]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/aes/asm/aes-586.pl
Also check for errors in x86_64-xlate.pl.
[thirdparty/openssl.git] / crypto / aes / asm / aes-586.pl
1 #! /usr/bin/env perl
2 # Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9 #
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16 #
17 # Version 4.3.
18 #
19 # You might fail to appreciate this module performance from the first
20 # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
21 # to be *the* best Intel C compiler without -KPIC, performance appears
22 # to be virtually identical... But try to re-configure with shared
23 # library support... Aha! Intel compiler "suddenly" lags behind by 30%
24 # [on P4, more on others]:-) And if compared to position-independent
25 # code generated by GNU C, this code performs *more* than *twice* as
26 # fast! Yes, all this buzz about PIC means that unlike other hand-
27 # coded implementations, this one was explicitly designed to be safe
28 # to use even in shared library context... This also means that this
29 # code isn't necessarily absolutely fastest "ever," because in order
30 # to achieve position independence an extra register has to be
31 # off-loaded to stack, which affects the benchmark result.
32 #
33 # Special note about instruction choice. Do you recall RC4_INT code
34 # performing poorly on P4? It might be the time to figure out why.
35 # RC4_INT code implies effective address calculations in base+offset*4
36 # form. Trouble is that it seems that offset scaling turned to be
37 # critical path... At least eliminating scaling resulted in 2.8x RC4
38 # performance improvement [as you might recall]. As AES code is hungry
39 # for scaling too, I [try to] avoid the latter by favoring off-by-2
40 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
41 #
42 # As was shown by Dean Gaudet, the above note turned out to be
43 # void. Performance improvement with off-by-2 shifts was observed on
44 # intermediate implementation, which was spilling yet another register
45 # to stack... Final offset*4 code below runs just a tad faster on P4,
46 # but exhibits up to 10% improvement on other cores.
47 #
48 # Second version is "monolithic" replacement for aes_core.c, which in
49 # addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
50 # This made it possible to implement little-endian variant of the
51 # algorithm without modifying the base C code. Motivating factor for
52 # the undertaken effort was that it appeared that in tight IA-32
53 # register window little-endian flavor could achieve slightly higher
54 # Instruction Level Parallelism, and it indeed resulted in up to 15%
55 # better performance on most recent ยต-archs...
56 #
57 # Third version adds AES_cbc_encrypt implementation, which resulted in
58 # up to 40% performance improvement of CBC benchmark results. 40% was
59 # observed on P4 core, where "overall" improvement coefficient, i.e. if
60 # compared to PIC generated by GCC and in CBC mode, was observed to be
61 # as large as 4x:-) CBC performance is virtually identical to ECB now
62 # and on some platforms even better, e.g. 17.6 "small" cycles/byte on
63 # Opteron, because certain function prologues and epilogues are
64 # effectively taken out of the loop...
65 #
66 # Version 3.2 implements compressed tables and prefetch of these tables
67 # in CBC[!] mode. Former means that 3/4 of table references are now
68 # misaligned, which unfortunately has negative impact on elder IA-32
69 # implementations, Pentium suffered 30% penalty, PIII - 10%.
70 #
71 # Version 3.3 avoids L1 cache aliasing between stack frame and
72 # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
73 # latter is achieved by copying the key schedule to controlled place in
74 # stack. This unfortunately has rather strong impact on small block CBC
75 # performance, ~2x deterioration on 16-byte block if compared to 3.3.
76 #
77 # Version 3.5 checks if there is L1 cache aliasing between user-supplied
78 # key schedule and S-boxes and abstains from copying the former if
79 # there is no. This allows end-user to consciously retain small block
80 # performance by aligning key schedule in specific manner.
81 #
82 # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
83 #
84 # Current ECB performance numbers for 128-bit key in CPU cycles per
85 # processed byte [measure commonly used by AES benchmarkers] are:
86 #
87 # small footprint fully unrolled
88 # P4 24 22
89 # AMD K8 20 19
90 # PIII 25 23
91 # Pentium 81 78
92 #
93 # Version 3.7 reimplements outer rounds as "compact." Meaning that
94 # first and last rounds reference compact 256 bytes S-box. This means
95 # that first round consumes a lot more CPU cycles and that encrypt
96 # and decrypt performance becomes asymmetric. Encrypt performance
97 # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
98 # aggressively pre-fetched.
99 #
100 # Version 4.0 effectively rolls back to 3.6 and instead implements
101 # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
102 # which use exclusively 256 byte S-box. These functions are to be
103 # called in modes not concealing plain text, such as ECB, or when
104 # we're asked to process smaller amount of data [or unconditionally
105 # on hyper-threading CPU]. Currently it's called unconditionally from
106 # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
107 # still needs to be modified to switch between slower and faster
108 # mode when appropriate... But in either case benchmark landscape
109 # changes dramatically and below numbers are CPU cycles per processed
110 # byte for 128-bit key.
111 #
112 # ECB encrypt ECB decrypt CBC large chunk
113 # P4 52[54] 83[95] 23
114 # AMD K8 46[41] 66[70] 18
115 # PIII 41[50] 60[77] 24
116 # Core 2 31[36] 45[64] 18.5
117 # Atom 76[100] 96[138] 60
118 # Pentium 115 150 77
119 #
120 # Version 4.1 switches to compact S-box even in key schedule setup.
121 #
122 # Version 4.2 prefetches compact S-box in every SSE round or in other
123 # words every cache-line is *guaranteed* to be accessed within ~50
124 # cycles window. Why just SSE? Because it's needed on hyper-threading
125 # CPU! Which is also why it's prefetched with 64 byte stride. Best
126 # part is that it has no negative effect on performance:-)
127 #
128 # Version 4.3 implements switch between compact and non-compact block
129 # functions in AES_cbc_encrypt depending on how much data was asked
130 # to be processed in one stroke.
131 #
132 ######################################################################
133 # Timing attacks are classified in two classes: synchronous when
134 # attacker consciously initiates cryptographic operation and collects
135 # timing data of various character afterwards, and asynchronous when
136 # malicious code is executed on same CPU simultaneously with AES,
137 # instruments itself and performs statistical analysis of this data.
138 #
139 # As far as synchronous attacks go the root to the AES timing
140 # vulnerability is twofold. Firstly, of 256 S-box elements at most 160
141 # are referred to in single 128-bit block operation. Well, in C
142 # implementation with 4 distinct tables it's actually as little as 40
143 # references per 256 elements table, but anyway... Secondly, even
144 # though S-box elements are clustered into smaller amount of cache-
145 # lines, smaller than 160 and even 40, it turned out that for certain
146 # plain-text pattern[s] or simply put chosen plain-text and given key
147 # few cache-lines remain unaccessed during block operation. Now, if
148 # attacker can figure out this access pattern, he can deduct the key
149 # [or at least part of it]. The natural way to mitigate this kind of
150 # attacks is to minimize the amount of cache-lines in S-box and/or
151 # prefetch them to ensure that every one is accessed for more uniform
152 # timing. But note that *if* plain-text was concealed in such way that
153 # input to block function is distributed *uniformly*, then attack
154 # wouldn't apply. Now note that some encryption modes, most notably
155 # CBC, do mask the plain-text in this exact way [secure cipher output
156 # is distributed uniformly]. Yes, one still might find input that
157 # would reveal the information about given key, but if amount of
158 # candidate inputs to be tried is larger than amount of possible key
159 # combinations then attack becomes infeasible. This is why revised
160 # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
161 # of data is to be processed in one stroke. The current size limit of
162 # 512 bytes is chosen to provide same [diminishingly low] probability
163 # for cache-line to remain untouched in large chunk operation with
164 # large S-box as for single block operation with compact S-box and
165 # surely needs more careful consideration...
166 #
167 # As for asynchronous attacks. There are two flavours: attacker code
168 # being interleaved with AES on hyper-threading CPU at *instruction*
169 # level, and two processes time sharing single core. As for latter.
170 # Two vectors. 1. Given that attacker process has higher priority,
171 # yield execution to process performing AES just before timer fires
172 # off the scheduler, immediately regain control of CPU and analyze the
173 # cache state. For this attack to be efficient attacker would have to
174 # effectively slow down the operation by several *orders* of magnitude,
175 # by ratio of time slice to duration of handful of AES rounds, which
176 # unlikely to remain unnoticed. Not to mention that this also means
177 # that he would spend correspondingly more time to collect enough
178 # statistical data to mount the attack. It's probably appropriate to
179 # say that if adversary reckons that this attack is beneficial and
180 # risks to be noticed, you probably have larger problems having him
181 # mere opportunity. In other words suggested code design expects you
182 # to preclude/mitigate this attack by overall system security design.
183 # 2. Attacker manages to make his code interrupt driven. In order for
184 # this kind of attack to be feasible, interrupt rate has to be high
185 # enough, again comparable to duration of handful of AES rounds. But
186 # is there interrupt source of such rate? Hardly, not even 1Gbps NIC
187 # generates interrupts at such raging rate...
188 #
189 # And now back to the former, hyper-threading CPU or more specifically
190 # Intel P4. Recall that asynchronous attack implies that malicious
191 # code instruments itself. And naturally instrumentation granularity
192 # has be noticeably lower than duration of codepath accessing S-box.
193 # Given that all cache-lines are accessed during that time that is.
194 # Current implementation accesses *all* cache-lines within ~50 cycles
195 # window, which is actually *less* than RDTSC latency on Intel P4!
196
197 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
198 push(@INC,"${dir}","${dir}../../perlasm");
199 require "x86asm.pl";
200
201 $output = pop and open STDOUT,">$output";
202
203 &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
204 &static_label("AES_Te");
205 &static_label("AES_Td");
206
207 $s0="eax";
208 $s1="ebx";
209 $s2="ecx";
210 $s3="edx";
211 $key="edi";
212 $acc="esi";
213 $tbl="ebp";
214
215 # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
216 # by caller
217 $__ra=&DWP(0,"esp"); # return address
218 $__s0=&DWP(4,"esp"); # s0 backing store
219 $__s1=&DWP(8,"esp"); # s1 backing store
220 $__s2=&DWP(12,"esp"); # s2 backing store
221 $__s3=&DWP(16,"esp"); # s3 backing store
222 $__key=&DWP(20,"esp"); # pointer to key schedule
223 $__end=&DWP(24,"esp"); # pointer to end of key schedule
224 $__tbl=&DWP(28,"esp"); # %ebp backing store
225
226 # stack frame layout in AES_[en|crypt] routines, which differs from
227 # above by 4 and overlaps by %ebp backing store
228 $_tbl=&DWP(24,"esp");
229 $_esp=&DWP(28,"esp");
230
231 sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
232
233 $speed_limit=512; # chunks smaller than $speed_limit are
234 # processed with compact routine in CBC mode
235 $small_footprint=1; # $small_footprint=1 code is ~5% slower [on
236 # recent ยต-archs], but ~5 times smaller!
237 # I favor compact code to minimize cache
238 # contention and in hope to "collect" 5% back
239 # in real-life applications...
240
241 $vertical_spin=0; # shift "vertically" defaults to 0, because of
242 # its proof-of-concept status...
243 # Note that there is no decvert(), as well as last encryption round is
244 # performed with "horizontal" shifts. This is because this "vertical"
245 # implementation [one which groups shifts on a given $s[i] to form a
246 # "column," unlike "horizontal" one, which groups shifts on different
247 # $s[i] to form a "row"] is work in progress. It was observed to run
248 # few percents faster on Intel cores, but not AMD. On AMD K8 core it's
249 # whole 12% slower:-( So we face a trade-off... Shall it be resolved
250 # some day? Till then the code is considered experimental and by
251 # default remains dormant...
252
253 sub encvert()
254 { my ($te,@s) = @_;
255 my ($v0,$v1) = ($acc,$key);
256
257 &mov ($v0,$s[3]); # copy s3
258 &mov (&DWP(4,"esp"),$s[2]); # save s2
259 &mov ($v1,$s[0]); # copy s0
260 &mov (&DWP(8,"esp"),$s[1]); # save s1
261
262 &movz ($s[2],&HB($s[0]));
263 &and ($s[0],0xFF);
264 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
265 &shr ($v1,16);
266 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
267 &movz ($s[1],&HB($v1));
268 &and ($v1,0xFF);
269 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16
270 &mov ($v1,$v0);
271 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24
272
273 &and ($v0,0xFF);
274 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
275 &movz ($v0,&HB($v1));
276 &shr ($v1,16);
277 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
278 &movz ($v0,&HB($v1));
279 &and ($v1,0xFF);
280 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
281 &mov ($v1,&DWP(4,"esp")); # restore s2
282 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24
283
284 &mov ($v0,$v1);
285 &and ($v1,0xFF);
286 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
287 &movz ($v1,&HB($v0));
288 &shr ($v0,16);
289 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
290 &movz ($v1,&HB($v0));
291 &and ($v0,0xFF);
292 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
293 &mov ($v0,&DWP(8,"esp")); # restore s1
294 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24
295
296 &mov ($v1,$v0);
297 &and ($v0,0xFF);
298 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
299 &movz ($v0,&HB($v1));
300 &shr ($v1,16);
301 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
302 &movz ($v0,&HB($v1));
303 &and ($v1,0xFF);
304 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
305 &mov ($key,$__key); # reincarnate v1 as key
306 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
307 }
308
309 # Another experimental routine, which features "horizontal spin," but
310 # eliminates one reference to stack. Strangely enough runs slower...
311 sub enchoriz()
312 { my ($v0,$v1) = ($key,$acc);
313
314 &movz ($v0,&LB($s0)); # 3, 2, 1, 0*
315 &rotr ($s2,8); # 8,11,10, 9
316 &mov ($v1,&DWP(0,$te,$v0,8)); # 0
317 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4
318 &rotr ($s3,16); # 13,12,15,14
319 &xor ($v1,&DWP(3,$te,$v0,8)); # 5
320 &movz ($v0,&HB($s2)); # 8,11,10*, 9
321 &rotr ($s0,16); # 1, 0, 3, 2
322 &xor ($v1,&DWP(2,$te,$v0,8)); # 10
323 &movz ($v0,&HB($s3)); # 13,12,15*,14
324 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
325 &mov ($__s0,$v1); # t[0] saved
326
327 &movz ($v0,&LB($s1)); # 7, 6, 5, 4*
328 &shr ($s1,16); # -, -, 7, 6
329 &mov ($v1,&DWP(0,$te,$v0,8)); # 4
330 &movz ($v0,&LB($s3)); # 13,12,15,14*
331 &xor ($v1,&DWP(2,$te,$v0,8)); # 14
332 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2
333 &and ($s3,0xffff0000); # 13,12, -, -
334 &xor ($v1,&DWP(1,$te,$v0,8)); # 3
335 &movz ($v0,&LB($s2)); # 8,11,10, 9*
336 &or ($s3,$s1); # 13,12, 7, 6
337 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
338 &mov ($s1,$v1); # s[1]=t[1]
339
340 &movz ($v0,&LB($s0)); # 1, 0, 3, 2*
341 &shr ($s2,16); # -, -, 8,11
342 &mov ($v1,&DWP(2,$te,$v0,8)); # 2
343 &movz ($v0,&HB($s3)); # 13,12, 7*, 6
344 &xor ($v1,&DWP(1,$te,$v0,8)); # 7
345 &movz ($v0,&HB($s2)); # -, -, 8*,11
346 &xor ($v1,&DWP(0,$te,$v0,8)); # 8
347 &mov ($v0,$s3);
348 &shr ($v0,24); # 13
349 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected
350
351 &movz ($v0,&LB($s2)); # -, -, 8,11*
352 &shr ($s0,24); # 1*
353 &mov ($s2,&DWP(1,$te,$v0,8)); # 11
354 &xor ($s2,&DWP(3,$te,$s0,8)); # 1
355 &mov ($s0,$__s0); # s[0]=t[0]
356 &movz ($v0,&LB($s3)); # 13,12, 7, 6*
357 &shr ($s3,16); # , ,13,12
358 &xor ($s2,&DWP(2,$te,$v0,8)); # 6
359 &mov ($key,$__key); # reincarnate v0 as key
360 &and ($s3,0xff); # , ,13,12*
361 &mov ($s3,&DWP(0,$te,$s3,8)); # 12
362 &xor ($s3,$s2); # s[2]=t[3] collected
363 &mov ($s2,$v1); # s[2]=t[2]
364 }
365
366 # More experimental code... SSE one... Even though this one eliminates
367 # *all* references to stack, it's not faster...
368 sub sse_encbody()
369 {
370 &movz ($acc,&LB("eax")); # 0
371 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
372 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
373 &movz ("edx",&HB("eax")); # 1
374 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
375 &shr ("eax",16); # 5, 4
376
377 &movz ($acc,&LB("ebx")); # 10
378 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
379 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
380 &movz ($acc,&HB("ebx")); # 11
381 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
382 &shr ("ebx",16); # 15,14
383
384 &movz ($acc,&HB("eax")); # 5
385 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
386 &movq ("mm3",QWP(16,$key));
387 &movz ($acc,&HB("ebx")); # 15
388 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
389 &movd ("mm0","ecx"); # t[0] collected
390
391 &movz ($acc,&LB("eax")); # 4
392 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
393 &movd ("eax","mm2"); # 7, 6, 3, 2
394 &movz ($acc,&LB("ebx")); # 14
395 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
396 &movd ("ebx","mm6"); # 13,12, 9, 8
397
398 &movz ($acc,&HB("eax")); # 3
399 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
400 &movz ($acc,&HB("ebx")); # 9
401 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9
402 &movd ("mm1","ecx"); # t[1] collected
403
404 &movz ($acc,&LB("eax")); # 2
405 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
406 &shr ("eax",16); # 7, 6
407 &punpckldq ("mm0","mm1"); # t[0,1] collected
408 &movz ($acc,&LB("ebx")); # 8
409 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
410 &shr ("ebx",16); # 13,12
411
412 &movz ($acc,&HB("eax")); # 7
413 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
414 &pxor ("mm0","mm3");
415 &movz ("eax",&LB("eax")); # 6
416 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
417 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
418 &movz ($acc,&HB("ebx")); # 13
419 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
420 &xor ("ecx",&DWP(24,$key)); # t[2]
421 &movd ("mm4","ecx"); # t[2] collected
422 &movz ("ebx",&LB("ebx")); # 12
423 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
424 &shr ("ecx",16);
425 &movd ("eax","mm1"); # 5, 4, 1, 0
426 &mov ("ebx",&DWP(28,$key)); # t[3]
427 &xor ("ebx","edx");
428 &movd ("mm5","ebx"); # t[3] collected
429 &and ("ebx",0xffff0000);
430 &or ("ebx","ecx");
431
432 &punpckldq ("mm4","mm5"); # t[2,3] collected
433 }
434
435 ######################################################################
436 # "Compact" block function
437 ######################################################################
438
439 sub enccompact()
440 { my $Fn = \&mov;
441 while ($#_>5) { pop(@_); $Fn=sub{}; }
442 my ($i,$te,@s)=@_;
443 my $tmp = $key;
444 my $out = $i==3?$s[0]:$acc;
445
446 # $Fn is used in first compact round and its purpose is to
447 # void restoration of some values from stack, so that after
448 # 4xenccompact with extra argument $key value is left there...
449 if ($i==3) { &$Fn ($key,$__key); }##%edx
450 else { &mov ($out,$s[0]); }
451 &and ($out,0xFF);
452 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
453 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
454 &movz ($out,&BP(-128,$te,$out,1));
455
456 if ($i==3) { $tmp=$s[1]; }##%eax
457 &movz ($tmp,&HB($s[1]));
458 &movz ($tmp,&BP(-128,$te,$tmp,1));
459 &shl ($tmp,8);
460 &xor ($out,$tmp);
461
462 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
463 else { &mov ($tmp,$s[2]);
464 &shr ($tmp,16); }
465 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
466 &and ($tmp,0xFF);
467 &movz ($tmp,&BP(-128,$te,$tmp,1));
468 &shl ($tmp,16);
469 &xor ($out,$tmp);
470
471 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
472 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
473 else { &mov ($tmp,$s[3]);
474 &shr ($tmp,24); }
475 &movz ($tmp,&BP(-128,$te,$tmp,1));
476 &shl ($tmp,24);
477 &xor ($out,$tmp);
478 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
479 if ($i==3) { &mov ($s[3],$acc); }
480 &comment();
481 }
482
483 sub enctransform()
484 { my @s = ($s0,$s1,$s2,$s3);
485 my $i = shift;
486 my $tmp = $tbl;
487 my $r2 = $key ;
488
489 &and ($tmp,$s[$i]);
490 &lea ($r2,&DWP(0,$s[$i],$s[$i]));
491 &mov ($acc,$tmp);
492 &shr ($tmp,7);
493 &and ($r2,0xfefefefe);
494 &sub ($acc,$tmp);
495 &mov ($tmp,$s[$i]);
496 &and ($acc,0x1b1b1b1b);
497 &rotr ($tmp,16);
498 &xor ($acc,$r2); # r2
499 &mov ($r2,$s[$i]);
500
501 &xor ($s[$i],$acc); # r0 ^ r2
502 &rotr ($r2,16+8);
503 &xor ($acc,$tmp);
504 &rotl ($s[$i],24);
505 &xor ($acc,$r2);
506 &mov ($tmp,0x80808080) if ($i!=1);
507 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2
508 }
509
510 &function_begin_B("_x86_AES_encrypt_compact");
511 # note that caller is expected to allocate stack frame for me!
512 &mov ($__key,$key); # save key
513
514 &xor ($s0,&DWP(0,$key)); # xor with key
515 &xor ($s1,&DWP(4,$key));
516 &xor ($s2,&DWP(8,$key));
517 &xor ($s3,&DWP(12,$key));
518
519 &mov ($acc,&DWP(240,$key)); # load key->rounds
520 &lea ($acc,&DWP(-2,$acc,$acc));
521 &lea ($acc,&DWP(0,$key,$acc,8));
522 &mov ($__end,$acc); # end of key schedule
523
524 # prefetch Te4
525 &mov ($key,&DWP(0-128,$tbl));
526 &mov ($acc,&DWP(32-128,$tbl));
527 &mov ($key,&DWP(64-128,$tbl));
528 &mov ($acc,&DWP(96-128,$tbl));
529 &mov ($key,&DWP(128-128,$tbl));
530 &mov ($acc,&DWP(160-128,$tbl));
531 &mov ($key,&DWP(192-128,$tbl));
532 &mov ($acc,&DWP(224-128,$tbl));
533
534 &set_label("loop",16);
535
536 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
537 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
538 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
539 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
540 &mov ($tbl,0x80808080);
541 &enctransform(2);
542 &enctransform(3);
543 &enctransform(0);
544 &enctransform(1);
545 &mov ($key,$__key);
546 &mov ($tbl,$__tbl);
547 &add ($key,16); # advance rd_key
548 &xor ($s0,&DWP(0,$key));
549 &xor ($s1,&DWP(4,$key));
550 &xor ($s2,&DWP(8,$key));
551 &xor ($s3,&DWP(12,$key));
552
553 &cmp ($key,$__end);
554 &mov ($__key,$key);
555 &jb (&label("loop"));
556
557 &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
558 &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
559 &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
560 &enccompact(3,$tbl,$s3,$s0,$s1,$s2);
561
562 &xor ($s0,&DWP(16,$key));
563 &xor ($s1,&DWP(20,$key));
564 &xor ($s2,&DWP(24,$key));
565 &xor ($s3,&DWP(28,$key));
566
567 &ret ();
568 &function_end_B("_x86_AES_encrypt_compact");
569
570 ######################################################################
571 # "Compact" SSE block function.
572 ######################################################################
573 #
574 # Performance is not actually extraordinary in comparison to pure
575 # x86 code. In particular encrypt performance is virtually the same.
576 # Decrypt performance on the other hand is 15-20% better on newer
577 # ยต-archs [but we're thankful for *any* improvement here], and ~50%
578 # better on PIII:-) And additionally on the pros side this code
579 # eliminates redundant references to stack and thus relieves/
580 # minimizes the pressure on the memory bus.
581 #
582 # MMX register layout lsb
583 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
584 # | mm4 | mm0 |
585 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
586 # | s3 | s2 | s1 | s0 |
587 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
588 # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
589 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
590 #
591 # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
592 # In this terms encryption and decryption "compact" permutation
593 # matrices can be depicted as following:
594 #
595 # encryption lsb # decryption lsb
596 # +----++----+----+----+----+ # +----++----+----+----+----+
597 # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
598 # +----++----+----+----+----+ # +----++----+----+----+----+
599 # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
600 # +----++----+----+----+----+ # +----++----+----+----+----+
601 # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |
602 # +----++----+----+----+----+ # +----++----+----+----+----+
603 # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
604 # +----++----+----+----+----+ # +----++----+----+----+----+
605 #
606 ######################################################################
607 # Why not xmm registers? Short answer. It was actually tested and
608 # was not any faster, but *contrary*, most notably on Intel CPUs.
609 # Longer answer. Main advantage of using mm registers is that movd
610 # latency is lower, especially on Intel P4. While arithmetic
611 # instructions are twice as many, they can be scheduled every cycle
612 # and not every second one when they are operating on xmm register,
613 # so that "arithmetic throughput" remains virtually the same. And
614 # finally the code can be executed even on elder SSE-only CPUs:-)
615
616 sub sse_enccompact()
617 {
618 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
619 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10
620 &movd ("eax","mm1"); # 5, 4, 1, 0
621 &movd ("ebx","mm5"); # 15,14,11,10
622 &mov ($__key,$key);
623
624 &movz ($acc,&LB("eax")); # 0
625 &movz ("edx",&HB("eax")); # 1
626 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
627 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
628 &movz ($key,&LB("ebx")); # 10
629 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
630 &shr ("eax",16); # 5, 4
631 &shl ("edx",8); # 1
632
633 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
634 &movz ($key,&HB("ebx")); # 11
635 &shl ($acc,16); # 10
636 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
637 &or ("ecx",$acc); # 10
638 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
639 &movz ($key,&HB("eax")); # 5
640 &shl ($acc,24); # 11
641 &shr ("ebx",16); # 15,14
642 &or ("edx",$acc); # 11
643
644 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
645 &movz ($key,&HB("ebx")); # 15
646 &shl ($acc,8); # 5
647 &or ("ecx",$acc); # 5
648 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15
649 &movz ($key,&LB("eax")); # 4
650 &shl ($acc,24); # 15
651 &or ("ecx",$acc); # 15
652
653 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
654 &movz ($key,&LB("ebx")); # 14
655 &movd ("eax","mm2"); # 7, 6, 3, 2
656 &movd ("mm0","ecx"); # t[0] collected
657 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14
658 &movz ($key,&HB("eax")); # 3
659 &shl ("ecx",16); # 14
660 &movd ("ebx","mm6"); # 13,12, 9, 8
661 &or ("ecx",$acc); # 14
662
663 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3
664 &movz ($key,&HB("ebx")); # 9
665 &shl ($acc,24); # 3
666 &or ("ecx",$acc); # 3
667 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
668 &movz ($key,&LB("ebx")); # 8
669 &shl ($acc,8); # 9
670 &shr ("ebx",16); # 13,12
671 &or ("ecx",$acc); # 9
672
673 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8
674 &movz ($key,&LB("eax")); # 2
675 &shr ("eax",16); # 7, 6
676 &movd ("mm1","ecx"); # t[1] collected
677 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2
678 &movz ($key,&HB("eax")); # 7
679 &shl ("ecx",16); # 2
680 &and ("eax",0xff); # 6
681 &or ("ecx",$acc); # 2
682
683 &punpckldq ("mm0","mm1"); # t[0,1] collected
684
685 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
686 &movz ($key,&HB("ebx")); # 13
687 &shl ($acc,24); # 7
688 &and ("ebx",0xff); # 12
689 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
690 &or ("ecx",$acc); # 7
691 &shl ("eax",16); # 6
692 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
693 &or ("edx","eax"); # 6
694 &shl ($acc,8); # 13
695 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
696 &or ("ecx",$acc); # 13
697 &or ("edx","ebx"); # 12
698 &mov ($key,$__key);
699 &movd ("mm4","ecx"); # t[2] collected
700 &movd ("mm5","edx"); # t[3] collected
701
702 &punpckldq ("mm4","mm5"); # t[2,3] collected
703 }
704
705 if (!$x86only) {
706 &function_begin_B("_sse_AES_encrypt_compact");
707 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
708 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
709
710 # note that caller is expected to allocate stack frame for me!
711 &mov ($acc,&DWP(240,$key)); # load key->rounds
712 &lea ($acc,&DWP(-2,$acc,$acc));
713 &lea ($acc,&DWP(0,$key,$acc,8));
714 &mov ($__end,$acc); # end of key schedule
715
716 &mov ($s0,0x1b1b1b1b); # magic constant
717 &mov (&DWP(8,"esp"),$s0);
718 &mov (&DWP(12,"esp"),$s0);
719
720 # prefetch Te4
721 &mov ($s0,&DWP(0-128,$tbl));
722 &mov ($s1,&DWP(32-128,$tbl));
723 &mov ($s2,&DWP(64-128,$tbl));
724 &mov ($s3,&DWP(96-128,$tbl));
725 &mov ($s0,&DWP(128-128,$tbl));
726 &mov ($s1,&DWP(160-128,$tbl));
727 &mov ($s2,&DWP(192-128,$tbl));
728 &mov ($s3,&DWP(224-128,$tbl));
729
730 &set_label("loop",16);
731 &sse_enccompact();
732 &add ($key,16);
733 &cmp ($key,$__end);
734 &ja (&label("out"));
735
736 &movq ("mm2",&QWP(8,"esp"));
737 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
738 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
739 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
740 &pand ("mm3","mm2"); &pand ("mm7","mm2");
741 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16)
742 &paddb ("mm0","mm0"); &paddb ("mm4","mm4");
743 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
744 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
745 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
746 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16)
747
748 &movq ("mm2","mm3"); &movq ("mm6","mm7");
749 &pslld ("mm3",8); &pslld ("mm7",8);
750 &psrld ("mm2",24); &psrld ("mm6",24);
751 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8
752 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24
753
754 &movq ("mm3","mm1"); &movq ("mm7","mm5");
755 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
756 &psrld ("mm1",8); &psrld ("mm5",8);
757 &mov ($s0,&DWP(0-128,$tbl));
758 &pslld ("mm3",24); &pslld ("mm7",24);
759 &mov ($s1,&DWP(64-128,$tbl));
760 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8
761 &mov ($s2,&DWP(128-128,$tbl));
762 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24
763 &mov ($s3,&DWP(192-128,$tbl));
764
765 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
766 &jmp (&label("loop"));
767
768 &set_label("out",16);
769 &pxor ("mm0",&QWP(0,$key));
770 &pxor ("mm4",&QWP(8,$key));
771
772 &ret ();
773 &function_end_B("_sse_AES_encrypt_compact");
774 }
775
776 ######################################################################
777 # Vanilla block function.
778 ######################################################################
779
780 sub encstep()
781 { my ($i,$te,@s) = @_;
782 my $tmp = $key;
783 my $out = $i==3?$s[0]:$acc;
784
785 # lines marked with #%e?x[i] denote "reordered" instructions...
786 if ($i==3) { &mov ($key,$__key); }##%edx
787 else { &mov ($out,$s[0]);
788 &and ($out,0xFF); }
789 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
790 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
791 &mov ($out,&DWP(0,$te,$out,8));
792
793 if ($i==3) { $tmp=$s[1]; }##%eax
794 &movz ($tmp,&HB($s[1]));
795 &xor ($out,&DWP(3,$te,$tmp,8));
796
797 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
798 else { &mov ($tmp,$s[2]);
799 &shr ($tmp,16); }
800 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
801 &and ($tmp,0xFF);
802 &xor ($out,&DWP(2,$te,$tmp,8));
803
804 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
805 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
806 else { &mov ($tmp,$s[3]);
807 &shr ($tmp,24) }
808 &xor ($out,&DWP(1,$te,$tmp,8));
809 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
810 if ($i==3) { &mov ($s[3],$acc); }
811 &comment();
812 }
813
814 sub enclast()
815 { my ($i,$te,@s)=@_;
816 my $tmp = $key;
817 my $out = $i==3?$s[0]:$acc;
818
819 if ($i==3) { &mov ($key,$__key); }##%edx
820 else { &mov ($out,$s[0]); }
821 &and ($out,0xFF);
822 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
823 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
824 &mov ($out,&DWP(2,$te,$out,8));
825 &and ($out,0x000000ff);
826
827 if ($i==3) { $tmp=$s[1]; }##%eax
828 &movz ($tmp,&HB($s[1]));
829 &mov ($tmp,&DWP(0,$te,$tmp,8));
830 &and ($tmp,0x0000ff00);
831 &xor ($out,$tmp);
832
833 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
834 else { &mov ($tmp,$s[2]);
835 &shr ($tmp,16); }
836 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
837 &and ($tmp,0xFF);
838 &mov ($tmp,&DWP(0,$te,$tmp,8));
839 &and ($tmp,0x00ff0000);
840 &xor ($out,$tmp);
841
842 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
843 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
844 else { &mov ($tmp,$s[3]);
845 &shr ($tmp,24); }
846 &mov ($tmp,&DWP(2,$te,$tmp,8));
847 &and ($tmp,0xff000000);
848 &xor ($out,$tmp);
849 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
850 if ($i==3) { &mov ($s[3],$acc); }
851 }
852
853 &function_begin_B("_x86_AES_encrypt");
854 if ($vertical_spin) {
855 # I need high parts of volatile registers to be accessible...
856 &exch ($s1="edi",$key="ebx");
857 &mov ($s2="esi",$acc="ecx");
858 }
859
860 # note that caller is expected to allocate stack frame for me!
861 &mov ($__key,$key); # save key
862
863 &xor ($s0,&DWP(0,$key)); # xor with key
864 &xor ($s1,&DWP(4,$key));
865 &xor ($s2,&DWP(8,$key));
866 &xor ($s3,&DWP(12,$key));
867
868 &mov ($acc,&DWP(240,$key)); # load key->rounds
869
870 if ($small_footprint) {
871 &lea ($acc,&DWP(-2,$acc,$acc));
872 &lea ($acc,&DWP(0,$key,$acc,8));
873 &mov ($__end,$acc); # end of key schedule
874
875 &set_label("loop",16);
876 if ($vertical_spin) {
877 &encvert($tbl,$s0,$s1,$s2,$s3);
878 } else {
879 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
880 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
881 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
882 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
883 }
884 &add ($key,16); # advance rd_key
885 &xor ($s0,&DWP(0,$key));
886 &xor ($s1,&DWP(4,$key));
887 &xor ($s2,&DWP(8,$key));
888 &xor ($s3,&DWP(12,$key));
889 &cmp ($key,$__end);
890 &mov ($__key,$key);
891 &jb (&label("loop"));
892 }
893 else {
894 &cmp ($acc,10);
895 &jle (&label("10rounds"));
896 &cmp ($acc,12);
897 &jle (&label("12rounds"));
898
899 &set_label("14rounds",4);
900 for ($i=1;$i<3;$i++) {
901 if ($vertical_spin) {
902 &encvert($tbl,$s0,$s1,$s2,$s3);
903 } else {
904 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
905 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
906 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
907 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
908 }
909 &xor ($s0,&DWP(16*$i+0,$key));
910 &xor ($s1,&DWP(16*$i+4,$key));
911 &xor ($s2,&DWP(16*$i+8,$key));
912 &xor ($s3,&DWP(16*$i+12,$key));
913 }
914 &add ($key,32);
915 &mov ($__key,$key); # advance rd_key
916 &set_label("12rounds",4);
917 for ($i=1;$i<3;$i++) {
918 if ($vertical_spin) {
919 &encvert($tbl,$s0,$s1,$s2,$s3);
920 } else {
921 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
922 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
923 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
924 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
925 }
926 &xor ($s0,&DWP(16*$i+0,$key));
927 &xor ($s1,&DWP(16*$i+4,$key));
928 &xor ($s2,&DWP(16*$i+8,$key));
929 &xor ($s3,&DWP(16*$i+12,$key));
930 }
931 &add ($key,32);
932 &mov ($__key,$key); # advance rd_key
933 &set_label("10rounds",4);
934 for ($i=1;$i<10;$i++) {
935 if ($vertical_spin) {
936 &encvert($tbl,$s0,$s1,$s2,$s3);
937 } else {
938 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
939 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
940 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
941 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
942 }
943 &xor ($s0,&DWP(16*$i+0,$key));
944 &xor ($s1,&DWP(16*$i+4,$key));
945 &xor ($s2,&DWP(16*$i+8,$key));
946 &xor ($s3,&DWP(16*$i+12,$key));
947 }
948 }
949
950 if ($vertical_spin) {
951 # "reincarnate" some registers for "horizontal" spin...
952 &mov ($s1="ebx",$key="edi");
953 &mov ($s2="ecx",$acc="esi");
954 }
955 &enclast(0,$tbl,$s0,$s1,$s2,$s3);
956 &enclast(1,$tbl,$s1,$s2,$s3,$s0);
957 &enclast(2,$tbl,$s2,$s3,$s0,$s1);
958 &enclast(3,$tbl,$s3,$s0,$s1,$s2);
959
960 &add ($key,$small_footprint?16:160);
961 &xor ($s0,&DWP(0,$key));
962 &xor ($s1,&DWP(4,$key));
963 &xor ($s2,&DWP(8,$key));
964 &xor ($s3,&DWP(12,$key));
965
966 &ret ();
967
968 &set_label("AES_Te",64); # Yes! I keep it in the code segment!
969 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
970 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
971 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
972 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
973 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
974 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
975 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
976 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
977 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
978 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
979 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
980 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
981 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
982 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
983 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
984 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
985 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
986 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
987 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
988 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
989 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
990 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
991 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
992 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
993 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
994 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
995 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
996 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
997 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
998 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
999 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
1000 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
1001 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
1002 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
1003 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
1004 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
1005 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
1006 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
1007 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
1008 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1009 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1010 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1011 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1012 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1013 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1014 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1015 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1016 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1017 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1018 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1019 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1020 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1021 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1022 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1023 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1024 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1025 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1026 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1027 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1028 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1029 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1030 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1031 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1032 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1033
1034 #Te4 # four copies of Te4 to choose from to avoid L1 aliasing
1035 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1036 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1037 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1038 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1039 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1040 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1041 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1042 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1043 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1044 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1045 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1046 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1047 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1048 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1049 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1050 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1051 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1052 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1053 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1054 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1055 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1056 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1057 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1058 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1059 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1060 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1061 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1062 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1063 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1064 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1065 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1066 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1067
1068 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1069 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1070 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1071 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1072 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1073 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1074 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1075 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1076 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1077 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1078 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1079 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1080 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1081 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1082 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1083 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1084 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1085 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1086 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1087 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1088 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1089 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1090 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1091 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1092 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1093 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1094 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1095 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1096 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1097 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1098 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1099 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1100
1101 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1102 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1103 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1104 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1105 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1106 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1107 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1108 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1109 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1110 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1111 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1112 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1113 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1114 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1115 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1116 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1117 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1118 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1119 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1120 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1121 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1122 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1123 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1124 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1125 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1126 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1127 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1128 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1129 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1130 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1131 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1132 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1133
1134 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1135 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1136 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1137 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1138 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1139 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1140 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1141 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1142 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1143 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1144 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1145 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1146 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1147 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1148 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1149 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1150 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1151 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1152 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1153 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1154 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1155 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1156 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1157 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1158 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1159 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1160 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1161 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1162 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1163 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1164 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1165 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1166 #rcon:
1167 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1168 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1169 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1170 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1171 &function_end_B("_x86_AES_encrypt");
1172
1173 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1174 &function_begin("AES_encrypt");
1175 &mov ($acc,&wparam(0)); # load inp
1176 &mov ($key,&wparam(2)); # load key
1177
1178 &mov ($s0,"esp");
1179 &sub ("esp",36);
1180 &and ("esp",-64); # align to cache-line
1181
1182 # place stack frame just "above" the key schedule
1183 &lea ($s1,&DWP(-64-63,$key));
1184 &sub ($s1,"esp");
1185 &neg ($s1);
1186 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1187 &sub ("esp",$s1);
1188 &add ("esp",4); # 4 is reserved for caller's return address
1189 &mov ($_esp,$s0); # save stack pointer
1190
1191 &call (&label("pic_point")); # make it PIC!
1192 &set_label("pic_point");
1193 &blindpop($tbl);
1194 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1195 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1196
1197 # pick Te4 copy which can't "overlap" with stack frame or key schedule
1198 &lea ($s1,&DWP(768-4,"esp"));
1199 &sub ($s1,$tbl);
1200 &and ($s1,0x300);
1201 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1202
1203 if (!$x86only) {
1204 &bt (&DWP(0,$s0),25); # check for SSE bit
1205 &jnc (&label("x86"));
1206
1207 &movq ("mm0",&QWP(0,$acc));
1208 &movq ("mm4",&QWP(8,$acc));
1209 &call ("_sse_AES_encrypt_compact");
1210 &mov ("esp",$_esp); # restore stack pointer
1211 &mov ($acc,&wparam(1)); # load out
1212 &movq (&QWP(0,$acc),"mm0"); # write output data
1213 &movq (&QWP(8,$acc),"mm4");
1214 &emms ();
1215 &function_end_A();
1216 }
1217 &set_label("x86",16);
1218 &mov ($_tbl,$tbl);
1219 &mov ($s0,&DWP(0,$acc)); # load input data
1220 &mov ($s1,&DWP(4,$acc));
1221 &mov ($s2,&DWP(8,$acc));
1222 &mov ($s3,&DWP(12,$acc));
1223 &call ("_x86_AES_encrypt_compact");
1224 &mov ("esp",$_esp); # restore stack pointer
1225 &mov ($acc,&wparam(1)); # load out
1226 &mov (&DWP(0,$acc),$s0); # write output data
1227 &mov (&DWP(4,$acc),$s1);
1228 &mov (&DWP(8,$acc),$s2);
1229 &mov (&DWP(12,$acc),$s3);
1230 &function_end("AES_encrypt");
1231
1232 #--------------------------------------------------------------------#
1233
1234 ######################################################################
1235 # "Compact" block function
1236 ######################################################################
1237
1238 sub deccompact()
1239 { my $Fn = \&mov;
1240 while ($#_>5) { pop(@_); $Fn=sub{}; }
1241 my ($i,$td,@s)=@_;
1242 my $tmp = $key;
1243 my $out = $i==3?$s[0]:$acc;
1244
1245 # $Fn is used in first compact round and its purpose is to
1246 # void restoration of some values from stack, so that after
1247 # 4xdeccompact with extra argument $key, $s0 and $s1 values
1248 # are left there...
1249 if($i==3) { &$Fn ($key,$__key); }
1250 else { &mov ($out,$s[0]); }
1251 &and ($out,0xFF);
1252 &movz ($out,&BP(-128,$td,$out,1));
1253
1254 if ($i==3) { $tmp=$s[1]; }
1255 &movz ($tmp,&HB($s[1]));
1256 &movz ($tmp,&BP(-128,$td,$tmp,1));
1257 &shl ($tmp,8);
1258 &xor ($out,$tmp);
1259
1260 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1261 else { mov ($tmp,$s[2]); }
1262 &shr ($tmp,16);
1263 &and ($tmp,0xFF);
1264 &movz ($tmp,&BP(-128,$td,$tmp,1));
1265 &shl ($tmp,16);
1266 &xor ($out,$tmp);
1267
1268 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
1269 else { &mov ($tmp,$s[3]); }
1270 &shr ($tmp,24);
1271 &movz ($tmp,&BP(-128,$td,$tmp,1));
1272 &shl ($tmp,24);
1273 &xor ($out,$tmp);
1274 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1275 if ($i==3) { &$Fn ($s[3],$__s0); }
1276 }
1277
1278 # must be called with 2,3,0,1 as argument sequence!!!
1279 sub dectransform()
1280 { my @s = ($s0,$s1,$s2,$s3);
1281 my $i = shift;
1282 my $tmp = $key;
1283 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1284 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1285 my $tp8 = $tbl;
1286
1287 &mov ($tmp,0x80808080);
1288 &and ($tmp,$s[$i]);
1289 &mov ($acc,$tmp);
1290 &shr ($tmp,7);
1291 &lea ($tp2,&DWP(0,$s[$i],$s[$i]));
1292 &sub ($acc,$tmp);
1293 &and ($tp2,0xfefefefe);
1294 &and ($acc,0x1b1b1b1b);
1295 &xor ($tp2,$acc);
1296 &mov ($tmp,0x80808080);
1297
1298 &and ($tmp,$tp2);
1299 &mov ($acc,$tmp);
1300 &shr ($tmp,7);
1301 &lea ($tp4,&DWP(0,$tp2,$tp2));
1302 &sub ($acc,$tmp);
1303 &and ($tp4,0xfefefefe);
1304 &and ($acc,0x1b1b1b1b);
1305 &xor ($tp2,$s[$i]); # tp2^tp1
1306 &xor ($tp4,$acc);
1307 &mov ($tmp,0x80808080);
1308
1309 &and ($tmp,$tp4);
1310 &mov ($acc,$tmp);
1311 &shr ($tmp,7);
1312 &lea ($tp8,&DWP(0,$tp4,$tp4));
1313 &sub ($acc,$tmp);
1314 &and ($tp8,0xfefefefe);
1315 &and ($acc,0x1b1b1b1b);
1316 &xor ($tp4,$s[$i]); # tp4^tp1
1317 &rotl ($s[$i],8); # = ROTATE(tp1,8)
1318 &xor ($tp8,$acc);
1319
1320 &xor ($s[$i],$tp2);
1321 &xor ($tp2,$tp8);
1322 &xor ($s[$i],$tp4);
1323 &xor ($tp4,$tp8);
1324 &rotl ($tp2,24);
1325 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
1326 &rotl ($tp4,16);
1327 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
1328 &rotl ($tp8,8);
1329 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
1330 &mov ($s[0],$__s0) if($i==2); #prefetch $s0
1331 &mov ($s[1],$__s1) if($i==3); #prefetch $s1
1332 &mov ($s[2],$__s2) if($i==1);
1333 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)
1334
1335 &mov ($s[3],$__s3) if($i==1);
1336 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
1337 }
1338
1339 &function_begin_B("_x86_AES_decrypt_compact");
1340 # note that caller is expected to allocate stack frame for me!
1341 &mov ($__key,$key); # save key
1342
1343 &xor ($s0,&DWP(0,$key)); # xor with key
1344 &xor ($s1,&DWP(4,$key));
1345 &xor ($s2,&DWP(8,$key));
1346 &xor ($s3,&DWP(12,$key));
1347
1348 &mov ($acc,&DWP(240,$key)); # load key->rounds
1349
1350 &lea ($acc,&DWP(-2,$acc,$acc));
1351 &lea ($acc,&DWP(0,$key,$acc,8));
1352 &mov ($__end,$acc); # end of key schedule
1353
1354 # prefetch Td4
1355 &mov ($key,&DWP(0-128,$tbl));
1356 &mov ($acc,&DWP(32-128,$tbl));
1357 &mov ($key,&DWP(64-128,$tbl));
1358 &mov ($acc,&DWP(96-128,$tbl));
1359 &mov ($key,&DWP(128-128,$tbl));
1360 &mov ($acc,&DWP(160-128,$tbl));
1361 &mov ($key,&DWP(192-128,$tbl));
1362 &mov ($acc,&DWP(224-128,$tbl));
1363
1364 &set_label("loop",16);
1365
1366 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1367 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1368 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1369 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1370 &dectransform(2);
1371 &dectransform(3);
1372 &dectransform(0);
1373 &dectransform(1);
1374 &mov ($key,$__key);
1375 &mov ($tbl,$__tbl);
1376 &add ($key,16); # advance rd_key
1377 &xor ($s0,&DWP(0,$key));
1378 &xor ($s1,&DWP(4,$key));
1379 &xor ($s2,&DWP(8,$key));
1380 &xor ($s3,&DWP(12,$key));
1381
1382 &cmp ($key,$__end);
1383 &mov ($__key,$key);
1384 &jb (&label("loop"));
1385
1386 &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1387 &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1388 &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1389 &deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1390
1391 &xor ($s0,&DWP(16,$key));
1392 &xor ($s1,&DWP(20,$key));
1393 &xor ($s2,&DWP(24,$key));
1394 &xor ($s3,&DWP(28,$key));
1395
1396 &ret ();
1397 &function_end_B("_x86_AES_decrypt_compact");
1398
1399 ######################################################################
1400 # "Compact" SSE block function.
1401 ######################################################################
1402
1403 sub sse_deccompact()
1404 {
1405 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
1406 &pshufw ("mm5","mm4",0x09); # 13,12,11,10
1407 &movd ("eax","mm1"); # 7, 6, 1, 0
1408 &movd ("ebx","mm5"); # 13,12,11,10
1409 &mov ($__key,$key);
1410
1411 &movz ($acc,&LB("eax")); # 0
1412 &movz ("edx",&HB("eax")); # 1
1413 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
1414 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
1415 &movz ($key,&LB("ebx")); # 10
1416 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
1417 &shr ("eax",16); # 7, 6
1418 &shl ("edx",8); # 1
1419
1420 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
1421 &movz ($key,&HB("ebx")); # 11
1422 &shl ($acc,16); # 10
1423 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14
1424 &or ("ecx",$acc); # 10
1425 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
1426 &movz ($key,&HB("eax")); # 7
1427 &shl ($acc,24); # 11
1428 &shr ("ebx",16); # 13,12
1429 &or ("edx",$acc); # 11
1430
1431 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
1432 &movz ($key,&HB("ebx")); # 13
1433 &shl ($acc,24); # 7
1434 &or ("ecx",$acc); # 7
1435 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
1436 &movz ($key,&LB("eax")); # 6
1437 &shl ($acc,8); # 13
1438 &movd ("eax","mm2"); # 3, 2, 5, 4
1439 &or ("ecx",$acc); # 13
1440
1441 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6
1442 &movz ($key,&LB("ebx")); # 12
1443 &shl ($acc,16); # 6
1444 &movd ("ebx","mm6"); # 9, 8,15,14
1445 &movd ("mm0","ecx"); # t[0] collected
1446 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12
1447 &movz ($key,&LB("eax")); # 4
1448 &or ("ecx",$acc); # 12
1449
1450 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
1451 &movz ($key,&LB("ebx")); # 14
1452 &or ("edx",$acc); # 4
1453 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14
1454 &movz ($key,&HB("eax")); # 5
1455 &shl ($acc,16); # 14
1456 &shr ("eax",16); # 3, 2
1457 &or ("edx",$acc); # 14
1458
1459 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
1460 &movz ($key,&HB("ebx")); # 15
1461 &shr ("ebx",16); # 9, 8
1462 &shl ($acc,8); # 5
1463 &movd ("mm1","edx"); # t[1] collected
1464 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15
1465 &movz ($key,&HB("ebx")); # 9
1466 &shl ("edx",24); # 15
1467 &and ("ebx",0xff); # 8
1468 &or ("edx",$acc); # 15
1469
1470 &punpckldq ("mm0","mm1"); # t[0,1] collected
1471
1472 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
1473 &movz ($key,&LB("eax")); # 2
1474 &shl ($acc,8); # 9
1475 &movz ("eax",&HB("eax")); # 3
1476 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
1477 &or ("ecx",$acc); # 9
1478 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2
1479 &or ("edx","ebx"); # 8
1480 &shl ($acc,16); # 2
1481 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
1482 &or ("edx",$acc); # 2
1483 &shl ("eax",24); # 3
1484 &or ("ecx","eax"); # 3
1485 &mov ($key,$__key);
1486 &movd ("mm4","edx"); # t[2] collected
1487 &movd ("mm5","ecx"); # t[3] collected
1488
1489 &punpckldq ("mm4","mm5"); # t[2,3] collected
1490 }
1491
1492 if (!$x86only) {
1493 &function_begin_B("_sse_AES_decrypt_compact");
1494 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
1495 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
1496
1497 # note that caller is expected to allocate stack frame for me!
1498 &mov ($acc,&DWP(240,$key)); # load key->rounds
1499 &lea ($acc,&DWP(-2,$acc,$acc));
1500 &lea ($acc,&DWP(0,$key,$acc,8));
1501 &mov ($__end,$acc); # end of key schedule
1502
1503 &mov ($s0,0x1b1b1b1b); # magic constant
1504 &mov (&DWP(8,"esp"),$s0);
1505 &mov (&DWP(12,"esp"),$s0);
1506
1507 # prefetch Td4
1508 &mov ($s0,&DWP(0-128,$tbl));
1509 &mov ($s1,&DWP(32-128,$tbl));
1510 &mov ($s2,&DWP(64-128,$tbl));
1511 &mov ($s3,&DWP(96-128,$tbl));
1512 &mov ($s0,&DWP(128-128,$tbl));
1513 &mov ($s1,&DWP(160-128,$tbl));
1514 &mov ($s2,&DWP(192-128,$tbl));
1515 &mov ($s3,&DWP(224-128,$tbl));
1516
1517 &set_label("loop",16);
1518 &sse_deccompact();
1519 &add ($key,16);
1520 &cmp ($key,$__end);
1521 &ja (&label("out"));
1522
1523 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1524 &movq ("mm3","mm0"); &movq ("mm7","mm4");
1525 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
1526 &movq ("mm1","mm0"); &movq ("mm5","mm4");
1527 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1528 &pslld ("mm2",8); &pslld ("mm6",8);
1529 &psrld ("mm3",8); &psrld ("mm7",8);
1530 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8
1531 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8
1532 &pslld ("mm2",16); &pslld ("mm6",16);
1533 &psrld ("mm3",16); &psrld ("mm7",16);
1534 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24
1535 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24
1536
1537 &movq ("mm3",&QWP(8,"esp"));
1538 &pxor ("mm2","mm2"); &pxor ("mm6","mm6");
1539 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
1540 &pand ("mm2","mm3"); &pand ("mm6","mm3");
1541 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1542 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
1543 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1544 &movq ("mm2","mm1"); &movq ("mm6","mm5");
1545 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
1546 &pslld ("mm3",24); &pslld ("mm7",24);
1547 &psrld ("mm2",8); &psrld ("mm6",8);
1548 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24
1549 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8
1550
1551 &movq ("mm2",&QWP(8,"esp"));
1552 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1553 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1554 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1555 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1556 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
1557 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
1558 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
1559 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16)
1560
1561 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1562 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1563 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1564 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1565 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
1566 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1567 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1568 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
1569 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16)
1570 &pslld ("mm1",8); &pslld ("mm5",8);
1571 &psrld ("mm3",8); &psrld ("mm7",8);
1572 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
1573 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8
1574 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8
1575 &mov ($s0,&DWP(0-128,$tbl));
1576 &pslld ("mm1",16); &pslld ("mm5",16);
1577 &mov ($s1,&DWP(64-128,$tbl));
1578 &psrld ("mm3",16); &psrld ("mm7",16);
1579 &mov ($s2,&DWP(128-128,$tbl));
1580 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24
1581 &mov ($s3,&DWP(192-128,$tbl));
1582 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24
1583
1584 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
1585 &jmp (&label("loop"));
1586
1587 &set_label("out",16);
1588 &pxor ("mm0",&QWP(0,$key));
1589 &pxor ("mm4",&QWP(8,$key));
1590
1591 &ret ();
1592 &function_end_B("_sse_AES_decrypt_compact");
1593 }
1594
1595 ######################################################################
1596 # Vanilla block function.
1597 ######################################################################
1598
1599 sub decstep()
1600 { my ($i,$td,@s) = @_;
1601 my $tmp = $key;
1602 my $out = $i==3?$s[0]:$acc;
1603
1604 # no instructions are reordered, as performance appears
1605 # optimal... or rather that all attempts to reorder didn't
1606 # result in better performance [which by the way is not a
1607 # bit lower than encryption].
1608 if($i==3) { &mov ($key,$__key); }
1609 else { &mov ($out,$s[0]); }
1610 &and ($out,0xFF);
1611 &mov ($out,&DWP(0,$td,$out,8));
1612
1613 if ($i==3) { $tmp=$s[1]; }
1614 &movz ($tmp,&HB($s[1]));
1615 &xor ($out,&DWP(3,$td,$tmp,8));
1616
1617 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1618 else { &mov ($tmp,$s[2]); }
1619 &shr ($tmp,16);
1620 &and ($tmp,0xFF);
1621 &xor ($out,&DWP(2,$td,$tmp,8));
1622
1623 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1624 else { &mov ($tmp,$s[3]); }
1625 &shr ($tmp,24);
1626 &xor ($out,&DWP(1,$td,$tmp,8));
1627 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1628 if ($i==3) { &mov ($s[3],$__s0); }
1629 &comment();
1630 }
1631
1632 sub declast()
1633 { my ($i,$td,@s)=@_;
1634 my $tmp = $key;
1635 my $out = $i==3?$s[0]:$acc;
1636
1637 if($i==0) { &lea ($td,&DWP(2048+128,$td));
1638 &mov ($tmp,&DWP(0-128,$td));
1639 &mov ($acc,&DWP(32-128,$td));
1640 &mov ($tmp,&DWP(64-128,$td));
1641 &mov ($acc,&DWP(96-128,$td));
1642 &mov ($tmp,&DWP(128-128,$td));
1643 &mov ($acc,&DWP(160-128,$td));
1644 &mov ($tmp,&DWP(192-128,$td));
1645 &mov ($acc,&DWP(224-128,$td));
1646 &lea ($td,&DWP(-128,$td)); }
1647 if($i==3) { &mov ($key,$__key); }
1648 else { &mov ($out,$s[0]); }
1649 &and ($out,0xFF);
1650 &movz ($out,&BP(0,$td,$out,1));
1651
1652 if ($i==3) { $tmp=$s[1]; }
1653 &movz ($tmp,&HB($s[1]));
1654 &movz ($tmp,&BP(0,$td,$tmp,1));
1655 &shl ($tmp,8);
1656 &xor ($out,$tmp);
1657
1658 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1659 else { mov ($tmp,$s[2]); }
1660 &shr ($tmp,16);
1661 &and ($tmp,0xFF);
1662 &movz ($tmp,&BP(0,$td,$tmp,1));
1663 &shl ($tmp,16);
1664 &xor ($out,$tmp);
1665
1666 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1667 else { &mov ($tmp,$s[3]); }
1668 &shr ($tmp,24);
1669 &movz ($tmp,&BP(0,$td,$tmp,1));
1670 &shl ($tmp,24);
1671 &xor ($out,$tmp);
1672 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1673 if ($i==3) { &mov ($s[3],$__s0);
1674 &lea ($td,&DWP(-2048,$td)); }
1675 }
1676
1677 &function_begin_B("_x86_AES_decrypt");
1678 # note that caller is expected to allocate stack frame for me!
1679 &mov ($__key,$key); # save key
1680
1681 &xor ($s0,&DWP(0,$key)); # xor with key
1682 &xor ($s1,&DWP(4,$key));
1683 &xor ($s2,&DWP(8,$key));
1684 &xor ($s3,&DWP(12,$key));
1685
1686 &mov ($acc,&DWP(240,$key)); # load key->rounds
1687
1688 if ($small_footprint) {
1689 &lea ($acc,&DWP(-2,$acc,$acc));
1690 &lea ($acc,&DWP(0,$key,$acc,8));
1691 &mov ($__end,$acc); # end of key schedule
1692 &set_label("loop",16);
1693 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1694 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1695 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1696 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1697 &add ($key,16); # advance rd_key
1698 &xor ($s0,&DWP(0,$key));
1699 &xor ($s1,&DWP(4,$key));
1700 &xor ($s2,&DWP(8,$key));
1701 &xor ($s3,&DWP(12,$key));
1702 &cmp ($key,$__end);
1703 &mov ($__key,$key);
1704 &jb (&label("loop"));
1705 }
1706 else {
1707 &cmp ($acc,10);
1708 &jle (&label("10rounds"));
1709 &cmp ($acc,12);
1710 &jle (&label("12rounds"));
1711
1712 &set_label("14rounds",4);
1713 for ($i=1;$i<3;$i++) {
1714 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1715 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1716 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1717 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1718 &xor ($s0,&DWP(16*$i+0,$key));
1719 &xor ($s1,&DWP(16*$i+4,$key));
1720 &xor ($s2,&DWP(16*$i+8,$key));
1721 &xor ($s3,&DWP(16*$i+12,$key));
1722 }
1723 &add ($key,32);
1724 &mov ($__key,$key); # advance rd_key
1725 &set_label("12rounds",4);
1726 for ($i=1;$i<3;$i++) {
1727 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1728 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1729 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1730 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1731 &xor ($s0,&DWP(16*$i+0,$key));
1732 &xor ($s1,&DWP(16*$i+4,$key));
1733 &xor ($s2,&DWP(16*$i+8,$key));
1734 &xor ($s3,&DWP(16*$i+12,$key));
1735 }
1736 &add ($key,32);
1737 &mov ($__key,$key); # advance rd_key
1738 &set_label("10rounds",4);
1739 for ($i=1;$i<10;$i++) {
1740 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1741 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1742 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1743 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1744 &xor ($s0,&DWP(16*$i+0,$key));
1745 &xor ($s1,&DWP(16*$i+4,$key));
1746 &xor ($s2,&DWP(16*$i+8,$key));
1747 &xor ($s3,&DWP(16*$i+12,$key));
1748 }
1749 }
1750
1751 &declast(0,$tbl,$s0,$s3,$s2,$s1);
1752 &declast(1,$tbl,$s1,$s0,$s3,$s2);
1753 &declast(2,$tbl,$s2,$s1,$s0,$s3);
1754 &declast(3,$tbl,$s3,$s2,$s1,$s0);
1755
1756 &add ($key,$small_footprint?16:160);
1757 &xor ($s0,&DWP(0,$key));
1758 &xor ($s1,&DWP(4,$key));
1759 &xor ($s2,&DWP(8,$key));
1760 &xor ($s3,&DWP(12,$key));
1761
1762 &ret ();
1763
1764 &set_label("AES_Td",64); # Yes! I keep it in the code segment!
1765 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1766 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1767 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1768 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1769 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1770 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1771 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1772 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1773 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1774 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1775 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1776 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1777 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1778 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1779 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1780 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1781 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1782 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1783 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1784 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1785 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1786 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1787 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1788 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1789 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1790 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1791 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1792 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1793 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1794 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1795 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1796 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1797 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1798 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1799 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1800 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1801 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1802 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1803 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1804 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1805 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1806 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1807 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1808 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1809 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1810 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1811 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1812 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1813 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1814 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1815 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1816 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1817 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1818 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1819 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1820 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1821 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1822 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1823 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1824 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1825 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1826 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1827 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1828 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1829
1830 #Td4: # four copies of Td4 to choose from to avoid L1 aliasing
1831 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1832 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1833 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1834 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1835 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1836 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1837 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1838 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1839 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1840 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1841 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1842 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1843 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1844 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1845 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1846 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1847 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1848 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1849 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1850 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1851 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1852 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1853 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1854 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1855 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1856 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1857 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1858 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1859 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1860 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1861 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1862 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1863
1864 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1865 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1866 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1867 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1868 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1869 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1870 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1871 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1872 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1873 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1874 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1875 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1876 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1877 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1878 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1879 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1880 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1881 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1882 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1883 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1884 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1885 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1886 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1887 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1888 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1889 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1890 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1891 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1892 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1893 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1894 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1895 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1896
1897 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1898 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1899 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1900 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1901 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1902 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1903 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1904 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1905 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1906 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1907 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1908 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1909 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1910 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1911 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1912 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1913 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1914 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1915 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1916 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1917 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1918 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1919 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1920 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1921 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1922 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1923 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1924 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1925 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1926 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1927 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1928 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1929
1930 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1931 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1932 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1933 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1934 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1935 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1936 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1937 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1938 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1939 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1940 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1941 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1942 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1943 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1944 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1945 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1946 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1947 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1948 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1949 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1950 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1951 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1952 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1953 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1954 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1955 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1956 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1957 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1958 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1959 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1960 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1961 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1962 &function_end_B("_x86_AES_decrypt");
1963
1964 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1965 &function_begin("AES_decrypt");
1966 &mov ($acc,&wparam(0)); # load inp
1967 &mov ($key,&wparam(2)); # load key
1968
1969 &mov ($s0,"esp");
1970 &sub ("esp",36);
1971 &and ("esp",-64); # align to cache-line
1972
1973 # place stack frame just "above" the key schedule
1974 &lea ($s1,&DWP(-64-63,$key));
1975 &sub ($s1,"esp");
1976 &neg ($s1);
1977 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1978 &sub ("esp",$s1);
1979 &add ("esp",4); # 4 is reserved for caller's return address
1980 &mov ($_esp,$s0); # save stack pointer
1981
1982 &call (&label("pic_point")); # make it PIC!
1983 &set_label("pic_point");
1984 &blindpop($tbl);
1985 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1986 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1987
1988 # pick Td4 copy which can't "overlap" with stack frame or key schedule
1989 &lea ($s1,&DWP(768-4,"esp"));
1990 &sub ($s1,$tbl);
1991 &and ($s1,0x300);
1992 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1993
1994 if (!$x86only) {
1995 &bt (&DWP(0,$s0),25); # check for SSE bit
1996 &jnc (&label("x86"));
1997
1998 &movq ("mm0",&QWP(0,$acc));
1999 &movq ("mm4",&QWP(8,$acc));
2000 &call ("_sse_AES_decrypt_compact");
2001 &mov ("esp",$_esp); # restore stack pointer
2002 &mov ($acc,&wparam(1)); # load out
2003 &movq (&QWP(0,$acc),"mm0"); # write output data
2004 &movq (&QWP(8,$acc),"mm4");
2005 &emms ();
2006 &function_end_A();
2007 }
2008 &set_label("x86",16);
2009 &mov ($_tbl,$tbl);
2010 &mov ($s0,&DWP(0,$acc)); # load input data
2011 &mov ($s1,&DWP(4,$acc));
2012 &mov ($s2,&DWP(8,$acc));
2013 &mov ($s3,&DWP(12,$acc));
2014 &call ("_x86_AES_decrypt_compact");
2015 &mov ("esp",$_esp); # restore stack pointer
2016 &mov ($acc,&wparam(1)); # load out
2017 &mov (&DWP(0,$acc),$s0); # write output data
2018 &mov (&DWP(4,$acc),$s1);
2019 &mov (&DWP(8,$acc),$s2);
2020 &mov (&DWP(12,$acc),$s3);
2021 &function_end("AES_decrypt");
2022
2023 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2024 # size_t length, const AES_KEY *key,
2025 # unsigned char *ivp,const int enc);
2026 {
2027 # stack frame layout
2028 # -4(%esp) # return address 0(%esp)
2029 # 0(%esp) # s0 backing store 4(%esp)
2030 # 4(%esp) # s1 backing store 8(%esp)
2031 # 8(%esp) # s2 backing store 12(%esp)
2032 # 12(%esp) # s3 backing store 16(%esp)
2033 # 16(%esp) # key backup 20(%esp)
2034 # 20(%esp) # end of key schedule 24(%esp)
2035 # 24(%esp) # %ebp backup 28(%esp)
2036 # 28(%esp) # %esp backup
2037 my $_inp=&DWP(32,"esp"); # copy of wparam(0)
2038 my $_out=&DWP(36,"esp"); # copy of wparam(1)
2039 my $_len=&DWP(40,"esp"); # copy of wparam(2)
2040 my $_key=&DWP(44,"esp"); # copy of wparam(3)
2041 my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
2042 my $_tmp=&DWP(52,"esp"); # volatile variable
2043 #
2044 my $ivec=&DWP(60,"esp"); # ivec[16]
2045 my $aes_key=&DWP(76,"esp"); # copy of aes_key
2046 my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds
2047
2048 &function_begin("AES_cbc_encrypt");
2049 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
2050 &cmp ($s2,0);
2051 &je (&label("drop_out"));
2052
2053 &call (&label("pic_point")); # make it PIC!
2054 &set_label("pic_point");
2055 &blindpop($tbl);
2056 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2057
2058 &cmp (&wparam(5),0);
2059 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2060 &jne (&label("picked_te"));
2061 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2062 &set_label("picked_te");
2063
2064 # one can argue if this is required
2065 &pushf ();
2066 &cld ();
2067
2068 &cmp ($s2,$speed_limit);
2069 &jb (&label("slow_way"));
2070 &test ($s2,15);
2071 &jnz (&label("slow_way"));
2072 if (!$x86only) {
2073 &bt (&DWP(0,$s0),28); # check for hyper-threading bit
2074 &jc (&label("slow_way"));
2075 }
2076 # pre-allocate aligned stack frame...
2077 &lea ($acc,&DWP(-80-244,"esp"));
2078 &and ($acc,-64);
2079
2080 # ... and make sure it doesn't alias with $tbl modulo 4096
2081 &mov ($s0,$tbl);
2082 &lea ($s1,&DWP(2048+256,$tbl));
2083 &mov ($s3,$acc);
2084 &and ($s0,0xfff); # s = %ebp&0xfff
2085 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
2086 &and ($s3,0xfff); # p = %esp&0xfff
2087
2088 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
2089 &jb (&label("tbl_break_out"));
2090 &sub ($s3,$s1);
2091 &sub ($acc,$s3);
2092 &jmp (&label("tbl_ok"));
2093 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
2094 &sub ($s3,$s0);
2095 &and ($s3,0xfff);
2096 &add ($s3,384);
2097 &sub ($acc,$s3);
2098 &set_label("tbl_ok",4);
2099
2100 &lea ($s3,&wparam(0)); # obtain pointer to parameter block
2101 &exch ("esp",$acc); # allocate stack frame
2102 &add ("esp",4); # reserve for return address!
2103 &mov ($_tbl,$tbl); # save %ebp
2104 &mov ($_esp,$acc); # save %esp
2105
2106 &mov ($s0,&DWP(0,$s3)); # load inp
2107 &mov ($s1,&DWP(4,$s3)); # load out
2108 #&mov ($s2,&DWP(8,$s3)); # load len
2109 &mov ($key,&DWP(12,$s3)); # load key
2110 &mov ($acc,&DWP(16,$s3)); # load ivp
2111 &mov ($s3,&DWP(20,$s3)); # load enc flag
2112
2113 &mov ($_inp,$s0); # save copy of inp
2114 &mov ($_out,$s1); # save copy of out
2115 &mov ($_len,$s2); # save copy of len
2116 &mov ($_key,$key); # save copy of key
2117 &mov ($_ivp,$acc); # save copy of ivp
2118
2119 &mov ($mark,0); # copy of aes_key->rounds = 0;
2120 # do we copy key schedule to stack?
2121 &mov ($s1 eq "ebx" ? $s1 : "",$key);
2122 &mov ($s2 eq "ecx" ? $s2 : "",244/4);
2123 &sub ($s1,$tbl);
2124 &mov ("esi",$key);
2125 &and ($s1,0xfff);
2126 &lea ("edi",$aes_key);
2127 &cmp ($s1,2048+256);
2128 &jb (&label("do_copy"));
2129 &cmp ($s1,4096-244);
2130 &jb (&label("skip_copy"));
2131 &set_label("do_copy",4);
2132 &mov ($_key,"edi");
2133 &data_word(0xA5F3F689); # rep movsd
2134 &set_label("skip_copy");
2135
2136 &mov ($key,16);
2137 &set_label("prefetch_tbl",4);
2138 &mov ($s0,&DWP(0,$tbl));
2139 &mov ($s1,&DWP(32,$tbl));
2140 &mov ($s2,&DWP(64,$tbl));
2141 &mov ($acc,&DWP(96,$tbl));
2142 &lea ($tbl,&DWP(128,$tbl));
2143 &sub ($key,1);
2144 &jnz (&label("prefetch_tbl"));
2145 &sub ($tbl,2048);
2146
2147 &mov ($acc,$_inp);
2148 &mov ($key,$_ivp);
2149
2150 &cmp ($s3,0);
2151 &je (&label("fast_decrypt"));
2152
2153 #----------------------------- ENCRYPT -----------------------------#
2154 &mov ($s0,&DWP(0,$key)); # load iv
2155 &mov ($s1,&DWP(4,$key));
2156
2157 &set_label("fast_enc_loop",16);
2158 &mov ($s2,&DWP(8,$key));
2159 &mov ($s3,&DWP(12,$key));
2160
2161 &xor ($s0,&DWP(0,$acc)); # xor input data
2162 &xor ($s1,&DWP(4,$acc));
2163 &xor ($s2,&DWP(8,$acc));
2164 &xor ($s3,&DWP(12,$acc));
2165
2166 &mov ($key,$_key); # load key
2167 &call ("_x86_AES_encrypt");
2168
2169 &mov ($acc,$_inp); # load inp
2170 &mov ($key,$_out); # load out
2171
2172 &mov (&DWP(0,$key),$s0); # save output data
2173 &mov (&DWP(4,$key),$s1);
2174 &mov (&DWP(8,$key),$s2);
2175 &mov (&DWP(12,$key),$s3);
2176
2177 &lea ($acc,&DWP(16,$acc)); # advance inp
2178 &mov ($s2,$_len); # load len
2179 &mov ($_inp,$acc); # save inp
2180 &lea ($s3,&DWP(16,$key)); # advance out
2181 &mov ($_out,$s3); # save out
2182 &sub ($s2,16); # decrease len
2183 &mov ($_len,$s2); # save len
2184 &jnz (&label("fast_enc_loop"));
2185 &mov ($acc,$_ivp); # load ivp
2186 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords
2187 &mov ($s3,&DWP(12,$key));
2188 &mov (&DWP(0,$acc),$s0); # save ivec
2189 &mov (&DWP(4,$acc),$s1);
2190 &mov (&DWP(8,$acc),$s2);
2191 &mov (&DWP(12,$acc),$s3);
2192
2193 &cmp ($mark,0); # was the key schedule copied?
2194 &mov ("edi",$_key);
2195 &je (&label("skip_ezero"));
2196 # zero copy of key schedule
2197 &mov ("ecx",240/4);
2198 &xor ("eax","eax");
2199 &align (4);
2200 &data_word(0xABF3F689); # rep stosd
2201 &set_label("skip_ezero");
2202 &mov ("esp",$_esp);
2203 &popf ();
2204 &set_label("drop_out");
2205 &function_end_A();
2206 &pushf (); # kludge, never executed
2207
2208 #----------------------------- DECRYPT -----------------------------#
2209 &set_label("fast_decrypt",16);
2210
2211 &cmp ($acc,$_out);
2212 &je (&label("fast_dec_in_place")); # in-place processing...
2213
2214 &mov ($_tmp,$key);
2215
2216 &align (4);
2217 &set_label("fast_dec_loop",16);
2218 &mov ($s0,&DWP(0,$acc)); # read input
2219 &mov ($s1,&DWP(4,$acc));
2220 &mov ($s2,&DWP(8,$acc));
2221 &mov ($s3,&DWP(12,$acc));
2222
2223 &mov ($key,$_key); # load key
2224 &call ("_x86_AES_decrypt");
2225
2226 &mov ($key,$_tmp); # load ivp
2227 &mov ($acc,$_len); # load len
2228 &xor ($s0,&DWP(0,$key)); # xor iv
2229 &xor ($s1,&DWP(4,$key));
2230 &xor ($s2,&DWP(8,$key));
2231 &xor ($s3,&DWP(12,$key));
2232
2233 &mov ($key,$_out); # load out
2234 &mov ($acc,$_inp); # load inp
2235
2236 &mov (&DWP(0,$key),$s0); # write output
2237 &mov (&DWP(4,$key),$s1);
2238 &mov (&DWP(8,$key),$s2);
2239 &mov (&DWP(12,$key),$s3);
2240
2241 &mov ($s2,$_len); # load len
2242 &mov ($_tmp,$acc); # save ivp
2243 &lea ($acc,&DWP(16,$acc)); # advance inp
2244 &mov ($_inp,$acc); # save inp
2245 &lea ($key,&DWP(16,$key)); # advance out
2246 &mov ($_out,$key); # save out
2247 &sub ($s2,16); # decrease len
2248 &mov ($_len,$s2); # save len
2249 &jnz (&label("fast_dec_loop"));
2250 &mov ($key,$_tmp); # load temp ivp
2251 &mov ($acc,$_ivp); # load user ivp
2252 &mov ($s0,&DWP(0,$key)); # load iv
2253 &mov ($s1,&DWP(4,$key));
2254 &mov ($s2,&DWP(8,$key));
2255 &mov ($s3,&DWP(12,$key));
2256 &mov (&DWP(0,$acc),$s0); # copy back to user
2257 &mov (&DWP(4,$acc),$s1);
2258 &mov (&DWP(8,$acc),$s2);
2259 &mov (&DWP(12,$acc),$s3);
2260 &jmp (&label("fast_dec_out"));
2261
2262 &set_label("fast_dec_in_place",16);
2263 &set_label("fast_dec_in_place_loop");
2264 &mov ($s0,&DWP(0,$acc)); # read input
2265 &mov ($s1,&DWP(4,$acc));
2266 &mov ($s2,&DWP(8,$acc));
2267 &mov ($s3,&DWP(12,$acc));
2268
2269 &lea ($key,$ivec);
2270 &mov (&DWP(0,$key),$s0); # copy to temp
2271 &mov (&DWP(4,$key),$s1);
2272 &mov (&DWP(8,$key),$s2);
2273 &mov (&DWP(12,$key),$s3);
2274
2275 &mov ($key,$_key); # load key
2276 &call ("_x86_AES_decrypt");
2277
2278 &mov ($key,$_ivp); # load ivp
2279 &mov ($acc,$_out); # load out
2280 &xor ($s0,&DWP(0,$key)); # xor iv
2281 &xor ($s1,&DWP(4,$key));
2282 &xor ($s2,&DWP(8,$key));
2283 &xor ($s3,&DWP(12,$key));
2284
2285 &mov (&DWP(0,$acc),$s0); # write output
2286 &mov (&DWP(4,$acc),$s1);
2287 &mov (&DWP(8,$acc),$s2);
2288 &mov (&DWP(12,$acc),$s3);
2289
2290 &lea ($acc,&DWP(16,$acc)); # advance out
2291 &mov ($_out,$acc); # save out
2292
2293 &lea ($acc,$ivec);
2294 &mov ($s0,&DWP(0,$acc)); # read temp
2295 &mov ($s1,&DWP(4,$acc));
2296 &mov ($s2,&DWP(8,$acc));
2297 &mov ($s3,&DWP(12,$acc));
2298
2299 &mov (&DWP(0,$key),$s0); # copy iv
2300 &mov (&DWP(4,$key),$s1);
2301 &mov (&DWP(8,$key),$s2);
2302 &mov (&DWP(12,$key),$s3);
2303
2304 &mov ($acc,$_inp); # load inp
2305 &mov ($s2,$_len); # load len
2306 &lea ($acc,&DWP(16,$acc)); # advance inp
2307 &mov ($_inp,$acc); # save inp
2308 &sub ($s2,16); # decrease len
2309 &mov ($_len,$s2); # save len
2310 &jnz (&label("fast_dec_in_place_loop"));
2311
2312 &set_label("fast_dec_out",4);
2313 &cmp ($mark,0); # was the key schedule copied?
2314 &mov ("edi",$_key);
2315 &je (&label("skip_dzero"));
2316 # zero copy of key schedule
2317 &mov ("ecx",240/4);
2318 &xor ("eax","eax");
2319 &align (4);
2320 &data_word(0xABF3F689); # rep stosd
2321 &set_label("skip_dzero");
2322 &mov ("esp",$_esp);
2323 &popf ();
2324 &function_end_A();
2325 &pushf (); # kludge, never executed
2326
2327 #--------------------------- SLOW ROUTINE ---------------------------#
2328 &set_label("slow_way",16);
2329
2330 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2331 &mov ($key,&wparam(3)); # load key
2332
2333 # pre-allocate aligned stack frame...
2334 &lea ($acc,&DWP(-80,"esp"));
2335 &and ($acc,-64);
2336
2337 # ... and make sure it doesn't alias with $key modulo 1024
2338 &lea ($s1,&DWP(-80-63,$key));
2339 &sub ($s1,$acc);
2340 &neg ($s1);
2341 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
2342 &sub ($acc,$s1);
2343
2344 # pick S-box copy which can't overlap with stack frame or $key
2345 &lea ($s1,&DWP(768,$acc));
2346 &sub ($s1,$tbl);
2347 &and ($s1,0x300);
2348 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
2349
2350 &lea ($s3,&wparam(0)); # pointer to parameter block
2351
2352 &exch ("esp",$acc);
2353 &add ("esp",4); # reserve for return address!
2354 &mov ($_tbl,$tbl); # save %ebp
2355 &mov ($_esp,$acc); # save %esp
2356 &mov ($_tmp,$s0); # save OPENSSL_ia32cap
2357
2358 &mov ($s0,&DWP(0,$s3)); # load inp
2359 &mov ($s1,&DWP(4,$s3)); # load out
2360 #&mov ($s2,&DWP(8,$s3)); # load len
2361 #&mov ($key,&DWP(12,$s3)); # load key
2362 &mov ($acc,&DWP(16,$s3)); # load ivp
2363 &mov ($s3,&DWP(20,$s3)); # load enc flag
2364
2365 &mov ($_inp,$s0); # save copy of inp
2366 &mov ($_out,$s1); # save copy of out
2367 &mov ($_len,$s2); # save copy of len
2368 &mov ($_key,$key); # save copy of key
2369 &mov ($_ivp,$acc); # save copy of ivp
2370
2371 &mov ($key,$acc);
2372 &mov ($acc,$s0);
2373
2374 &cmp ($s3,0);
2375 &je (&label("slow_decrypt"));
2376
2377 #--------------------------- SLOW ENCRYPT ---------------------------#
2378 &cmp ($s2,16);
2379 &mov ($s3,$s1);
2380 &jb (&label("slow_enc_tail"));
2381
2382 if (!$x86only) {
2383 &bt ($_tmp,25); # check for SSE bit
2384 &jnc (&label("slow_enc_x86"));
2385
2386 &movq ("mm0",&QWP(0,$key)); # load iv
2387 &movq ("mm4",&QWP(8,$key));
2388
2389 &set_label("slow_enc_loop_sse",16);
2390 &pxor ("mm0",&QWP(0,$acc)); # xor input data
2391 &pxor ("mm4",&QWP(8,$acc));
2392
2393 &mov ($key,$_key);
2394 &call ("_sse_AES_encrypt_compact");
2395
2396 &mov ($acc,$_inp); # load inp
2397 &mov ($key,$_out); # load out
2398 &mov ($s2,$_len); # load len
2399
2400 &movq (&QWP(0,$key),"mm0"); # save output data
2401 &movq (&QWP(8,$key),"mm4");
2402
2403 &lea ($acc,&DWP(16,$acc)); # advance inp
2404 &mov ($_inp,$acc); # save inp
2405 &lea ($s3,&DWP(16,$key)); # advance out
2406 &mov ($_out,$s3); # save out
2407 &sub ($s2,16); # decrease len
2408 &cmp ($s2,16);
2409 &mov ($_len,$s2); # save len
2410 &jae (&label("slow_enc_loop_sse"));
2411 &test ($s2,15);
2412 &jnz (&label("slow_enc_tail"));
2413 &mov ($acc,$_ivp); # load ivp
2414 &movq (&QWP(0,$acc),"mm0"); # save ivec
2415 &movq (&QWP(8,$acc),"mm4");
2416 &emms ();
2417 &mov ("esp",$_esp);
2418 &popf ();
2419 &function_end_A();
2420 &pushf (); # kludge, never executed
2421 }
2422 &set_label("slow_enc_x86",16);
2423 &mov ($s0,&DWP(0,$key)); # load iv
2424 &mov ($s1,&DWP(4,$key));
2425
2426 &set_label("slow_enc_loop_x86",4);
2427 &mov ($s2,&DWP(8,$key));
2428 &mov ($s3,&DWP(12,$key));
2429
2430 &xor ($s0,&DWP(0,$acc)); # xor input data
2431 &xor ($s1,&DWP(4,$acc));
2432 &xor ($s2,&DWP(8,$acc));
2433 &xor ($s3,&DWP(12,$acc));
2434
2435 &mov ($key,$_key); # load key
2436 &call ("_x86_AES_encrypt_compact");
2437
2438 &mov ($acc,$_inp); # load inp
2439 &mov ($key,$_out); # load out
2440
2441 &mov (&DWP(0,$key),$s0); # save output data
2442 &mov (&DWP(4,$key),$s1);
2443 &mov (&DWP(8,$key),$s2);
2444 &mov (&DWP(12,$key),$s3);
2445
2446 &mov ($s2,$_len); # load len
2447 &lea ($acc,&DWP(16,$acc)); # advance inp
2448 &mov ($_inp,$acc); # save inp
2449 &lea ($s3,&DWP(16,$key)); # advance out
2450 &mov ($_out,$s3); # save out
2451 &sub ($s2,16); # decrease len
2452 &cmp ($s2,16);
2453 &mov ($_len,$s2); # save len
2454 &jae (&label("slow_enc_loop_x86"));
2455 &test ($s2,15);
2456 &jnz (&label("slow_enc_tail"));
2457 &mov ($acc,$_ivp); # load ivp
2458 &mov ($s2,&DWP(8,$key)); # restore last dwords
2459 &mov ($s3,&DWP(12,$key));
2460 &mov (&DWP(0,$acc),$s0); # save ivec
2461 &mov (&DWP(4,$acc),$s1);
2462 &mov (&DWP(8,$acc),$s2);
2463 &mov (&DWP(12,$acc),$s3);
2464
2465 &mov ("esp",$_esp);
2466 &popf ();
2467 &function_end_A();
2468 &pushf (); # kludge, never executed
2469
2470 &set_label("slow_enc_tail",16);
2471 &emms () if (!$x86only);
2472 &mov ($key eq "edi"? $key:"",$s3); # load out to edi
2473 &mov ($s1,16);
2474 &sub ($s1,$s2);
2475 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
2476 &je (&label("enc_in_place"));
2477 &align (4);
2478 &data_word(0xA4F3F689); # rep movsb # copy input
2479 &jmp (&label("enc_skip_in_place"));
2480 &set_label("enc_in_place");
2481 &lea ($key,&DWP(0,$key,$s2));
2482 &set_label("enc_skip_in_place");
2483 &mov ($s2,$s1);
2484 &xor ($s0,$s0);
2485 &align (4);
2486 &data_word(0xAAF3F689); # rep stosb # zero tail
2487
2488 &mov ($key,$_ivp); # restore ivp
2489 &mov ($acc,$s3); # output as input
2490 &mov ($s0,&DWP(0,$key));
2491 &mov ($s1,&DWP(4,$key));
2492 &mov ($_len,16); # len=16
2493 &jmp (&label("slow_enc_loop_x86")); # one more spin...
2494
2495 #--------------------------- SLOW DECRYPT ---------------------------#
2496 &set_label("slow_decrypt",16);
2497 if (!$x86only) {
2498 &bt ($_tmp,25); # check for SSE bit
2499 &jnc (&label("slow_dec_loop_x86"));
2500
2501 &set_label("slow_dec_loop_sse",4);
2502 &movq ("mm0",&QWP(0,$acc)); # read input
2503 &movq ("mm4",&QWP(8,$acc));
2504
2505 &mov ($key,$_key);
2506 &call ("_sse_AES_decrypt_compact");
2507
2508 &mov ($acc,$_inp); # load inp
2509 &lea ($s0,$ivec);
2510 &mov ($s1,$_out); # load out
2511 &mov ($s2,$_len); # load len
2512 &mov ($key,$_ivp); # load ivp
2513
2514 &movq ("mm1",&QWP(0,$acc)); # re-read input
2515 &movq ("mm5",&QWP(8,$acc));
2516
2517 &pxor ("mm0",&QWP(0,$key)); # xor iv
2518 &pxor ("mm4",&QWP(8,$key));
2519
2520 &movq (&QWP(0,$key),"mm1"); # copy input to iv
2521 &movq (&QWP(8,$key),"mm5");
2522
2523 &sub ($s2,16); # decrease len
2524 &jc (&label("slow_dec_partial_sse"));
2525
2526 &movq (&QWP(0,$s1),"mm0"); # write output
2527 &movq (&QWP(8,$s1),"mm4");
2528
2529 &lea ($s1,&DWP(16,$s1)); # advance out
2530 &mov ($_out,$s1); # save out
2531 &lea ($acc,&DWP(16,$acc)); # advance inp
2532 &mov ($_inp,$acc); # save inp
2533 &mov ($_len,$s2); # save len
2534 &jnz (&label("slow_dec_loop_sse"));
2535 &emms ();
2536 &mov ("esp",$_esp);
2537 &popf ();
2538 &function_end_A();
2539 &pushf (); # kludge, never executed
2540
2541 &set_label("slow_dec_partial_sse",16);
2542 &movq (&QWP(0,$s0),"mm0"); # save output to temp
2543 &movq (&QWP(8,$s0),"mm4");
2544 &emms ();
2545
2546 &add ($s2 eq "ecx" ? "ecx":"",16);
2547 &mov ("edi",$s1); # out
2548 &mov ("esi",$s0); # temp
2549 &align (4);
2550 &data_word(0xA4F3F689); # rep movsb # copy partial output
2551
2552 &mov ("esp",$_esp);
2553 &popf ();
2554 &function_end_A();
2555 &pushf (); # kludge, never executed
2556 }
2557 &set_label("slow_dec_loop_x86",16);
2558 &mov ($s0,&DWP(0,$acc)); # read input
2559 &mov ($s1,&DWP(4,$acc));
2560 &mov ($s2,&DWP(8,$acc));
2561 &mov ($s3,&DWP(12,$acc));
2562
2563 &lea ($key,$ivec);
2564 &mov (&DWP(0,$key),$s0); # copy to temp
2565 &mov (&DWP(4,$key),$s1);
2566 &mov (&DWP(8,$key),$s2);
2567 &mov (&DWP(12,$key),$s3);
2568
2569 &mov ($key,$_key); # load key
2570 &call ("_x86_AES_decrypt_compact");
2571
2572 &mov ($key,$_ivp); # load ivp
2573 &mov ($acc,$_len); # load len
2574 &xor ($s0,&DWP(0,$key)); # xor iv
2575 &xor ($s1,&DWP(4,$key));
2576 &xor ($s2,&DWP(8,$key));
2577 &xor ($s3,&DWP(12,$key));
2578
2579 &sub ($acc,16);
2580 &jc (&label("slow_dec_partial_x86"));
2581
2582 &mov ($_len,$acc); # save len
2583 &mov ($acc,$_out); # load out
2584
2585 &mov (&DWP(0,$acc),$s0); # write output
2586 &mov (&DWP(4,$acc),$s1);
2587 &mov (&DWP(8,$acc),$s2);
2588 &mov (&DWP(12,$acc),$s3);
2589
2590 &lea ($acc,&DWP(16,$acc)); # advance out
2591 &mov ($_out,$acc); # save out
2592
2593 &lea ($acc,$ivec);
2594 &mov ($s0,&DWP(0,$acc)); # read temp
2595 &mov ($s1,&DWP(4,$acc));
2596 &mov ($s2,&DWP(8,$acc));
2597 &mov ($s3,&DWP(12,$acc));
2598
2599 &mov (&DWP(0,$key),$s0); # copy it to iv
2600 &mov (&DWP(4,$key),$s1);
2601 &mov (&DWP(8,$key),$s2);
2602 &mov (&DWP(12,$key),$s3);
2603
2604 &mov ($acc,$_inp); # load inp
2605 &lea ($acc,&DWP(16,$acc)); # advance inp
2606 &mov ($_inp,$acc); # save inp
2607 &jnz (&label("slow_dec_loop_x86"));
2608 &mov ("esp",$_esp);
2609 &popf ();
2610 &function_end_A();
2611 &pushf (); # kludge, never executed
2612
2613 &set_label("slow_dec_partial_x86",16);
2614 &lea ($acc,$ivec);
2615 &mov (&DWP(0,$acc),$s0); # save output to temp
2616 &mov (&DWP(4,$acc),$s1);
2617 &mov (&DWP(8,$acc),$s2);
2618 &mov (&DWP(12,$acc),$s3);
2619
2620 &mov ($acc,$_inp);
2621 &mov ($s0,&DWP(0,$acc)); # re-read input
2622 &mov ($s1,&DWP(4,$acc));
2623 &mov ($s2,&DWP(8,$acc));
2624 &mov ($s3,&DWP(12,$acc));
2625
2626 &mov (&DWP(0,$key),$s0); # copy it to iv
2627 &mov (&DWP(4,$key),$s1);
2628 &mov (&DWP(8,$key),$s2);
2629 &mov (&DWP(12,$key),$s3);
2630
2631 &mov ("ecx",$_len);
2632 &mov ("edi",$_out);
2633 &lea ("esi",$ivec);
2634 &align (4);
2635 &data_word(0xA4F3F689); # rep movsb # copy partial output
2636
2637 &mov ("esp",$_esp);
2638 &popf ();
2639 &function_end("AES_cbc_encrypt");
2640 }
2641
2642 #------------------------------------------------------------------#
2643
2644 sub enckey()
2645 {
2646 &movz ("esi",&LB("edx")); # rk[i]>>0
2647 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2648 &movz ("esi",&HB("edx")); # rk[i]>>8
2649 &shl ("ebx",24);
2650 &xor ("eax","ebx");
2651
2652 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2653 &shr ("edx",16);
2654 &movz ("esi",&LB("edx")); # rk[i]>>16
2655 &xor ("eax","ebx");
2656
2657 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2658 &movz ("esi",&HB("edx")); # rk[i]>>24
2659 &shl ("ebx",8);
2660 &xor ("eax","ebx");
2661
2662 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2663 &shl ("ebx",16);
2664 &xor ("eax","ebx");
2665
2666 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
2667 }
2668
2669 &function_begin("_x86_AES_set_encrypt_key");
2670 &mov ("esi",&wparam(1)); # user supplied key
2671 &mov ("edi",&wparam(3)); # private key schedule
2672
2673 &test ("esi",-1);
2674 &jz (&label("badpointer"));
2675 &test ("edi",-1);
2676 &jz (&label("badpointer"));
2677
2678 &call (&label("pic_point"));
2679 &set_label("pic_point");
2680 &blindpop($tbl);
2681 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2682 &lea ($tbl,&DWP(2048+128,$tbl));
2683
2684 # prefetch Te4
2685 &mov ("eax",&DWP(0-128,$tbl));
2686 &mov ("ebx",&DWP(32-128,$tbl));
2687 &mov ("ecx",&DWP(64-128,$tbl));
2688 &mov ("edx",&DWP(96-128,$tbl));
2689 &mov ("eax",&DWP(128-128,$tbl));
2690 &mov ("ebx",&DWP(160-128,$tbl));
2691 &mov ("ecx",&DWP(192-128,$tbl));
2692 &mov ("edx",&DWP(224-128,$tbl));
2693
2694 &mov ("ecx",&wparam(2)); # number of bits in key
2695 &cmp ("ecx",128);
2696 &je (&label("10rounds"));
2697 &cmp ("ecx",192);
2698 &je (&label("12rounds"));
2699 &cmp ("ecx",256);
2700 &je (&label("14rounds"));
2701 &mov ("eax",-2); # invalid number of bits
2702 &jmp (&label("exit"));
2703
2704 &set_label("10rounds");
2705 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
2706 &mov ("ebx",&DWP(4,"esi"));
2707 &mov ("ecx",&DWP(8,"esi"));
2708 &mov ("edx",&DWP(12,"esi"));
2709 &mov (&DWP(0,"edi"),"eax");
2710 &mov (&DWP(4,"edi"),"ebx");
2711 &mov (&DWP(8,"edi"),"ecx");
2712 &mov (&DWP(12,"edi"),"edx");
2713
2714 &xor ("ecx","ecx");
2715 &jmp (&label("10shortcut"));
2716
2717 &align (4);
2718 &set_label("10loop");
2719 &mov ("eax",&DWP(0,"edi")); # rk[0]
2720 &mov ("edx",&DWP(12,"edi")); # rk[3]
2721 &set_label("10shortcut");
2722 &enckey ();
2723
2724 &mov (&DWP(16,"edi"),"eax"); # rk[4]
2725 &xor ("eax",&DWP(4,"edi"));
2726 &mov (&DWP(20,"edi"),"eax"); # rk[5]
2727 &xor ("eax",&DWP(8,"edi"));
2728 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2729 &xor ("eax",&DWP(12,"edi"));
2730 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2731 &inc ("ecx");
2732 &add ("edi",16);
2733 &cmp ("ecx",10);
2734 &jl (&label("10loop"));
2735
2736 &mov (&DWP(80,"edi"),10); # setup number of rounds
2737 &xor ("eax","eax");
2738 &jmp (&label("exit"));
2739
2740 &set_label("12rounds");
2741 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
2742 &mov ("ebx",&DWP(4,"esi"));
2743 &mov ("ecx",&DWP(8,"esi"));
2744 &mov ("edx",&DWP(12,"esi"));
2745 &mov (&DWP(0,"edi"),"eax");
2746 &mov (&DWP(4,"edi"),"ebx");
2747 &mov (&DWP(8,"edi"),"ecx");
2748 &mov (&DWP(12,"edi"),"edx");
2749 &mov ("ecx",&DWP(16,"esi"));
2750 &mov ("edx",&DWP(20,"esi"));
2751 &mov (&DWP(16,"edi"),"ecx");
2752 &mov (&DWP(20,"edi"),"edx");
2753
2754 &xor ("ecx","ecx");
2755 &jmp (&label("12shortcut"));
2756
2757 &align (4);
2758 &set_label("12loop");
2759 &mov ("eax",&DWP(0,"edi")); # rk[0]
2760 &mov ("edx",&DWP(20,"edi")); # rk[5]
2761 &set_label("12shortcut");
2762 &enckey ();
2763
2764 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2765 &xor ("eax",&DWP(4,"edi"));
2766 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2767 &xor ("eax",&DWP(8,"edi"));
2768 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2769 &xor ("eax",&DWP(12,"edi"));
2770 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2771
2772 &cmp ("ecx",7);
2773 &je (&label("12break"));
2774 &inc ("ecx");
2775
2776 &xor ("eax",&DWP(16,"edi"));
2777 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2778 &xor ("eax",&DWP(20,"edi"));
2779 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2780
2781 &add ("edi",24);
2782 &jmp (&label("12loop"));
2783
2784 &set_label("12break");
2785 &mov (&DWP(72,"edi"),12); # setup number of rounds
2786 &xor ("eax","eax");
2787 &jmp (&label("exit"));
2788
2789 &set_label("14rounds");
2790 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
2791 &mov ("ebx",&DWP(4,"esi"));
2792 &mov ("ecx",&DWP(8,"esi"));
2793 &mov ("edx",&DWP(12,"esi"));
2794 &mov (&DWP(0,"edi"),"eax");
2795 &mov (&DWP(4,"edi"),"ebx");
2796 &mov (&DWP(8,"edi"),"ecx");
2797 &mov (&DWP(12,"edi"),"edx");
2798 &mov ("eax",&DWP(16,"esi"));
2799 &mov ("ebx",&DWP(20,"esi"));
2800 &mov ("ecx",&DWP(24,"esi"));
2801 &mov ("edx",&DWP(28,"esi"));
2802 &mov (&DWP(16,"edi"),"eax");
2803 &mov (&DWP(20,"edi"),"ebx");
2804 &mov (&DWP(24,"edi"),"ecx");
2805 &mov (&DWP(28,"edi"),"edx");
2806
2807 &xor ("ecx","ecx");
2808 &jmp (&label("14shortcut"));
2809
2810 &align (4);
2811 &set_label("14loop");
2812 &mov ("edx",&DWP(28,"edi")); # rk[7]
2813 &set_label("14shortcut");
2814 &mov ("eax",&DWP(0,"edi")); # rk[0]
2815
2816 &enckey ();
2817
2818 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2819 &xor ("eax",&DWP(4,"edi"));
2820 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2821 &xor ("eax",&DWP(8,"edi"));
2822 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2823 &xor ("eax",&DWP(12,"edi"));
2824 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2825
2826 &cmp ("ecx",6);
2827 &je (&label("14break"));
2828 &inc ("ecx");
2829
2830 &mov ("edx","eax");
2831 &mov ("eax",&DWP(16,"edi")); # rk[4]
2832 &movz ("esi",&LB("edx")); # rk[11]>>0
2833 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2834 &movz ("esi",&HB("edx")); # rk[11]>>8
2835 &xor ("eax","ebx");
2836
2837 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2838 &shr ("edx",16);
2839 &shl ("ebx",8);
2840 &movz ("esi",&LB("edx")); # rk[11]>>16
2841 &xor ("eax","ebx");
2842
2843 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2844 &movz ("esi",&HB("edx")); # rk[11]>>24
2845 &shl ("ebx",16);
2846 &xor ("eax","ebx");
2847
2848 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2849 &shl ("ebx",24);
2850 &xor ("eax","ebx");
2851
2852 &mov (&DWP(48,"edi"),"eax"); # rk[12]
2853 &xor ("eax",&DWP(20,"edi"));
2854 &mov (&DWP(52,"edi"),"eax"); # rk[13]
2855 &xor ("eax",&DWP(24,"edi"));
2856 &mov (&DWP(56,"edi"),"eax"); # rk[14]
2857 &xor ("eax",&DWP(28,"edi"));
2858 &mov (&DWP(60,"edi"),"eax"); # rk[15]
2859
2860 &add ("edi",32);
2861 &jmp (&label("14loop"));
2862
2863 &set_label("14break");
2864 &mov (&DWP(48,"edi"),14); # setup number of rounds
2865 &xor ("eax","eax");
2866 &jmp (&label("exit"));
2867
2868 &set_label("badpointer");
2869 &mov ("eax",-1);
2870 &set_label("exit");
2871 &function_end("_x86_AES_set_encrypt_key");
2872
2873 # int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2874 # AES_KEY *key)
2875 &function_begin_B("AES_set_encrypt_key");
2876 &call ("_x86_AES_set_encrypt_key");
2877 &ret ();
2878 &function_end_B("AES_set_encrypt_key");
2879
2880 sub deckey()
2881 { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2882 my $tmp = $tbl;
2883
2884 &mov ($tmp,0x80808080);
2885 &and ($tmp,$tp1);
2886 &lea ($tp2,&DWP(0,$tp1,$tp1));
2887 &mov ($acc,$tmp);
2888 &shr ($tmp,7);
2889 &sub ($acc,$tmp);
2890 &and ($tp2,0xfefefefe);
2891 &and ($acc,0x1b1b1b1b);
2892 &xor ($tp2,$acc);
2893 &mov ($tmp,0x80808080);
2894
2895 &and ($tmp,$tp2);
2896 &lea ($tp4,&DWP(0,$tp2,$tp2));
2897 &mov ($acc,$tmp);
2898 &shr ($tmp,7);
2899 &sub ($acc,$tmp);
2900 &and ($tp4,0xfefefefe);
2901 &and ($acc,0x1b1b1b1b);
2902 &xor ($tp2,$tp1); # tp2^tp1
2903 &xor ($tp4,$acc);
2904 &mov ($tmp,0x80808080);
2905
2906 &and ($tmp,$tp4);
2907 &lea ($tp8,&DWP(0,$tp4,$tp4));
2908 &mov ($acc,$tmp);
2909 &shr ($tmp,7);
2910 &xor ($tp4,$tp1); # tp4^tp1
2911 &sub ($acc,$tmp);
2912 &and ($tp8,0xfefefefe);
2913 &and ($acc,0x1b1b1b1b);
2914 &rotl ($tp1,8); # = ROTATE(tp1,8)
2915 &xor ($tp8,$acc);
2916
2917 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load
2918
2919 &xor ($tp1,$tp2);
2920 &xor ($tp2,$tp8);
2921 &xor ($tp1,$tp4);
2922 &rotl ($tp2,24);
2923 &xor ($tp4,$tp8);
2924 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
2925 &rotl ($tp4,16);
2926 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
2927 &rotl ($tp8,8);
2928 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
2929 &mov ($tp2,$tmp);
2930 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8)
2931
2932 &mov (&DWP(4*$i,$key),$tp1);
2933 }
2934
2935 # int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2936 # AES_KEY *key)
2937 &function_begin_B("AES_set_decrypt_key");
2938 &call ("_x86_AES_set_encrypt_key");
2939 &cmp ("eax",0);
2940 &je (&label("proceed"));
2941 &ret ();
2942
2943 &set_label("proceed");
2944 &push ("ebp");
2945 &push ("ebx");
2946 &push ("esi");
2947 &push ("edi");
2948
2949 &mov ("esi",&wparam(2));
2950 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds
2951 &lea ("ecx",&DWP(0,"","ecx",4));
2952 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk
2953
2954 &set_label("invert",4); # invert order of chunks
2955 &mov ("eax",&DWP(0,"esi"));
2956 &mov ("ebx",&DWP(4,"esi"));
2957 &mov ("ecx",&DWP(0,"edi"));
2958 &mov ("edx",&DWP(4,"edi"));
2959 &mov (&DWP(0,"edi"),"eax");
2960 &mov (&DWP(4,"edi"),"ebx");
2961 &mov (&DWP(0,"esi"),"ecx");
2962 &mov (&DWP(4,"esi"),"edx");
2963 &mov ("eax",&DWP(8,"esi"));
2964 &mov ("ebx",&DWP(12,"esi"));
2965 &mov ("ecx",&DWP(8,"edi"));
2966 &mov ("edx",&DWP(12,"edi"));
2967 &mov (&DWP(8,"edi"),"eax");
2968 &mov (&DWP(12,"edi"),"ebx");
2969 &mov (&DWP(8,"esi"),"ecx");
2970 &mov (&DWP(12,"esi"),"edx");
2971 &add ("esi",16);
2972 &sub ("edi",16);
2973 &cmp ("esi","edi");
2974 &jne (&label("invert"));
2975
2976 &mov ($key,&wparam(2));
2977 &mov ($acc,&DWP(240,$key)); # pull number of rounds
2978 &lea ($acc,&DWP(-2,$acc,$acc));
2979 &lea ($acc,&DWP(0,$key,$acc,8));
2980 &mov (&wparam(2),$acc);
2981
2982 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load
2983 &set_label("permute",4); # permute the key schedule
2984 &add ($key,16);
2985 &deckey (0,$key,$s0,$s1,$s2,$s3);
2986 &deckey (1,$key,$s1,$s2,$s3,$s0);
2987 &deckey (2,$key,$s2,$s3,$s0,$s1);
2988 &deckey (3,$key,$s3,$s0,$s1,$s2);
2989 &cmp ($key,&wparam(2));
2990 &jb (&label("permute"));
2991
2992 &xor ("eax","eax"); # return success
2993 &function_end("AES_set_decrypt_key");
2994 &asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2995
2996 &asm_finish();
2997
2998 close STDOUT or die "error closing STDOUT: $!";