */},
722 {"ECDSA", TLSEXT_signature_ecdsa /* 3 */},
723 {NULL}
724 };
725
726 /* from rfc5246 7.4.1.4.1. */
727 static STRINT_PAIR signature_tls12_hash_list[] = {
728 {"none", TLSEXT_hash_none /* 0 */},
729 {"MD5", TLSEXT_hash_md5 /* 1 */},
730 {"SHA1", TLSEXT_hash_sha1 /* 2 */},
731 {"SHA224", TLSEXT_hash_sha224 /* 3 */},
732 {"SHA256", TLSEXT_hash_sha256 /* 4 */},
733 {"SHA384", TLSEXT_hash_sha384 /* 5 */},
734 {"SHA512", TLSEXT_hash_sha512 /* 6 */},
735 {NULL}
736 };
737
738 void tlsext_cb(SSL *s, int client_server, int type,
739 const unsigned char *data, int len, void *arg)
740 {
741 BIO *bio = arg;
742 const char *extname = lookup(type, tlsext_types, "unknown");
743
744 BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
745 client_server ? "server" : "client", extname, type, len);
746 BIO_dump(bio, (const char *)data, len);
747 (void)BIO_flush(bio);
748 }
749
750 #ifndef OPENSSL_NO_SOCK
751 int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
752 unsigned int *cookie_len)
753 {
754 unsigned char *buffer = NULL;
755 size_t length = 0;
756 unsigned short port;
757 BIO_ADDR *lpeer = NULL, *peer = NULL;
758 int res = 0;
759 EVP_MAC *hmac = NULL;
760 EVP_MAC_CTX *ctx = NULL;
761 OSSL_PARAM params[3], *p = params;
762 size_t mac_len;
763
764 /* Initialize a random secret */
765 if (!cookie_initialized) {
766 if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
767 BIO_printf(bio_err, "error setting random cookie secret\n");
768 return 0;
769 }
770 cookie_initialized = 1;
771 }
772
773 if (SSL_is_dtls(ssl)) {
774 lpeer = peer = BIO_ADDR_new();
775 if (peer == NULL) {
776 BIO_printf(bio_err, "memory full\n");
777 return 0;
778 }
779
780 /* Read peer information */
781 (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
782 } else {
783 peer = ourpeer;
784 }
785
786 /* Create buffer with peer's address and port */
787 if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
788 BIO_printf(bio_err, "Failed getting peer address\n");
789 return 0;
790 }
791 OPENSSL_assert(length != 0);
792 port = BIO_ADDR_rawport(peer);
793 length += sizeof(port);
794 buffer = app_malloc(length, "cookie generate buffer");
795
796 memcpy(buffer, &port, sizeof(port));
797 BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
798
799 /* Calculate HMAC of buffer using the secret */
800 hmac = EVP_MAC_fetch(NULL, "HMAC", NULL);
801 if (hmac == NULL) {
802 BIO_printf(bio_err, "HMAC not found\n");
803 goto end;
804 }
805 ctx = EVP_MAC_CTX_new(hmac);
806 if (ctx == NULL) {
807 BIO_printf(bio_err, "HMAC context allocation failed\n");
808 goto end;
809 }
810 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, "SHA1", 0);
811 *p++ = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, cookie_secret,
812 COOKIE_SECRET_LENGTH);
813 *p = OSSL_PARAM_construct_end();
814 if (!EVP_MAC_CTX_set_params(ctx, params)) {
815 BIO_printf(bio_err, "HMAC context parameter setting failed\n");
816 goto end;
817 }
818 if (!EVP_MAC_init(ctx)) {
819 BIO_printf(bio_err, "HMAC context initialisation failed\n");
820 goto end;
821 }
822 if (!EVP_MAC_update(ctx, buffer, length)) {
823 BIO_printf(bio_err, "HMAC context update failed\n");
824 goto end;
825 }
826 if (!EVP_MAC_final(ctx, cookie, &mac_len, DTLS1_COOKIE_LENGTH)) {
827 BIO_printf(bio_err, "HMAC context final failed\n");
828 goto end;
829 }
830 *cookie_len = (int)mac_len;
831 res = 1;
832 end:
833 OPENSSL_free(buffer);
834 BIO_ADDR_free(lpeer);
835
836 return res;
837 }
838
839 int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
840 unsigned int cookie_len)
841 {
842 unsigned char result[EVP_MAX_MD_SIZE];
843 unsigned int resultlength;
844
845 /* Note: we check cookie_initialized because if it's not,
846 * it cannot be valid */
847 if (cookie_initialized
848 && generate_cookie_callback(ssl, result, &resultlength)
849 && cookie_len == resultlength
850 && memcmp(result, cookie, resultlength) == 0)
851 return 1;
852
853 return 0;
854 }
855
856 int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
857 size_t *cookie_len)
858 {
859 unsigned int temp = 0;
860
861 int res = generate_cookie_callback(ssl, cookie, &temp);
862 *cookie_len = temp;
863 return res;
864 }
865
866 int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
867 size_t cookie_len)
868 {
869 return verify_cookie_callback(ssl, cookie, cookie_len);
870 }
871
872 #endif
873
874 /*
875 * Example of extended certificate handling. Where the standard support of
876 * one certificate per algorithm is not sufficient an application can decide
877 * which certificate(s) to use at runtime based on whatever criteria it deems
878 * appropriate.
879 */
880
881 /* Linked list of certificates, keys and chains */
882 struct ssl_excert_st {
883 int certform;
884 const char *certfile;
885 int keyform;
886 const char *keyfile;
887 const char *chainfile;
888 X509 *cert;
889 EVP_PKEY *key;
890 STACK_OF(X509) *chain;
891 int build_chain;
892 struct ssl_excert_st *next, *prev;
893 };
894
895 static STRINT_PAIR chain_flags[] = {
896 {"Overall Validity", CERT_PKEY_VALID},
897 {"Sign with EE key", CERT_PKEY_SIGN},
898 {"EE signature", CERT_PKEY_EE_SIGNATURE},
899 {"CA signature", CERT_PKEY_CA_SIGNATURE},
900 {"EE key parameters", CERT_PKEY_EE_PARAM},
901 {"CA key parameters", CERT_PKEY_CA_PARAM},
902 {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
903 {"Issuer Name", CERT_PKEY_ISSUER_NAME},
904 {"Certificate Type", CERT_PKEY_CERT_TYPE},
905 {NULL}
906 };
907
908 static void print_chain_flags(SSL *s, int flags)
909 {
910 STRINT_PAIR *pp;
911
912 for (pp = chain_flags; pp->name; ++pp)
913 BIO_printf(bio_err, "\t%s: %s\n",
914 pp->name,
915 (flags & pp->retval) ? "OK" : "NOT OK");
916 BIO_printf(bio_err, "\tSuite B: ");
917 if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
918 BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
919 else
920 BIO_printf(bio_err, "not tested\n");
921 }
922
923 /*
924 * Very basic selection callback: just use any certificate chain reported as
925 * valid. More sophisticated could prioritise according to local policy.
926 */
927 static int set_cert_cb(SSL *ssl, void *arg)
928 {
929 int i, rv;
930 SSL_EXCERT *exc = arg;
931 #ifdef CERT_CB_TEST_RETRY
932 static int retry_cnt;
933 if (retry_cnt < 5) {
934 retry_cnt++;
935 BIO_printf(bio_err,
936 "Certificate callback retry test: count %d\n",
937 retry_cnt);
938 return -1;
939 }
940 #endif
941 SSL_certs_clear(ssl);
942
943 if (exc == NULL)
944 return 1;
945
946 /*
947 * Go to end of list and traverse backwards since we prepend newer
948 * entries this retains the original order.
949 */
950 while (exc->next != NULL)
951 exc = exc->next;
952
953 i = 0;
954
955 while (exc != NULL) {
956 i++;
957 rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
958 BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
959 X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
960 get_nameopt());
961 BIO_puts(bio_err, "\n");
962 print_chain_flags(ssl, rv);
963 if (rv & CERT_PKEY_VALID) {
964 if (!SSL_use_certificate(ssl, exc->cert)
965 || !SSL_use_PrivateKey(ssl, exc->key)) {
966 return 0;
967 }
968 /*
969 * NB: we wouldn't normally do this as it is not efficient
970 * building chains on each connection better to cache the chain
971 * in advance.
972 */
973 if (exc->build_chain) {
974 if (!SSL_build_cert_chain(ssl, 0))
975 return 0;
976 } else if (exc->chain != NULL) {
977 SSL_set1_chain(ssl, exc->chain);
978 }
979 }
980 exc = exc->prev;
981 }
982 return 1;
983 }
984
985 void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
986 {
987 SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
988 }
989
990 static int ssl_excert_prepend(SSL_EXCERT **pexc)
991 {
992 SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
993
994 memset(exc, 0, sizeof(*exc));
995
996 exc->next = *pexc;
997 *pexc = exc;
998
999 if (exc->next) {
1000 exc->certform = exc->next->certform;
1001 exc->keyform = exc->next->keyform;
1002 exc->next->prev = exc;
1003 } else {
1004 exc->certform = FORMAT_PEM;
1005 exc->keyform = FORMAT_PEM;
1006 }
1007 return 1;
1008
1009 }
1010
1011 void ssl_excert_free(SSL_EXCERT *exc)
1012 {
1013 SSL_EXCERT *curr;
1014
1015 if (exc == NULL)
1016 return;
1017 while (exc) {
1018 X509_free(exc->cert);
1019 EVP_PKEY_free(exc->key);
1020 sk_X509_pop_free(exc->chain, X509_free);
1021 curr = exc;
1022 exc = exc->next;
1023 OPENSSL_free(curr);
1024 }
1025 }
1026
1027 int load_excert(SSL_EXCERT **pexc)
1028 {
1029 SSL_EXCERT *exc = *pexc;
1030 if (exc == NULL)
1031 return 1;
1032 /* If nothing in list, free and set to NULL */
1033 if (exc->certfile == NULL && exc->next == NULL) {
1034 ssl_excert_free(exc);
1035 *pexc = NULL;
1036 return 1;
1037 }
1038 for (; exc; exc = exc->next) {
1039 if (exc->certfile == NULL) {
1040 BIO_printf(bio_err, "Missing filename\n");
1041 return 0;
1042 }
1043 exc->cert = load_cert(exc->certfile, exc->certform,
1044 "Server Certificate");
1045 if (exc->cert == NULL)
1046 return 0;
1047 if (exc->keyfile != NULL) {
1048 exc->key = load_key(exc->keyfile, exc->keyform,
1049 0, NULL, NULL, "Server Key");
1050 } else {
1051 exc->key = load_key(exc->certfile, exc->certform,
1052 0, NULL, NULL, "Server Key");
1053 }
1054 if (exc->key == NULL)
1055 return 0;
1056 if (exc->chainfile != NULL) {
1057 if (!load_certs(exc->chainfile, &exc->chain, NULL, "Server Chain"))
1058 return 0;
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 enum range { OPT_X_ENUM };
1065
1066 int args_excert(int opt, SSL_EXCERT **pexc)
1067 {
1068 SSL_EXCERT *exc = *pexc;
1069
1070 assert(opt > OPT_X__FIRST);
1071 assert(opt < OPT_X__LAST);
1072
1073 if (exc == NULL) {
1074 if (!ssl_excert_prepend(&exc)) {
1075 BIO_printf(bio_err, " %s: Error initialising xcert\n",
1076 opt_getprog());
1077 goto err;
1078 }
1079 *pexc = exc;
1080 }
1081
1082 switch ((enum range)opt) {
1083 case OPT_X__FIRST:
1084 case OPT_X__LAST:
1085 return 0;
1086 case OPT_X_CERT:
1087 if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
1088 BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
1089 goto err;
1090 }
1091 *pexc = exc;
1092 exc->certfile = opt_arg();
1093 break;
1094 case OPT_X_KEY:
1095 if (exc->keyfile != NULL) {
1096 BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
1097 goto err;
1098 }
1099 exc->keyfile = opt_arg();
1100 break;
1101 case OPT_X_CHAIN:
1102 if (exc->chainfile != NULL) {
1103 BIO_printf(bio_err, "%s: Chain already specified\n",
1104 opt_getprog());
1105 goto err;
1106 }
1107 exc->chainfile = opt_arg();
1108 break;
1109 case OPT_X_CHAIN_BUILD:
1110 exc->build_chain = 1;
1111 break;
1112 case OPT_X_CERTFORM:
1113 if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->certform))
1114 return 0;
1115 break;
1116 case OPT_X_KEYFORM:
1117 if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->keyform))
1118 return 0;
1119 break;
1120 }
1121 return 1;
1122
1123 err:
1124 ERR_print_errors(bio_err);
1125 ssl_excert_free(exc);
1126 *pexc = NULL;
1127 return 0;
1128 }
1129
1130 static void print_raw_cipherlist(SSL *s)
1131 {
1132 const unsigned char *rlist;
1133 static const unsigned char scsv_id[] = { 0, 0xFF };
1134 size_t i, rlistlen, num;
1135 if (!SSL_is_server(s))
1136 return;
1137 num = SSL_get0_raw_cipherlist(s, NULL);
1138 OPENSSL_assert(num == 2);
1139 rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
1140 BIO_puts(bio_err, "Client cipher list: ");
1141 for (i = 0; i < rlistlen; i += num, rlist += num) {
1142 const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
1143 if (i)
1144 BIO_puts(bio_err, ":");
1145 if (c != NULL) {
1146 BIO_puts(bio_err, SSL_CIPHER_get_name(c));
1147 } else if (memcmp(rlist, scsv_id, num) == 0) {
1148 BIO_puts(bio_err, "SCSV");
1149 } else {
1150 size_t j;
1151 BIO_puts(bio_err, "0x");
1152 for (j = 0; j < num; j++)
1153 BIO_printf(bio_err, "%02X", rlist[j]);
1154 }
1155 }
1156 BIO_puts(bio_err, "\n");
1157 }
1158
1159 /*
1160 * Hex encoder for TLSA RRdata, not ':' delimited.
1161 */
1162 static char *hexencode(const unsigned char *data, size_t len)
1163 {
1164 static const char *hex = "0123456789abcdef";
1165 char *out;
1166 char *cp;
1167 size_t outlen = 2 * len + 1;
1168 int ilen = (int) outlen;
1169
1170 if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
1171 BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
1172 opt_getprog(), len);
1173 exit(1);
1174 }
1175 cp = out = app_malloc(ilen, "TLSA hex data buffer");
1176
1177 while (len-- > 0) {
1178 *cp++ = hex[(*data >> 4) & 0x0f];
1179 *cp++ = hex[*data++ & 0x0f];
1180 }
1181 *cp = '\0';
1182 return out;
1183 }
1184
1185 void print_verify_detail(SSL *s, BIO *bio)
1186 {
1187 int mdpth;
1188 EVP_PKEY *mspki;
1189 long verify_err = SSL_get_verify_result(s);
1190
1191 if (verify_err == X509_V_OK) {
1192 const char *peername = SSL_get0_peername(s);
1193
1194 BIO_printf(bio, "Verification: OK\n");
1195 if (peername != NULL)
1196 BIO_printf(bio, "Verified peername: %s\n", peername);
1197 } else {
1198 const char *reason = X509_verify_cert_error_string(verify_err);
1199
1200 BIO_printf(bio, "Verification error: %s\n", reason);
1201 }
1202
1203 if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
1204 uint8_t usage, selector, mtype;
1205 const unsigned char *data = NULL;
1206 size_t dlen = 0;
1207 char *hexdata;
1208
1209 mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
1210
1211 /*
1212 * The TLSA data field can be quite long when it is a certificate,
1213 * public key or even a SHA2-512 digest. Because the initial octets of
1214 * ASN.1 certificates and public keys contain mostly boilerplate OIDs
1215 * and lengths, we show the last 12 bytes of the data instead, as these
1216 * are more likely to distinguish distinct TLSA records.
1217 */
1218 #define TLSA_TAIL_SIZE 12
1219 if (dlen > TLSA_TAIL_SIZE)
1220 hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
1221 else
1222 hexdata = hexencode(data, dlen);
1223 BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n",
1224 usage, selector, mtype,
1225 (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata,
1226 (mspki != NULL) ? "signed the certificate" :
1227 mdpth ? "matched TA certificate" : "matched EE certificate",
1228 mdpth);
1229 OPENSSL_free(hexdata);
1230 }
1231 }
1232
1233 void print_ssl_summary(SSL *s)
1234 {
1235 const SSL_CIPHER *c;
1236 X509 *peer;
1237
1238 BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
1239 print_raw_cipherlist(s);
1240 c = SSL_get_current_cipher(s);
1241 BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
1242 do_print_sigalgs(bio_err, s, 0);
1243 peer = SSL_get0_peer_certificate(s);
1244 if (peer != NULL) {
1245 int nid;
1246
1247 BIO_puts(bio_err, "Peer certificate: ");
1248 X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
1249 0, get_nameopt());
1250 BIO_puts(bio_err, "\n");
1251 if (SSL_get_peer_signature_nid(s, &nid))
1252 BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
1253 if (SSL_get_peer_signature_type_nid(s, &nid))
1254 BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
1255 print_verify_detail(s, bio_err);
1256 } else {
1257 BIO_puts(bio_err, "No peer certificate\n");
1258 }
1259 #ifndef OPENSSL_NO_EC
1260 ssl_print_point_formats(bio_err, s);
1261 if (SSL_is_server(s))
1262 ssl_print_groups(bio_err, s, 1);
1263 else
1264 ssl_print_tmp_key(bio_err, s);
1265 #else
1266 if (!SSL_is_server(s))
1267 ssl_print_tmp_key(bio_err, s);
1268 #endif
1269 }
1270
1271 int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
1272 SSL_CTX *ctx)
1273 {
1274 int i;
1275
1276 SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
1277 for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
1278 const char *flag = sk_OPENSSL_STRING_value(str, i);
1279 const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
1280 if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
1281 if (arg != NULL)
1282 BIO_printf(bio_err, "Error with command: \"%s %s\"\n",
1283 flag, arg);
1284 else
1285 BIO_printf(bio_err, "Error with command: \"%s\"\n", flag);
1286 ERR_print_errors(bio_err);
1287 return 0;
1288 }
1289 }
1290 if (!SSL_CONF_CTX_finish(cctx)) {
1291 BIO_puts(bio_err, "Error finishing context\n");
1292 ERR_print_errors(bio_err);
1293 return 0;
1294 }
1295 return 1;
1296 }
1297
1298 static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
1299 {
1300 X509_CRL *crl;
1301 int i;
1302 for (i = 0; i < sk_X509_CRL_num(crls); i++) {
1303 crl = sk_X509_CRL_value(crls, i);
1304 X509_STORE_add_crl(st, crl);
1305 }
1306 return 1;
1307 }
1308
1309 int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
1310 {
1311 X509_STORE *st;
1312 st = SSL_CTX_get_cert_store(ctx);
1313 add_crls_store(st, crls);
1314 if (crl_download)
1315 store_setup_crl_download(st);
1316 return 1;
1317 }
1318
1319 int ssl_load_stores(SSL_CTX *ctx,
1320 const char *vfyCApath, const char *vfyCAfile,
1321 const char *vfyCAstore,
1322 const char *chCApath, const char *chCAfile,
1323 const char *chCAstore,
1324 STACK_OF(X509_CRL) *crls, int crl_download)
1325 {
1326 X509_STORE *vfy = NULL, *ch = NULL;
1327 int rv = 0;
1328 if (vfyCApath != NULL || vfyCAfile != NULL || vfyCAstore != NULL) {
1329 vfy = X509_STORE_new();
1330 if (vfy == NULL)
1331 goto err;
1332 if (vfyCAfile != NULL && !X509_STORE_load_file(vfy, vfyCAfile))
1333 goto err;
1334 if (vfyCApath != NULL && !X509_STORE_load_path(vfy, vfyCApath))
1335 goto err;
1336 if (vfyCAstore != NULL && !X509_STORE_load_store(vfy, vfyCAstore))
1337 goto err;
1338 add_crls_store(vfy, crls);
1339 SSL_CTX_set1_verify_cert_store(ctx, vfy);
1340 if (crl_download)
1341 store_setup_crl_download(vfy);
1342 }
1343 if (chCApath != NULL || chCAfile != NULL || chCAstore != NULL) {
1344 ch = X509_STORE_new();
1345 if (ch == NULL)
1346 goto err;
1347 if (chCAfile != NULL && !X509_STORE_load_file(ch, chCAfile))
1348 goto err;
1349 if (chCApath != NULL && !X509_STORE_load_path(ch, chCApath))
1350 goto err;
1351 if (chCAstore != NULL && !X509_STORE_load_store(ch, chCAstore))
1352 goto err;
1353 SSL_CTX_set1_chain_cert_store(ctx, ch);
1354 }
1355 rv = 1;
1356 err:
1357 X509_STORE_free(vfy);
1358 X509_STORE_free(ch);
1359 return rv;
1360 }
1361
1362 /* Verbose print out of security callback */
1363
1364 typedef struct {
1365 BIO *out;
1366 int verbose;
1367 int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
1368 void *other, void *ex);
1369 } security_debug_ex;
1370
1371 static STRINT_PAIR callback_types[] = {
1372 {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
1373 {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
1374 {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
1375 #ifndef OPENSSL_NO_DH
1376 {"Temp DH key bits", SSL_SECOP_TMP_DH},
1377 #endif
1378 {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
1379 {"Shared Curve", SSL_SECOP_CURVE_SHARED},
1380 {"Check Curve", SSL_SECOP_CURVE_CHECK},
1381 {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED},
1382 {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED},
1383 {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK},
1384 {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
1385 {"Certificate chain EE key", SSL_SECOP_EE_KEY},
1386 {"Certificate chain CA key", SSL_SECOP_CA_KEY},
1387 {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
1388 {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
1389 {"Certificate chain CA digest", SSL_SECOP_CA_MD},
1390 {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
1391 {"SSL compression", SSL_SECOP_COMPRESSION},
1392 {"Session ticket", SSL_SECOP_TICKET},
1393 {NULL}
1394 };
1395
1396 static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
1397 int op, int bits, int nid,
1398 void *other, void *ex)
1399 {
1400 security_debug_ex *sdb = ex;
1401 int rv, show_bits = 1, cert_md = 0;
1402 const char *nm;
1403 int show_nm;
1404 rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
1405 if (rv == 1 && sdb->verbose < 2)
1406 return 1;
1407 BIO_puts(sdb->out, "Security callback: ");
1408
1409 nm = lookup(op, callback_types, NULL);
1410 show_nm = nm != NULL;
1411 switch (op) {
1412 case SSL_SECOP_TICKET:
1413 case SSL_SECOP_COMPRESSION:
1414 show_bits = 0;
1415 show_nm = 0;
1416 break;
1417 case SSL_SECOP_VERSION:
1418 BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
1419 show_bits = 0;
1420 show_nm = 0;
1421 break;
1422 case SSL_SECOP_CA_MD:
1423 case SSL_SECOP_PEER_CA_MD:
1424 cert_md = 1;
1425 break;
1426 case SSL_SECOP_SIGALG_SUPPORTED:
1427 case SSL_SECOP_SIGALG_SHARED:
1428 case SSL_SECOP_SIGALG_CHECK:
1429 case SSL_SECOP_SIGALG_MASK:
1430 show_nm = 0;
1431 break;
1432 }
1433 if (show_nm)
1434 BIO_printf(sdb->out, "%s=", nm);
1435
1436 switch (op & SSL_SECOP_OTHER_TYPE) {
1437
1438 case SSL_SECOP_OTHER_CIPHER:
1439 BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
1440 break;
1441
1442 #ifndef OPENSSL_NO_EC
1443 case SSL_SECOP_OTHER_CURVE:
1444 {
1445 const char *cname;
1446 cname = EC_curve_nid2nist(nid);
1447 if (cname == NULL)
1448 cname = OBJ_nid2sn(nid);
1449 BIO_puts(sdb->out, cname);
1450 }
1451 break;
1452 #endif
1453 #ifndef OPENSSL_NO_DH
1454 case SSL_SECOP_OTHER_DH:
1455 {
1456 DH *dh = other;
1457 EVP_PKEY *pkey = EVP_PKEY_new();
1458 int fail = 1;
1459
1460 if (pkey != NULL) {
1461 if (EVP_PKEY_set1_DH(pkey, dh)) {
1462 BIO_printf(sdb->out, "%d", EVP_PKEY_bits(pkey));
1463 fail = 0;
1464 }
1465
1466 EVP_PKEY_free(pkey);
1467 }
1468 if (fail)
1469 BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x",
1470 op);
1471 break;
1472 }
1473 #endif
1474 case SSL_SECOP_OTHER_CERT:
1475 {
1476 if (cert_md) {
1477 int sig_nid = X509_get_signature_nid(other);
1478 BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
1479 } else {
1480 EVP_PKEY *pkey = X509_get0_pubkey(other);
1481 const char *algname = "";
1482 EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
1483 &algname, EVP_PKEY_get0_asn1(pkey));
1484 BIO_printf(sdb->out, "%s, bits=%d",
1485 algname, EVP_PKEY_bits(pkey));
1486 }
1487 break;
1488 }
1489 case SSL_SECOP_OTHER_SIGALG:
1490 {
1491 const unsigned char *salg = other;
1492 const char *sname = NULL;
1493 int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */
1494 /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */
1495
1496 if (nm != NULL)
1497 BIO_printf(sdb->out, "%s", nm);
1498 else
1499 BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op);
1500
1501 sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL);
1502 if (sname != NULL) {
1503 BIO_printf(sdb->out, " scheme=%s", sname);
1504 } else {
1505 int alg_code = salg[1];
1506 int hash_code = salg[0];
1507 const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL);
1508 const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL);
1509
1510 if (alg_str != NULL && hash_str != NULL)
1511 BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str);
1512 else
1513 BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code);
1514 }
1515 }
1516
1517 }
1518
1519 if (show_bits)
1520 BIO_printf(sdb->out, ", security bits=%d", bits);
1521 BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
1522 return rv;
1523 }
1524
1525 void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
1526 {
1527 static security_debug_ex sdb;
1528
1529 sdb.out = bio_err;
1530 sdb.verbose = verbose;
1531 sdb.old_cb = SSL_CTX_get_security_callback(ctx);
1532 SSL_CTX_set_security_callback(ctx, security_callback_debug);
1533 SSL_CTX_set0_security_ex_data(ctx, &sdb);
1534 }
1535
1536 static void keylog_callback(const SSL *ssl, const char *line)
1537 {
1538 if (bio_keylog == NULL) {
1539 BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
1540 return;
1541 }
1542
1543 /*
1544 * There might be concurrent writers to the keylog file, so we must ensure
1545 * that the given line is written at once.
1546 */
1547 BIO_printf(bio_keylog, "%s\n", line);
1548 (void)BIO_flush(bio_keylog);
1549 }
1550
1551 int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
1552 {
1553 /* Close any open files */
1554 BIO_free_all(bio_keylog);
1555 bio_keylog = NULL;
1556
1557 if (ctx == NULL || keylog_file == NULL) {
1558 /* Keylogging is disabled, OK. */
1559 return 0;
1560 }
1561
1562 /*
1563 * Append rather than write in order to allow concurrent modification.
1564 * Furthermore, this preserves existing keylog files which is useful when
1565 * the tool is run multiple times.
1566 */
1567 bio_keylog = BIO_new_file(keylog_file, "a");
1568 if (bio_keylog == NULL) {
1569 BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
1570 return 1;
1571 }
1572
1573 /* Write a header for seekable, empty files (this excludes pipes). */
1574 if (BIO_tell(bio_keylog) == 0) {
1575 BIO_puts(bio_keylog,
1576 "# SSL/TLS secrets log file, generated by OpenSSL\n");
1577 (void)BIO_flush(bio_keylog);
1578 }
1579 SSL_CTX_set_keylog_callback(ctx, keylog_callback);
1580 return 0;
1581 }
1582
1583 void print_ca_names(BIO *bio, SSL *s)
1584 {
1585 const char *cs = SSL_is_server(s) ? "server" : "client";
1586 const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
1587 int i;
1588
1589 if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
1590 if (!SSL_is_server(s))
1591 BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
1592 return;
1593 }
1594
1595 BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs);
1596 for (i = 0; i < sk_X509_NAME_num(sk); i++) {
1597 X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
1598 BIO_write(bio, "\n", 1);
1599 }
1600 }