]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bn/asm/x86-mont.pl
Also check for errors in x86_64-xlate.pl.
[thirdparty/openssl.git] / crypto / bn / asm / x86-mont.pl
1 #! /usr/bin/env perl
2 # Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
3 #
4 # Licensed under the Apache License 2.0 (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
8
9
10 # ====================================================================
11 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12 # project. The module is, however, dual licensed under OpenSSL and
13 # CRYPTOGAMS licenses depending on where you obtain it. For further
14 # details see http://www.openssl.org/~appro/cryptogams/.
15 # ====================================================================
16
17 # October 2005
18 #
19 # This is a "teaser" code, as it can be improved in several ways...
20 # First of all non-SSE2 path should be implemented (yes, for now it
21 # performs Montgomery multiplication/convolution only on SSE2-capable
22 # CPUs such as P4, others fall down to original code). Then inner loop
23 # can be unrolled and modulo-scheduled to improve ILP and possibly
24 # moved to 128-bit XMM register bank (though it would require input
25 # rearrangement and/or increase bus bandwidth utilization). Dedicated
26 # squaring procedure should give further performance improvement...
27 # Yet, for being draft, the code improves rsa512 *sign* benchmark by
28 # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)
29
30 # December 2006
31 #
32 # Modulo-scheduling SSE2 loops results in further 15-20% improvement.
33 # Integer-only code [being equipped with dedicated squaring procedure]
34 # gives ~40% on rsa512 sign benchmark...
35
36 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
37 push(@INC,"${dir}","${dir}../../perlasm");
38 require "x86asm.pl";
39
40 $output = pop and open STDOUT,">$output";
41
42 &asm_init($ARGV[0]);
43
44 $sse2=0;
45 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
46
47 &external_label("OPENSSL_ia32cap_P") if ($sse2);
48
49 &function_begin("bn_mul_mont");
50
51 $i="edx";
52 $j="ecx";
53 $ap="esi"; $tp="esi"; # overlapping variables!!!
54 $rp="edi"; $bp="edi"; # overlapping variables!!!
55 $np="ebp";
56 $num="ebx";
57
58 $_num=&DWP(4*0,"esp"); # stack top layout
59 $_rp=&DWP(4*1,"esp");
60 $_ap=&DWP(4*2,"esp");
61 $_bp=&DWP(4*3,"esp");
62 $_np=&DWP(4*4,"esp");
63 $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp");
64 $_sp=&DWP(4*6,"esp");
65 $_bpend=&DWP(4*7,"esp");
66 $frame=32; # size of above frame rounded up to 16n
67
68 &xor ("eax","eax");
69 &mov ("edi",&wparam(5)); # int num
70 &cmp ("edi",4);
71 &jl (&label("just_leave"));
72
73 &lea ("esi",&wparam(0)); # put aside pointer to argument block
74 &lea ("edx",&wparam(1)); # load ap
75 &add ("edi",2); # extra two words on top of tp
76 &neg ("edi");
77 &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2))
78 &neg ("edi");
79
80 # minimize cache contention by arranging 2K window between stack
81 # pointer and ap argument [np is also position sensitive vector,
82 # but it's assumed to be near ap, as it's allocated at ~same
83 # time].
84 &mov ("eax","ebp");
85 &sub ("eax","edx");
86 &and ("eax",2047);
87 &sub ("ebp","eax"); # this aligns sp and ap modulo 2048
88
89 &xor ("edx","ebp");
90 &and ("edx",2048);
91 &xor ("edx",2048);
92 &sub ("ebp","edx"); # this splits them apart modulo 4096
93
94 &and ("ebp",-64); # align to cache line
95
96 # An OS-agnostic version of __chkstk.
97 #
98 # Some OSes (Windows) insist on stack being "wired" to
99 # physical memory in strictly sequential manner, i.e. if stack
100 # allocation spans two pages, then reference to farmost one can
101 # be punishable by SEGV. But page walking can do good even on
102 # other OSes, because it guarantees that villain thread hits
103 # the guard page before it can make damage to innocent one...
104 &mov ("eax","esp");
105 &sub ("eax","ebp");
106 &and ("eax",-4096);
107 &mov ("edx","esp"); # saved stack pointer!
108 &lea ("esp",&DWP(0,"ebp","eax"));
109 &mov ("eax",&DWP(0,"esp"));
110 &cmp ("esp","ebp");
111 &ja (&label("page_walk"));
112 &jmp (&label("page_walk_done"));
113
114 &set_label("page_walk",16);
115 &lea ("esp",&DWP(-4096,"esp"));
116 &mov ("eax",&DWP(0,"esp"));
117 &cmp ("esp","ebp");
118 &ja (&label("page_walk"));
119 &set_label("page_walk_done");
120
121 ################################# load argument block...
122 &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp
123 &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap
124 &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp
125 &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np
126 &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0
127 #&mov ("edi",&DWP(5*4,"esi"));# int num
128
129 &mov ("esi",&DWP(0,"esi")); # pull n0[0]
130 &mov ($_rp,"eax"); # ... save a copy of argument block
131 &mov ($_ap,"ebx");
132 &mov ($_bp,"ecx");
133 &mov ($_np,"ebp");
134 &mov ($_n0,"esi");
135 &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling
136 #&mov ($_num,$num); # redundant as $num is not reused
137 &mov ($_sp,"edx"); # saved stack pointer!
138 \f
139 if($sse2) {
140 $acc0="mm0"; # mmx register bank layout
141 $acc1="mm1";
142 $car0="mm2";
143 $car1="mm3";
144 $mul0="mm4";
145 $mul1="mm5";
146 $temp="mm6";
147 $mask="mm7";
148
149 &picmeup("eax","OPENSSL_ia32cap_P");
150 &bt (&DWP(0,"eax"),26);
151 &jnc (&label("non_sse2"));
152
153 &mov ("eax",-1);
154 &movd ($mask,"eax"); # mask 32 lower bits
155
156 &mov ($ap,$_ap); # load input pointers
157 &mov ($bp,$_bp);
158 &mov ($np,$_np);
159
160 &xor ($i,$i); # i=0
161 &xor ($j,$j); # j=0
162
163 &movd ($mul0,&DWP(0,$bp)); # bp[0]
164 &movd ($mul1,&DWP(0,$ap)); # ap[0]
165 &movd ($car1,&DWP(0,$np)); # np[0]
166
167 &pmuludq($mul1,$mul0); # ap[0]*bp[0]
168 &movq ($car0,$mul1);
169 &movq ($acc0,$mul1); # I wish movd worked for
170 &pand ($acc0,$mask); # inter-register transfers
171
172 &pmuludq($mul1,$_n0q); # *=n0
173
174 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
175 &paddq ($car1,$acc0);
176
177 &movd ($acc1,&DWP(4,$np)); # np[1]
178 &movd ($acc0,&DWP(4,$ap)); # ap[1]
179
180 &psrlq ($car0,32);
181 &psrlq ($car1,32);
182
183 &inc ($j); # j++
184 &set_label("1st",16);
185 &pmuludq($acc0,$mul0); # ap[j]*bp[0]
186 &pmuludq($acc1,$mul1); # np[j]*m1
187 &paddq ($car0,$acc0); # +=c0
188 &paddq ($car1,$acc1); # +=c1
189
190 &movq ($acc0,$car0);
191 &pand ($acc0,$mask);
192 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
193 &paddq ($car1,$acc0); # +=ap[j]*bp[0];
194 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
195 &psrlq ($car0,32);
196 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
197 &psrlq ($car1,32);
198
199 &lea ($j,&DWP(1,$j));
200 &cmp ($j,$num);
201 &jl (&label("1st"));
202
203 &pmuludq($acc0,$mul0); # ap[num-1]*bp[0]
204 &pmuludq($acc1,$mul1); # np[num-1]*m1
205 &paddq ($car0,$acc0); # +=c0
206 &paddq ($car1,$acc1); # +=c1
207
208 &movq ($acc0,$car0);
209 &pand ($acc0,$mask);
210 &paddq ($car1,$acc0); # +=ap[num-1]*bp[0];
211 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
212
213 &psrlq ($car0,32);
214 &psrlq ($car1,32);
215
216 &paddq ($car1,$car0);
217 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
218 \f
219 &inc ($i); # i++
220 &set_label("outer");
221 &xor ($j,$j); # j=0
222
223 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
224 &movd ($mul1,&DWP(0,$ap)); # ap[0]
225 &movd ($temp,&DWP($frame,"esp")); # tp[0]
226 &movd ($car1,&DWP(0,$np)); # np[0]
227 &pmuludq($mul1,$mul0); # ap[0]*bp[i]
228
229 &paddq ($mul1,$temp); # +=tp[0]
230 &movq ($acc0,$mul1);
231 &movq ($car0,$mul1);
232 &pand ($acc0,$mask);
233
234 &pmuludq($mul1,$_n0q); # *=n0
235
236 &pmuludq($car1,$mul1);
237 &paddq ($car1,$acc0);
238
239 &movd ($temp,&DWP($frame+4,"esp")); # tp[1]
240 &movd ($acc1,&DWP(4,$np)); # np[1]
241 &movd ($acc0,&DWP(4,$ap)); # ap[1]
242
243 &psrlq ($car0,32);
244 &psrlq ($car1,32);
245 &paddq ($car0,$temp); # +=tp[1]
246
247 &inc ($j); # j++
248 &dec ($num);
249 &set_label("inner");
250 &pmuludq($acc0,$mul0); # ap[j]*bp[i]
251 &pmuludq($acc1,$mul1); # np[j]*m1
252 &paddq ($car0,$acc0); # +=c0
253 &paddq ($car1,$acc1); # +=c1
254
255 &movq ($acc0,$car0);
256 &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1]
257 &pand ($acc0,$mask);
258 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
259 &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
260 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
261 &psrlq ($car0,32);
262 &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]=
263 &psrlq ($car1,32);
264 &paddq ($car0,$temp); # +=tp[j+1]
265
266 &dec ($num);
267 &lea ($j,&DWP(1,$j)); # j++
268 &jnz (&label("inner"));
269
270 &mov ($num,$j);
271 &pmuludq($acc0,$mul0); # ap[num-1]*bp[i]
272 &pmuludq($acc1,$mul1); # np[num-1]*m1
273 &paddq ($car0,$acc0); # +=c0
274 &paddq ($car1,$acc1); # +=c1
275
276 &movq ($acc0,$car0);
277 &pand ($acc0,$mask);
278 &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1]
279 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
280 &psrlq ($car0,32);
281 &psrlq ($car1,32);
282
283 &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num]
284 &paddq ($car1,$car0);
285 &paddq ($car1,$temp);
286 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
287
288 &lea ($i,&DWP(1,$i)); # i++
289 &cmp ($i,$num);
290 &jle (&label("outer"));
291
292 &emms (); # done with mmx bank
293 &jmp (&label("common_tail"));
294
295 &set_label("non_sse2",16);
296 }
297 \f
298 if (0) {
299 &mov ("esp",$_sp);
300 &xor ("eax","eax"); # signal "not fast enough [yet]"
301 &jmp (&label("just_leave"));
302 # While the below code provides competitive performance for
303 # all key lengths on modern Intel cores, it's still more
304 # than 10% slower for 4096-bit key elsewhere:-( "Competitive"
305 # means compared to the original integer-only assembler.
306 # 512-bit RSA sign is better by ~40%, but that's about all
307 # one can say about all CPUs...
308 } else {
309 $inp="esi"; # integer path uses these registers differently
310 $word="edi";
311 $carry="ebp";
312
313 &mov ($inp,$_ap);
314 &lea ($carry,&DWP(1,$num));
315 &mov ($word,$_bp);
316 &xor ($j,$j); # j=0
317 &mov ("edx",$inp);
318 &and ($carry,1); # see if num is even
319 &sub ("edx",$word); # see if ap==bp
320 &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
321 &or ($carry,"edx");
322 &mov ($word,&DWP(0,$word)); # bp[0]
323 &jz (&label("bn_sqr_mont"));
324 &mov ($_bpend,"eax");
325 &mov ("eax",&DWP(0,$inp));
326 &xor ("edx","edx");
327
328 &set_label("mull",16);
329 &mov ($carry,"edx");
330 &mul ($word); # ap[j]*bp[0]
331 &add ($carry,"eax");
332 &lea ($j,&DWP(1,$j));
333 &adc ("edx",0);
334 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
335 &cmp ($j,$num);
336 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
337 &jl (&label("mull"));
338
339 &mov ($carry,"edx");
340 &mul ($word); # ap[num-1]*bp[0]
341 &mov ($word,$_n0);
342 &add ("eax",$carry);
343 &mov ($inp,$_np);
344 &adc ("edx",0);
345 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
346
347 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
348 &xor ($j,$j);
349 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
350 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
351
352 &mov ("eax",&DWP(0,$inp)); # np[0]
353 &mul ($word); # np[0]*m
354 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
355 &mov ("eax",&DWP(4,$inp)); # np[1]
356 &adc ("edx",0);
357 &inc ($j);
358
359 &jmp (&label("2ndmadd"));
360 \f\f
361 &set_label("1stmadd",16);
362 &mov ($carry,"edx");
363 &mul ($word); # ap[j]*bp[i]
364 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
365 &lea ($j,&DWP(1,$j));
366 &adc ("edx",0);
367 &add ($carry,"eax");
368 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
369 &adc ("edx",0);
370 &cmp ($j,$num);
371 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
372 &jl (&label("1stmadd"));
373
374 &mov ($carry,"edx");
375 &mul ($word); # ap[num-1]*bp[i]
376 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
377 &mov ($word,$_n0);
378 &adc ("edx",0);
379 &mov ($inp,$_np);
380 &add ($carry,"eax");
381 &adc ("edx",0);
382 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
383
384 &xor ($j,$j);
385 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
386 &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]=
387 &adc ($j,0);
388 &mov ("eax",&DWP(0,$inp)); # np[0]
389 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
390 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
391
392 &mul ($word); # np[0]*m
393 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
394 &mov ("eax",&DWP(4,$inp)); # np[1]
395 &adc ("edx",0);
396 &mov ($j,1);
397 \f
398 &set_label("2ndmadd",16);
399 &mov ($carry,"edx");
400 &mul ($word); # np[j]*m
401 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
402 &lea ($j,&DWP(1,$j));
403 &adc ("edx",0);
404 &add ($carry,"eax");
405 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1]
406 &adc ("edx",0);
407 &cmp ($j,$num);
408 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]=
409 &jl (&label("2ndmadd"));
410
411 &mov ($carry,"edx");
412 &mul ($word); # np[j]*m
413 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
414 &adc ("edx",0);
415 &add ($carry,"eax");
416 &adc ("edx",0);
417 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
418
419 &xor ("eax","eax");
420 &mov ($j,$_bp); # &bp[i]
421 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
422 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
423 &lea ($j,&DWP(4,$j));
424 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
425 &cmp ($j,$_bpend);
426 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
427 &je (&label("common_tail"));
428
429 &mov ($word,&DWP(0,$j)); # bp[i+1]
430 &mov ($inp,$_ap);
431 &mov ($_bp,$j); # &bp[++i]
432 &xor ($j,$j);
433 &xor ("edx","edx");
434 &mov ("eax",&DWP(0,$inp));
435 &jmp (&label("1stmadd"));
436 \f
437 &set_label("bn_sqr_mont",16);
438 $sbit=$num;
439 &mov ($_num,$num);
440 &mov ($_bp,$j); # i=0
441
442 &mov ("eax",$word); # ap[0]
443 &mul ($word); # ap[0]*ap[0]
444 &mov (&DWP($frame,"esp"),"eax"); # tp[0]=
445 &mov ($sbit,"edx");
446 &shr ("edx",1);
447 &and ($sbit,1);
448 &inc ($j);
449 &set_label("sqr",16);
450 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
451 &mov ($carry,"edx");
452 &mul ($word); # ap[j]*ap[0]
453 &add ("eax",$carry);
454 &lea ($j,&DWP(1,$j));
455 &adc ("edx",0);
456 &lea ($carry,&DWP(0,$sbit,"eax",2));
457 &shr ("eax",31);
458 &cmp ($j,$_num);
459 &mov ($sbit,"eax");
460 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
461 &jl (&label("sqr"));
462
463 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1]
464 &mov ($carry,"edx");
465 &mul ($word); # ap[num-1]*ap[0]
466 &add ("eax",$carry);
467 &mov ($word,$_n0);
468 &adc ("edx",0);
469 &mov ($inp,$_np);
470 &lea ($carry,&DWP(0,$sbit,"eax",2));
471 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
472 &shr ("eax",31);
473 &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]=
474
475 &lea ($carry,&DWP(0,"eax","edx",2));
476 &mov ("eax",&DWP(0,$inp)); # np[0]
477 &shr ("edx",31);
478 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]=
479 &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]=
480
481 &mul ($word); # np[0]*m
482 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
483 &mov ($num,$j);
484 &adc ("edx",0);
485 &mov ("eax",&DWP(4,$inp)); # np[1]
486 &mov ($j,1);
487 \f\f
488 &set_label("3rdmadd",16);
489 &mov ($carry,"edx");
490 &mul ($word); # np[j]*m
491 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
492 &adc ("edx",0);
493 &add ($carry,"eax");
494 &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1]
495 &adc ("edx",0);
496 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]=
497
498 &mov ($carry,"edx");
499 &mul ($word); # np[j+1]*m
500 &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1]
501 &lea ($j,&DWP(2,$j));
502 &adc ("edx",0);
503 &add ($carry,"eax");
504 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2]
505 &adc ("edx",0);
506 &cmp ($j,$num);
507 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]=
508 &jl (&label("3rdmadd"));
509
510 &mov ($carry,"edx");
511 &mul ($word); # np[j]*m
512 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
513 &adc ("edx",0);
514 &add ($carry,"eax");
515 &adc ("edx",0);
516 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
517
518 &mov ($j,$_bp); # i
519 &xor ("eax","eax");
520 &mov ($inp,$_ap);
521 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
522 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
523 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
524 &cmp ($j,$num);
525 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
526 &je (&label("common_tail"));
527 \f
528 &mov ($word,&DWP(4,$inp,$j,4)); # ap[i]
529 &lea ($j,&DWP(1,$j));
530 &mov ("eax",$word);
531 &mov ($_bp,$j); # ++i
532 &mul ($word); # ap[i]*ap[i]
533 &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i]
534 &adc ("edx",0);
535 &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]=
536 &xor ($carry,$carry);
537 &cmp ($j,$num);
538 &lea ($j,&DWP(1,$j));
539 &je (&label("sqrlast"));
540
541 &mov ($sbit,"edx"); # zaps $num
542 &shr ("edx",1);
543 &and ($sbit,1);
544 &set_label("sqradd",16);
545 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
546 &mov ($carry,"edx");
547 &mul ($word); # ap[j]*ap[i]
548 &add ("eax",$carry);
549 &lea ($carry,&DWP(0,"eax","eax"));
550 &adc ("edx",0);
551 &shr ("eax",31);
552 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
553 &lea ($j,&DWP(1,$j));
554 &adc ("eax",0);
555 &add ($carry,$sbit);
556 &adc ("eax",0);
557 &cmp ($j,$_num);
558 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
559 &mov ($sbit,"eax");
560 &jle (&label("sqradd"));
561
562 &mov ($carry,"edx");
563 &add ("edx","edx");
564 &shr ($carry,31);
565 &add ("edx",$sbit);
566 &adc ($carry,0);
567 &set_label("sqrlast");
568 &mov ($word,$_n0);
569 &mov ($inp,$_np);
570 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
571
572 &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num]
573 &mov ("eax",&DWP(0,$inp)); # np[0]
574 &adc ($carry,0);
575 &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]=
576 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]=
577
578 &mul ($word); # np[0]*m
579 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
580 &lea ($num,&DWP(-1,$j));
581 &adc ("edx",0);
582 &mov ($j,1);
583 &mov ("eax",&DWP(4,$inp)); # np[1]
584
585 &jmp (&label("3rdmadd"));
586 }
587 \f
588 &set_label("common_tail",16);
589 &mov ($np,$_np); # load modulus pointer
590 &mov ($rp,$_rp); # load result pointer
591 &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped]
592
593 &mov ("eax",&DWP(0,$tp)); # tp[0]
594 &mov ($j,$num); # j=num-1
595 &xor ($i,$i); # i=0 and clear CF!
596
597 &set_label("sub",16);
598 &sbb ("eax",&DWP(0,$np,$i,4));
599 &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
600 &dec ($j); # doesn't affect CF!
601 &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1]
602 &lea ($i,&DWP(1,$i)); # i++
603 &jge (&label("sub"));
604
605 &sbb ("eax",0); # handle upmost overflow bit
606 &mov ("edx",-1);
607 &xor ("edx","eax");
608 &jmp (&label("copy"));
609
610 &set_label("copy",16); # conditional copy
611 &mov ($tp,&DWP($frame,"esp",$num,4));
612 &mov ($np,&DWP(0,$rp,$num,4));
613 &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector
614 &and ($tp,"eax");
615 &and ($np,"edx");
616 &or ($np,$tp);
617 &mov (&DWP(0,$rp,$num,4),$np);
618 &dec ($num);
619 &jge (&label("copy"));
620
621 &mov ("esp",$_sp); # pull saved stack pointer
622 &mov ("eax",1);
623 &set_label("just_leave");
624 &function_end("bn_mul_mont");
625
626 &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
627
628 &asm_finish();
629
630 close STDOUT or die "error closing STDOUT: $!";