]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/asm/rsaz-2k-avx512.pl
Update copyright year
[thirdparty/openssl.git] / crypto / bn / asm / rsaz-2k-avx512.pl
1 # Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
2 # Copyright (c) 2020, Intel Corporation. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8 #
9 #
10 # Originally written by Sergey Kirillov and Andrey Matyukov.
11 # Special thanks to Ilya Albrekht for his valuable hints.
12 # Intel Corporation
13 #
14 # December 2020
15 #
16 # Initial release.
17 #
18 # Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
19 #
20 # IceLake-Client @ 1.3GHz
21 # |---------+----------------------+--------------+-------------|
22 # | | OpenSSL 3.0.0-alpha9 | this | Unit |
23 # |---------+----------------------+--------------+-------------|
24 # | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
25 # | | 611 | 1280 / +109% | sign/s |
26 # |---------+----------------------+--------------+-------------|
27 #
28
29 # $output is the last argument if it looks like a file (it has an extension)
30 # $flavour is the first argument if it doesn't look like a file
31 $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
32 $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
33
34 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
35 $avx512ifma=0;
36
37 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
38 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
39 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
40 die "can't locate x86_64-xlate.pl";
41
42 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
43 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
44 $avx512ifma = ($1>=2.26);
45 }
46
47 if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
48 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
49 $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
50 }
51
52 if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
53 $avx512ifma = ($2>=7.0);
54 }
55
56 open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
57 or die "can't call $xlate: $!";
58 *STDOUT=*OUT;
59
60 if ($avx512ifma>0) {{{
61 @_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
62
63 $code.=<<___;
64 .extern OPENSSL_ia32cap_P
65 .globl ossl_rsaz_avx512ifma_eligible
66 .type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
67 .align 32
68 ossl_rsaz_avx512ifma_eligible:
69 mov OPENSSL_ia32cap_P+8(%rip), %ecx
70 xor %eax,%eax
71 and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
72 cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
73 cmove %ecx,%eax
74 ret
75 .size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
76 ___
77
78 ###############################################################################
79 # Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
80 #
81 # AMM is defined as presented in the paper [1].
82 #
83 # The input and output are presented in 2^52 radix domain, i.e.
84 # |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
85 # |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
86 #
87 # NB: the AMM implementation does not perform "conditional" subtraction step
88 # specified in the original algorithm as according to the Lemma 1 from the paper
89 # [2], the result will be always < 2*m and can be used as a direct input to
90 # the next AMM iteration. This post-condition is true, provided the correct
91 # parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
92 # which matches our case: 1040 > 1024 + 2 * 1.
93 #
94 # [1] Gueron, S. Efficient software implementations of modular exponentiation.
95 # DOI: 10.1007/s13389-012-0031-5
96 # [2] Gueron, S. Enhanced Montgomery Multiplication.
97 # DOI: 10.1007/3-540-36400-5_5
98 #
99 # void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res,
100 # const BN_ULONG *a,
101 # const BN_ULONG *b,
102 # const BN_ULONG *m,
103 # BN_ULONG k0);
104 ###############################################################################
105 {
106 # input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
107 my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
108
109 my $mask52 = "%rax";
110 my $acc0_0 = "%r9";
111 my $acc0_0_low = "%r9d";
112 my $acc0_1 = "%r15";
113 my $acc0_1_low = "%r15d";
114 my $b_ptr = "%r11";
115
116 my $iter = "%ebx";
117
118 my $zero = "%ymm0";
119 my $Bi = "%ymm1";
120 my $Yi = "%ymm2";
121 my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(16..19)));
122 my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(20..23)));
123
124 # Registers mapping for normalization.
125 my ($T0,$T0h,$T1,$T1h,$T2) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (25..26)));
126
127 sub amm52x20_x1() {
128 # _data_offset - offset in the |a| or |m| arrays pointing to the beginning
129 # of data for corresponding AMM operation;
130 # _b_offset - offset in the |b| array pointing to the next qword digit;
131 my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
132 my $_R0_xmm = $_R0;
133 $_R0_xmm =~ s/%y/%x/;
134 $code.=<<___;
135 movq $_b_offset($b_ptr), %r13 # b[i]
136
137 vpbroadcastq %r13, $Bi # broadcast b[i]
138 movq $_data_offset($a), %rdx
139 mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
140 addq %r13, $_acc # acc += t0
141 movq %r12, %r10
142 adcq \$0, %r10 # t2 += CF
143
144 movq $_k0, %r13
145 imulq $_acc, %r13 # acc * k0
146 andq $mask52, %r13 # yi = (acc * k0) & mask52
147
148 vpbroadcastq %r13, $Yi # broadcast y[i]
149 movq $_data_offset($m), %rdx
150 mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
151 addq %r13, $_acc # acc += t0
152 adcq %r12, %r10 # t2 += (t1 + CF)
153
154 shrq \$52, $_acc
155 salq \$12, %r10
156 or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
157
158 vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
159 vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
160 vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
161 vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
162 vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
163
164 vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
165 vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
166 vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
167 vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
168 vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
169
170 # Shift accumulators right by 1 qword, zero extending the highest one
171 valignq \$1, $_R0, $_R0h, $_R0
172 valignq \$1, $_R0h, $_R1, $_R0h
173 valignq \$1, $_R1, $_R1h, $_R1
174 valignq \$1, $_R1h, $_R2, $_R1h
175 valignq \$1, $_R2, $zero, $_R2
176
177 vmovq $_R0_xmm, %r13
178 addq %r13, $_acc # acc += R0[0]
179
180 vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
181 vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
182 vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
183 vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
184 vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
185
186 vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
187 vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
188 vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
189 vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
190 vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
191 ___
192 }
193
194 # Normalization routine: handles carry bits and gets bignum qwords to normalized
195 # 2^52 representation.
196 #
197 # Uses %r8-14,%e[bcd]x
198 sub amm52x20_x1_norm {
199 my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
200 $code.=<<___;
201 # Put accumulator to low qword in R0
202 vpbroadcastq $_acc, $T0
203 vpblendd \$3, $T0, $_R0, $_R0
204
205 # Extract "carries" (12 high bits) from each QW of R0..R2
206 # Save them to LSB of QWs in T0..T2
207 vpsrlq \$52, $_R0, $T0
208 vpsrlq \$52, $_R0h, $T0h
209 vpsrlq \$52, $_R1, $T1
210 vpsrlq \$52, $_R1h, $T1h
211 vpsrlq \$52, $_R2, $T2
212
213 # "Shift left" T0..T2 by 1 QW
214 valignq \$3, $T1h, $T2, $T2
215 valignq \$3, $T1, $T1h, $T1h
216 valignq \$3, $T0h, $T1, $T1
217 valignq \$3, $T0, $T0h, $T0h
218 valignq \$3, .Lzeros(%rip), $T0, $T0
219
220 # Drop "carries" from R0..R2 QWs
221 vpandq .Lmask52x4(%rip), $_R0, $_R0
222 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
223 vpandq .Lmask52x4(%rip), $_R1, $_R1
224 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
225 vpandq .Lmask52x4(%rip), $_R2, $_R2
226
227 # Sum R0..R2 with corresponding adjusted carries
228 vpaddq $T0, $_R0, $_R0
229 vpaddq $T0h, $_R0h, $_R0h
230 vpaddq $T1, $_R1, $_R1
231 vpaddq $T1h, $_R1h, $_R1h
232 vpaddq $T2, $_R2, $_R2
233
234 # Now handle carry bits from this addition
235 # Get mask of QWs which 52-bit parts overflow...
236 vpcmpuq \$6, .Lmask52x4(%rip), $_R0, %k1 # OP=nle (i.e. gt)
237 vpcmpuq \$6, .Lmask52x4(%rip), $_R0h, %k2
238 vpcmpuq \$6, .Lmask52x4(%rip), $_R1, %k3
239 vpcmpuq \$6, .Lmask52x4(%rip), $_R1h, %k4
240 vpcmpuq \$6, .Lmask52x4(%rip), $_R2, %k5
241 kmovb %k1, %r14d # k1
242 kmovb %k2, %r13d # k1h
243 kmovb %k3, %r12d # k2
244 kmovb %k4, %r11d # k2h
245 kmovb %k5, %r10d # k3
246
247 # ...or saturated
248 vpcmpuq \$0, .Lmask52x4(%rip), $_R0, %k1 # OP=eq
249 vpcmpuq \$0, .Lmask52x4(%rip), $_R0h, %k2
250 vpcmpuq \$0, .Lmask52x4(%rip), $_R1, %k3
251 vpcmpuq \$0, .Lmask52x4(%rip), $_R1h, %k4
252 vpcmpuq \$0, .Lmask52x4(%rip), $_R2, %k5
253 kmovb %k1, %r9d # k4
254 kmovb %k2, %r8d # k4h
255 kmovb %k3, %ebx # k5
256 kmovb %k4, %ecx # k5h
257 kmovb %k5, %edx # k6
258
259 # Get mask of QWs where carries shall be propagated to.
260 # Merge 4-bit masks to 8-bit values to use add with carry.
261 shl \$4, %r13b
262 or %r13b, %r14b
263 shl \$4, %r11b
264 or %r11b, %r12b
265
266 add %r14b, %r14b
267 adc %r12b, %r12b
268 adc %r10b, %r10b
269
270 shl \$4, %r8b
271 or %r8b,%r9b
272 shl \$4, %cl
273 or %cl, %bl
274
275 add %r9b, %r14b
276 adc %bl, %r12b
277 adc %dl, %r10b
278
279 xor %r9b, %r14b
280 xor %bl, %r12b
281 xor %dl, %r10b
282
283 kmovb %r14d, %k1
284 shr \$4, %r14b
285 kmovb %r14d, %k2
286 kmovb %r12d, %k3
287 shr \$4, %r12b
288 kmovb %r12d, %k4
289 kmovb %r10d, %k5
290
291 # Add carries according to the obtained mask
292 vpsubq .Lmask52x4(%rip), $_R0, ${_R0}{%k1}
293 vpsubq .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
294 vpsubq .Lmask52x4(%rip), $_R1, ${_R1}{%k3}
295 vpsubq .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
296 vpsubq .Lmask52x4(%rip), $_R2, ${_R2}{%k5}
297
298 vpandq .Lmask52x4(%rip), $_R0, $_R0
299 vpandq .Lmask52x4(%rip), $_R0h, $_R0h
300 vpandq .Lmask52x4(%rip), $_R1, $_R1
301 vpandq .Lmask52x4(%rip), $_R1h, $_R1h
302 vpandq .Lmask52x4(%rip), $_R2, $_R2
303 ___
304 }
305
306 $code.=<<___;
307 .text
308
309 .globl ossl_rsaz_amm52x20_x1_ifma256
310 .type ossl_rsaz_amm52x20_x1_ifma256,\@function,5
311 .align 32
312 ossl_rsaz_amm52x20_x1_ifma256:
313 .cfi_startproc
314 endbranch
315 push %rbx
316 .cfi_push %rbx
317 push %rbp
318 .cfi_push %rbp
319 push %r12
320 .cfi_push %r12
321 push %r13
322 .cfi_push %r13
323 push %r14
324 .cfi_push %r14
325 push %r15
326 .cfi_push %r15
327 .Lossl_rsaz_amm52x20_x1_ifma256_body:
328
329 # Zeroing accumulators
330 vpxord $zero, $zero, $zero
331 vmovdqa64 $zero, $R0_0
332 vmovdqa64 $zero, $R0_0h
333 vmovdqa64 $zero, $R1_0
334 vmovdqa64 $zero, $R1_0h
335 vmovdqa64 $zero, $R2_0
336
337 xorl $acc0_0_low, $acc0_0_low
338
339 movq $b, $b_ptr # backup address of b
340 movq \$0xfffffffffffff, $mask52 # 52-bit mask
341
342 # Loop over 20 digits unrolled by 4
343 mov \$5, $iter
344
345 .align 32
346 .Lloop5:
347 ___
348 foreach my $idx (0..3) {
349 &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
350 }
351 $code.=<<___;
352 lea `4*8`($b_ptr), $b_ptr
353 dec $iter
354 jne .Lloop5
355 ___
356 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
357 $code.=<<___;
358
359 vmovdqu64 $R0_0, `0*32`($res)
360 vmovdqu64 $R0_0h, `1*32`($res)
361 vmovdqu64 $R1_0, `2*32`($res)
362 vmovdqu64 $R1_0h, `3*32`($res)
363 vmovdqu64 $R2_0, `4*32`($res)
364
365 vzeroupper
366 mov 0(%rsp),%r15
367 .cfi_restore %r15
368 mov 8(%rsp),%r14
369 .cfi_restore %r14
370 mov 16(%rsp),%r13
371 .cfi_restore %r13
372 mov 24(%rsp),%r12
373 .cfi_restore %r12
374 mov 32(%rsp),%rbp
375 .cfi_restore %rbp
376 mov 40(%rsp),%rbx
377 .cfi_restore %rbx
378 lea 48(%rsp),%rsp
379 .cfi_adjust_cfa_offset -48
380 .Lossl_rsaz_amm52x20_x1_ifma256_epilogue:
381 ret
382 .cfi_endproc
383 .size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
384 ___
385
386 $code.=<<___;
387 .data
388 .align 32
389 .Lmask52x4:
390 .quad 0xfffffffffffff
391 .quad 0xfffffffffffff
392 .quad 0xfffffffffffff
393 .quad 0xfffffffffffff
394 ___
395
396 ###############################################################################
397 # Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
398 #
399 # See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
400 # Montgomery Multiplication algorithm and function input parameters description.
401 #
402 # This function does two AMMs for two independent inputs, hence dual.
403 #
404 # void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG out[2][20],
405 # const BN_ULONG a[2][20],
406 # const BN_ULONG b[2][20],
407 # const BN_ULONG m[2][20],
408 # const BN_ULONG k0[2]);
409 ###############################################################################
410
411 $code.=<<___;
412 .text
413
414 .globl ossl_rsaz_amm52x20_x2_ifma256
415 .type ossl_rsaz_amm52x20_x2_ifma256,\@function,5
416 .align 32
417 ossl_rsaz_amm52x20_x2_ifma256:
418 .cfi_startproc
419 endbranch
420 push %rbx
421 .cfi_push %rbx
422 push %rbp
423 .cfi_push %rbp
424 push %r12
425 .cfi_push %r12
426 push %r13
427 .cfi_push %r13
428 push %r14
429 .cfi_push %r14
430 push %r15
431 .cfi_push %r15
432 .Lossl_rsaz_amm52x20_x2_ifma256_body:
433
434 # Zeroing accumulators
435 vpxord $zero, $zero, $zero
436 vmovdqa64 $zero, $R0_0
437 vmovdqa64 $zero, $R0_0h
438 vmovdqa64 $zero, $R1_0
439 vmovdqa64 $zero, $R1_0h
440 vmovdqa64 $zero, $R2_0
441 vmovdqa64 $zero, $R0_1
442 vmovdqa64 $zero, $R0_1h
443 vmovdqa64 $zero, $R1_1
444 vmovdqa64 $zero, $R1_1h
445 vmovdqa64 $zero, $R2_1
446
447 xorl $acc0_0_low, $acc0_0_low
448 xorl $acc0_1_low, $acc0_1_low
449
450 movq $b, $b_ptr # backup address of b
451 movq \$0xfffffffffffff, $mask52 # 52-bit mask
452
453 mov \$20, $iter
454
455 .align 32
456 .Lloop20:
457 ___
458 &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
459 # 20*8 = offset of the next dimension in two-dimension array
460 &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
461 $code.=<<___;
462 lea 8($b_ptr), $b_ptr
463 dec $iter
464 jne .Lloop20
465 ___
466 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
467 &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
468 $code.=<<___;
469
470 vmovdqu64 $R0_0, `0*32`($res)
471 vmovdqu64 $R0_0h, `1*32`($res)
472 vmovdqu64 $R1_0, `2*32`($res)
473 vmovdqu64 $R1_0h, `3*32`($res)
474 vmovdqu64 $R2_0, `4*32`($res)
475
476 vmovdqu64 $R0_1, `5*32`($res)
477 vmovdqu64 $R0_1h, `6*32`($res)
478 vmovdqu64 $R1_1, `7*32`($res)
479 vmovdqu64 $R1_1h, `8*32`($res)
480 vmovdqu64 $R2_1, `9*32`($res)
481
482 vzeroupper
483 mov 0(%rsp),%r15
484 .cfi_restore %r15
485 mov 8(%rsp),%r14
486 .cfi_restore %r14
487 mov 16(%rsp),%r13
488 .cfi_restore %r13
489 mov 24(%rsp),%r12
490 .cfi_restore %r12
491 mov 32(%rsp),%rbp
492 .cfi_restore %rbp
493 mov 40(%rsp),%rbx
494 .cfi_restore %rbx
495 lea 48(%rsp),%rsp
496 .cfi_adjust_cfa_offset -48
497 .Lossl_rsaz_amm52x20_x2_ifma256_epilogue:
498 ret
499 .cfi_endproc
500 .size ossl_rsaz_amm52x20_x2_ifma256, .-ossl_rsaz_amm52x20_x2_ifma256
501 ___
502 }
503
504 ###############################################################################
505 # Constant time extraction from the precomputed table of powers base^i, where
506 # i = 0..2^EXP_WIN_SIZE-1
507 #
508 # The input |red_table| contains precomputations for two independent base values.
509 # |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
510 #
511 # Extracted value (output) is 2 20 digit numbers in 2^52 radix.
512 #
513 # void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
514 # const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
515 # int red_table_idx1, int red_table_idx2);
516 #
517 # EXP_WIN_SIZE = 5
518 ###############################################################################
519 {
520 # input parameters
521 my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
522 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
523
524 my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
525 my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
526 my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
527
528 my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
529 my $t0xmm = $t0;
530 $t0xmm =~ s/%y/%x/;
531
532 $code.=<<___;
533 .text
534
535 .align 32
536 .globl ossl_extract_multiplier_2x20_win5
537 .type ossl_extract_multiplier_2x20_win5,\@abi-omnipotent
538 ossl_extract_multiplier_2x20_win5:
539 .cfi_startproc
540 endbranch
541 vmovdqa64 .Lones(%rip), $ones # broadcast ones
542 vpbroadcastq $red_tbl_idx1, $idx1
543 vpbroadcastq $red_tbl_idx2, $idx2
544 leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
545
546 # zeroing t0..n, cur_idx
547 vpxor $t0xmm, $t0xmm, $t0xmm
548 vmovdqa64 $t0, $cur_idx
549 ___
550 foreach (1..9) {
551 $code.="vmovdqa64 $t0, $t[$_] \n";
552 }
553 $code.=<<___;
554
555 .align 32
556 .Lloop:
557 vpcmpq \$0, $cur_idx, $idx1, %k1 # mask of (idx1 == cur_idx)
558 vpcmpq \$0, $cur_idx, $idx2, %k2 # mask of (idx2 == cur_idx)
559 ___
560 foreach (0..9) {
561 my $mask = $_<5?"%k1":"%k2";
562 $code.=<<___;
563 vmovdqu64 `${_}*32`($red_tbl), $tmp # load data from red_tbl
564 vpblendmq $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
565 ___
566 }
567 $code.=<<___;
568 vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
569 addq \$`2*20*8`, $red_tbl
570 cmpq $red_tbl, %rax
571 jne .Lloop
572 ___
573 # store t0..n
574 foreach (0..9) {
575 $code.="vmovdqu64 $t[$_], `${_}*32`($out) \n";
576 }
577 $code.=<<___;
578 ret
579 .cfi_endproc
580 .size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
581 ___
582 $code.=<<___;
583 .data
584 .align 32
585 .Lones:
586 .quad 1,1,1,1
587 .Lzeros:
588 .quad 0,0,0,0
589 ___
590 }
591
592 if ($win64) {
593 $rec="%rcx";
594 $frame="%rdx";
595 $context="%r8";
596 $disp="%r9";
597
598 $code.=<<___;
599 .extern __imp_RtlVirtualUnwind
600 .type rsaz_def_handler,\@abi-omnipotent
601 .align 16
602 rsaz_def_handler:
603 push %rsi
604 push %rdi
605 push %rbx
606 push %rbp
607 push %r12
608 push %r13
609 push %r14
610 push %r15
611 pushfq
612 sub \$64,%rsp
613
614 mov 120($context),%rax # pull context->Rax
615 mov 248($context),%rbx # pull context->Rip
616
617 mov 8($disp),%rsi # disp->ImageBase
618 mov 56($disp),%r11 # disp->HandlerData
619
620 mov 0(%r11),%r10d # HandlerData[0]
621 lea (%rsi,%r10),%r10 # prologue label
622 cmp %r10,%rbx # context->Rip<.Lprologue
623 jb .Lcommon_seh_tail
624
625 mov 152($context),%rax # pull context->Rsp
626
627 mov 4(%r11),%r10d # HandlerData[1]
628 lea (%rsi,%r10),%r10 # epilogue label
629 cmp %r10,%rbx # context->Rip>=.Lepilogue
630 jae .Lcommon_seh_tail
631
632 lea 48(%rax),%rax
633
634 mov -8(%rax),%rbx
635 mov -16(%rax),%rbp
636 mov -24(%rax),%r12
637 mov -32(%rax),%r13
638 mov -40(%rax),%r14
639 mov -48(%rax),%r15
640 mov %rbx,144($context) # restore context->Rbx
641 mov %rbp,160($context) # restore context->Rbp
642 mov %r12,216($context) # restore context->R12
643 mov %r13,224($context) # restore context->R13
644 mov %r14,232($context) # restore context->R14
645 mov %r15,240($context) # restore context->R14
646
647 .Lcommon_seh_tail:
648 mov 8(%rax),%rdi
649 mov 16(%rax),%rsi
650 mov %rax,152($context) # restore context->Rsp
651 mov %rsi,168($context) # restore context->Rsi
652 mov %rdi,176($context) # restore context->Rdi
653
654 mov 40($disp),%rdi # disp->ContextRecord
655 mov $context,%rsi # context
656 mov \$154,%ecx # sizeof(CONTEXT)
657 .long 0xa548f3fc # cld; rep movsq
658
659 mov $disp,%rsi
660 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
661 mov 8(%rsi),%rdx # arg2, disp->ImageBase
662 mov 0(%rsi),%r8 # arg3, disp->ControlPc
663 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
664 mov 40(%rsi),%r10 # disp->ContextRecord
665 lea 56(%rsi),%r11 # &disp->HandlerData
666 lea 24(%rsi),%r12 # &disp->EstablisherFrame
667 mov %r10,32(%rsp) # arg5
668 mov %r11,40(%rsp) # arg6
669 mov %r12,48(%rsp) # arg7
670 mov %rcx,56(%rsp) # arg8, (NULL)
671 call *__imp_RtlVirtualUnwind(%rip)
672
673 mov \$1,%eax # ExceptionContinueSearch
674 add \$64,%rsp
675 popfq
676 pop %r15
677 pop %r14
678 pop %r13
679 pop %r12
680 pop %rbp
681 pop %rbx
682 pop %rdi
683 pop %rsi
684 ret
685 .size rsaz_def_handler,.-rsaz_def_handler
686
687 .section .pdata
688 .align 4
689 .rva .LSEH_begin_ossl_rsaz_amm52x20_x1_ifma256
690 .rva .LSEH_end_ossl_rsaz_amm52x20_x1_ifma256
691 .rva .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256
692
693 .rva .LSEH_begin_ossl_rsaz_amm52x20_x2_ifma256
694 .rva .LSEH_end_ossl_rsaz_amm52x20_x2_ifma256
695 .rva .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256
696
697 .section .xdata
698 .align 8
699 .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256:
700 .byte 9,0,0,0
701 .rva rsaz_def_handler
702 .rva .Lossl_rsaz_amm52x20_x1_ifma256_body,.Lossl_rsaz_amm52x20_x1_ifma256_epilogue
703 .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256:
704 .byte 9,0,0,0
705 .rva rsaz_def_handler
706 .rva .Lossl_rsaz_amm52x20_x2_ifma256_body,.Lossl_rsaz_amm52x20_x2_ifma256_epilogue
707 ___
708 }
709 }}} else {{{ # fallback for old assembler
710 $code.=<<___;
711 .text
712
713 .globl ossl_rsaz_avx512ifma_eligible
714 .type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
715 ossl_rsaz_avx512ifma_eligible:
716 xor %eax,%eax
717 ret
718 .size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
719
720 .globl ossl_rsaz_amm52x20_x1_ifma256
721 .globl ossl_rsaz_amm52x20_x2_ifma256
722 .globl ossl_extract_multiplier_2x20_win5
723 .type ossl_rsaz_amm52x20_x1_ifma256,\@abi-omnipotent
724 ossl_rsaz_amm52x20_x1_ifma256:
725 ossl_rsaz_amm52x20_x2_ifma256:
726 ossl_extract_multiplier_2x20_win5:
727 .byte 0x0f,0x0b # ud2
728 ret
729 .size ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
730 ___
731 }}}
732
733 $code =~ s/\`([^\`]*)\`/eval $1/gem;
734 print $code;
735 close STDOUT or die "error closing STDOUT: $!";