]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bio/bss_dgram.c
Check dgram_sctp_write() return value.
[thirdparty/openssl.git] / crypto / bio / bss_dgram.c
1 /* crypto/bio/bio_dgram.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ====================================================================
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59
60 #include <stdio.h>
61 #include <errno.h>
62 #define USE_SOCKETS
63 #include "internal/cryptlib.h"
64
65 #include <openssl/bio.h>
66 #ifndef OPENSSL_NO_DGRAM
67
68 # if !(defined(_WIN32) || defined(OPENSSL_SYS_VMS))
69 # include <sys/time.h>
70 # endif
71 # if defined(OPENSSL_SYS_VMS)
72 # include <sys/timeb.h>
73 # endif
74
75 # ifndef OPENSSL_NO_SCTP
76 # include <netinet/sctp.h>
77 # include <fcntl.h>
78 # define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
79 # define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
80 # endif
81
82 # if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
83 # define IP_MTU 14 /* linux is lame */
84 # endif
85
86 # if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6)
87 # define IPPROTO_IPV6 41 /* windows is lame */
88 # endif
89
90 # if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
91 /* Standard definition causes type-punning problems. */
92 # undef IN6_IS_ADDR_V4MAPPED
93 # define s6_addr32 __u6_addr.__u6_addr32
94 # define IN6_IS_ADDR_V4MAPPED(a) \
95 (((a)->s6_addr32[0] == 0) && \
96 ((a)->s6_addr32[1] == 0) && \
97 ((a)->s6_addr32[2] == htonl(0x0000ffff)))
98 # endif
99
100 # ifdef WATT32
101 # define sock_write SockWrite /* Watt-32 uses same names */
102 # define sock_read SockRead
103 # define sock_puts SockPuts
104 # endif
105
106 static int dgram_write(BIO *h, const char *buf, int num);
107 static int dgram_read(BIO *h, char *buf, int size);
108 static int dgram_puts(BIO *h, const char *str);
109 static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
110 static int dgram_new(BIO *h);
111 static int dgram_free(BIO *data);
112 static int dgram_clear(BIO *bio);
113
114 # ifndef OPENSSL_NO_SCTP
115 static int dgram_sctp_write(BIO *h, const char *buf, int num);
116 static int dgram_sctp_read(BIO *h, char *buf, int size);
117 static int dgram_sctp_puts(BIO *h, const char *str);
118 static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
119 static int dgram_sctp_new(BIO *h);
120 static int dgram_sctp_free(BIO *data);
121 # ifdef SCTP_AUTHENTICATION_EVENT
122 static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification
123 *snp);
124 # endif
125 # endif
126
127 static int BIO_dgram_should_retry(int s);
128
129 static void get_current_time(struct timeval *t);
130
131 static BIO_METHOD methods_dgramp = {
132 BIO_TYPE_DGRAM,
133 "datagram socket",
134 dgram_write,
135 dgram_read,
136 dgram_puts,
137 NULL, /* dgram_gets, */
138 dgram_ctrl,
139 dgram_new,
140 dgram_free,
141 NULL,
142 };
143
144 # ifndef OPENSSL_NO_SCTP
145 static BIO_METHOD methods_dgramp_sctp = {
146 BIO_TYPE_DGRAM_SCTP,
147 "datagram sctp socket",
148 dgram_sctp_write,
149 dgram_sctp_read,
150 dgram_sctp_puts,
151 NULL, /* dgram_gets, */
152 dgram_sctp_ctrl,
153 dgram_sctp_new,
154 dgram_sctp_free,
155 NULL,
156 };
157 # endif
158
159 typedef struct bio_dgram_data_st {
160 union {
161 struct sockaddr sa;
162 struct sockaddr_in sa_in;
163 # if OPENSSL_USE_IPV6
164 struct sockaddr_in6 sa_in6;
165 # endif
166 } peer;
167 unsigned int connected;
168 unsigned int _errno;
169 unsigned int mtu;
170 struct timeval next_timeout;
171 struct timeval socket_timeout;
172 } bio_dgram_data;
173
174 # ifndef OPENSSL_NO_SCTP
175 typedef struct bio_dgram_sctp_save_message_st {
176 BIO *bio;
177 char *data;
178 int length;
179 } bio_dgram_sctp_save_message;
180
181 typedef struct bio_dgram_sctp_data_st {
182 union {
183 struct sockaddr sa;
184 struct sockaddr_in sa_in;
185 # if OPENSSL_USE_IPV6
186 struct sockaddr_in6 sa_in6;
187 # endif
188 } peer;
189 unsigned int connected;
190 unsigned int _errno;
191 unsigned int mtu;
192 struct bio_dgram_sctp_sndinfo sndinfo;
193 struct bio_dgram_sctp_rcvinfo rcvinfo;
194 struct bio_dgram_sctp_prinfo prinfo;
195 void (*handle_notifications) (BIO *bio, void *context, void *buf);
196 void *notification_context;
197 int in_handshake;
198 int ccs_rcvd;
199 int ccs_sent;
200 int save_shutdown;
201 int peer_auth_tested;
202 bio_dgram_sctp_save_message saved_message;
203 } bio_dgram_sctp_data;
204 # endif
205
206 BIO_METHOD *BIO_s_datagram(void)
207 {
208 return (&methods_dgramp);
209 }
210
211 BIO *BIO_new_dgram(int fd, int close_flag)
212 {
213 BIO *ret;
214
215 ret = BIO_new(BIO_s_datagram());
216 if (ret == NULL)
217 return (NULL);
218 BIO_set_fd(ret, fd, close_flag);
219 return (ret);
220 }
221
222 static int dgram_new(BIO *bi)
223 {
224 bio_dgram_data *data = NULL;
225
226 bi->init = 0;
227 bi->num = 0;
228 data = OPENSSL_malloc(sizeof(*data));
229 if (data == NULL)
230 return 0;
231 memset(data, 0, sizeof(*data));
232 bi->ptr = data;
233
234 bi->flags = 0;
235 return (1);
236 }
237
238 static int dgram_free(BIO *a)
239 {
240 bio_dgram_data *data;
241
242 if (a == NULL)
243 return (0);
244 if (!dgram_clear(a))
245 return 0;
246
247 data = (bio_dgram_data *)a->ptr;
248 OPENSSL_free(data);
249
250 return (1);
251 }
252
253 static int dgram_clear(BIO *a)
254 {
255 if (a == NULL)
256 return (0);
257 if (a->shutdown) {
258 if (a->init) {
259 SHUTDOWN2(a->num);
260 }
261 a->init = 0;
262 a->flags = 0;
263 }
264 return (1);
265 }
266
267 static void dgram_adjust_rcv_timeout(BIO *b)
268 {
269 # if defined(SO_RCVTIMEO)
270 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
271 union {
272 size_t s;
273 int i;
274 } sz = {
275 0
276 };
277
278 /* Is a timer active? */
279 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
280 struct timeval timenow, timeleft;
281
282 /* Read current socket timeout */
283 # ifdef OPENSSL_SYS_WINDOWS
284 int timeout;
285
286 sz.i = sizeof(timeout);
287 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
288 (void *)&timeout, &sz.i) < 0) {
289 perror("getsockopt");
290 } else {
291 data->socket_timeout.tv_sec = timeout / 1000;
292 data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
293 }
294 # else
295 sz.i = sizeof(data->socket_timeout);
296 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
297 &(data->socket_timeout), (void *)&sz) < 0) {
298 perror("getsockopt");
299 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0)
300 OPENSSL_assert(sz.s <= sizeof(data->socket_timeout));
301 # endif
302
303 /* Get current time */
304 get_current_time(&timenow);
305
306 /* Calculate time left until timer expires */
307 memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
308 if (timeleft.tv_usec < timenow.tv_usec) {
309 timeleft.tv_usec = 1000000 - timenow.tv_usec + timeleft.tv_usec;
310 timeleft.tv_sec--;
311 } else {
312 timeleft.tv_usec -= timenow.tv_usec;
313 }
314 if (timeleft.tv_sec < timenow.tv_sec) {
315 timeleft.tv_sec = 0;
316 timeleft.tv_usec = 1;
317 } else {
318 timeleft.tv_sec -= timenow.tv_sec;
319 }
320
321 /*
322 * Adjust socket timeout if next handhake message timer will expire
323 * earlier.
324 */
325 if ((data->socket_timeout.tv_sec == 0
326 && data->socket_timeout.tv_usec == 0)
327 || (data->socket_timeout.tv_sec > timeleft.tv_sec)
328 || (data->socket_timeout.tv_sec == timeleft.tv_sec
329 && data->socket_timeout.tv_usec >= timeleft.tv_usec)) {
330 # ifdef OPENSSL_SYS_WINDOWS
331 timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000;
332 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
333 (void *)&timeout, sizeof(timeout)) < 0) {
334 perror("setsockopt");
335 }
336 # else
337 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft,
338 sizeof(struct timeval)) < 0) {
339 perror("setsockopt");
340 }
341 # endif
342 }
343 }
344 # endif
345 }
346
347 static void dgram_reset_rcv_timeout(BIO *b)
348 {
349 # if defined(SO_RCVTIMEO)
350 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
351
352 /* Is a timer active? */
353 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
354 # ifdef OPENSSL_SYS_WINDOWS
355 int timeout = data->socket_timeout.tv_sec * 1000 +
356 data->socket_timeout.tv_usec / 1000;
357 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
358 (void *)&timeout, sizeof(timeout)) < 0) {
359 perror("setsockopt");
360 }
361 # else
362 if (setsockopt
363 (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout),
364 sizeof(struct timeval)) < 0) {
365 perror("setsockopt");
366 }
367 # endif
368 }
369 # endif
370 }
371
372 static int dgram_read(BIO *b, char *out, int outl)
373 {
374 int ret = 0;
375 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
376
377 struct {
378 /*
379 * See commentary in b_sock.c. <appro>
380 */
381 union {
382 size_t s;
383 int i;
384 } len;
385 union {
386 struct sockaddr sa;
387 struct sockaddr_in sa_in;
388 # if OPENSSL_USE_IPV6
389 struct sockaddr_in6 sa_in6;
390 # endif
391 } peer;
392 } sa;
393
394 sa.len.s = 0;
395 sa.len.i = sizeof(sa.peer);
396
397 if (out != NULL) {
398 clear_socket_error();
399 memset(&sa.peer, 0, sizeof(sa.peer));
400 dgram_adjust_rcv_timeout(b);
401 ret = recvfrom(b->num, out, outl, 0, &sa.peer.sa, (void *)&sa.len);
402 if (sizeof(sa.len.i) != sizeof(sa.len.s) && sa.len.i == 0) {
403 OPENSSL_assert(sa.len.s <= sizeof(sa.peer));
404 sa.len.i = (int)sa.len.s;
405 }
406
407 if (!data->connected && ret >= 0)
408 BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
409
410 BIO_clear_retry_flags(b);
411 if (ret < 0) {
412 if (BIO_dgram_should_retry(ret)) {
413 BIO_set_retry_read(b);
414 data->_errno = get_last_socket_error();
415 }
416 }
417
418 dgram_reset_rcv_timeout(b);
419 }
420 return (ret);
421 }
422
423 static int dgram_write(BIO *b, const char *in, int inl)
424 {
425 int ret;
426 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
427 clear_socket_error();
428
429 if (data->connected)
430 ret = writesocket(b->num, in, inl);
431 else {
432 int peerlen = sizeof(data->peer);
433
434 if (data->peer.sa.sa_family == AF_INET)
435 peerlen = sizeof(data->peer.sa_in);
436 # if OPENSSL_USE_IPV6
437 else if (data->peer.sa.sa_family == AF_INET6)
438 peerlen = sizeof(data->peer.sa_in6);
439 # endif
440 # if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
441 ret = sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
442 # else
443 ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
444 # endif
445 }
446
447 BIO_clear_retry_flags(b);
448 if (ret <= 0) {
449 if (BIO_dgram_should_retry(ret)) {
450 BIO_set_retry_write(b);
451 data->_errno = get_last_socket_error();
452 }
453 }
454 return (ret);
455 }
456
457 static long dgram_get_mtu_overhead(bio_dgram_data *data)
458 {
459 long ret;
460
461 switch (data->peer.sa.sa_family) {
462 case AF_INET:
463 /*
464 * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
465 */
466 ret = 28;
467 break;
468 # if OPENSSL_USE_IPV6
469 case AF_INET6:
470 # ifdef IN6_IS_ADDR_V4MAPPED
471 if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
472 /*
473 * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
474 */
475 ret = 28;
476 else
477 # endif
478 /*
479 * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP
480 */
481 ret = 48;
482 break;
483 # endif
484 default:
485 /* We don't know. Go with the historical default */
486 ret = 28;
487 break;
488 }
489 return ret;
490 }
491
492 static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
493 {
494 long ret = 1;
495 int *ip;
496 struct sockaddr *to = NULL;
497 bio_dgram_data *data = NULL;
498 int sockopt_val = 0;
499 # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
500 socklen_t sockopt_len; /* assume that system supporting IP_MTU is
501 * modern enough to define socklen_t */
502 socklen_t addr_len;
503 union {
504 struct sockaddr sa;
505 struct sockaddr_in s4;
506 # if OPENSSL_USE_IPV6
507 struct sockaddr_in6 s6;
508 # endif
509 } addr;
510 # endif
511
512 data = (bio_dgram_data *)b->ptr;
513
514 switch (cmd) {
515 case BIO_CTRL_RESET:
516 num = 0;
517 case BIO_C_FILE_SEEK:
518 ret = 0;
519 break;
520 case BIO_C_FILE_TELL:
521 case BIO_CTRL_INFO:
522 ret = 0;
523 break;
524 case BIO_C_SET_FD:
525 dgram_clear(b);
526 b->num = *((int *)ptr);
527 b->shutdown = (int)num;
528 b->init = 1;
529 break;
530 case BIO_C_GET_FD:
531 if (b->init) {
532 ip = (int *)ptr;
533 if (ip != NULL)
534 *ip = b->num;
535 ret = b->num;
536 } else
537 ret = -1;
538 break;
539 case BIO_CTRL_GET_CLOSE:
540 ret = b->shutdown;
541 break;
542 case BIO_CTRL_SET_CLOSE:
543 b->shutdown = (int)num;
544 break;
545 case BIO_CTRL_PENDING:
546 case BIO_CTRL_WPENDING:
547 ret = 0;
548 break;
549 case BIO_CTRL_DUP:
550 case BIO_CTRL_FLUSH:
551 ret = 1;
552 break;
553 case BIO_CTRL_DGRAM_CONNECT:
554 to = (struct sockaddr *)ptr;
555 switch (to->sa_family) {
556 case AF_INET:
557 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
558 break;
559 # if OPENSSL_USE_IPV6
560 case AF_INET6:
561 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
562 break;
563 # endif
564 default:
565 memcpy(&data->peer, to, sizeof(data->peer.sa));
566 break;
567 }
568 break;
569 /* (Linux)kernel sets DF bit on outgoing IP packets */
570 case BIO_CTRL_DGRAM_MTU_DISCOVER:
571 # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
572 addr_len = (socklen_t) sizeof(addr);
573 memset(&addr, 0, sizeof(addr));
574 if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
575 ret = 0;
576 break;
577 }
578 switch (addr.sa.sa_family) {
579 case AF_INET:
580 sockopt_val = IP_PMTUDISC_DO;
581 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
582 &sockopt_val, sizeof(sockopt_val))) < 0)
583 perror("setsockopt");
584 break;
585 # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
586 case AF_INET6:
587 sockopt_val = IPV6_PMTUDISC_DO;
588 if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
589 &sockopt_val, sizeof(sockopt_val))) < 0)
590 perror("setsockopt");
591 break;
592 # endif
593 default:
594 ret = -1;
595 break;
596 }
597 # else
598 ret = -1;
599 # endif
600 break;
601 case BIO_CTRL_DGRAM_QUERY_MTU:
602 # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
603 addr_len = (socklen_t) sizeof(addr);
604 memset(&addr, 0, sizeof(addr));
605 if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
606 ret = 0;
607 break;
608 }
609 sockopt_len = sizeof(sockopt_val);
610 switch (addr.sa.sa_family) {
611 case AF_INET:
612 if ((ret =
613 getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
614 &sockopt_len)) < 0 || sockopt_val < 0) {
615 ret = 0;
616 } else {
617 /*
618 * we assume that the transport protocol is UDP and no IP
619 * options are used.
620 */
621 data->mtu = sockopt_val - 8 - 20;
622 ret = data->mtu;
623 }
624 break;
625 # if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
626 case AF_INET6:
627 if ((ret =
628 getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
629 (void *)&sockopt_val, &sockopt_len)) < 0
630 || sockopt_val < 0) {
631 ret = 0;
632 } else {
633 /*
634 * we assume that the transport protocol is UDP and no IPV6
635 * options are used.
636 */
637 data->mtu = sockopt_val - 8 - 40;
638 ret = data->mtu;
639 }
640 break;
641 # endif
642 default:
643 ret = 0;
644 break;
645 }
646 # else
647 ret = 0;
648 # endif
649 break;
650 case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
651 ret = -dgram_get_mtu_overhead(data);
652 switch (data->peer.sa.sa_family) {
653 case AF_INET:
654 ret += 576;
655 break;
656 # if OPENSSL_USE_IPV6
657 case AF_INET6:
658 # ifdef IN6_IS_ADDR_V4MAPPED
659 if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
660 ret += 576;
661 else
662 # endif
663 ret += 1280;
664 break;
665 # endif
666 default:
667 ret += 576;
668 break;
669 }
670 break;
671 case BIO_CTRL_DGRAM_GET_MTU:
672 return data->mtu;
673 case BIO_CTRL_DGRAM_SET_MTU:
674 data->mtu = num;
675 ret = num;
676 break;
677 case BIO_CTRL_DGRAM_SET_CONNECTED:
678 to = (struct sockaddr *)ptr;
679
680 if (to != NULL) {
681 data->connected = 1;
682 switch (to->sa_family) {
683 case AF_INET:
684 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
685 break;
686 # if OPENSSL_USE_IPV6
687 case AF_INET6:
688 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
689 break;
690 # endif
691 default:
692 memcpy(&data->peer, to, sizeof(data->peer.sa));
693 break;
694 }
695 } else {
696 data->connected = 0;
697 memset(&data->peer, 0, sizeof(data->peer));
698 }
699 break;
700 case BIO_CTRL_DGRAM_GET_PEER:
701 switch (data->peer.sa.sa_family) {
702 case AF_INET:
703 ret = sizeof(data->peer.sa_in);
704 break;
705 # if OPENSSL_USE_IPV6
706 case AF_INET6:
707 ret = sizeof(data->peer.sa_in6);
708 break;
709 # endif
710 default:
711 ret = sizeof(data->peer.sa);
712 break;
713 }
714 if (num == 0 || num > ret)
715 num = ret;
716 memcpy(ptr, &data->peer, (ret = num));
717 break;
718 case BIO_CTRL_DGRAM_SET_PEER:
719 to = (struct sockaddr *)ptr;
720 switch (to->sa_family) {
721 case AF_INET:
722 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
723 break;
724 # if OPENSSL_USE_IPV6
725 case AF_INET6:
726 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
727 break;
728 # endif
729 default:
730 memcpy(&data->peer, to, sizeof(data->peer.sa));
731 break;
732 }
733 break;
734 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
735 memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
736 break;
737 # if defined(SO_RCVTIMEO)
738 case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
739 # ifdef OPENSSL_SYS_WINDOWS
740 {
741 struct timeval *tv = (struct timeval *)ptr;
742 int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
743 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
744 (void *)&timeout, sizeof(timeout)) < 0) {
745 perror("setsockopt");
746 ret = -1;
747 }
748 }
749 # else
750 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
751 sizeof(struct timeval)) < 0) {
752 perror("setsockopt");
753 ret = -1;
754 }
755 # endif
756 break;
757 case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
758 {
759 union {
760 size_t s;
761 int i;
762 } sz = {
763 0
764 };
765 # ifdef OPENSSL_SYS_WINDOWS
766 int timeout;
767 struct timeval *tv = (struct timeval *)ptr;
768
769 sz.i = sizeof(timeout);
770 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
771 (void *)&timeout, &sz.i) < 0) {
772 perror("getsockopt");
773 ret = -1;
774 } else {
775 tv->tv_sec = timeout / 1000;
776 tv->tv_usec = (timeout % 1000) * 1000;
777 ret = sizeof(*tv);
778 }
779 # else
780 sz.i = sizeof(struct timeval);
781 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
782 ptr, (void *)&sz) < 0) {
783 perror("getsockopt");
784 ret = -1;
785 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
786 OPENSSL_assert(sz.s <= sizeof(struct timeval));
787 ret = (int)sz.s;
788 } else
789 ret = sz.i;
790 # endif
791 }
792 break;
793 # endif
794 # if defined(SO_SNDTIMEO)
795 case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
796 # ifdef OPENSSL_SYS_WINDOWS
797 {
798 struct timeval *tv = (struct timeval *)ptr;
799 int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
800 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
801 (void *)&timeout, sizeof(timeout)) < 0) {
802 perror("setsockopt");
803 ret = -1;
804 }
805 }
806 # else
807 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
808 sizeof(struct timeval)) < 0) {
809 perror("setsockopt");
810 ret = -1;
811 }
812 # endif
813 break;
814 case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
815 {
816 union {
817 size_t s;
818 int i;
819 } sz = {
820 0
821 };
822 # ifdef OPENSSL_SYS_WINDOWS
823 int timeout;
824 struct timeval *tv = (struct timeval *)ptr;
825
826 sz.i = sizeof(timeout);
827 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
828 (void *)&timeout, &sz.i) < 0) {
829 perror("getsockopt");
830 ret = -1;
831 } else {
832 tv->tv_sec = timeout / 1000;
833 tv->tv_usec = (timeout % 1000) * 1000;
834 ret = sizeof(*tv);
835 }
836 # else
837 sz.i = sizeof(struct timeval);
838 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
839 ptr, (void *)&sz) < 0) {
840 perror("getsockopt");
841 ret = -1;
842 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
843 OPENSSL_assert(sz.s <= sizeof(struct timeval));
844 ret = (int)sz.s;
845 } else
846 ret = sz.i;
847 # endif
848 }
849 break;
850 # endif
851 case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
852 /* fall-through */
853 case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
854 # ifdef OPENSSL_SYS_WINDOWS
855 if (data->_errno == WSAETIMEDOUT)
856 # else
857 if (data->_errno == EAGAIN)
858 # endif
859 {
860 ret = 1;
861 data->_errno = 0;
862 } else
863 ret = 0;
864 break;
865 # ifdef EMSGSIZE
866 case BIO_CTRL_DGRAM_MTU_EXCEEDED:
867 if (data->_errno == EMSGSIZE) {
868 ret = 1;
869 data->_errno = 0;
870 } else
871 ret = 0;
872 break;
873 # endif
874 case BIO_CTRL_DGRAM_SET_DONT_FRAG:
875 sockopt_val = num ? 1 : 0;
876
877 switch (data->peer.sa.sa_family) {
878 case AF_INET:
879 # if defined(IP_DONTFRAG)
880 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG,
881 &sockopt_val, sizeof(sockopt_val))) < 0) {
882 perror("setsockopt");
883 ret = -1;
884 }
885 # elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined (IP_PMTUDISC_PROBE)
886 if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT),
887 (ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
888 &sockopt_val, sizeof(sockopt_val))) < 0) {
889 perror("setsockopt");
890 ret = -1;
891 }
892 # elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT)
893 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT,
894 (const char *)&sockopt_val,
895 sizeof(sockopt_val))) < 0) {
896 perror("setsockopt");
897 ret = -1;
898 }
899 # else
900 ret = -1;
901 # endif
902 break;
903 # if OPENSSL_USE_IPV6
904 case AF_INET6:
905 # if defined(IPV6_DONTFRAG)
906 if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG,
907 (const void *)&sockopt_val,
908 sizeof(sockopt_val))) < 0) {
909 perror("setsockopt");
910 ret = -1;
911 }
912 # elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER)
913 if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT),
914 (ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
915 &sockopt_val, sizeof(sockopt_val))) < 0) {
916 perror("setsockopt");
917 ret = -1;
918 }
919 # else
920 ret = -1;
921 # endif
922 break;
923 # endif
924 default:
925 ret = -1;
926 break;
927 }
928 break;
929 case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
930 ret = dgram_get_mtu_overhead(data);
931 break;
932 default:
933 ret = 0;
934 break;
935 }
936 return (ret);
937 }
938
939 static int dgram_puts(BIO *bp, const char *str)
940 {
941 int n, ret;
942
943 n = strlen(str);
944 ret = dgram_write(bp, str, n);
945 return (ret);
946 }
947
948 # ifndef OPENSSL_NO_SCTP
949 BIO_METHOD *BIO_s_datagram_sctp(void)
950 {
951 return (&methods_dgramp_sctp);
952 }
953
954 BIO *BIO_new_dgram_sctp(int fd, int close_flag)
955 {
956 BIO *bio;
957 int ret, optval = 20000;
958 int auth_data = 0, auth_forward = 0;
959 unsigned char *p;
960 struct sctp_authchunk auth;
961 struct sctp_authchunks *authchunks;
962 socklen_t sockopt_len;
963 # ifdef SCTP_AUTHENTICATION_EVENT
964 # ifdef SCTP_EVENT
965 struct sctp_event event;
966 # else
967 struct sctp_event_subscribe event;
968 # endif
969 # endif
970
971 bio = BIO_new(BIO_s_datagram_sctp());
972 if (bio == NULL)
973 return (NULL);
974 BIO_set_fd(bio, fd, close_flag);
975
976 /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
977 auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
978 ret =
979 setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
980 sizeof(struct sctp_authchunk));
981 if (ret < 0) {
982 BIO_vfree(bio);
983 return (NULL);
984 }
985 auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
986 ret =
987 setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
988 sizeof(struct sctp_authchunk));
989 if (ret < 0) {
990 BIO_vfree(bio);
991 return (NULL);
992 }
993
994 /*
995 * Test if activation was successful. When using accept(), SCTP-AUTH has
996 * to be activated for the listening socket already, otherwise the
997 * connected socket won't use it.
998 */
999 sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
1000 authchunks = OPENSSL_malloc(sockopt_len);
1001 if (!authchunks) {
1002 BIO_vfree(bio);
1003 return (NULL);
1004 }
1005 memset(authchunks, 0, sockopt_len);
1006 ret =
1007 getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks,
1008 &sockopt_len);
1009
1010 if (ret < 0) {
1011 OPENSSL_free(authchunks);
1012 BIO_vfree(bio);
1013 return (NULL);
1014 }
1015
1016 for (p = (unsigned char *)authchunks->gauth_chunks;
1017 p < (unsigned char *)authchunks + sockopt_len;
1018 p += sizeof(uint8_t)) {
1019 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
1020 auth_data = 1;
1021 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
1022 auth_forward = 1;
1023 }
1024
1025 OPENSSL_free(authchunks);
1026
1027 OPENSSL_assert(auth_data);
1028 OPENSSL_assert(auth_forward);
1029
1030 # ifdef SCTP_AUTHENTICATION_EVENT
1031 # ifdef SCTP_EVENT
1032 memset(&event, 0, sizeof(event));
1033 event.se_assoc_id = 0;
1034 event.se_type = SCTP_AUTHENTICATION_EVENT;
1035 event.se_on = 1;
1036 ret =
1037 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event,
1038 sizeof(struct sctp_event));
1039 if (ret < 0) {
1040 BIO_vfree(bio);
1041 return (NULL);
1042 }
1043 # else
1044 sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
1045 ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
1046 if (ret < 0) {
1047 BIO_vfree(bio);
1048 return (NULL);
1049 }
1050
1051 event.sctp_authentication_event = 1;
1052
1053 ret =
1054 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event,
1055 sizeof(struct sctp_event_subscribe));
1056 if (ret < 0) {
1057 BIO_vfree(bio);
1058 return (NULL);
1059 }
1060 # endif
1061 # endif
1062
1063 /*
1064 * Disable partial delivery by setting the min size larger than the max
1065 * record size of 2^14 + 2048 + 13
1066 */
1067 ret =
1068 setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
1069 sizeof(optval));
1070 if (ret < 0) {
1071 BIO_vfree(bio);
1072 return (NULL);
1073 }
1074
1075 return (bio);
1076 }
1077
1078 int BIO_dgram_is_sctp(BIO *bio)
1079 {
1080 return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
1081 }
1082
1083 static int dgram_sctp_new(BIO *bi)
1084 {
1085 bio_dgram_sctp_data *data = NULL;
1086
1087 bi->init = 0;
1088 bi->num = 0;
1089 data = OPENSSL_malloc(sizeof(*data));
1090 if (data == NULL)
1091 return 0;
1092 memset(data, 0, sizeof(*data));
1093 # ifdef SCTP_PR_SCTP_NONE
1094 data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
1095 # endif
1096 bi->ptr = data;
1097
1098 bi->flags = 0;
1099 return (1);
1100 }
1101
1102 static int dgram_sctp_free(BIO *a)
1103 {
1104 bio_dgram_sctp_data *data;
1105
1106 if (a == NULL)
1107 return (0);
1108 if (!dgram_clear(a))
1109 return 0;
1110
1111 data = (bio_dgram_sctp_data *) a->ptr;
1112 if (data != NULL) {
1113 OPENSSL_free(data->saved_message.data);
1114 OPENSSL_free(data);
1115 }
1116
1117 return (1);
1118 }
1119
1120 # ifdef SCTP_AUTHENTICATION_EVENT
1121 void dgram_sctp_handle_auth_free_key_event(BIO *b,
1122 union sctp_notification *snp)
1123 {
1124 int ret;
1125 struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event;
1126
1127 if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) {
1128 struct sctp_authkeyid authkeyid;
1129
1130 /* delete key */
1131 authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
1132 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
1133 &authkeyid, sizeof(struct sctp_authkeyid));
1134 }
1135 }
1136 # endif
1137
1138 static int dgram_sctp_read(BIO *b, char *out, int outl)
1139 {
1140 int ret = 0, n = 0, i, optval;
1141 socklen_t optlen;
1142 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1143 union sctp_notification *snp;
1144 struct msghdr msg;
1145 struct iovec iov;
1146 struct cmsghdr *cmsg;
1147 char cmsgbuf[512];
1148
1149 if (out != NULL) {
1150 clear_socket_error();
1151
1152 do {
1153 memset(&data->rcvinfo, 0, sizeof(data->rcvinfo));
1154 iov.iov_base = out;
1155 iov.iov_len = outl;
1156 msg.msg_name = NULL;
1157 msg.msg_namelen = 0;
1158 msg.msg_iov = &iov;
1159 msg.msg_iovlen = 1;
1160 msg.msg_control = cmsgbuf;
1161 msg.msg_controllen = 512;
1162 msg.msg_flags = 0;
1163 n = recvmsg(b->num, &msg, 0);
1164
1165 if (n <= 0) {
1166 if (n < 0)
1167 ret = n;
1168 break;
1169 }
1170
1171 if (msg.msg_controllen > 0) {
1172 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg;
1173 cmsg = CMSG_NXTHDR(&msg, cmsg)) {
1174 if (cmsg->cmsg_level != IPPROTO_SCTP)
1175 continue;
1176 # ifdef SCTP_RCVINFO
1177 if (cmsg->cmsg_type == SCTP_RCVINFO) {
1178 struct sctp_rcvinfo *rcvinfo;
1179
1180 rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
1181 data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
1182 data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
1183 data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
1184 data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
1185 data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
1186 data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
1187 data->rcvinfo.rcv_context = rcvinfo->rcv_context;
1188 }
1189 # endif
1190 # ifdef SCTP_SNDRCV
1191 if (cmsg->cmsg_type == SCTP_SNDRCV) {
1192 struct sctp_sndrcvinfo *sndrcvinfo;
1193
1194 sndrcvinfo =
1195 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
1196 data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
1197 data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
1198 data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
1199 data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
1200 data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
1201 data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
1202 data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
1203 }
1204 # endif
1205 }
1206 }
1207
1208 if (msg.msg_flags & MSG_NOTIFICATION) {
1209 snp = (union sctp_notification *)out;
1210 if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
1211 # ifdef SCTP_EVENT
1212 struct sctp_event event;
1213 # else
1214 struct sctp_event_subscribe event;
1215 socklen_t eventsize;
1216 # endif
1217 /*
1218 * If a message has been delayed until the socket is dry,
1219 * it can be sent now.
1220 */
1221 if (data->saved_message.length > 0) {
1222 i = dgram_sctp_write(data->saved_message.bio,
1223 data->saved_message.data,
1224 data->saved_message.length);
1225 if (i < 0) {
1226 ret = i;
1227 break;
1228 }
1229 OPENSSL_free(data->saved_message.data);
1230 data->saved_message.data = NULL;
1231 data->saved_message.length = 0;
1232 }
1233
1234 /* disable sender dry event */
1235 # ifdef SCTP_EVENT
1236 memset(&event, 0, sizeof(event));
1237 event.se_assoc_id = 0;
1238 event.se_type = SCTP_SENDER_DRY_EVENT;
1239 event.se_on = 0;
1240 i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1241 sizeof(struct sctp_event));
1242 if (i < 0) {
1243 ret = i;
1244 break;
1245 }
1246 # else
1247 eventsize = sizeof(struct sctp_event_subscribe);
1248 i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1249 &eventsize);
1250 if (i < 0) {
1251 ret = i;
1252 break;
1253 }
1254
1255 event.sctp_sender_dry_event = 0;
1256
1257 i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1258 sizeof(struct sctp_event_subscribe));
1259 if (i < 0) {
1260 ret = i;
1261 break;
1262 }
1263 # endif
1264 }
1265 # ifdef SCTP_AUTHENTICATION_EVENT
1266 if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1267 dgram_sctp_handle_auth_free_key_event(b, snp);
1268 # endif
1269
1270 if (data->handle_notifications != NULL)
1271 data->handle_notifications(b, data->notification_context,
1272 (void *)out);
1273
1274 memset(out, 0, outl);
1275 } else
1276 ret += n;
1277 }
1278 while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR)
1279 && (ret < outl));
1280
1281 if (ret > 0 && !(msg.msg_flags & MSG_EOR)) {
1282 /* Partial message read, this should never happen! */
1283
1284 /*
1285 * The buffer was too small, this means the peer sent a message
1286 * that was larger than allowed.
1287 */
1288 if (ret == outl)
1289 return -1;
1290
1291 /*
1292 * Test if socket buffer can handle max record size (2^14 + 2048
1293 * + 13)
1294 */
1295 optlen = (socklen_t) sizeof(int);
1296 ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
1297 if (ret >= 0)
1298 OPENSSL_assert(optval >= 18445);
1299
1300 /*
1301 * Test if SCTP doesn't partially deliver below max record size
1302 * (2^14 + 2048 + 13)
1303 */
1304 optlen = (socklen_t) sizeof(int);
1305 ret =
1306 getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
1307 &optval, &optlen);
1308 if (ret >= 0)
1309 OPENSSL_assert(optval >= 18445);
1310
1311 /*
1312 * Partially delivered notification??? Probably a bug....
1313 */
1314 OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
1315
1316 /*
1317 * Everything seems ok till now, so it's most likely a message
1318 * dropped by PR-SCTP.
1319 */
1320 memset(out, 0, outl);
1321 BIO_set_retry_read(b);
1322 return -1;
1323 }
1324
1325 BIO_clear_retry_flags(b);
1326 if (ret < 0) {
1327 if (BIO_dgram_should_retry(ret)) {
1328 BIO_set_retry_read(b);
1329 data->_errno = get_last_socket_error();
1330 }
1331 }
1332
1333 /* Test if peer uses SCTP-AUTH before continuing */
1334 if (!data->peer_auth_tested) {
1335 int ii, auth_data = 0, auth_forward = 0;
1336 unsigned char *p;
1337 struct sctp_authchunks *authchunks;
1338
1339 optlen =
1340 (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
1341 authchunks = OPENSSL_malloc(optlen);
1342 if (!authchunks) {
1343 BIOerr(BIO_F_DGRAM_SCTP_READ, ERR_R_MALLOC_FAILURE);
1344 return -1;
1345 }
1346 memset(authchunks, 0, optlen);
1347 ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS,
1348 authchunks, &optlen);
1349
1350 if (ii >= 0)
1351 for (p = (unsigned char *)authchunks->gauth_chunks;
1352 p < (unsigned char *)authchunks + optlen;
1353 p += sizeof(uint8_t)) {
1354 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
1355 auth_data = 1;
1356 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
1357 auth_forward = 1;
1358 }
1359
1360 OPENSSL_free(authchunks);
1361
1362 if (!auth_data || !auth_forward) {
1363 BIOerr(BIO_F_DGRAM_SCTP_READ, BIO_R_CONNECT_ERROR);
1364 return -1;
1365 }
1366
1367 data->peer_auth_tested = 1;
1368 }
1369 }
1370 return (ret);
1371 }
1372
1373 /*
1374 * dgram_sctp_write - send message on SCTP socket
1375 * @b: BIO to write to
1376 * @in: data to send
1377 * @inl: amount of bytes in @in to send
1378 *
1379 * Returns -1 on error or the sent amount of bytes on success
1380 */
1381 static int dgram_sctp_write(BIO *b, const char *in, int inl)
1382 {
1383 int ret;
1384 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1385 struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
1386 struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
1387 struct bio_dgram_sctp_sndinfo handshake_sinfo;
1388 struct iovec iov[1];
1389 struct msghdr msg;
1390 struct cmsghdr *cmsg;
1391 # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1392 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) +
1393 CMSG_SPACE(sizeof(struct sctp_prinfo))];
1394 struct sctp_sndinfo *sndinfo;
1395 struct sctp_prinfo *prinfo;
1396 # else
1397 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1398 struct sctp_sndrcvinfo *sndrcvinfo;
1399 # endif
1400
1401 clear_socket_error();
1402
1403 /*
1404 * If we're send anything else than application data, disable all user
1405 * parameters and flags.
1406 */
1407 if (in[0] != 23) {
1408 memset(&handshake_sinfo, 0, sizeof(handshake_sinfo));
1409 # ifdef SCTP_SACK_IMMEDIATELY
1410 handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
1411 # endif
1412 sinfo = &handshake_sinfo;
1413 }
1414
1415 /*
1416 * If we have to send a shutdown alert message and the socket is not dry
1417 * yet, we have to save it and send it as soon as the socket gets dry.
1418 */
1419 if (data->save_shutdown) {
1420 ret = BIO_dgram_sctp_wait_for_dry(b);
1421 if (ret < 0) {
1422 return -1;
1423 }
1424 if (ret == 0) {
1425 char *tmp;
1426 data->saved_message.bio = b;
1427 if ((tmp = OPENSSL_malloc(inl)) == NULL) {
1428 BIOerr(BIO_F_DGRAM_SCTP_WRITE, ERR_R_MALLOC_FAILURE);
1429 return -1;
1430 }
1431 OPENSSL_free(data->saved_message.data);
1432 data->saved_message.data = tmp;
1433 memcpy(data->saved_message.data, in, inl);
1434 data->saved_message.length = inl;
1435 return inl;
1436 }
1437 }
1438
1439 iov[0].iov_base = (char *)in;
1440 iov[0].iov_len = inl;
1441 msg.msg_name = NULL;
1442 msg.msg_namelen = 0;
1443 msg.msg_iov = iov;
1444 msg.msg_iovlen = 1;
1445 msg.msg_control = (caddr_t) cmsgbuf;
1446 msg.msg_controllen = 0;
1447 msg.msg_flags = 0;
1448 # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1449 cmsg = (struct cmsghdr *)cmsgbuf;
1450 cmsg->cmsg_level = IPPROTO_SCTP;
1451 cmsg->cmsg_type = SCTP_SNDINFO;
1452 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
1453 sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
1454 memset(sndinfo, 0, sizeof(*sndinfo));
1455 sndinfo->snd_sid = sinfo->snd_sid;
1456 sndinfo->snd_flags = sinfo->snd_flags;
1457 sndinfo->snd_ppid = sinfo->snd_ppid;
1458 sndinfo->snd_context = sinfo->snd_context;
1459 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
1460
1461 cmsg =
1462 (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
1463 cmsg->cmsg_level = IPPROTO_SCTP;
1464 cmsg->cmsg_type = SCTP_PRINFO;
1465 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
1466 prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
1467 memset(prinfo, 0, sizeof(*prinfo));
1468 prinfo->pr_policy = pinfo->pr_policy;
1469 prinfo->pr_value = pinfo->pr_value;
1470 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
1471 # else
1472 cmsg = (struct cmsghdr *)cmsgbuf;
1473 cmsg->cmsg_level = IPPROTO_SCTP;
1474 cmsg->cmsg_type = SCTP_SNDRCV;
1475 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1476 sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
1477 memset(sndrcvinfo, 0, sizeof(*sndrcvinfo));
1478 sndrcvinfo->sinfo_stream = sinfo->snd_sid;
1479 sndrcvinfo->sinfo_flags = sinfo->snd_flags;
1480 # ifdef __FreeBSD__
1481 sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
1482 # endif
1483 sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
1484 sndrcvinfo->sinfo_context = sinfo->snd_context;
1485 sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
1486 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
1487 # endif
1488
1489 ret = sendmsg(b->num, &msg, 0);
1490
1491 BIO_clear_retry_flags(b);
1492 if (ret <= 0) {
1493 if (BIO_dgram_should_retry(ret)) {
1494 BIO_set_retry_write(b);
1495 data->_errno = get_last_socket_error();
1496 }
1497 }
1498 return (ret);
1499 }
1500
1501 static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
1502 {
1503 long ret = 1;
1504 bio_dgram_sctp_data *data = NULL;
1505 socklen_t sockopt_len = 0;
1506 struct sctp_authkeyid authkeyid;
1507 struct sctp_authkey *authkey = NULL;
1508
1509 data = (bio_dgram_sctp_data *) b->ptr;
1510
1511 switch (cmd) {
1512 case BIO_CTRL_DGRAM_QUERY_MTU:
1513 /*
1514 * Set to maximum (2^14) and ignore user input to enable transport
1515 * protocol fragmentation. Returns always 2^14.
1516 */
1517 data->mtu = 16384;
1518 ret = data->mtu;
1519 break;
1520 case BIO_CTRL_DGRAM_SET_MTU:
1521 /*
1522 * Set to maximum (2^14) and ignore input to enable transport
1523 * protocol fragmentation. Returns always 2^14.
1524 */
1525 data->mtu = 16384;
1526 ret = data->mtu;
1527 break;
1528 case BIO_CTRL_DGRAM_SET_CONNECTED:
1529 case BIO_CTRL_DGRAM_CONNECT:
1530 /* Returns always -1. */
1531 ret = -1;
1532 break;
1533 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
1534 /*
1535 * SCTP doesn't need the DTLS timer Returns always 1.
1536 */
1537 break;
1538 case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
1539 /*
1540 * We allow transport protocol fragmentation so this is irrelevant
1541 */
1542 ret = 0;
1543 break;
1544 case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
1545 if (num > 0)
1546 data->in_handshake = 1;
1547 else
1548 data->in_handshake = 0;
1549
1550 ret =
1551 setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY,
1552 &data->in_handshake, sizeof(int));
1553 break;
1554 case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
1555 /*
1556 * New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise.
1557 */
1558
1559 /* Get active key */
1560 sockopt_len = sizeof(struct sctp_authkeyid);
1561 ret =
1562 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
1563 &sockopt_len);
1564 if (ret < 0)
1565 break;
1566
1567 /* Add new key */
1568 sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
1569 authkey = OPENSSL_malloc(sockopt_len);
1570 if (authkey == NULL) {
1571 ret = -1;
1572 break;
1573 }
1574 memset(authkey, 0, sockopt_len);
1575 authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
1576 # ifndef __FreeBSD__
1577 /*
1578 * This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3
1579 * and higher work without it.
1580 */
1581 authkey->sca_keylength = 64;
1582 # endif
1583 memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
1584
1585 ret =
1586 setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey,
1587 sockopt_len);
1588 OPENSSL_free(authkey);
1589 authkey = NULL;
1590 if (ret < 0)
1591 break;
1592
1593 /* Reset active key */
1594 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1595 &authkeyid, sizeof(struct sctp_authkeyid));
1596 if (ret < 0)
1597 break;
1598
1599 break;
1600 case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
1601 /* Returns 0 on success, -1 otherwise. */
1602
1603 /* Get active key */
1604 sockopt_len = sizeof(struct sctp_authkeyid);
1605 ret =
1606 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
1607 &sockopt_len);
1608 if (ret < 0)
1609 break;
1610
1611 /* Set active key */
1612 authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
1613 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1614 &authkeyid, sizeof(struct sctp_authkeyid));
1615 if (ret < 0)
1616 break;
1617
1618 /*
1619 * CCS has been sent, so remember that and fall through to check if
1620 * we need to deactivate an old key
1621 */
1622 data->ccs_sent = 1;
1623
1624 case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
1625 /* Returns 0 on success, -1 otherwise. */
1626
1627 /*
1628 * Has this command really been called or is this just a
1629 * fall-through?
1630 */
1631 if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
1632 data->ccs_rcvd = 1;
1633
1634 /*
1635 * CSS has been both, received and sent, so deactivate an old key
1636 */
1637 if (data->ccs_rcvd == 1 && data->ccs_sent == 1) {
1638 /* Get active key */
1639 sockopt_len = sizeof(struct sctp_authkeyid);
1640 ret =
1641 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1642 &authkeyid, &sockopt_len);
1643 if (ret < 0)
1644 break;
1645
1646 /*
1647 * Deactivate key or delete second last key if
1648 * SCTP_AUTHENTICATION_EVENT is not available.
1649 */
1650 authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
1651 # ifdef SCTP_AUTH_DEACTIVATE_KEY
1652 sockopt_len = sizeof(struct sctp_authkeyid);
1653 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
1654 &authkeyid, sockopt_len);
1655 if (ret < 0)
1656 break;
1657 # endif
1658 # ifndef SCTP_AUTHENTICATION_EVENT
1659 if (authkeyid.scact_keynumber > 0) {
1660 authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
1661 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
1662 &authkeyid, sizeof(struct sctp_authkeyid));
1663 if (ret < 0)
1664 break;
1665 }
1666 # endif
1667
1668 data->ccs_rcvd = 0;
1669 data->ccs_sent = 0;
1670 }
1671 break;
1672 case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
1673 /* Returns the size of the copied struct. */
1674 if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
1675 num = sizeof(struct bio_dgram_sctp_sndinfo);
1676
1677 memcpy(ptr, &(data->sndinfo), num);
1678 ret = num;
1679 break;
1680 case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
1681 /* Returns the size of the copied struct. */
1682 if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
1683 num = sizeof(struct bio_dgram_sctp_sndinfo);
1684
1685 memcpy(&(data->sndinfo), ptr, num);
1686 break;
1687 case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
1688 /* Returns the size of the copied struct. */
1689 if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
1690 num = sizeof(struct bio_dgram_sctp_rcvinfo);
1691
1692 memcpy(ptr, &data->rcvinfo, num);
1693
1694 ret = num;
1695 break;
1696 case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
1697 /* Returns the size of the copied struct. */
1698 if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
1699 num = sizeof(struct bio_dgram_sctp_rcvinfo);
1700
1701 memcpy(&(data->rcvinfo), ptr, num);
1702 break;
1703 case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
1704 /* Returns the size of the copied struct. */
1705 if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
1706 num = sizeof(struct bio_dgram_sctp_prinfo);
1707
1708 memcpy(ptr, &(data->prinfo), num);
1709 ret = num;
1710 break;
1711 case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
1712 /* Returns the size of the copied struct. */
1713 if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
1714 num = sizeof(struct bio_dgram_sctp_prinfo);
1715
1716 memcpy(&(data->prinfo), ptr, num);
1717 break;
1718 case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
1719 /* Returns always 1. */
1720 if (num > 0)
1721 data->save_shutdown = 1;
1722 else
1723 data->save_shutdown = 0;
1724 break;
1725
1726 default:
1727 /*
1728 * Pass to default ctrl function to process SCTP unspecific commands
1729 */
1730 ret = dgram_ctrl(b, cmd, num, ptr);
1731 break;
1732 }
1733 return (ret);
1734 }
1735
1736 int BIO_dgram_sctp_notification_cb(BIO *b,
1737 void (*handle_notifications) (BIO *bio,
1738 void
1739 *context,
1740 void *buf),
1741 void *context)
1742 {
1743 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1744
1745 if (handle_notifications != NULL) {
1746 data->handle_notifications = handle_notifications;
1747 data->notification_context = context;
1748 } else
1749 return -1;
1750
1751 return 0;
1752 }
1753
1754 /*
1755 * BIO_dgram_sctp_wait_for_dry - Wait for SCTP SENDER_DRY event
1756 * @b: The BIO to check for the dry event
1757 *
1758 * Wait until the peer confirms all packets have been received, and so that
1759 * our kernel doesn't have anything to send anymore. This is only received by
1760 * the peer's kernel, not the application.
1761 *
1762 * Returns:
1763 * -1 on error
1764 * 0 when not dry yet
1765 * 1 when dry
1766 */
1767 int BIO_dgram_sctp_wait_for_dry(BIO *b)
1768 {
1769 int is_dry = 0;
1770 int n, sockflags, ret;
1771 union sctp_notification snp;
1772 struct msghdr msg;
1773 struct iovec iov;
1774 # ifdef SCTP_EVENT
1775 struct sctp_event event;
1776 # else
1777 struct sctp_event_subscribe event;
1778 socklen_t eventsize;
1779 # endif
1780 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1781
1782 /* set sender dry event */
1783 # ifdef SCTP_EVENT
1784 memset(&event, 0, sizeof(event));
1785 event.se_assoc_id = 0;
1786 event.se_type = SCTP_SENDER_DRY_EVENT;
1787 event.se_on = 1;
1788 ret =
1789 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1790 sizeof(struct sctp_event));
1791 # else
1792 eventsize = sizeof(struct sctp_event_subscribe);
1793 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
1794 if (ret < 0)
1795 return -1;
1796
1797 event.sctp_sender_dry_event = 1;
1798
1799 ret =
1800 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1801 sizeof(struct sctp_event_subscribe));
1802 # endif
1803 if (ret < 0)
1804 return -1;
1805
1806 /* peek for notification */
1807 memset(&snp, 0, sizeof(snp));
1808 iov.iov_base = (char *)&snp;
1809 iov.iov_len = sizeof(union sctp_notification);
1810 msg.msg_name = NULL;
1811 msg.msg_namelen = 0;
1812 msg.msg_iov = &iov;
1813 msg.msg_iovlen = 1;
1814 msg.msg_control = NULL;
1815 msg.msg_controllen = 0;
1816 msg.msg_flags = 0;
1817
1818 n = recvmsg(b->num, &msg, MSG_PEEK);
1819 if (n <= 0) {
1820 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1821 && (get_last_socket_error() != EWOULDBLOCK))
1822 return -1;
1823 else
1824 return 0;
1825 }
1826
1827 /* if we find a notification, process it and try again if necessary */
1828 while (msg.msg_flags & MSG_NOTIFICATION) {
1829 memset(&snp, 0, sizeof(snp));
1830 iov.iov_base = (char *)&snp;
1831 iov.iov_len = sizeof(union sctp_notification);
1832 msg.msg_name = NULL;
1833 msg.msg_namelen = 0;
1834 msg.msg_iov = &iov;
1835 msg.msg_iovlen = 1;
1836 msg.msg_control = NULL;
1837 msg.msg_controllen = 0;
1838 msg.msg_flags = 0;
1839
1840 n = recvmsg(b->num, &msg, 0);
1841 if (n <= 0) {
1842 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1843 && (get_last_socket_error() != EWOULDBLOCK))
1844 return -1;
1845 else
1846 return is_dry;
1847 }
1848
1849 if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
1850 is_dry = 1;
1851
1852 /* disable sender dry event */
1853 # ifdef SCTP_EVENT
1854 memset(&event, 0, sizeof(event));
1855 event.se_assoc_id = 0;
1856 event.se_type = SCTP_SENDER_DRY_EVENT;
1857 event.se_on = 0;
1858 ret =
1859 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1860 sizeof(struct sctp_event));
1861 # else
1862 eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
1863 ret =
1864 getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1865 &eventsize);
1866 if (ret < 0)
1867 return -1;
1868
1869 event.sctp_sender_dry_event = 0;
1870
1871 ret =
1872 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1873 sizeof(struct sctp_event_subscribe));
1874 # endif
1875 if (ret < 0)
1876 return -1;
1877 }
1878 # ifdef SCTP_AUTHENTICATION_EVENT
1879 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1880 dgram_sctp_handle_auth_free_key_event(b, &snp);
1881 # endif
1882
1883 if (data->handle_notifications != NULL)
1884 data->handle_notifications(b, data->notification_context,
1885 (void *)&snp);
1886
1887 /* found notification, peek again */
1888 memset(&snp, 0, sizeof(snp));
1889 iov.iov_base = (char *)&snp;
1890 iov.iov_len = sizeof(union sctp_notification);
1891 msg.msg_name = NULL;
1892 msg.msg_namelen = 0;
1893 msg.msg_iov = &iov;
1894 msg.msg_iovlen = 1;
1895 msg.msg_control = NULL;
1896 msg.msg_controllen = 0;
1897 msg.msg_flags = 0;
1898
1899 /* if we have seen the dry already, don't wait */
1900 if (is_dry) {
1901 sockflags = fcntl(b->num, F_GETFL, 0);
1902 fcntl(b->num, F_SETFL, O_NONBLOCK);
1903 }
1904
1905 n = recvmsg(b->num, &msg, MSG_PEEK);
1906
1907 if (is_dry) {
1908 fcntl(b->num, F_SETFL, sockflags);
1909 }
1910
1911 if (n <= 0) {
1912 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1913 && (get_last_socket_error() != EWOULDBLOCK))
1914 return -1;
1915 else
1916 return is_dry;
1917 }
1918 }
1919
1920 /* read anything else */
1921 return is_dry;
1922 }
1923
1924 int BIO_dgram_sctp_msg_waiting(BIO *b)
1925 {
1926 int n, sockflags;
1927 union sctp_notification snp;
1928 struct msghdr msg;
1929 struct iovec iov;
1930 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1931
1932 /* Check if there are any messages waiting to be read */
1933 do {
1934 memset(&snp, 0, sizeof(snp));
1935 iov.iov_base = (char *)&snp;
1936 iov.iov_len = sizeof(union sctp_notification);
1937 msg.msg_name = NULL;
1938 msg.msg_namelen = 0;
1939 msg.msg_iov = &iov;
1940 msg.msg_iovlen = 1;
1941 msg.msg_control = NULL;
1942 msg.msg_controllen = 0;
1943 msg.msg_flags = 0;
1944
1945 sockflags = fcntl(b->num, F_GETFL, 0);
1946 fcntl(b->num, F_SETFL, O_NONBLOCK);
1947 n = recvmsg(b->num, &msg, MSG_PEEK);
1948 fcntl(b->num, F_SETFL, sockflags);
1949
1950 /* if notification, process and try again */
1951 if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) {
1952 # ifdef SCTP_AUTHENTICATION_EVENT
1953 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1954 dgram_sctp_handle_auth_free_key_event(b, &snp);
1955 # endif
1956
1957 memset(&snp, 0, sizeof(snp));
1958 iov.iov_base = (char *)&snp;
1959 iov.iov_len = sizeof(union sctp_notification);
1960 msg.msg_name = NULL;
1961 msg.msg_namelen = 0;
1962 msg.msg_iov = &iov;
1963 msg.msg_iovlen = 1;
1964 msg.msg_control = NULL;
1965 msg.msg_controllen = 0;
1966 msg.msg_flags = 0;
1967 n = recvmsg(b->num, &msg, 0);
1968
1969 if (data->handle_notifications != NULL)
1970 data->handle_notifications(b, data->notification_context,
1971 (void *)&snp);
1972 }
1973
1974 } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
1975
1976 /* Return 1 if there is a message to be read, return 0 otherwise. */
1977 if (n > 0)
1978 return 1;
1979 else
1980 return 0;
1981 }
1982
1983 static int dgram_sctp_puts(BIO *bp, const char *str)
1984 {
1985 int n, ret;
1986
1987 n = strlen(str);
1988 ret = dgram_sctp_write(bp, str, n);
1989 return (ret);
1990 }
1991 # endif
1992
1993 static int BIO_dgram_should_retry(int i)
1994 {
1995 int err;
1996
1997 if ((i == 0) || (i == -1)) {
1998 err = get_last_socket_error();
1999
2000 # if defined(OPENSSL_SYS_WINDOWS)
2001 /*
2002 * If the socket return value (i) is -1 and err is unexpectedly 0 at
2003 * this point, the error code was overwritten by another system call
2004 * before this error handling is called.
2005 */
2006 # endif
2007
2008 return (BIO_dgram_non_fatal_error(err));
2009 }
2010 return (0);
2011 }
2012
2013 int BIO_dgram_non_fatal_error(int err)
2014 {
2015 switch (err) {
2016 # if defined(OPENSSL_SYS_WINDOWS)
2017 # if defined(WSAEWOULDBLOCK)
2018 case WSAEWOULDBLOCK:
2019 # endif
2020 # endif
2021
2022 # ifdef EWOULDBLOCK
2023 # ifdef WSAEWOULDBLOCK
2024 # if WSAEWOULDBLOCK != EWOULDBLOCK
2025 case EWOULDBLOCK:
2026 # endif
2027 # else
2028 case EWOULDBLOCK:
2029 # endif
2030 # endif
2031
2032 # ifdef EINTR
2033 case EINTR:
2034 # endif
2035
2036 # ifdef EAGAIN
2037 # if EWOULDBLOCK != EAGAIN
2038 case EAGAIN:
2039 # endif
2040 # endif
2041
2042 # ifdef EPROTO
2043 case EPROTO:
2044 # endif
2045
2046 # ifdef EINPROGRESS
2047 case EINPROGRESS:
2048 # endif
2049
2050 # ifdef EALREADY
2051 case EALREADY:
2052 # endif
2053
2054 return (1);
2055 /* break; */
2056 default:
2057 break;
2058 }
2059 return (0);
2060 }
2061
2062 static void get_current_time(struct timeval *t)
2063 {
2064 # if defined(_WIN32)
2065 SYSTEMTIME st;
2066 union {
2067 unsigned __int64 ul;
2068 FILETIME ft;
2069 } now;
2070
2071 GetSystemTime(&st);
2072 SystemTimeToFileTime(&st, &now.ft);
2073 # ifdef __MINGW32__
2074 now.ul -= 116444736000000000ULL;
2075 # else
2076 now.ul -= 116444736000000000UI64; /* re-bias to 1/1/1970 */
2077 # endif
2078 t->tv_sec = (long)(now.ul / 10000000);
2079 t->tv_usec = ((int)(now.ul % 10000000)) / 10;
2080 # elif defined(OPENSSL_SYS_VMS)
2081 struct timeb tb;
2082 ftime(&tb);
2083 t->tv_sec = (long)tb.time;
2084 t->tv_usec = (long)tb.millitm * 1000;
2085 # else
2086 gettimeofday(t, NULL);
2087 # endif
2088 }
2089
2090 #endif