]> git.ipfire.org Git - thirdparty/glibc.git/blob - crypt/sha256.c
Use union to avoid casts in code to store results of hashsum computations
[thirdparty/glibc.git] / crypt / sha256.c
1 /* Functions to compute SHA256 message digest of files or memory blocks.
2 according to the definition of SHA256 in FIPS 180-2.
3 Copyright (C) 2007, 2011 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
20
21 /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */
22
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
26
27 #include <endian.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/types.h>
31
32 #include "sha256.h"
33
34 #if __BYTE_ORDER == __LITTLE_ENDIAN
35 # ifdef _LIBC
36 # include <byteswap.h>
37 # define SWAP(n) bswap_32 (n)
38 # define SWAP64(n) bswap_64 (n)
39 # else
40 # define SWAP(n) \
41 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
42 # define SWAP64(n) \
43 (((n) << 56) \
44 | (((n) & 0xff00) << 40) \
45 | (((n) & 0xff0000) << 24) \
46 | (((n) & 0xff000000) << 8) \
47 | (((n) >> 8) & 0xff000000) \
48 | (((n) >> 24) & 0xff0000) \
49 | (((n) >> 40) & 0xff00) \
50 | ((n) >> 56))
51 # endif
52 #else
53 # define SWAP(n) (n)
54 # define SWAP64(n) (n)
55 #endif
56
57
58 /* This array contains the bytes used to pad the buffer to the next
59 64-byte boundary. (FIPS 180-2:5.1.1) */
60 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
61
62
63 /* Constants for SHA256 from FIPS 180-2:4.2.2. */
64 static const uint32_t K[64] =
65 {
66 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
67 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
68 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
69 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
70 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
71 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
72 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
73 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
74 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
75 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
76 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
77 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
78 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
79 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
80 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
81 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
82 };
83
84
85 /* Process LEN bytes of BUFFER, accumulating context into CTX.
86 It is assumed that LEN % 64 == 0. */
87 static void
88 sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
89 {
90 const uint32_t *words = buffer;
91 size_t nwords = len / sizeof (uint32_t);
92 uint32_t a = ctx->H[0];
93 uint32_t b = ctx->H[1];
94 uint32_t c = ctx->H[2];
95 uint32_t d = ctx->H[3];
96 uint32_t e = ctx->H[4];
97 uint32_t f = ctx->H[5];
98 uint32_t g = ctx->H[6];
99 uint32_t h = ctx->H[7];
100
101 /* First increment the byte count. FIPS 180-2 specifies the possible
102 length of the file up to 2^64 bits. Here we only compute the
103 number of bytes. */
104 ctx->total64 += len;
105
106 /* Process all bytes in the buffer with 64 bytes in each round of
107 the loop. */
108 while (nwords > 0)
109 {
110 uint32_t W[64];
111 uint32_t a_save = a;
112 uint32_t b_save = b;
113 uint32_t c_save = c;
114 uint32_t d_save = d;
115 uint32_t e_save = e;
116 uint32_t f_save = f;
117 uint32_t g_save = g;
118 uint32_t h_save = h;
119
120 /* Operators defined in FIPS 180-2:4.1.2. */
121 #define Ch(x, y, z) ((x & y) ^ (~x & z))
122 #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
123 #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
124 #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
125 #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
126 #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))
127
128 /* It is unfortunate that C does not provide an operator for
129 cyclic rotation. Hope the C compiler is smart enough. */
130 #define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))
131
132 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
133 for (unsigned int t = 0; t < 16; ++t)
134 {
135 W[t] = SWAP (*words);
136 ++words;
137 }
138 for (unsigned int t = 16; t < 64; ++t)
139 W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];
140
141 /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
142 for (unsigned int t = 0; t < 64; ++t)
143 {
144 uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
145 uint32_t T2 = S0 (a) + Maj (a, b, c);
146 h = g;
147 g = f;
148 f = e;
149 e = d + T1;
150 d = c;
151 c = b;
152 b = a;
153 a = T1 + T2;
154 }
155
156 /* Add the starting values of the context according to FIPS 180-2:6.2.2
157 step 4. */
158 a += a_save;
159 b += b_save;
160 c += c_save;
161 d += d_save;
162 e += e_save;
163 f += f_save;
164 g += g_save;
165 h += h_save;
166
167 /* Prepare for the next round. */
168 nwords -= 16;
169 }
170
171 /* Put checksum in context given as argument. */
172 ctx->H[0] = a;
173 ctx->H[1] = b;
174 ctx->H[2] = c;
175 ctx->H[3] = d;
176 ctx->H[4] = e;
177 ctx->H[5] = f;
178 ctx->H[6] = g;
179 ctx->H[7] = h;
180 }
181
182
183 /* Initialize structure containing state of computation.
184 (FIPS 180-2:5.3.2) */
185 void
186 __sha256_init_ctx (ctx)
187 struct sha256_ctx *ctx;
188 {
189 ctx->H[0] = 0x6a09e667;
190 ctx->H[1] = 0xbb67ae85;
191 ctx->H[2] = 0x3c6ef372;
192 ctx->H[3] = 0xa54ff53a;
193 ctx->H[4] = 0x510e527f;
194 ctx->H[5] = 0x9b05688c;
195 ctx->H[6] = 0x1f83d9ab;
196 ctx->H[7] = 0x5be0cd19;
197
198 ctx->total64 = 0;
199 ctx->buflen = 0;
200 }
201
202
203 /* Process the remaining bytes in the internal buffer and the usual
204 prolog according to the standard and write the result to RESBUF.
205
206 IMPORTANT: On some systems it is required that RESBUF is correctly
207 aligned for a 32 bits value. */
208 void *
209 __sha256_finish_ctx (ctx, resbuf)
210 struct sha256_ctx *ctx;
211 void *resbuf;
212 {
213 /* Take yet unprocessed bytes into account. */
214 uint32_t bytes = ctx->buflen;
215 size_t pad;
216
217 /* Now count remaining bytes. */
218 ctx->total64 += bytes;
219
220 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
221 memcpy (&ctx->buffer[bytes], fillbuf, pad);
222
223 /* Put the 64-bit file length in *bits* at the end of the buffer. */
224 #ifdef _STRING_ARCH_unaligned
225 ctx->buffer64[(bytes + pad) / 8] = SWAP64 (ctx->total64 << 3);
226 #else
227 ctx->buffer32[(bytes + pad + 4) / 4] = SWAP (ctx->total[TOTAL64_low] << 3);
228 ctx->buffer32[(bytes + pad) / 4] = SWAP ((ctx->total[TOTAL64_high] << 3) |
229 (ctx->total[TOTAL64_low] >> 29));
230 #endif
231
232 /* Process last bytes. */
233 sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);
234
235 /* Put result from CTX in first 32 bytes following RESBUF. */
236 for (unsigned int i = 0; i < 8; ++i)
237 ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);
238
239 return resbuf;
240 }
241
242
243 void
244 __sha256_process_bytes (buffer, len, ctx)
245 const void *buffer;
246 size_t len;
247 struct sha256_ctx *ctx;
248 {
249 /* When we already have some bits in our internal buffer concatenate
250 both inputs first. */
251 if (ctx->buflen != 0)
252 {
253 size_t left_over = ctx->buflen;
254 size_t add = 128 - left_over > len ? len : 128 - left_over;
255
256 memcpy (&ctx->buffer[left_over], buffer, add);
257 ctx->buflen += add;
258
259 if (ctx->buflen > 64)
260 {
261 sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
262
263 ctx->buflen &= 63;
264 /* The regions in the following copy operation cannot overlap. */
265 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
266 ctx->buflen);
267 }
268
269 buffer = (const char *) buffer + add;
270 len -= add;
271 }
272
273 /* Process available complete blocks. */
274 if (len >= 64)
275 {
276 #if !_STRING_ARCH_unaligned
277 /* To check alignment gcc has an appropriate operator. Other
278 compilers don't. */
279 # if __GNUC__ >= 2
280 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
281 # else
282 # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
283 # endif
284 if (UNALIGNED_P (buffer))
285 while (len > 64)
286 {
287 sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
288 buffer = (const char *) buffer + 64;
289 len -= 64;
290 }
291 else
292 #endif
293 {
294 sha256_process_block (buffer, len & ~63, ctx);
295 buffer = (const char *) buffer + (len & ~63);
296 len &= 63;
297 }
298 }
299
300 /* Move remaining bytes into internal buffer. */
301 if (len > 0)
302 {
303 size_t left_over = ctx->buflen;
304
305 memcpy (&ctx->buffer[left_over], buffer, len);
306 left_over += len;
307 if (left_over >= 64)
308 {
309 sha256_process_block (ctx->buffer, 64, ctx);
310 left_over -= 64;
311 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
312 }
313 ctx->buflen = left_over;
314 }
315 }